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Abstract

We discuss compactness, blow-up and quantization phenomena for the
prescribed Q-curvature equation (−∆)muk = Vke

2muk on open domains
of R2m. Under natural integral assumptions we show that when blow-up
occurs, up to a subsequence

lim
k→∞

∫
Ω0

Vke
2mukdx = LΛ1,

where Ω0 ⊂⊂ Ω is open and contains the blow-up points, L ∈ N and
Λ1 := (2m−1)! vol(S2m) is the total Q-curvature of the round sphere S2m.
Moreover, under suitable assumptions, the blow-up points are isolated.
We do not assume that V is positive.

1 Introduction

Let Ω ⊂ R2m be a connected open set and consider a sequence (uk) of solutions
to the equation

(−∆)muk = Vke
2muk in Ω, (1)

where

Vk → V0 in C0
loc(Ω), (2)

and, for some Λ > 0, ∫
Ω

e2mukdx ≤ Λ. (3)

Equation (1) arises in conformal geometry, as it is the higher-dimensional
generalization of the Gauss equation for the prescribed Gaussian curvature. In
fact, if uk satisfies (1), then the conformal metric

gk := e2uk |dx|2

∗This work was supported by the Swiss National Fond Grant no. PBEZP2-129520.

1



has Q-curvature Vk (here |dx|2 denotes the Euclidean metric). For the definition
of Q-curvature and for more details about the geometric meaning of (1) we refer
to the introduction in [Mar1].

An important example of solutions to (1)-(3) can be constructed as follows.
It is well known that the Q-curvature of the round sphere S2m is (2m−1)!. Then,
if π : S2m → R2m is the stereographic projection, the metric g1 := (π−1)∗gS2m

also has Q-curvature (2m− 1)!. Since g1 = e2η0 |dx|2, with η0(x) = log 2
1+|x|2 , it

follows that

(−∆)mη0 = (2m− 1)!e2mη0 ,

(2m− 1)!

∫
R2m

e2mη0dx = (2m− 1)! vol(S2m) =: Λ1.
(4)

The purpose of this paper is to study the compactness properties of (1), and
show analogies and differences with previous results in this direction. We start
by considering the following model case. The sequence of functions uk(x) :=
log 2k

1+k2|x|2 satifies (1) on Ω = R2m with Vk ≡ (2m − 1)! and
∫
R2m e

2mukdx =

vol(S2m) for every k. On the other hand (uk) is not precompact, as uk(0)→∞
and uk → −∞ locally uniformly on R2m \ {0} so that

Vke
2mukdx ⇀ Λ1δ0

in the sense of measures as k →∞.

For m = 1, Brezis and Merle in their seminal work [BM] proved that a
sequence (uk) of solutions to (1)-(3) is either bounded in C1,α

loc (Ω), or uk → −∞
uniformly locally in Ω\S, where S = {x(1), . . . , x(I)} is a finite set. In particular
one has

Vkdx ⇀

I∑
i=1

αiδx(i)

in the sense of measures. Brezis and Merle also conjectured that, at least for
V0 > 0, in the latter case one has αi = 4πLi for some positive integers Li. This
was shown to be true by Li and Shafrir [LS]. Notice that 4π = Λ1 for m = 1.

For m ≥ 2 things are more complex. In [CC] Chang and Chen proved that
for every α ∈ (0,Λ1) there exists a solution v to (−∆)mv = (2m − 1)!e2mv on
R2m and with (2m− 1)!

∫
R2m e

2mvdx = α. Then, setting

uk(x) = v(kx) + log k,

we find a non-compact sequence of solutions to (1), (2), (3) with Vk ≡ (2m−1)!
and ∫

R2m

Vke
2mukdx→ α 6∈ Λ1N.

Moreover for m = 2 Adimurthi, Robert and Struwe [ARS] gave examples of
sequences (uk) with uk → ∞ on a hyperplane. These facts suggest that in
order to obtain a situation similar to the results of Brezis-Merle (finiteness of
the blow-up set) and of Li-Shafrir (quantization of the total Q-curvature), we
should make further assumption. In this setting this was first done by Robert
for m = 2, and Theorem 1 below is a generalization of Robert’s result to the
case when m is arbitrary.
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Theorem 1 Let (uk) ⊂ C2m
loc (Ω) be solutions to (1), (2) and (3), and assume

that there is a ball Bρ(ξ) ⊂ Ω such that

‖∆uk‖L1(Bρ(ξ)) ≤ C. (5)

Then there is a finite (possibly empty) set S = {x(1), . . . , x(I)} such that one of
the following is true:

(i) up to a subsequence uk → u0 in C2m−1
loc (Ω \ S) for some u0 ∈ C2m(Ω \ S)

solving (−∆)mu0 = V0e
2mu0 , or

(ii) up to a subsequence uk → −∞ locally uniformly in Ω \ S.

If S 6= ∅ and V (x(i)) > 0 for some 1 ≤ i ≤ I, then case (ii) occurs.

Moreover, if we also assume that

‖(∆uk)−‖L1(Ω) ≤ C, with (∆uk)− := min{∆uk, 0}, (6)

we have in case (i) that S = ∅ and in case (ii) that V0(x(i)) > 0 for 1 ≤ i ≤ I
and

Vke
2mukdx ⇀

I∑
i=1

αiδx(i) (7)

in the sense of measures in Ω, where αi = LiΛ1 for some positive Li ∈ N. In
particular, in case (ii) for any open set Ω0 ⊂⊂ Ω with S ⊂ Ω0 we have∫

Ω0

Vke
2mukdx→ LΛ1 (8)

for some L ∈ N (L = 0 if S = ∅).

