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ABSTRACT. We prove short time existence, uniqueness and continuous dependence on the initial
data of smooth solutions of quasilinear locally parabolic equations of arbitrary even order on closed
manifolds.

CONTENTS

1. Introduction 1
2. Proof of the Main Theorem 3
3. Proof of Lemma 2.5 9
4. Parabolic Sobolev Embeddings 11
References 12

1. INTRODUCTION

Let (M, g) be a compact, smooth Riemannian manifold without boundary of dimension n and
let dµ be the canonical measure associated to the metric tensor g.

We consider the parabolic problem with a smooth initial datum u0 : M → R,

(1.1)
{
ut = Q[u] in M × [0, T ]
u( · , 0) = u0 on M ,

where Q is a smooth, quasilinear, locally elliptic operator of order 2p, defined in M × [0, T ) for
some T > 0 which, adopting (as in the rest of the paper) the Einstein convention of summing
over repeated indices, can be expressed in local coordinates as

Q[u](x, t) = Ai1...i2p(x, t, u,∇u, . . . ,∇2p−1u)∇2p
i1...i2p

u(x, t) + b(x, t, u,∇u, . . . ,∇2p−1u) ,

where A is a locally elliptic smooth (2p, 0)–tensor of the form

(1.2) Ai1j1...ipjp = (−1)p−1Ei1j11 · · ·Eipjpp

for some (2, 0)–tensors E1, . . . , Ep and a function b smoothly depending on their arguments.
Local ellipticity here means that for every L > 0 there exists a positive constant λ ∈ R such that
each tensor E` satisfies

(1.3) Eij` (x, t, u, ψ1, . . . , ψ2p−1)ξiξj ≥ λ|ξ|2g, for every ξ ∈ TM∗ ,

when x ∈ M , t ∈ [0, T ] with T < T , u ∈ R with |u| ≤ L, ψi ∈ ⊗iTM∗ with |ψi|g ≤ L. In other
words we require that condition (1.3) holds for some positive λ whenever the arguments of Eij`
lie in a compact set K of their natural domain of definition and assume that λ depends only on
K. If λ > 0 can be chosen independent of K (i.e. of L), then we shall say that A in uniformly
elliptic.

Clearly, this is not the most general notion of quasilinear parabolic problem, due to the special
“product” structure of the operator, anyway it covers several important situations. For instance,
our definition includes the case of standard locally parabolic equations of order two in non–
divergence form. Notice that we make no growth assumptions on the tensor A and the function
b.
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Interchanging covariant derivatives, integrating by parts and using interpolation inequalities
(see [10] for details), the following Gårding’s inequality holds for this class of operators. For
every smooth u and t ∈ [0, T ), we have

(1.4) −
∫
M

ψAi1...i2p(u)∇2p
i1...i2p

ψ dµ ≥ σ‖ψ‖2Wp,2(M) − C‖ψ‖
2
L2(M) ∀ψ ∈ C∞(M) ,

where the constants σ > 0 and C > 0 depend continuously only on the Cp–norm of the tensor A
and on the C3p−1–norm of the function u at time t (and on the curvature tensor of (M, g) and its
covariant derivatives). In particular, if u depends smoothly on time, σ = σ(t) and C = C(t) are
continuous functions of time.

The aim of this note is to prove the following short time existence result.

Theorem 1.1. For every u0 ∈ C∞(M) there exists a positive time T > 0 such that problem (1.1) has a
smooth solution. Moreover, the solution is unique and depends continuously on u0 in the C∞–topology.

Our interest in having a handy proof of this result is related to geometric evolution problems,
like for instance the Ricci flow, the mean curvature flow, the Willmore flow [7], the Q–curvature
flow [9], the Yamabe flow [4, 11, 13], etc. In all these problems, the very first step is to have a short
time existence theorem showing that for an initial geometric structure (hypersurface, metric) the
flow actually starts. Usually, after some manipulations in order to eliminate the degeneracies
due to the geometric invariances, one has to face a quasilinear parabolic equation with smooth
coefficients and smooth initial data.

If we replace the compact manifold M with a bounded domain Ω ⊂ Rn, short time existence
for quasilinear systems of order two, with prescribed boundary conditions and initial data, was
proven by Giaquinta and Modica [5] in the setting of Hölder spaces.

A different approach to Theorem 1.1 was developed by Polden in his Ph.D. Thesis [10] (see
also [6]), by means of an existence result for linear equations in parabolic Sobolev spaces and
the inverse function theorem. Unfortunately, as pointed out by Sharples [12], such procedure
has a gap in the convergence of the solutions of the “frozen” linear problems to a solution of the
quasilinear one.

In the same paper [12] Sharples, pushing further the estimates of Polden and allowing non-
smooth coefficients, was able by means of an iteration scheme to show the existence of a short
time solution of the quasilinear problem on a two–dimensional manifold, when the operator is
of order two and in divergence form.

Our goal here is instead to simply fill the gap in Polden’s proof. We start with his linear result
and we show that his linearization procedure actually works if one linearizes at a suitably chosen
function and discusses in details the above mentioned convergence.
As we do not assume any condition on the operator (only its product structure) and on the dimen-
sion of the manifold, we have a complete proof of the short time existence of a smooth solution
to these quasilinear locally parabolic equations of arbitrary order on compact manifolds and of
its uniqueness and smooth dependence on the initial data. We refer the interested reader to the
nice and detailed introduction in [12] for the different approaches to the problem.

