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Abstract

Consider a smooth Riemannian manifold (M,g) of arbitrary even dimension
2m, and a sequence of conformal metrics gx = e?“*g on M, u, € C°(M). In
this work we study the concentration-compactness behaviour of this sequence of
metrics, under the assumption that their volumes are equibounded and their Q-
curvatures Qi;” converge uniformly or even in C° to a given continuous function

Qo-

We start by taking (M, g) to be R?™ with the Euclidean metric. Then, in
analogy with a 4-dimensional result of Adimurthy, F. Robert and M. Struwe,
we show that, in case of non-compactness and up to subsequences, the metrics
vanish in the limit uniformly locally outside a rectifiable set of dimension at
most 2m — 1.

We have a much stronger result, if (M, g) is a closed Riemannian manifold,
satisfying a generic (hence not restrictive) condition which will be discussed. In
this case, we either have compactness, or in the limit (up to subsequences) the
metrics vanish outside a finite concentration set S. Moreover Qg is positive on
S, and the measures Q;;_" dvoly, converge weakly to > g A10,, where Ay =
(2m — 1)!vol(5%™) is the total Q-curvature of the sphere. In particular the total
Q-curvature of the metrics g, (it does not depend on k) is an integer multiple of
the total @-curvature of the sphere. Our approach generalizes the 4-dimensional
argument of O. Druet and F. Robert to arbitrary dimension, also allowing for
the Q-curvatures Q;L" to have varying sign. Quantization results for similar
equations, have also been obtained by A. Malchiodi and C. B. Ndiaye using
other techniques.

In the case of the round sphere, (M,g) = (S?™, ggom), the concentration
result is particularly explicit. We either have compactness, or we have concen-
tration at a single point, and the pull-back metrics ®;gi converge up to a sub-
sequence towards the round metric ggzm, if the ®;’s are suitably chosen Mobius
diffeomorphisms. This generalizes to arbitrary dimension previous results in
dimension 2 by M. Struwe and in dimension 4 by A. Malchiodi and M. Struwe.
We also allow the Q;Z“s to have varying sign, and show that concentration only
occurs at places of positive Q-curvature.

These concentration-compactness results rely heavily on a blow-up technique
and on the classification and study of the asymptotic behaviour at infinity of
the conformal metrics on R?™ of constant Q-curvature ¢ € R and finite volume.
When @ > 0, we do this in arbitrary dimension, building upon several previous
partial results. For @ < 0, we first show the existence of such metrics if m > 1,
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which was previously unknown, and then develop an analysis analogous to the
one done for the positive case.

Quite remarkably, the above geometrical results, can be used to give an
elegant proof of a concentration-compactness result for the equation

(—A)muk = )\kukem“i y

which arises from the Adams-Moser-Trudinger inequality:

2
sup ][em“ dx = co(m) < +oo0.
uweHF (Q), IV ull? Aad

L2 S
This generalizes previous works of Adimurthy, O. Druet, F. Robert and M.
Struwe. The proof we give, shows a clean relation between the geometric prob-
lem of prescribing the Q-curvature and an apparently unrelated imbedding prob-
lem in functional analysis. Here we use some sharp Lorentz-space estimates,
which allow a more transparent approach.



Zusammenfassung

Sei (M, g) eine glatte Riemannsche Mannigfaltigkeit beliebiger gerader Dimen-
sion 2m, und sei g, = e?“*g, mit u, € C*°(M), eine Folge konformer Metriken
auf M. In dieser Arbeit studieren wir das Verhalten dieser Folge von Metriken
im Hinblick auf Konzentrations-Kompaktheit unter der Annahme, dafl ihre Vo-
lumina gleichméssig beschrénkt sind und ihre Q-Kriimmungen Qg;” gleichméfig,
oder sogar in C°, gegen eine gegebene stetige Funktion Qg konvergieren.

Zu Beginn wiihlen wir fiir (M, g) den euklidischen R?*™. In Analogie zu einem
Resultat von Adimurthy, F. Robert und M. Struwe in Dimension 4 zeigen wir im
nicht-kompakten Fall zunachst, daf eine Teilfolge der Folge der Metriken gi im
Limes lokal gleichméBig auflerhalb einer rektifizierbaren Menge der Dimension
hochstens 2m — 1 verschwindet.