Notice that the hypothesis (5) and (6) are natural, since for m = 1 they already
follow from (1), (2) and (3), and the counterexample quoted above show that
they are necessary to some extent (see the first open problem in the last section).
Moreover, contrary to [Rob2] and [LS], we do not assume that V0 > 0. In fact,
as already discussed in [Mar3], if V0 has changing sign, one can show using
the results of [Mar2] that, if (6) holds, blow-up happens only at points where
V0 > 0. We also point out that when m = 2, F. Robert [Rob3] proved a
version of Theorem 1 where the assumptions (3), (5) and (6) are replaced by
‖∆uk‖L1(Ω) ≤ C. This does not seem possible for m > 2 without further
assumptions of ∆juk for 2 ≤ j ≤ m− 1.

A different approach to compactness can be given by working on a closed
Riemannian manifold instead of an open set, see Druet-Robert [DR], Malchiodi
[Mal], Martinazzi [Mar3] and Ndiaye [Ndi], or by assuming Ω bounded and
imposing a Dirichlet or a Navier boundary condition, see Wei [Wei], Robert-
Wei [RW] and Martinazzi-Petrache [MP]. In this case the quantization is even
stronger, as one shows that αi = Λ1 in (7) and L = I in (8). It turns out that
the ideas of [DR] and [Mar3] can be applied in the present context of an open
domain if we assume an a-priori L1-bound on ∇uk in place of the bound on
∆uk:
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Theorem 2 Let (uk) ⊂ C2m
loc (Ω) be solutions to (1) and (3), where

Vk → V0 in C1
loc(Ω). (9)

Assume further that there is a ball Bρ(ξ) ⊂ Ω such that

‖∇uk‖L1(Bρ(ξ)) ≤ C. (10)

Then there is a finite (possibly empty) set S = {x(1), . . . , x(I)} such that one of
the following is true:

(i) up to a subsequence uk → u0 in C2m−1
loc (Ω \ S) for some u0 ∈ C2m(Ω \ S)

solving (−∆)mu0 = V0e
2mu0 , or

(ii) up to a subsequence uk → −∞ locally uniformly in Ω \ S.

If S 6= ∅ and V (x(i)) > 0 for some 1 ≤ i ≤ I, then case (ii) occurs.

Moreover, if we also assume that

‖∇uk‖L1(Ω) ≤ C, (11)

we have that in case (i) S = ∅ and in case (ii) V0(x(i)) > 0 for 1 ≤ i ≤ I and

Vke
2mukdx ⇀

I∑
i=1

Λ1δx(i) (12)

in the sense of measures. In particular, for any open set Ω0 ⊂⊂ Ω with S ⊂ Ω0

we have ∫
Ω0

Vke
2mukdx→ IΛ1. (13)

The difference between Theorem 1 and Theorem 2 is that under the hypoth-
esis of Theorem 2 one can prove uniform bounds for ∇`uk, 1 ≤ ` ≤ 2m − 2
(Propositions 12 and 13), which in turn allow us to apply a clever technique of
Druet and Robert [DR] to rule out the occurrence of multiple blow-up points. In
Theorem 1 one can only prove bounds for ∇`−2∆uk, 2 ≤ ` ≤ 2m− 1 (Proposi-
tions 5 and 7 below). This is not just a technical issue, as the result of Theorem
2 is stronger than that of Theorem 1. Indeed X. Chen [Che] showed that al-
ready for m = 1, under the assumptions of Theorem 1, there exist sequences
with multiple blow-up points.

The paper is organized as follows. In Section 2 we prove Theorem 1, in
section 3, we prove Theorem 2 and in the last section we collect some open
problems. The letter C always denotes a generic large constant which can
change from line to line, and even within the same line.

I am grateful to F. Robert for suggesting me to work on this problems.

2 Proof of Theorem 1

In the proof of Theorem 1 we use the strategy of extracting blow-up profiles
(Proposition 6 below), in the spirit of Struwe [Str1], [Str2] and of Brézis-Coron
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[BC1], [BC2]. We classify such profiles thanks to the results of [Mar1] and
[Mar2], and finally we use Harnack-type estimates inspired from [Rob2]. Since
Propositions 4 and 5 below don’t work for m = 1, in this section we shall assume
that m > 1. For the case m = 1 we refer to [LS], noticing that their assumption
Vk ≥ 0 can be easily dropped (particularly in their Lemma 1), since there are
no solutions to the equation

−∆u = V e2u in R2,

∫
R2

e2udx <∞, V ≡ const < 0,

see Theorem 1 in [Mar2].

Proposition 3 Let (uk) be a sequence of solutions to (1)-(3) satisfying (5) for
some ball Bρ(ξ) ⊂ Ω and set

S :=

{
y ∈ Ω : lim

r→0+
lim inf
k→∞

∫
Br(y)

|Vk|e2mukdy ≥ Λ1

2

}
. (14)

Then S is finite (possibly empty) and up to selecting a subsequence one of the
following is true:

(i) uk → u0 in C2m−1
loc (Ω\S) for some u0 ∈ C2m(Ω\S);

(ii) uk → −∞ locally uniformly in Ω\S.