The paper is organized as follows. In the next section we present the linearization procedure,
assuming Polden’s linear result (Proposition 2.2 below) and we prove Theorem 1.1 by means of
Lemma 2.5 which is the core of our argument. Roughly speaking, when a candidate solution
u stays in some parabolic Sobolev space of order high enough, the functions u,∇u, . . . ,∇2p−1u
are continuous (or even more regular), hence the same holds for the tensor A and the function
b. This implies that the map u 7→ (ut − Q[u]) is of class C1 between some suitable spaces, as it
closely resembles a linear map with regular coefficients. This allows the application of the inverse
function theorem which, in conjunction with an approximation argument, yields the existence of
a solution. The last two sections are devoted to the proof of Lemma 2.5 and to the discussion of
the parabolic Sobolev embeddings on which such proof relies.

We mention that the results can be extended to quasilinear parabolic systems as the lineariza-
tion procedure remains the same and Polden’s linear estimates (Proposition 2.2) can be actually
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easily generalized, assuming a suitable definition of ellipticity. In fact one easily sees that our
result applies to all quasilinear systems whose linearization is invertible in the sense of Propo-
sition 2.3 below. For more general definition of elliptic or parabolic operators of higher–order
see [2].

In the following the letter C will denote a constant which can change from a line to another and even
within the same formula.

Acknowledgments. We are grateful to Alessandra Lunardi for useful suggestions.
We wish to thank Mariano Giaquinta for several interesting discussions.
The first author is partially supported by the Italian project FIRB–IDEAS “Analysis and Beyond”.
The second author is supported by the Swiss National Fond Grant n. PBEZP2–129520.

2. PROOF OF THE MAIN THEOREM

We recall Polden’s result for linear parabolic equations. Let us consider the problem

(2.1)

ut −A
i1...i2p∇2p

i1...i2p
u−

2p−1∑
k=0

Rj1...jkk ∇kj1...jku = b

u( · , 0) = u0 ,

where all the tensors A and Rk depend only on (x, t) ∈ M × [0,+∞), are smooth and uniformly
bounded with all their derivatives. Moreover, we assume that the tensor A has the product
structure (1.2), where each E` is uniformly elliptic.

The Gårding’s inequality for the linear operator

L(u) = Ai1...i2p∇2p
i1...i2p

u−
2p−1∑
k=0

Rj1...jkk ∇kj1...jku

reads (see again [10] for details)

(2.2) −
∫
M

ψL(ψ) dµ ≥ λ

2
‖ψ‖2Wp,2(M) − C‖ψ‖

2
L2(M) ∀ψ ∈ C∞(M) ,

where the constant C > 0 depends only on the Cp–norm of the tensors A and Rk. Clearly, by
approximation this inequality holds also for every ψ ∈W 2p,2(M).

Definition 2.1. For any m ∈ N and a ∈ R+ we define Pma (M) to be the completion of C∞c (M ×
[0,+∞)) under the parabolic norm

‖f‖2Pm
a (M) =

∑
j, k ∈ N and 2pj + k ≤ 2pm

∫
M×[0,+∞)

e−2at|∂jt∇kf |2 dµ dt

and analogously Pm(M,T ) as the completion of C∞(M × [0, T ]) under the norm

‖f‖2Pm(M,T ) =
∑

j, k ∈ N and 2pj + k ≤ 2pm

∫
M×[0,T ]

|∂jt∇kf |2 dµ dt ,

for every T ∈ R+.

Clearly for every T ∈ R+ there is a natural continuous embedding Pma (M) ↪→ Pm(M,T ).
We have then the following global existence result for problem (2.1), by Polden [10, Theo-

rem 2.3.5].

Proposition 2.2. For every m ∈ N there exists a ∈ R+ large enough such that the linear map

(2.3) Φ(u) =
(
u0, ut −Ai1...i2p∇2p

i1...i2p
u−

2p−1∑
k=0

Rj1...jkk ∇kj1...jku
)

= (u0, L(u)) ,

where u0 = u( · , 0), is an isomorphism of Pma (M) onto W p(2m−1),2(M)× Pm−1a (M).
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In the following it will be easier (though conceptually equivalent) to use the spaces Pm(M,T )
instead of the weighted spaces Pma (M). For this reason we translate Proposition 2.2 into the
setting of Pm(M,T ) spaces.

Proposition 2.3. For every T > 0 and m ∈ N the map Φ given by formula (2.3) is an isomorphism of
Pm(M,T ) onto W p(2m−1),2(M)× Pm−1(M,T ).

Proof. The continuity of the second component of Φ is obvious while the continuity of the first
component follows as in the Polden’s proof of Proposition 2.2 in [10]. Hence, the map Φ is con-
tinuous, now we show that it is an isomorphism.
Given any b ∈ Pm−1(M,T ) we consider an extension b̃ ∈ Pm−1a (M) of the function b and we let
ũ ∈ Pma (M) be the solution of problem (2.1) for b̃. Clearly, u = ũ|M×[0,T ] belongs to Pm(M,T )
and satisfies Φ(u) = (u0, b) in M × [0, T ]. Suppose that v ∈ Pm(M,T ) is another function such
that Φ(v) = (u0, b) in M × [0, T ], then setting w = u− v ∈ Pm(M,T ) we have thatwt −A

i1...i2p∇2p
i1...i2p

w −
2p−1∑
k=0

Rj1...jkk ∇kj1...jkw = wt − L(w) = 0

w( · , 0) = 0 .