Eine viel starkere Aussage erhalten wir, wenn (M, g) eine geschlossene Rie-
mannsche Mannigfaltigkeit ist, welche eine generische (also nicht restriktive)
Bedingung erfiillt, die wir spater erklaren. In diesem Fall liegt entweder Kom-
paktheit vor, oder eine Teilfolge der Metriken verschwindet im Limes aufler-
halb einer endlichen Konzentrationsmenge S. Desweiteren ist Q) positiv auf .S,
und die Mafle Qg;_” dvoly, konvergieren schwach gegen ) ¢ A1d,, wobei wir
mit A; = (2m — 1)lvol(S?™) die totale Q-Kriimmung der Sphére beschreiben.
Insbesondere ist die totale Q-Kriimmung der Metriken gy (welche nicht von
k abhéngt) ein ganzzahliges Vielfaches der totalen Q-Kriimmung der Sphére.
Unser Zugang verallgemeinert ein Argument, welches O. Druet and F. Robert
fiir den vierdimensionalen Fall gegeben haben, auf beliebige Dimensionen, wobei
das Vorzeichen der @-Kriimmungen Q;;” nun springen darf. Mit anderen Meth-
oden A. Malchiodi und C. B. Ndiaye haben Quantisierungsresultate fiir &hnliche
Gleichungen erzielt.

Im Falle der runden Sphire, (M, g) = (5*™, gg2m ), konnen wir unser Resul-
tat iiber das Konzentrationsverhalten der Folge g; noch verfeinern: Entweder
liegt Kompaktheit vor, oder es kommt zur Konzentration an einem einzigen
Punkt und eine Teilfolge der zuriickgezogenen Metriken ®} g konvergiert gegen
die runde Metrik gg2m, unter der Voraussetzung, dal die @ geeignet gewahlte
Mobiusdiffeomorphismen sind. Dies verallgemeinert bekannte Resultate von M.
Struwe fiir Dimension 2 und von A. Malchiodi und M. Struwe fiir Dimension
4 auf den Fall beliebiger Dimension. Dariiberhinaus lassen wir zu, dafl das
Vorzeichen von Qg;” springt, und zeigen, dafl die Konzentration nur an Stellen
positiver @Q-Krimmung auftritt.

Unsere Resultate zur Konzentrations-Kompaktheit fuflen zum einen auf einer
blow-up-Technik, und zum anderen auf der Klassifikation und dem Studium des
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asymptotischen Verhaltens der konformen Metriken auf R*™ von konstanter Q-
Krimmung @ € R, und endlichem Volumen. Im Falle @ > 0 zeigen wir dies
unter Benutzung verschiedener fritherer Teilresultate in beliebiger Dimension.
Im Falle Q < 0 zeigen wir zunéchst die Existenz solcher Metriken fiir m > 1 —
ein bis dahin unbekanntes Resultat — und fiihren sodann analoge Untersuchun-
gen wie im Falle Q > 0 durch.

Eine bemerkenswerte Tatsache ist, dafl obige geometrische Ergebnisse einen
eleganten Beweis eines Konzentrations-Kompaktheits-Resultates fiir die Gle-
ichung

(—A)muk = )\kukem“i

liefern, welche mit der Adams-Moser-Trudinger Ungleichung

2
sup ][em“ dx = co(m) < +o0
u€H (Q), |V ull <Ay

2

2@~ 0
verkniipft ist. Dies verallgemeinert frithere Arbeiten von Adimurthy, O. Druet,
F. Robert und M. Struwe. Unser Beweis deckt einen Zusammenhang zwis-
chen dem geometrischen Problem, die @Q-Kriimmung vorzuschreiben, und einem
offensichtlich damit nicht verwandten funktionalanalytischen Einbettungsprob-
lem auf. Wir beniitzen hierbei einige scharfe Abschétzungen fiir Lorentzraume,
welche eine besonders klare Argumentation erméglichen.



Riassunto

Consideriamo una varieta riemanniana liscia (M, g) di dimensione pari 2m ed
una successione di metriche conformi gy, = e?“*g su M, u € C°(M). In questo
lavoro studiamo i fenomeni di concentrazione-compattezza di questa successione
di metriche, nell’ipotesi che i loro volumi siano equilimitati e che le loro Q-
curvature Qi;” convergano uniformemente o addirittura in C° verso una data
funzione Q.