If S 6= ∅ and V (x(i)) > 0 for some 1 ≤ i ≤ I, then case (ii) occurs.

Proof. By Theorem 1 in [Mar3] (compare [ARS]) we have that S is finite and
either

(a) uk → u0 in C2m−1
loc (Ω\S) for some u0 ∈ C2m(Ω\S), or

(b) uk → −∞ locally uniformly in Ω\(S ∪ Γ), where Γ is a closed set of
Hausdorff dimension at most 2m−1. Moreover there are numbers βk →∞
such that

uk
βk
→ ϕ in C2m−1

loc (Ω\(S ∪ Γ)), (15)

where ϕ ∈ C∞(Ω\S), Γ = {x ∈ Ω \ S : ϕ(x) = 0} and

∆mϕ ≡ 0, ϕ ≤ 0, ϕ 6≡ 0 in Ω\S. (16)

Clearly case (a) corresponds to case (i) in the proposition. We need to show
that if (b) occurs, then Γ = ∅, so that ϕ < 0 on Ω\S and case (ii) follows from
(15). In order to show that Γ = ∅, observe that ∆ϕ ≡ 0 in Ω\S. Otherwise,
since ∆ϕ is analytic1, we would have∫

Bρ(ξ)

|∆ϕ|dx > 0,

where Bρ(ξ) ⊂ Ω is as in (5). Then (15) would imply

lim
k→∞

∫
Bρ(ξ)

|∆uk|dx = lim
k→∞

βk

∫
Bρ(ξ)

|∆ϕ|dx = +∞,

1we have ∆m−1(∆ϕ) = 0, and polyharmonic functions are analytic.
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contradicting (5). Therefore ∆ϕ ≡ 0. Then the maximum principle and (16)
imply that ϕ < 0 in Ω\S, i.e. Γ = ∅, as wished. Also the last claim follows from
Theorem 1 in [Mar3]. �

Proposition 3 completes the proof of the first part of Theorem 1. In the re-
maining part of this section we shall assume that (uk) satisfies all the hypothesis
of Theorem 1, including (6) in particular, and we shall prove the second part
of Theorem 1. If S = ∅, it is clear that the proof of Theorem 1 is complete.
Therefore we shall also assume that S 6= ∅, and we shall prove that consequently
we are in case (ii) of Theorem 1.

Proposition 4 For every open set Ω0 ⊂⊂ Ω\S there is a constant C(Ω0) in-
dependent of k such that

‖∆uk‖C2m−3(Ω0) ≤ C(Ω0). (17)

Proof. If case (i) of Proposition 3 occurs the proof of (17) is trivial, hence we
shall assume that we are in case (ii). Up to restricting the ball Bρ(ξ) given
in (5), we can assume that B2ρ(ξ) ∩ S = ∅, so that uk ≤ C = C(ρ) on Bρ(ξ).
Consequently |∆muk| ≤ C on Bρ(ξ). This, (5) and elliptic estimates (see e.g.
[Mar1], Lemma 20) imply that

‖∆uk‖C2m−3(Bρ/2(ξ)) ≤ C. (18)

Elliptic estimates and (6) imply that either ∆uk → +∞ locally uniformly in
Ω \ S, or (∆uk)k∈N is uniformly bounded locally in Ω \ S. In the first case (18)
cannot hold, so we are in the second situation, and (17) follows at once from
elliptic estimates, since |∆muk| ≤ C(Ω0) on Ω0. �

Proposition 5 For every open set Ω0 ⊂⊂ Ω there is a constant C independent
of k such that ∫

Br(x0)

|∇`−2∆uk|dx ≤ Cr2m−`, (19)

for 2 ≤ ` ≤ 2m− 1 and for every ball Br(x0) ⊂ Ω0.

Proof. Fix

δ =
1

16
min

{
min

1≤i 6=j≤I
|x(i) − x(j)|,dist(∂Ω, ∂Ω0)

}
.

By a covering argument, it is enough to prove (19) for 0 < r ≤ δ. Given
Br(x0) ⊂ Ω0 with r ≤ δ, we can choose a ball B4δ(ξ) ⊂ Ω such that Br(x0) ⊂
B2δ(ξ), dist(∂B4δ(ξ), S) ≥ 2δ. For x ∈ B2δ(ξ), let Gx(y) be the Green function
for the operator ∆m−1 in B4δ(ξ) with respect to the Navier boundary condition:

∆m−1Gx = δx in B4δ(ξ), Gx = ∆Gx = . . . = ∆m−2Gx = 0 on ∂B4δ(ξ).

Then we can write

∆uk(x) =

∫
B4δ(ξ)

Gx(y)∆m−1∆uk(y)dy

+

m−2∑
j=0

∫
∂B4δ(ξ)

∂

∂ν
(∆m−j−2Gx)∆j(∆uk)dσ

(20)
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Differentiating and using the bound |∇`−2Gx(y)| ≤ C
|x−y|` (see [DAS]) and (17)

on ∂B4δ(ξ), we infer for x ∈ B2δ(ξ)

|∇`−2∆uk(x)| ≤C
∫
B4δ(ξ)

|Vk(y)|e2muk(y)

|x− y|`
dy

+ C

m−2∑
j=0

sup
∂B4δ(ξ)

(
∆j+1uk

)∫
∂B4δ(ξ)

dσ(y)

|x− y|`+2m−2j−1

≤C
∫
B4δ(ξ)

e2muk(y)

|x− y|`
dy + C.