By the very definition of solution in Pm(M,T ) (see [10]) and Gårding’s inequality (2.2), we get∫ t

0

∫
M

2wwt dµ = 2

∫ t

0

∫
M

wL(w) dµ ≤ −λ
2

∫ t

0

∫
M

|∇pw|2 dµ+C

∫ t

0

∫
M

w2 dµ ≤ C
∫ t

0

∫
M

w2 dµ ,

as w( · , t) ∈ W 2p,2(M) for almost every t ∈ [0, T ] and where the constant C > 0 depends only on
T as the coefficients of the operator L are smooth. This implies∫

M

w2(x, t) dµ(x) ≤ C
∫ t

0

∫
M

w2(x, t) dµ(x) ,

for every t ∈ [0, T ]. Then by Gronwall’s lemma (in its integral version) it follows that
∫
M
w2( · , t) dµ

is zero for every t ∈ [0, T ], as it is zero at time t = 0. It follows that w is zero on all M × [0, T ],
hence the two functions u and v must coincide.

Since the map Φ : Pm(M,T )→W p(2m−1),2(M)× Pm−1(M,T ) is continuous, one–to–one and
onto, it is an isomorphism by the open mapping theorem. �

Remark 2.4. When u0 and b are smooth the unique solution u of problem (2.1) belongs to all the
spaces Pm(M,T ) for every m ∈ N. As by Sobolev embeddings (Proposition 4.1 below) for any
k ∈ N we can find a large m ∈ N so that Pm(M,T ) continuously embeds into Ck(M × [0, T ]), we
can conclude that u actually belongs to C∞(M × [0, T ]).

Now we are ready to prove Theorem 1.1. The tensorA and the function b from now on will de-
pend on x, t, u,∇u, . . . ,∇2p−1u as in the introduction. Since M is compact there exists a constant
C > 0 such that initial datum satisfies |u0|+ |∇u0|g + . . .+ |∇2p−1u0|g ≤ C. Then, since we are in-
terested in existence for short time, possibly modifying the tensor A and the function b outside a
compact set with some “cut–off” functions, we can assume that if |u|+|∇u|g+. . .+|∇2p−1u|g+t ≥
2C, then

Eij` (x, t, u,∇u, . . . ,∇2p−1u) = gij(x, t), and b(x, t, u,∇u, . . . ,∇2p−1u) = 0 .

In particular we can assume that the tensors E` are uniformly elliptic.
For a fixed m ∈ N, we consider the map defined on Pm(M,T ) given by

F(u) = (u0, ut −Q[u]) =
(
u( · , 0), ut −A(u) · ∇2pu− b(u)

)
,

where in order to simplify we used the notation

A(u) · ∇2pv(x, t) = Ai1...i2p(x, t, u(x, t), . . . ,∇2p−1u(x, t))∇2p
i1...i2p

v(x, t) ,

and
b(u)(x, t) = b(x, t, u(x, t), . . . ,∇2p−1u(x, t))
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for u, v ∈ Pm(M,T ).
We have seen in Proposition 2.3 that ifA(u) and b(u) only depend on x ∈M and t ∈ [0, T ] (and not
on u and its space derivatives), then F is a continuous map from Pm(M) onto W p(2m−1),2(M)×
Pm−1(M). This is not the case in general when A and b depend on u and its derivatives, but it is
true if m ∈ N is large enough and in this case F is actually C1.

Lemma 2.5. Assume that

(2.4) m >
dimM + 6p− 2

4p
=
n+ 6p− 2

4p
,

and u ∈ Pm(M,T ). Then F(u) ∈W p(2m−1),2(M)× Pm−1(M,T ) and the map

F : Pm(M,T )→W p(2m−1),2(M)× Pm−1(M,T )

is of class C1.

We postpone the proof of this lemma to Section 3.
We fix m ∈ N such that the hypothesis of Lemma 2.5 holds and we set

ũ0(x, t) =

m−1∑
`=0

a`(x) t`

`!

for some functions a0, . . . , am−1 ∈ C∞(M) to be determined later. Let w ∈ Pm(M,T ) be the
unique solution of the linear problem{

wt = A(ũ0) · ∇2pw + b(ũ0)

w( · , 0) = u0 .

Such solution exists by Proposition 2.3 and it is smooth by Remark 2.4, as u0 and ũ0 are smooth
(thus also A(ũ0) and b(ũ0)).
Hence, we have

F(w) = (u0, wt −Q[w]) =
(
u0, (A(ũ0)−A(w)) · ∇2pw + b(ũ0)− b(w)

)
=: (u0, f) ,

where we set f = (A(ũ0)−A(w)) · ∇2pw + b(ũ0)− b(w).
If we compute the differential dFw of the map F at the “point” w ∈ C∞(M × [0, T ]), acting on

v ∈ Pm(M,T ), we obtain

dFw(v) =
(
v0, vt −Ai1...i2p(w)∇2p

i1...i2p
v −DwA

i1...i2p(w)v∇2p
i1...i2p

w . . .(2.5)