Iniziamo con il prendere (M, g) uguale a R?™ con metrica euclidea. Quindi,
in analogia con un risultato di Adimurthy, F. Robert e M. Struwe in dimensione
4, mostriamo che in caso di non compattezza e a meno di una sottosuccessione,
le metriche vanno a zero nel limite per kK — oo localmente uniformemente al di
fuori di un insieme rettificabile di dimensione al piu 2m — 1.

Abbiamo un risultato molto piu forte se (M, g) ¢ una varieta riemanniana
chiusa, che soddisfa una certa condizione generica (quindi ben poco restrittiva)
che discuteremo. In questo caso, o abbiamo compattezza, oppure nel limite (a
meno di sottosuccessioni) le metriche vanno a zero al di fuori di un insieme
di concetrazione finito S. Inoltre @y € positivo su S, e le misure Qg;” dvolg,
convergono debolmente verso Y . A1d,, laddove Ay = (2m — 1)lvol(S?™) & la
Q-curvatura totale della sfera. In particolare, la Q-curvatura totale delle met-
riche g (non dipende da k) ¢ un multiplo intero della Q-curvatura totale della
sfera. Il nostro approccio generalizza a dimensione arbitraria un metodo che O.
Druet e F. Robert hanno sviluppato in dimensione 4. Inoltre permettiamo alle
Q-curvature Qg;” di cambiare segno. Risultati di quantizzazione per equazioni
simili sono anche stati ottenuti da A. Malchiodi e C. B. Ndiaye usando tecniche
diverse.

Nel caso della sfera standard, (M, g) = (S?™, ggzm ), il risultato di concentra-
zione-compattezza risulta particolarmente esplicito. O abbiamo compattezza, o
abbiamo concentrazione in un singolo punto, e i pull-back ®; g, delle metriche g,
convergono, a meno di una sottosuccessione, verso la metrica standard ggzm, se
le @ sono diffeomorfismi di M&bius opportunamente scelti. Questo generalizza
a dimensione arbitraria precedenti risultati di M. Struwe in dimensione 2 e di
A. Malchiodi e M. Struwe in dimensione 4. Inoltre permettiamo alle QEL" di
cambiare segno, e mostriamo che la concentrazione puo avvenire solo nei punti
di @Q-curvatura positiva.

Questi risultati di concentrazione-compattezza dipendono fortemente da una
certa tecnica di blow-up e dalla classificazione e studio asintotico ad infinito delle
metriche conformi su R?™ di Q-curvatura constante QQ € R e volume finito. Per
@ > 0, facciamo cio in dimensione arbitraria, migliorando vari lavori precedenti.
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Per Q < 0, dapprima mostriamo 'esistenza di tali metriche quando m > 1, cosa
precedentemente non nota, poi sviluppiamo un’analisi analoga a quella prodotta
nel caso positivo.

E molto interessante notare che i risultati geometrici sopra descritti possono
essere usati per dare un’elegante dimostrazione di un risultato di concentrazione-
compattezza per ’equazione

2
(7A)muk = /\kukem“k ,

che nasce nell’ambito della disuguaglianza di Adams-Moser-Trudinger:

sup ][emuzdm = ¢o(m) < +o0.
wEHF (), [V ull? 5 o) <A o

Cosi facendo, generalizziamo precedenti lavori di Adimurthy, O. Druet, F. Robert
e M. Struwe. La dimostrazione che diamo mostra una relazione molto chiara tra
il problema geometrico della @-curvatura prescritta e un problema di immer-
sione in analisi funzionale che, in apparenza, ¢ completamente scollegato. Qui
facciamo uso di alcune stime in spazi di Lorentz, che permettono un approccio
piu trasparente.
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Chapter 1

Introduction

In this short introduction, we attempt to clarify how the various theorems proved
in this work happen to be tightly intertwined, though at a first sight it might
not seem so. In Section 1.1 we recall some facts about the Paneitz operators
and the @Q-curvatures, as these objects will be largely used in what follows. In
Section 1.2 we provide the reader with a map to navigate through the following
chapters.