(21)

Integrating on Br(x0) and using Fubini’s theorem, we finally get∫
Br(x0)

|∇`−2∆uk(x)|dx ≤C
∫
Br(x0)

∫
B4δ(ξ)

e2muk(y)

|x− y|`
dydx+ Cr2m

≤C
∫
B4δ(ξ)

e2muk(y)

(∫
Br(x0)

1

|x− y|`
dx

)
dy + Cr2m

≤Cr2m−`
∫
B4δ(ξ)

e2muk(y)dy + Cr2m

≤Cr2m−` + Cr2m ≤ Cr2m−`,

where in the last inequality we used that r ≤ δ. �

Proposition 6 Let Ω0 ⊂⊂ Ω be an open set such that S ⊂ Ω0. Then up to a
subsequence we have

lim
k→∞

sup
Ω0

uk = +∞, (22)

and case (ii) of Theorem 1 occurs. There exist L ≥ I converging sequences of
points xi,k → x(i) ∈ Ω such that uk(xi,k)→∞ as k →∞, S = {x(1), . . . , x(L)},
V (x(i)) > 0 for 1 ≤ i ≤ L, and there exist L sequences of positive numbers

µi,k := 2

(
(2m− 1)!

V0(x(i))

) 1
2m

e−uk(xi,k) → 0 (23)

such that the following holds:

(a) for 1 ≤ i, j ≤ L, i 6= j

lim
k→∞

|xi,k − xj,k|
µi,k

=∞;

(b) setting ηi,k := uk(xi,k + µi,kx)− uk(xi,k) + log 2, one has

lim
k→∞

ηi,k(x) = η0(x) = log
2

1 + |x|2
in C2m−1

loc (R2m),

and

lim
R→∞

lim
k→∞

∫
BRµi,k (xi,k)

Vke
2mukdx = Λ1; (24)
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(c) for every Ω0 ⊂⊂ Ω we have

inf
1≤i≤L

|x− xi,k|euk(x) ≤ C = C(Ω0). (25)

Proof. Step 1. If supΩ0
uk ≤ C, then by (14) we have S = ∅, contrary to the

assumption we made after Proposition 3. Therefore we can assume that (22)
holds.

Step 2. Since uk is locally bounded in Ω\S uniformly in k if case (i) of Theorem
1 holds, and uk → −∞ uniformly locally in Ω \ S, one can find xk ∈ Ω0 such
that

uk(xk) = sup
Ω0

uk →∞, as k →∞.

Moreover up to a subsequence xk → x0 ∈ S. In particular dist(xk, ∂Ω0) ≥ δ > 0
for some δ > 0. Setting σk = e−uk(xk), we define

zk(y) = uk(xk + σky) + log(σk) ≤ 0 in Bδ/σk(0).

We claim that up to a subsequence zk → z0 in C2m−1,α
loc (R2m), where

(−∆)mz0 = V0(x0)e2mz0 ,

∫
R2m

e2mz0dx <∞. (26)

This follows by elliptic estimates, using that zk ≤ 0, zk(0) = 0 and Proposition
5. With the same technique of the proof of Proposition 8 in [Mar3], step 3, one
proves that V0(x0) > 0. Since we have found a point x0 ∈ S with V0(x0) > 0,
Proposition 3 implies that we are in case (ii) of Theorem 1.

Step 3. Now we define x1,k := xk → x0 =: x(1). Also set µ1,k and η1,k as in
the statement of the proposition. Then, still following [Mar3], Proposition 8,
we infer that η1,k(x)→ log 2

1+|x|2 in C2m−1,α
loc (R2m).

Step 4. We now proceed by induction, as follows. Assume that we have already
found L sequences (xi,k) and (µi,k), 1 ≤ i ≤ L, such that (a) and (b) holds, we
either have that also (c) holds, and we are done, or we construct a new sequence
xL+1,k = xk → x0 ∈ S, and σk = σL+1,k := e−uk(xk) such that

inf
1≤i≤L

|xk − x(i)|euk(xk) = max
x∈Ω0

inf
1≤i≤L

|x− x(i)|euk(x).

Then we define zk → z0 as before, we prove that V0(x0) > 0, so that we can
define µL+1,k and ηL+1,k as in the statement of the proposition and ηL+1,k(x)→
log 2

1+|x|2 in C2m−1,α
loc (R2m). Moreover (a) holds with L+1 instead of L. Taking

into account (a) and (b), we see that

lim sup
k→∞

∫
Ω0

Vke
2mukdx ≥ (L+ 1)Λ1.

This, (2) and (3) imply that after a finite number of steps the procedure stops
and (c) holds. The missing details are as in Step 1 of the proof of Theorem 1
in [DR]. �

Remark. In general, as shown by X. Chen [Che], it is possible that L > I,
hence x(i) = x(j) for some i 6= j. In this case we will stick to the notation
S = {x(i), . . . , x(I)}, i.e. x(i) 6= x(j) for i 6= j, 1 ≤ i, j ≤ I.
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Proposition 7 For 2 ≤ ` ≤ 2m− 1 and Ω0 ⊂⊂ Ω we have

inf
1≤i≤L

|x− xi,k|`|∇`−2∆uk(x)| ≤ C = C(Ω0), for x ∈ Ω0. (27)

Proof. Let us consider a ball Bδ(ξ) as in the proof of Proposition 5, so that we
have

|∇`−2∆uk(x)| ≤ C
∫
B4δ(ξ)

e2muk(y)

|x− y|`
dy + C

for x ∈ B2δ(ξ) which we now fix. Set for 1 ≤ i ≤ L

Ωi,k :=
{
y ∈ B2δ(ξ) : inf

1≤j≤L
|y − xj,k| = |y − xi,k|

}
,

and, assuming x 6= xi,k for 1 ≤ i ≤ L (otherwise (27) is trivial), set

Ω
(1)
i,k := Ωi,k ∩B|xi,k−x|/2(xi,k), Ω

(2)
i,k := Ωi,k\B|xi,k−x|/2(xi,k).