· · · −Dwj1...j2p−1
Ai1...i2p(w)∇2p−1

j1...j2p−1
v∇2p

i1...i2p
w

−Dwb(w)v · · · −Dwj1...j2p−1
b(w)∇2p−1

j1...j2p−1
v
)
,

where v0 = v( · , 0) and we denoted by Dwj1...jk
Ai1...i2p(w), Dwj1...jk

b(w) the derivatives of the
tensor A and of the function b with respect to their variables∇kj1...jkw, respectively.
Then, we can see that dFw(v) = (z, b) ∈W p(2m−1),2(M)×Pm−1(M,T ) implies that v is a solution
of the linear problem vt − Ã

i1...i2p∇2p
i1...i2p

v −
2p−1∑
k=0

R̃j1...jkk ∇kj1...jkv = b

v( · , 0) = z ,

where

Ãi1...i2p =Ai1...i2p(w) ,

R̃j1...jkk =Dwj1...jk
Ai1...i2p(w)∇2p

i1...i2p
w +Dwj1...jk

b(w)

are smooth tensors independent of v.
By Proposition 2.3 for every (z, b) ∈W p(2m−1),2(M)×Pm−1(M,T ) there exists a unique solution
v of this problem, hence dFw is a Hilbert space isomorphism and the inverse function theorem
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can be applied, as the map F is C1 by Lemma 2.5. Hence, the map F is a diffeomorphism of a
neighborhood U ⊂ Pm(M,T ) of w onto a neighborhood V ⊂ W p(2m−1),2(M) × Pm−1(M,T ) of
(u0, f).

Getting back to the functions a`, we claim that we can choose them such that a` = ∂`tw|t=0 ∈
C∞(M) for every ` = 0, . . . ,m− 1.
We apply the following recurrence procedure. We set a0 = u0 ∈ C∞(M) and, assuming to have
defined a0, . . . , a`, we consider the derivative

∂`+1
t w|t=0 = ∂`t [A

i1...i2p(x, t, ũ0,∇ũ0, . . . ,∇2p−1ũ0)∇2p
i1...i2p

w + b(x, t, ũ0,∇ũ0, . . . ,∇2p−1ũ0)]|t=0

and we notice that the right–hand side contains time-derivatives at time t = 0 of ũ0, . . . ,∇2p−1ũ0
and ∇2p

i1...i2p
w|t=0 only up to the order `, hence it only depends on the functions a0, . . . , a`. Then,

it is possible to define a`+1 equal to such expression. Iterating up to m − 1, the set of functions
a0, . . . , am−1 satisfies the claim.

Then, a` = ∂`t ũ0|t=0 = ∂`tw|t=0 and it easily follows by the “structure” of the function f ∈
C∞(M × [0, T ]), that we have ∂`tf |t=0 = 0 and ∇j∂`tf |t=0 = 0 for any 0 ≤ ` ≤ m− 1 and j ∈ N.

We consider now for any k ∈ N the “translated” functions fk : M × [0, T ]→ R given by

fk(x, t) =

{
0 if t < 1/k

f(x, t− 1/k) if 1/k ≤ t ≤ T .

Since f ∈ C∞(M × [0, T ]) and ∇j∂`tf |t=0 = 0 for every 0 ≤ ` ≤ m − 1 and every j ∈ N, all the
functions∇j∂`tfk ∈ C0(M × [0, T ]) for every 0 ≤ ` ≤ m− 1 and j ≥ 0, it follows easily that

∇j∂`tfk → ∇j∂`tf in L2(M × [0, T ]) for 0 ≤ ` ≤ m− 1, j ≥ 0 ,

hence fk → f in Pm(M,T ).
Hence, there exists a function f̃ ∈ Pm−1(M,T ) such that (u0, f̃) belongs to the neighborhood

V of F(w) and f̃ = 0 in M × [0, T ′] for some T ′ ∈ (0, T ]. Since F|U is a diffeomorphism between
U and V , we can find a function u ∈ U such that F(u) = (u0, f̃). Clearly such u ∈ Pm(M,T ′)
is a solution of problem (1.1) in M × [0, T ′]. Since Pm(M,T ′) ↪→ C2p−1(M × [0, T ′]), parabolic
regularity implies that actually u ∈ C∞(M × [0, T ′]).

We now prove uniqueness by a standard energy estimate, which we include for completeness.
In the sequel for simplicity we relabel T the time T ′ found above.

Suppose that we have two smooth solutions u, v : M × [0, T ] → R of Problem (1.1). Setting
w := u− v, we compute in an orthonormal frame

d

dt

∫
M

|∇pw|2 dµ =

∫
M

2∇pi1...ipw∇
p
i1...ip

(
A(u) · ∇2pu−A(v) · ∇2pv

)
dµ

+

∫
M

2∇pi1...ipw∇
p
i1...ip

(
b(u)− b(v)

)
dµ

= 2

∫
M

∇pi1...ipw∇
p
i1...ip

(
A(u) · ∇2pw

)
dµ

+ 2

∫
M

∇pi1...ipw∇
p
i1...ip

(
(A(u)−A(v)) · ∇2pv

)
dµ

+ 2(−1)p
∫
M

∇pi1···ip∇
p
i1···ipw

(
b(u)− b(v)

)
dµ

≤ 2

∫
M

∇pi1...ipw∇
p
i1...ip

(
A(u) · ∇2pw

)
dµ

+ 2

∫
M

|∇2pw|
(
|A(u)−A(v)| |∇2pv|+ |b(u)− b(v)|

)
dµ ,

where the integrals over M are intended at time t ∈ [0, T ].
Now we consider the integral

∫
M
∇pi1...ipw∇

p
i1...ip

(Aj1...j2p(u)∇2p
j1...j2p

w) dµ. Expanding the de-
rivative ∇pi1...ip(Aj1...j2p(u)∇2p

j1...j2p
w) we will get one special term Aj1...j2p(u)∇3p

i1...ipj1...j2p
w and
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several other terms of the form B(x, t, u, . . . ,∇3p−1u)#∇qw with 2p ≤ q < 3p, for some tensor B
smoothly depending on its arguments, where the symbol # means metric contraction on some
indices. For each of these terms, integrating repeatedly by parts, we can write∫