1.1 The Paneitz operators and the ()-curvatures

The study of the Paneitz operators moved into the center of conformal geometry
in the last decades, in part with regard to the problem of prescribing the Q-
curvature. Given a 4-dimensional Riemannian manifold (M, g), the @Q-curvature
Q‘; and the Paneitz operator P; were introduced by Branson-Oersted [BO] and
Paneitz [Pan]:

1
Q= —E(AgRg—R§+3|Ricg|2)

g

2
PAf) = AZerdiv(gRgg—QRicg)df, for f € C=(M),

where R, and Ric, denote the scalar and Ricci curvatures of g, and A, is
the Laplace-Beltrami operator of g with the analysts’ sign. Higher order -
curvatures Q2™ and Paneitz operators P?™ on a 2m-dimensional manifold (ac-
tually more in general) were introduced in [Bra] and [GJMS].

One can think about the Paneitz operator as a higher order analog of the
Laplace-Beltrami operator, and the Q-curvature can be thought of as a higher
order analog of the Gaussian curvautre. In fact, in dimension 2 we simply have
P? = —A, and Q2 = K,. The expression higher order is justified, since in
general Q%™ involves derivatives of the metric up to order 2m, and

P;m = (=A™ + Ay, (1.1)

where A, is a differential operator of order at most 2m — 1. In particular P;m
has order 2m.
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The interest of these objects lies in their covariant nature. If we consider in
dimension 2m the conformal metric g, := e2%g, we have

pZm = emmuprm, (1.2)
and
PYMu+ Q™ = Qe (1.3)

see for instance [Cha] Chapter 4. Notice that (1.3) is a generalized version of
Gauf}’s identity, which states that in dimension 2

~-Agu+ K, =K, e*,

where K, is the Gaussian curvature. The nice transformation (1.2) enjoyed by
the Paneitz operator is the reason why we do not simply take szm = (=Ay)™,
and it explain the purpose of the correction term A, in (1.1).

Although for the case m > 2 there are no explicit formulas for P;™ and Q2™
(we will not need them, anyway), we know that on flat R*™, P2™ = (—A)™
and Q2™ = 0. Then (1.2) and (1.3) can be used to define the Paneitz operator
and the @Q-curvature for any locally conformally flat manifold. For instance, in
the model case of the round sphere (S?™, g), we have

m—1

Py = [T (=ag+i2m—i-1)), Q" =(m-1),
=0

which is consistent with (1.1). A formal definition of the Paneitz operator P} of
order k on an arbitrary Riemannian manifold (M, g) of dimension n can be given
by prescribing that P; satisfies the properties listed in the following theorem,
of which we shall only need that case n = k = 2m.

Theorem 1.1 ([GIJMS]) Let k be a positive integer. Suppose n is odd, or
k < n. Then for any Riemannian manifold of dimension n there is a linear
differential operator P; on scalar functions satisfying the following:

(i) 1f gu = €>'g, then

ngugo = e*%kng (engk (,0) for every o € C(M).

(ii) The leading symbol of P is (=A%, and on Euclidean (R™, ggn) we have
k
ngw =(=A)z.
(iii) P; = P;“—F"T_I“QS, where Q’; s a local scalar invariant, and ng = 55’!’;_2d,
where & is the divergence operator on 1-forms and 5572 is a differential
operator on 1-forms.

(iv) P} is self-adjoint.

The above theorem does not imply uniqueness of the operators P;, although
it follows easily that, in the locally conformally flat case, we do have uniqueness.
For example, given P; as in the theorem above for n = 4, the operator P; +
|W,|?, where W, is the Weyl tensor, satisfies the properties of the theorem as
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well. Since in dimension 2 local conformal flatness is for free, we can also easily
see that Pg2 = —A, is the only Paneitz operator of order 2 in dimension 2. For
k=2and n > 2, Qg is a multiple of the scalar curvature R, and ng is nothing
else than the well-known conformal Laplacian L.