Observing that for y ∈ Ω
(1)
i,k we have 1

|x−y| ≤
2

|x−xi,k| and using (c) from Propo-

sition 6, we infer∫
Ωi,k

e2muk

|x− y|`
dy ≤ C

|x− xi,k|`

∫
Ω

(1)
i,k

e2muk(y)dy

+C

∫
Ω

(2)
i,k

dy

|x− y|`|y − xi,k|2m
.

The first integral on the right-hand side is bounded by C
|x−xi,k|` . As for the

integral over Ω
(2)
i,k , write Ω

(2)
i,k = Ω

(3)
i,k ∪ Ω

(4)
i,k , with

Ω
(3)
i,k = Ω

(2)
i,k ∩B2|x−xi,k|(x), Ω

(4)
i,k = Ω

(2)
i,k\B2|x−xi,k|(x).

We have∫
Ω

(3)
i,k

dy

|x− y|`|y − xi,k|2m
≤ C

|x− xi,k|2m

∫
Ω

(3)
i,k

dy

|x− y|`

≤ C

|x− xi,k|2m

∫ 2|x−xi,k|

0

r2m−`−1dr

≤ C

|x− xi,k|`
.

Observing that

1

C
|y − xi,k| ≤ |x− y| ≤ C|y − xi,k| on Ω

(4)
i,k ,

we estimate ∫
Ω

(4)
i,k

dy

|x− y|`|y − xi,k|2m
≤ C

∫
Ω

(4)
i,k

dy

|x− y|2m+`

≤ C

∫ ∞
2|x−xi,k|

r−`−1dr

≤ C

|x− xi,k|`
.
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Putting these inequalities together yields

|∇`−2∆uk(x)| ≤ C

inf1≤i≤L |x− xi,k|`
+ C.

This gives (27) for x ∈ B2δ(ξ) \ S and for dist(x, S) ≤ 1. For dist(x, S) ≥ 1,
(27) follows from Proposition 4. By a simple covering argument, we conclude.

�

Analogous to Proposition 4.1 in [Rob2] we have the following result, which
is the key step in showing that the contributions given by (24) for 1 ≤ i ≤ L
asymptotically exhaust the whole energy.

Proposition 8 Consider x0 ∈ S, 0 < δ < dist(x0,∂Ω)
4 , such that Vk(x) ≥

Vk(x0)/2 > 0 for x ∈ B4δ(x0) and k large enough. Up to relabelling assume
that

lim
k→∞

xi,k = x0, for 1 ≤ i ≤ N,

for some positive integer N ≤ L, and set xk := x1,k, µk := µ1,k. Assume that
for a sequence 0 ≤ ρk → 0 we have

inf
1≤i≤N

|x− xi,k|euk(x) ≤ C, inf
1≤i≤N

|x− xi,k|`|∇`−2∆uk(x)| ≤ C (28)

for x ∈ B2δ(xk) \ Bρk(xk) and 2 ≤ ` ≤ 2m − 1. Let rk > 0 be such that
r := limk→∞ rk ∈ [0, δ], limk→∞

µk
rk

= limk→∞
ρk
rk

= 0 and set

J :=
{
i ∈ {2, . . . , N} : lim sup

k→∞

|xi,k − xk|
rk

<∞
}
.

Up to a subsequence, define x̃i := limk→∞
xi,k−xk
rk

, for i ∈ J . Assume that
x̃i 6= 0 for i ∈ J and let ν and R be such that

0 < ν <
1

10
min

{
{|x̃i| : i ∈ J} ∪ {|x̃i − x̃j | : i, j ∈ J, x̃i 6= x̃j}

}
, (29)

and

3 max{|x̃i| : i ∈ J} < R <
δ

2r
, (30)

where δ
2r :=∞ if r = 0. Then we have

lim
k→∞

∫(
BRrk (xk)\

⋃
i∈J Bνrk (xi,k)

)
\B3ρk

(xk)

e2mukdx = 0, if µk/ρk → 0, (31)

as k →∞, and

lim
R̃→∞

lim
k→∞

∫(
BRrk (xk)\

⋃
i∈J Bνrk (xi,k)

)
\BR̃µk (xk)

e2mukdx = 0, if ρk ≤ Cµk.

(32)

Remark. For a better understanding of the above proposition one can first
consider the simplified case when N = L = 1 (only one blow-up sequence),
rk = δ, ρk = 0, R = 1

4 and J = ∅. Then (32) reduces to

lim
R̃→∞

lim
k→∞

∫
Bδ/4(xk)\BR̃µk (xk)

e2mukdx = 0.

10



This and (24) imply (7) with α1 = Λ1, hence the proof of Theorem 1 is complete
in this special case.