M

∇pw#B(x, t, u, . . . ,∇3p−1u)#∇qw dµ =

2p∑
`=p

∫
M

∇`w#D`(x, t, u, . . . ,∇4p−1u)#∇q−pw dµ

where the tensors D` are smoothly depending on their arguments.
Since u ∈ C∞(M × [0, T ]), all the tensors D` are bounded, hence we can estimate∫

M

∇pi1...ipw∇
p
i1...ip

(A(u) · ∇2pw) dµ ≤
∫
M

∇pi1...ipwA
j1...j2p(u)∇3p

i1...ipj1...j2p
w dµ

+ C

2p−1∑
r=p

2p∑
`=p

∫
M

|∇`w| |∇rw| dµ .

where C is a constant independent of time (actually C depends only on the structure of A).
Interchanging the covariant derivatives we have

∇3p
i1...ipj1...j2p

w = ∇3p
j1...i2pi1...ip

w +

3p−1∑
q=0

Rq#∇qw

where the tensors Rq are functions of the Riemann tensor and its covariant derivatives, hence
they are smooth and bounded. We can clearly deal with this sum of terms as above, by means
of integrations by parts, obtaining the same result. Then we conclude, also using Gårding’s
inequality (1.4)∫

M

∇pi1...ipw∇
p
i1...ip

(A(u) · ∇2pw) dµ ≤
∫
M

∇pi1...ipwA
j1...j2p(u)∇2p

j1...j2p
∇pi1...ipw dµ

+ C

2p−1∑
r=p

2p∑
`=p

∫
M

|∇`w| |∇rw| dµ

≤− α
∫
M

|∇2pw|2 dµ+ C

2p−1∑
r=p

2p∑
`=p

∫
M

|∇`w| |∇rw| dµ ,

for some positive constant α. Getting back to the initial computation and using Peter–Paul in-
equality we get

d

dt

∫
M

|∇pw|2 dµ ≤ − 2α

∫
M

|∇2pw|2 dµ+ C

2p−1∑
r=p

2p∑
`=p

∫
M

|∇`w| |∇rw| dµ

+ C

∫
M

|∇2pw|
(
|A(u)−A(v)| |∇2pv|+ |b(u)− b(v)|

)
dµ

≤ − 2α

∫
M

|∇2pw|2 dµ+ C

2p−1∑
r=p

2p−1∑
`=p

∫
M

|∇`w||∇rw| dµ

+

2p−1∑
r=0

(
εr

∫
M

|∇2pw|2 dµ+ Cεr

∫
M

|∇rw|2dµ
)

+ δ

∫
M

|∇2pw|2 dµ+ Cδ

∫
M

(
|A(u)−A(v)|2 + |b(u)− b(v)|2

)
dµ

≤ − α
∫
M

|∇2pw|2 dµ+ C

2p−1∑
r=0

∫
M

|∇rw|2 dµ

+ Cδ

∫
M

(
|A(u)−A(v)|2 + |b(u)− b(v)|2

)
dµ ,
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where we chose δ +
∑2p−1
r=0 εr = α and we used the fact that |∇2pv| is bounded.

As the tensor A and the function b are smooth, we can easily bound

|A(u)−A(v)|2 + |b(u)− b(v)2| ≤ C
2p−1∑
r=0

|∇ru−∇rv|2 = C

2p−1∑
r=0

|∇rw|2 ,

so finally

d

dt

∫
M

|∇pw|2 dµ ≤ −α
∫
M

|∇2pw|2 dµ+ C

2p−1∑
r=0

∫
M

|∇rw|2 dµ .

Now we have, using again Gårding’s and Peter–Paul inequalities,

d

dt

∫
M

w2 dµ = 2

∫
M

w
(
A(u) · ∇2pu−A(v) · ∇2pv

)
dµ+ 2

∫
M

w
(
b(u)− b(v))

)
dµ

= 2

∫
M

wA(u) · ∇2pw dµ+ 2

∫
M

w
(

(A(u)−A(v)) · ∇2pv + b(u)− b(v)
)
dµ

≤ − β
∫
M

|∇pw|2 dµ+ C

∫
M

w2 dµ+ C

∫
M

w(A(u)−A(v) + b(u)− b(v)) dµ

≤ − β
∫
M

|∇pw|2 dµ+ C

∫
M

w2 dµ+ C

∫
M

(
|A(u)−A(v)|2 + |b(u)− b(v)|2

)
dµ .

Estimating the last integral as before and putting the two computation together we obtain

d

dt

∫
M

(
|∇pw|2 + w2

)
dµ ≤ − α

2

∫
M

|∇2pw|2 dµ+ C

2p−1∑
r=0

∫
M

|∇rw|2 dµ .

In order to deal with the last term, we apply the following Gagliardo–Nirenberg interpolation
inequalities (see [3, Proposition 2.11] and [1, Theorem 4.14]): for every 0 ≤ r < 2p and ε > 0 there
exists a constant Cε such that

‖∇rf‖2L2(M) ≤ ε‖∇
2pf‖2L2(M) + Cε‖f‖2L2(M)

for every function f ∈W 2p,2(M).
Hence, for some ε > 0 small enough we get,

d

dt

∫
M

(
|∇pw|2 + w2

)
dµ ≤ − α

4

∫
M

|∇2pw|2 dµ+ C

2p−1∑
r=0

ε

∫
M

|∇2pw|2 dµ+ C

2p−1∑
r=0

Cε

∫
M

w2 dµ

≤C
∫
M

w2 dµ .