Now the @-curvature Q’; in dimension n # k is defined by property (iii) in
the theorem above. In [Bra], T. Branson extended this definition to the case
n =k = 2m as follows. If we fix k£ € N even, and call P;’” a Paneitz operator
of order k in dimension n, as given in Theorem 1.1. Then P;“" has coefficients
given by universal formulae in curvature and its derivatives which are rational
in n, and the zeroth order term of P;vk is of the form "T’]“Qg*k with coefficients
rational in n and regular at n = k. Then Q;m = Q’;’k can be defined, roughly
speaking, as

Qﬁm — }llg(l: Q;z,2m.
n—2m
An analytic continuation argument in the dimension n also show that the Q-
curvature so defined satisfies the transformation law (1.3). Equivalent defini-
tions of the Q-curvature have been provided by [FG]|, [FH] and [GH].

Let us from now on focus on the case n = k = 2m. A geometrically inter-
esting fact is that the total Q-curvature is a global conformal invariant, that is,
if M is closed and 2m-dimensional, then

Q;Tdvolgu = / Q;mdvolg, gu = €24g.

M M

Further evidence of the geometric relevance of the Q-curvatures is given by the
Gauss-Bonnet-Chern’s theorem [Che]: On a locally conformally flat closed mani-
fold of dimension 2m, since Q;m is a multiple of the Pfaffian plus a divergence
term (see [BGP]), we have

X(M)

5 (1.4)

/ Q;mdvolg = (2m — 1)! vol(5%™)
M

where x(M) is the Euler-Poincaré characteristic of M. Recently S. Alexakis
[Alel], [Ale2] proved that

Q2" = Wy + div T, + Cop, Plaff,

where Wy is a local conformal invariant, T, is a Riemannian vector field and
Pfaff, denotes the Pfaffian of g. Then, the Gauss-Bonnet-Chern formula can
be expressed in terms of the Q-curvature on any close manifold (M, g), without
the assumption that g be locally conformally flat. We then have

/ (Q;m — Wy) dvol, = (2m — 1)!V01(52m)@.
M

1.2 Structure of the chapters

We start in Chapter 2 by addressing the special case when (M, g) is R?™ with the

Euclidean metric ggzm. Remember that P;;‘m = (=A)™ and g;f;m = 0. Our

purpose now is to classify all conformal metrics e?*ggem on R?™ having constant
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positive Q-curvature and finite volume. Thanks to (1.3), this is equivalent to
classify the solutions u to

(—A)™u = Qe*™  on R*™, (1.5)

satisfying f]RM e?™udy < oo, where Q > 0 is constant. Equation (1.5) is also
called Liouville equation (also when @ is not constant). We will see that there
exist standard solutions. These correspond to metrics which arise from the pull-
back of the round metric of $?™ via the stereographic projection and possibly a
Mobius transformation. Such solutions have a well-controlled behaviour at in-
finity. Then we develop some criteria to characterize the non-standard solutions,
with the purpose of ruling out their appearance in the blow-up theory which
will be discussed later. Of particular importance is the following criterium: If a
solution w is non standard, then there exist 1 < j < m —1 and a constant a # 0
such that

lim Alu(r) = a. (1.6)

|z]—o0

In Chapter 3 we discuss the existence and classification of conformal metrics
on R?™ with non-positive constant Q-curvature Q < 0 and finite volume. A
simple computation, based on the maximum principle shows that for m = 1 such
metrics do not exist at all. Then one might be led to believe that this is the case
also in higher dimension, but it actually turns out that such metrics do exist for
m > 1, as we show in Section 3.2. Then we study the asymptotic behaviour at
infinity, as in the case of positive Q-curvature. An important difference between
the two cases is that for Q < 0 there are no standard solutions and there are
no solutions presenting a “nice” behaviour at infinity. In particular a property
similar to (1.6) can be shown for every solution in the negative case. This will
be crucial in proving that concentration phenomena on closed manifolds can
only occur at points of positive curvature.

In Chapter 4 we turn our attention to the concentration-compactness re-
sults. We are given a Riemannian manifold (M, g) and a sequence of conformal
metrics gy = e+ g, with vol(gx) equi-bounded and Qi;" — Qo uniformly for a
continuous function Qg. The first result we prove concerns the case when (M, g)
is R?"™ endowed with the Euclidean metric. Its proof is solely based on linear
elliptic estimates and the generalization of a non-linear estimate of Brézis and
Merle, Theorem 2.7.