In the general case we point out that the estimates in (28) are stronger than
(25) and (27) in that the infimum is not taken over all 1 ≤ i ≤ L, and weaker
in that they need not hold in Bρk(xk).

Proof. First observe that if ρk ≤ Cµk, upon redefining ρk larger, we see that
(31) implies (32), hence we shall assume that limk→∞ µk/ρk = 0.

Step 1. Set

Ωk :=

(
B3R(0) \

⋃
i∈J

B ν
2
(x̃i)

)
\B ρk

rk

(0).

Then, as in [Rob2], we easily get that for x ∈ Ωk and k large enough

inf
1≤i≤N

|xk + rkx− xi,k| ≥ C(ν,R)rk|x|, (33)

and
xk + rkx ∈ B2δ(xk) \Bρk(xk).

Set ũk(x) := uk(xk + rkx) + log rk for x ∈ B3R(0), satisfying

(−∆)mũk = Ṽke
2mũk in B3R(0)

for Ṽk(x) := Vk(xk + rkx). According to (28) we have

|x|eũk(x) ≤ C, |x|2`|∆`ũk(x)| ≤ C for x ∈ Ωk, 1 ≤ ` ≤ m− 1. (34)

Step 2. There are constants C = C(ν,R), β = β(ν,R) > 0 such that

sup
|x|=r

x6∈
⋃
i∈J Bν(x̃i)

(βũk(x)) ≤ inf
|x|=r

x 6∈
⋃
i∈J Bν(x̃i)

ũk(x) + (1− β) log r + C, (35)

for all r ∈]3ρk/rk, 2R]. This follows exactly as in step 4.2 of [Rob2], using (34)
and Harnack’s inequality.

Step 3. We claim that there exists α > 0 such that

sup
|x|=r

x 6∈
⋃
i∈J Bν(x̃i)

ũk(x) ≤ −(1 + α) log r − α log
rk
µk

+ C (36)

for all r ∈]3ρk/rk, 2R]. In order to prove this claim, fix sk ∈]3ρk/rk, 2R] and set

Uk(x) := ũk(skx) + log sk for x ∈ B 3R
sk

(0).

Assume that 0 < sk < 8ν, so that

B1(0) ∩
(⋃
i∈J

B 2ν
sk

(s−1
k x̃i)

)
= ∅,

and let H be the Green’s function of ∆m on B1 with Navier boundary condition,
that is the only function satisfying

∆mH = δ0 on B1, H = ∆H = · · · = ∆m−1H = 0 on ∂B1.

11



Then we have

Uk(0) =

∫
B1

H(y)∆mUk(y)dy +

m−1∑
`=0

∫
∂B1

∂∆m−1−`H(y)

∂n
∆`Uk(y)dσ(y). (37)

Using (29) and (30) we infer that ∂B1 ⊂ s−1
k Ωk. Moreover (34) yields

Uk(x) ≤ C, |∆`Uk(x)| ≤ C for |x| = 1, 1 ≤ ` ≤ m− 1.

This implies∣∣∣∣ ∫
∂B1

∂∆m−1−`H(y)

∂n
∆`Uk(y)dσ(y)

∣∣∣∣ ≤ C, for 1 ≤ ` ≤ m− 1,

and ∫
∂B1

∂∆m−1H(y)

∂n
Uk(y)dσ(y) ≥ inf

∂B1

Uk,

where we used the identity
∫
∂B1

∂∆m−1H(y)
∂n dσ(y) = 1. This in turn can be

checked by testing (37) with Uk ≡ 1. Then, also observing that (−1)mH ≥ 0
and (−∆)mUk ≥ 0, (37) gives

Uk(0) ≥
∫
B1

(−1)mH(y)(−∆)mUk(y)dy + inf
∂B1

Uk − C

≥
∫
B R̃µk
skrk

(−1)mH(y)(−∆m)Uk(y)dy + inf
∂B1

Uk − C,
(38)

for any R̃ > 0 and k ≥ k0 such that B R̃µk
skrk

⊂ B 1
2
. We have that

(−1)mH(y) ≥ 2

Λ1
log

1

|y|
− C, (39)

which follows by elliptic estimates and the fact that K(x) := 2
Λ1

log 1
|x| satisfies

(−∆)mK = δ0 (see e.g. [Mar1, Proposition 22]), hence ∆m((−1)mK −H) = 0.
Plugging (39) into (38) we can further estimate

Uk(0)− inf
∂B1

Uk + C ≥
∫
B R̃µk
skrk

(
2

Λ1
log

1

|y|
− C

)
(−∆)mUk(y)dy =: I. (40)

Scaling back, recalling that uk(xk) = − logµk + 1
2m log (2m−1)!

V0(x0) , and performing

the change of variable y = µk
skrk

z, we obtain

I =

∫
B R̃µk
skrk

(
2

Λ1
log

1

|y|
− C

)
Vk(xk + rksky)e2mUk(y)dy

=

∫
BR̃

2

Λ1

(
log

1

|z|
+ log

skrk
µk
− C

)
(2m− 1)!Vk(xk + µkz)

V0(x0)
e2mηkdz,

12



with ηk = η1,k is as in Proposition 6, part b. Then Proposition 6 implies for

k ≥ k0(R̃)

I ≥ (1 + o(1))
2

Λ1
log

skrk
µk

∫
BR̃

(2m− 1)!e2mη0dz,

with error o(1)→ 0 as k →∞. Then with (4) we get

I ≥ (2 + θk(R̃)) log
skrk
µk

for some function θk(R̃) with limR̃→∞ limk→∞ θk(R̃) = 0. Going back to (40)
and observing that Uk(0) = log rksk

µk
+ C, we conclude

(1 + θk(R̃)) log
skrk
µk

+ inf
∂B1

Uk ≤ C,

for k ≥ k0(R̃) large enough. Upon choosing R̃ large, we see that there exists
θ > −1 such that

(1 + θ) log
skrk
µk

+ inf
∂B1

Uk ≤ C

for all k large enough. Combining this with (35) we obtain (36) with α := 1+θ
β >

0, at least under the assumption that r < 8ν. For r ≥ 8ν (36) follows from the
case r = 7ν and (35).