From this ordinary differential inequality and Gronwall’s lemma, it follows that if the quantity∫
M

(|∇pw|2 + w2) dµ is zero at some time t0, then it must be zero for every time t ∈ [t0, T ]. Since
at t = 0 we have w( · , 0) = u0 − v0 = 0, we are done.

We now prove the continuous dependence of a solution u ∈ C∞(M × [0, T ]) on its initial value
u0 = u( · , 0) ∈ C∞(M). Fix any m ∈ N satisfying condition (2.4), so that by the Sobolev embed-
dings Pm(M,T ) ↪→ C2p−1(M × [0, T ]). By the above argument, u = (F|U )−1(u0, 0) ∈ Pm(M,T )

where F|U is a diffeomorphisms of an open set U ⊂ Pm(M,T ) onto V ⊂ Wm(2p−1),2(M) ×
Pm−1(M,T ), with (u0, 0) ∈ V . Then, assuming that uk,0 → u0 in C∞(M) as k → ∞, we also
have uk,0 → u0 in Wm(2p−1),2(M), hence for k large enough (uk,0, 0) ∈ V and there exists uk ∈ U
such that F(uk) = (uk,0, 0). This is the unique solution in Pm(M,T ) (hence in C∞(M × [0, T ]) by
parabolic bootstrap) with initial datum uk,0. Moreover, since F|U is a diffeomorphism, we have
uk → u in Pm(M,T ).
By uniqueness, we can repeat the same procedure for any m ∈ N satisfying condition (2.4), hence
uk → u in Pm(M,T ) for every m ∈ N, hence in C∞(M × [0, T ]).
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3. PROOF OF LEMMA 2.5

We shall write Pm = Pm(M,T ), Lq = Lq(M × [0, T ]), C0 = C0(M × [0, T ]) etc..., so that
for instance C0(Pm;C1) will denote the space of continuous maps from Pm(M,T ) to C1(M ×
[0, T ]). The first component of F , i.e. the map u 7→ u( · , 0) is linear and bounded from Pm to
W p(2m−1),2(M), by Proposition 2.3, therefore it is C1. Obviously the map u 7→ ∂tu is linear and
bounded from Pm to Pm−1, hence also C1. Thus, it remains to show that the two maps

FA(u) := A(u) · ∇2pu , Fb(u) := b(u)

belong to C1(Pm;Pm−1).

We first prove that FA,Fb ∈ C0(Pm;Pm−1). By an induction argument, it is easy to see that
for every k ∈ N

(3.1) ∇k
(
A(u) · ∇2pu

)
=

k∑
j=0

∑
i1,i2,...,ij+1≥1

i1+···+ij+1≤k+2p+(2p−1)j

∂jA(u)#∇i1u# . . .#∇ij+1u ,

where ∂jA(u) denotes the j–th derivative of A with respect to any of its arguments and D#E
denotes an arbitrary contraction with the metric of two tensors D and E.

Taking into account formula (3.1) with k ≤ 2p(m − 1), in order to prove that the map u 7→
∇2p(m−1)(A(u) · ∇2pu) belongs to C0(Pm;L2) we have to show that any map of the form

(3.2) u 7→ ∂jA(u)#∇i1u# · · ·#∇ij+1u

belongs to C0(Pm;L2) whenever

(3.3) i1 + · · ·+ ij+1 ≤ 2pm+ (2p− 1)j and i1, . . . , ij+1 ≥ 1 .

The case r = 0 and ` = 2p− 1 of the Sobolev embeddings (4.3) below and condition (2.4) im-
ply that Pm is embedded continuously into C2p−1, hence all the maps u 7→ ∂jA(u) belong to
C0(Pm;C0).
We can assume from now on that j ≥ 1, since in the case j = 0, we get the term A(u)#∇2p+ku
which is continuous from Pm to L2 as a function of u for k ≤ 2p(m− 1).
As for the factors∇i`u appearing in formula (3.2), first we assume that each i` is such that we are
in case (4.1) of Sobolev embeddings, i.e.

(3.4)
1

q`
:=

1

2
− 2pm− i`

n+ 2p
> 0,

so that the map u 7→ ∇i`u lies in C0(Pm;Lq`). By Hölder’s inequality, the condition

(3.5)
1

q
:=

j+1∑
`=1

1

q`
=

j+1∑
`=1

(
1

2
− 2pm− i`

n+ 2p

)
≤ 1

2
,

implies that the map u 7→ ∇i1u# · · ·#∇ij+1u belongs to C0(Pm;Lq), hence also to C0(Pm;L2),
as Lq embeds continuously into L2 for q ≥ 2. Then, if we show inequality (3.5), the map defined
by formula (3.2) belongs to C0(Pm;L2). From inequalities (2.4), (3.3) and j ≥ 1 it follows,

(3.6)
j+1∑
`=1

1

q`
≤ j + 1

2
− 2pm(j + 1)− 2pm− (2p− 1)j

n+ 2p
=

1

2
+
j

2
− (2pm− 2p+ 1)j

n+ 2p
<

1

2
.

Now, if for some i`, say i1, . . . , is, we have 2pm−i`
n+2p > 1

2 , then we are in case (4.3) of Sobolev
embeddings and the corresponding maps u 7→ ∇i`u belong to C0(Pm;C0), hence we can avoid
to estimate such factors, as for A(u). Then, since (3.4) holds for ` ∈ {s + 1, . . . , j + 1}, arguing
again by induction, in this case we have to deal with functions u 7→ ∇is+1u# · · ·#∇ij+1u under
the conditions

is+1 + · · ·+ ij+1 ≤ 2pm+ (2p− 1)(j − s) and is+1, . . . ij+1 ≥ 1 .
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Then, computing as in inequality (3.6) one shows
j+1∑
`=s+1

1

q`
≤ j + 1− s

2
− 2pm(j + 1− s)− 2pm− (2p− 1)(j − s)

n+ 2p
(3.7)

=
1

2
+
j − s

2
− (2pm− 2p+ 1)(j − s)

n+ 2p

≤ 1

2
,

where we intend that if s = j + 1 there is nothing to sum. Notice that the last inequality is strict
if s 6= j, and in the case s = j the map u 7→ ∇ij+1u is continuous from Pm to L2 as ij+1 ≤ 2pm.

If in addition for some i`, say is+1, . . . , ir, we have 2pm−i`
n+2p = 1

2 (i.e. we are in the critical
case (4.2) of the Sobolev embeddings), we know that for such indices the maps u 7→ ∇i`u belong
to C0(Pm;Lq) for every 1 ≤ q <∞. Then inequality (3.7) still holds true if we choose qs+1, . . . , qr
large enough, since, unless s = r = j, the last inequality in (3.7) is strict.
Hence, we conclude as before that the map u 7→ ∇2p(m−1)(A(u) · ∇2pu) lies in C0(Pm;L2).

The time or mixed space-time derivatives ∂rt∇k(A(u) · ∇2pu) with 2pr + k ≤ 2p(m − 1) can
be treated in a similar way, observing that the functions ∂rt∇`u have the same integrability of
∇2pr+`u from the point of view of the embeddings (4.1)–(4.3).
Starting from formula (3.1) and differentiating in time, again by an induction argument, one gets

(3.8) ∂rt∇k
(
A(u) · ∇2pu

)
=

r+k∑
j=0

∑
i1,...,ij+1,ι1,...,ιj+1≥0

i1+···+ij+1≤k+2p+(2p−1)j
ι1+···+ιj+1≤r

∂jA(u)#∂ι1t ∇i1u# · · ·#∂ιj+1

t ∇ij+1u .

Then, with the same proof as before one shows that a map of the form

u 7→ ∂jA(u)#∂ι1t ∇i1u# · · ·#∂ιj+1

t ∇ij+1u

belongs to C0(Pm+1;L2) whenever i1, . . . , ij+1, ι1, . . . , ιj+1 ≥ 0 and

(3.9) i1 + · · ·+ ij+1 + 2p(ι1 + · · ·+ ιj+1) ≤ 2pm+ (2p− 1)j .

Hence the map u 7→ ∂rt∇k
(
A(u) · ∇2pu

)
belongs to C0(Pm;L2) for 2pr + k ≤ 2p(m − 1), which

means that FA ∈ C0(Pm;Pm−1) as wished.
The map Fb can be treated in a similar way, so also Fb ∈ C0(Pm;Pm−1).

It remains to prove that dFA, dFb ∈ C0(Pm;L(Pm;Pm−1)), where L(Pm;Pm−1) denotes the
Banach space of bounded linear maps from Pm into Pm−1. We first claim that the Gateaux de-
rivative

(3.10) (u, v) 7→ dFA(u)(v) :=
d

dt
FA(u+ tv)

∣∣∣
t=0

belongs to C0(Pm × Pm;Pm−1). Indeed, dFA(u)(v) can be written as

B(u, v)#∇2pu+A(u) · ∇2pv ,

where B is a tensor depending smoothly on x, t, u, . . . ,∇2p−1u and linearly on some derivative
of v up to the order 2p− 1, that is, B(u, v) =

∑2p−1
`=0 B`(u) · ∇`v, compare with formula (2.5). The

estimates proven for FA can be applied to any term of the form ∂rt∇k(B(u, v)#∇2pu), since they
can be expressed as a sum similar to the right–hand side of identity (3.8). The only difference is
that now in every term of such sum one linear occurrence of u is replaced by v. Precisely, writing
u1 := u, u2 := v every term ∂jA(u)#∂ι1t ∇i1u# · · ·#∂ιj+1

t ∇ij+1u has to be replaced by some

(3.11) D(u)#∂ι1t ∇i1uτ1# · · ·#∂ιj+1

t ∇ij+1uτj+1

where exactly one of the indices τ1, . . . , τj+1 is equal to 2, and the others are equal to 1.
An analogous reasoning applies to the term A(u) · ∇2pv. It is then easy to see, since v ∈ Pm

like u, that we can repeat the same estimates used to show the continuity of u 7→ FA(u). This



A NOTE ON QUASILINEAR PARABOLIC EQUATIONS ON MANIFOLDS 11

proves (3.10), and in particular dFA(u) ∈ L(Pm;Pm−1).
In order now to prove that dFA ∈ C0(Pm;L(Pm;Pm−1)) we need to show that

sup
‖v‖Pm≤1

‖dFA(ũ)(v)− dFA(u)(v)‖Pm−1 → 0 as ũ→ u in Pm .