Step 4. We now complete the proof of (31). For y ∈ BR(0) \
⋃`
i=1Bν/2(x̃i) we

get from (36) (upon taking ν smaller)

ũk(y) ≤ −(1 + α) log |y| − α log
rk
µk

+ C.

Finally, scaling back to uk and observing that Bν/2(x̃i) ⊂ Bν

(
xi,k−xk
rk

)
for k

large enough, one gets∫(
BRrk (xk)\

⋃
i∈J Bνrk (xi,k)

)
\B3ρk

(xk)

e2mukdx

≤
∫(
BR\

⋃
i∈J B ν

2
(x̃i)
)
\B 3ρk

rk

e2mũk(y)dy

≤
∫
R2m\B 3ρk

rk

C

(
µk
rk

)2mα
1

|y|2m(1+α)
dy

≤ C
(
µk
ρk

)2mα

→ 0, as k →∞.

�

Finally we claim that for any N > 0 the following proposition holds.

Proposition 9 Given a ball B4δ(x0) ⊂ R2m, let (uk) ⊂ C2m(B4δ(x0)) be a
sequence of solutions to (1), (2), (3) with Ω = B4δ(x0), Vk ≥ V0(x0)/2 > 0. Let
xi,k and µi,k, 1 ≤ i ≤ L be as in Proposition 6, and assume that 1 ≤ L ≤ N ,
and limk→∞ xi,k = x0 for 1 ≤ i ≤ L. Then

lim
k→∞

∫
Bδ(x0)

Vke
2mukdx = LΛ1.

13



The proof of Proposition 9 follows from Proposition 8 and (24) by induction
on N as in [Rob2], Proposition (HN ), with only minor and straightforward
modifications.

Proof of Theorem 1. Fix Ω0 ⊂⊂ Ω open with S ⊂ Ω0 and choose δ > 0
such that B4δ(x

(i)) ⊂ Ω0 for 1 ≤ i ≤ I and and B4δ(x
(i)) ∩ B4δ(x

(j)) = ∅ for
1 ≤ i 6= j ≤ I (remember that x(i) 6= x(j) for 1 ≤ i 6= j ≤ I) and such that
Vk ≥ Vk(x(i))/2 > 0 on B4δ(x

(i)) for k large enough and 1 ≤ i ≤ I. We fix
i ∈ {1, . . . , I} and apply Proposition 9 to the function uk restricted to Bδ(x

(i))
together with the N = Li ≥ 1 blow-up sequences converging to x(i), hence
getting

lim
k→∞

∫
Bδ(x(i))

Vke
2mukdx = LiΛ1.

Moreover, since uk → −∞ uniformly locally in Ω \ S, it follows that

lim
k→∞

∫
Ω0\

⋃I
i=1 Bδ(x

(i))

Vke
2mukdx = 0,

whence (7) and (8) follow at once. �

3 Proof of Theorem 2

Here the Harnack-type estimates of [Rob2] are replaced by a technique of [DR],
reminiscent of the Pohozaev inequality. For this it is crucial to have the gradient
estimates of Propositions 11 and 12 below, which correspond to (and in fact are
stronger than) Propositions 4 and 5 of the previous section, and which also work
in the case m = 1.

Proposition 10 Let (uk) be a sequence of solutions to (1), (3) and (9) satis-
fying (10) for some ball Bρ(ξ) ⊂ Ω, and let S be as in (14). Then S is finite
(possibly empty) and one of the following is true:

(i) uk → u0 in C2m−1
loc (Ω\S) for some u0 ∈ C2m(Ω\S);

(ii) uk → −∞ locally uniformly in Ω\S.

If S 6= ∅ and V0(x) > 0 for some x ∈ S, then case (ii) occurs.

Proof. The proof is analogous to the proof of Proposition 3. Following that
proof and its notation, it is enough to show that if case (b) occurs, then Γ = ∅.
In order to show this, observe that ∇ϕ ≡ 0 in Ω\S. Otherwise, since ∇ϕ is
analytic, we would have ∫

Bρ(ξ)

|∇ϕ|dx > 0,

where Bρ(ξ) ⊂ Ω is as in (10). Then (15) would imply

lim
k→∞

∫
Bρ(ξ)

|∇uk|dx =∞,

contradicting (10). Therefore ϕ ≡ const and (16) implies that ϕ < 0 in Ω\S,
i.e. Γ = ∅, as claimed. �
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This completes the proof of the first part of Theorem 2 and, as we did in
the last section, we shall now assume that (uk) satisfies all the hypothesis of
Theorem 2, including (11). As before, if S = ∅ the proof of Theorem 2 is
complete, hence we shall also assume that S 6= ∅ and we shall prove that we are
in case (ii) of the theorem.