Again, this estimate is similar to what we have already done. Indeed, supposing that τj+1 is the
only index equal to 2 in (3.11) and suppressing the time derivatives for the sake of simplicity, we
want to see that

(3.12) sup
‖v‖Pm≤1

‖D(ũ)#∇i1 ũ# · · ·#∇ij ũ∇ij+1v −D(u)#∇i1u# · · ·#∇iju∇ij+1v‖L2 → 0

as ũ→ u in Pm.
Adding and subtracting terms, one gets

|D(ũ)#∇i1 ũ# · · ·#∇ij ũ∇ij+1v−D(u)#∇i1u# · · ·#∇iju∇ij+1v |

≤
{
|D(ũ)−D(u)| |∇i1 ũ| · · · |∇ij ũ|

+ |D(u)| |∇i1(ũ− u)| |∇i2 ũ| · · · |∇ij ũ|

+ · · · + |D(u)| |∇i1u| · · · |∇ij (ũ− u)|
}
|∇ij+1v| .

Studying now the L2 norm of this sum, the first term can be bounded as before and it goes to zero
as D(u) is continuous from Pm to L∞. The L2 norm of all the other terms, repeating step by step
the previous estimates, using Hölder’s inequality and embeddings (4.1)–(4.3), will be estimated
by some product

C‖u‖αPm‖ũ‖βPm‖v‖γPm‖ũ− u‖σPm ≤ C‖u‖αPm‖ũ‖βPm‖ũ− u‖σPm

for a constant C and some nonnegative exponents α, β, γ, σ satisfying α + β + γ + σ ≤ 1 and
σ > 0. Here we we used the fact that ‖v‖Pm ≤ 1.
As ũ − u → 0 in Pm, this last product goes to zero in L2, hence uniformly for ‖v‖Pm ≤ 1 and
inequality (3.12) follows, as claimed. The analysis of the estimates with mixed time/space deriva-
tives is similar and all this argument works analogously for the term A(u) · ∇2pv.
Then, the Gateaux derivative dFA is continuous which implies that it coincides with the Frechét
derivative, hence FA ∈ C1(Pm;Pm−1).

The map Fb can be dealt with in the same way and we are done.

4. PARABOLIC SOBOLEV EMBEDDINGS

Proposition 4.1. Let u ∈ Pm(M,T ). Then for r, ` ∈ N with 2pr + ` ≤ 2mp,

‖∂rt∇`u‖Lq(M×[0,T ]) ≤ C‖u‖Pm(M,T ) if
1

q
=

1

2
− 2pm− `− 2pr

n+ 2p
> 0 ,(4.1)

‖∂rt∇`u‖Lq(M×[0,T ]) ≤ C‖u‖Pm(M,T ) if
1

2
− 2pm− `− 2pr

n+ 2p
= 0 and 1 ≤ q <∞ ,(4.2)

‖∂rt∇`u‖C0(M×[0,T ]) ≤ C‖u‖Pm(M,T ) if
1

2
− 2pm− `− 2pr

n+ 2p
< 0 ,(4.3)

where the constant C does not depend on u.

Proof. Of course we can write

Pm(M,T ) = L2([0, T ];H2mp(M)) ∩H1([0, T ];H2p(m−1)(M)) ∩ · · · ∩Hm([0, T ];L2(M)) .

By standard interpolation theory, see e.g. [8, Theorem 2.3], we have the continuous immersion

Pm(M,T ) ↪→ Hs([0, T ];H2p(m−s)(M)), for all s ∈ [0,m] .

We shall now assume that 1
2 −

2pm−`−2pr
n+2p > 0 and prove inequality (4.1). For 0 ≤ σ < 1

2 and for
any Hilbert space X we have the Sobolev embedding

Hσ([0, T ];X) ↪→ Lq([0, T ];X) for
1

q
=

1

2
− σ .
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Then, for `, r ∈ N with 2pr + ` ≤ 2pm and for any s ∈
(
m − `

2p −
n
4p ,m −

`
2p

]
∩
[
r, r + 1

2

)
, also

using the standard Sobolev embeddings on M , for every u ∈ Pm(M,T ) one gets

∂rt∇`u ∈ Hs−r([0, T ];H2p(m−s)−`(M)) ↪→ Lq([0, T ];H2p(m−s)−`(M))

↪→ Lq([0, T ];Lq̃(M)) ,

with
1

q
=

1

2
− s+ r and

1

q̃
=

1

2
− 2p(m− s)− `

n
.

We now choose s = rn+2pm−`
n+2p and claim that s ∈

(
m− `

2p −
n
4p ,m−

`
2p

]
∩
[
r, r + 1

2

)
. Then

1

q
=

1

q̃
=

1

2
− 2pm− `− 2pr

n+ 2p
,

hence for such q ∈ R we have

u ∈ Lq([0, T ];Lq(M)) ' Lq(M × [0, T ]) ,

and embedding (4.1) is proven. As for the claim, the inequalities s ≥ r and s ≤ m − `
2p easily

follow from the inequality 2pr + ` ≤ 2pm, while inequality s < r + 1
2 is equivalent to 1

2 −
2pm−`−2pr

n+2p > 0. This means 1
q > 0 which implies s > m− `

2p −
n
4p .

The proof of inequality (4.2) is analogous.
Finally, if 1

2 −
2pm−`−2pr

n+2p < 0, using that for σ > 1
2 one has Hσ([0, T ];X) ↪→ C0([0, T ];X) and

that for σ > n
2 one has Hσ(M) ↪→ C0(M), for every u ∈ Pm(M,T ) we infer

∂rt∇`u ∈ Hs−r([0, T ];H2p(m−s)−`(M)) ↪→ C0([0, T ];C0(M)) ' C0(M × [0, T ]) ,

for s = rn+2pm−`
n+2p ∈

(
r + 1

2 ,m−
`
2p −

n
4p

)
. This proves embedding (4.3). �
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