Proposition 11 For every open set Ω0 ⊂⊂ Ω\S there is a constant C = C(Ω0)
such that

‖uk − ūk‖C2m−1(Ω0) ≤ C, (41)

where ūk :=
∫
–

Ω0
ukdx.

Proof. If case (i) of Proposition 10 occurs the proof is trivial, hence we shall
assume that we are in case (ii). Consider an open set Ω̃0 ⊂⊂ Ω\S with smooth
boundary and with Ω0 ⊂⊂ Ω̃0. Write uk = wk + hk in Ω̃0, with ∆mhk = 0 and
wk = ∆wk = . . . = ∆m−1wk = 0 on ∂Ω̃0. Since

|∆mwk| = |∆muk| ≤ C = C(Ω̃0) on Ω̃0,

by elliptic estimates we have

‖wk‖C2m−1(Ω0) ≤ C.

This and (11) give ‖∇hk‖L1(Ω̃0) ≤ C, hence, since ∆m(∇hk) = 0, by elliptic
estimates we infer

‖∇hk‖C`(Ω0) ≤ C = C(`,Ω0, Ω̃0)

for every ` ≥ 0, see e.g. Proposition 4 in [Mar1]. Therefore

‖∇uk‖C2m−2(Ω0) ≤ C = C(Ω0, Ω̃0),

and (41) follows at once. �

Proposition 12 For every open set Ω0 ⊂⊂ Ω there is a constant C independent
of k such that ∫

Br(x0)

|∇`uk|dx ≤ Cr2m−`, (42)

for 1 ≤ ` ≤ 2m− 1 and for every ball Br(x0) ⊂ Ω0.

Proof. Going back to the proof of Proposition 5, we only need to replace (20)
by

uk(x)− ūk =

∫
B4δ(ξ)

Gx(y)∆muk(y)dy

+

m−1∑
j=0

∫
∂B4δ(ξ)

∂

∂ν
(∆m−j−1Gx)∆j(uk − ūk)dσ,

(43)

where now

∆mGx = δx in B4δ(ξ), Gx = ∆Gx = . . . = ∆m−1Gx = 0 on ∂B4δ(ξ),
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and

ūk :=

∫
B4δ(ξ)

ukdx.

Differentiating and using |∇`Gx(y)| ≤ C
|x−y|` (see e.g. [DAS]) and (41) (with

Ω0 = B4δ(ξ)) on ∂B4δ(ξ), we infer for x ∈ B2δ(ξ)

|∇`uk(x)| ≤ C
∫
B4δ(ξ)

e2muk(y)

|x− y|`
dy + C.

Integrating on Br(x0) ⊂ B2δ(ξ) and using Fubini’s theorem as before, we finally
get∫

Br(x0)

|∇`uk(x)|dx ≤ C
∫
Br(x0)

∫
B4δ(ξ)

e2muk(y)

|x− y|`
dydx+ Cr2m ≤ Cr2m−`.

�

Proposition 6 also holds with the same proof. Proposition 7 has the following
analogue, which can be proved as above. Notice that at this point we are not
yet excluding that L > I.

Proposition 13 For 1 ≤ ` ≤ 2m− 2 and Ω0 ⊂⊂ Ω we have

inf
1≤i≤L

|x− xi,k|`|∇`uk(x)| ≤ C = C(Ω0), for x ∈ Ω0. (44)

Taking into account Proposition 6 and Proposition 13, one can follow the
proof of step 4 of Theorem 2 in [Mar3], in order to prove that the concentration
points are isolated, i.e. x(i) 6= x(j) for i 6= j, I = L, and that for δ > 0 small
enough

lim
R→∞

lim
k→∞

∫
Bδ(xi,k)\BRµi,k (xi,k)

Vke
2mukdx = 0.

This and (24) complete the proof of Theorem 2.

4 A few open questions

1) Necessity of hypothesis (6) and (11). Is the assumption (6) (resp. (11))
necessary in order to have quantization in the second part of Theorem 1 (resp.
Theorem 2), or is (5) (resp. (10)) enough?

For instance, is it possible to find a sequence (uk) of solutions to

(−∆)muk = e2muk in B1(0)

with

lim
k→∞

∫
B1(0)

e2mukdx = α ∈ (0,Λ1)

and ∫
Bρ(ξ)

|∆uk|dx ≤ C
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for a ball Bρ(ξ) ⊂ B1(0)? To our knowledge, this is unknown even in the case
when uk is radially symmetric, see [Rob1].

2) If case (i) of Theorem 1 (or equivalently Theorem 2) occurs, is it possible to
have S 6= ∅? If instead of (2) we only assume the bound ‖Vk‖L∞(Ω) ≤ C, the
answer is negative, as shown for m = 1 by Shixiao Wang [Wan].

3) Boundedness from above. Given a solution u to

(−∆)mu = V e2mu in R2m,

with V ∈ L∞(R2m), e2mu ∈ L1(R2m), is it true that supR2m u <∞?
For m = 1 this was proven by Brézis and Merle, [BM, Theorem 2], but their

simple technique, which rests on the mean-value theorem for harmonic functions,
cannot be applied when m > 1. It is only known that when V ≡ const ≥ 0
then the answer is positive, see [Lin, Theorem 1], [Mar1, Theorem 1] and [Mar2,
Theorem 3].
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[BC1] H. Brézis, J. M. Coron, Convergence de solutions de H-systèmes et
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