Then we consider the case when (M, g) is a closed manifold with the property
that ker szm contains only the constant functions. This is a generic assumptions
and is needed in order for Pg2m to have a Green’s function. Working with the
Green’s representation formula we can show integral gradient estimates (Lemma
4.7) which, combined to the classification results of Chapters 2 and 3 imply that
in the concentration case

(i) concentration can only occur at finitely many (sequences of) points where
Qo > 0;

(ii) if we scale the metrics at such (sequences of) concentration points, we
obtain a sequence of metrics converging, up to a subsequence, to the round
metric on S$?™.
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Still working with the gradient estimates, we can show that away from the
finitely many concentration points, the metrics are vanishing locally uniformly.
We then prove that the total Q-curvatures of the metrics gi of the concentrating
subsequence is an integer multiple of the total Q-curvature of the round S2™.
This also allows us to estimate the number of concentration points in terms
of the total Q-curvature of the initial metric g. An immediate consequence
is Corollary 4.3, which gives some compactness criteria in terms of the Euler
characteristic of M. Finally we consider the model case when (M, g) is the
round sphere S?™.

We conclude by studying in Chapter 5 the concentration-compactness be-
haviour of sequences (ug) of solutions to the following elliptic equation, related
to the Adams-Moser-Trudinger inequality

(—A)™uy, = Apuge™ % in Q
up >0 in (1.7)
up = Oup = ... = 0" luy =0 on ON.

Here (2 is a bounded domain with smooth boundary. Assuming Ay, — 0 and

/ ug(—A)"updr = )\k/ uiem“idz —A>0 ask— oo, (1.8)
Q Q

we will see that in the case of non-compactness, we have concentration on a
finite set S, with uy — 0 locally uniformly on Q\.S. Moreover we will show that
A > Ay, where A is the total Q-curvature of the round sphere S?™. The reason
for such an unexpected relation with the @Q-curvature, is that, when we scale
u at a blow-up sequence, we find a new sequence of functions 7 which solve
an approximate Liouville-type equation (1.5), see Corollary 5.4. Then in the
limit we find a solution to (1.5), which can be classified, thanks to the results
of Chapter 2. This requires, though, some a priori gradient bounds. We prove
them by observing that (1.8) implies that the right-hand side of (1.7) is slightly
more than integrable, as it belongs to a so-called Zygmund space:

(—A)muk = )\kukem“i S L(log L)%

(see the proof of Lemma 5.5 for the definition of L(log L)2). Using some sharp
elliptic estimates for such Zygmund spaces, we obtain uniform bounds for V¢uy,
in the Lorentz space L(Qm/M)(Q), 1 < /¢ <2m—1. The use of Lorentz spaces is
very natural here. In fact, the estimates that we would obtain, if we used the
usual Sobolev spaces instead, would not fully exploit the integrability hypotesis
(1.8), and they would be too weak for our purposes.

The content of Chapters 2 and 3 corresponds to the papers [Marl] and [Mar2]
respectively. The content of Chapters 4 and 5 corresponds to the material in
[Mar3] and [Mar4] respectively. The list of authors from whom we borrowed
ideas is quite long, and is discussed chapter by chapter.
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Chapter 2

Conformal metrics on R?™
with positive constant
()-curvature

In this chapter we classify the solutions to the equation (—A)™u = (2m—1)le?™

on R?™ giving rise to a conformal metric g = e2%gg2m with finite volume in terms
of analytic and geometric properties. The analytic conditions involve the growth
rate of v and the asymptotic behaviour of Au at infinity. As a consequence we
give a geometric characterization in terms of the scalar curvature of the metric
e2"gram at infinity, and we observe that the pull-back of this metric to $?™ via
the stereographic projection can be extended to a smooth Riemannian metric if
and only if it is round.

2.1 Introduction and statement of the main the-
orems

Let g, = e*ggem be a conformal metric on R*™ of Q-curvature identically

equal to (2m — 1)!. Since P;;;‘m = (—A)™ and ggm = 0, we infer from the

generalized Gauss identity (1.3) that u satisfies
(=A)™u = (2m — 1)!e*™*  on R*™, (2.1)

and, conversely, solutions to (2.1) yield metrics of Q-curvature (2m — 1)!. Ac-
tually, we can replace (2m — 1)! by any other positive constant @, in that we

simply consider the function v := u + ﬁ log w, i.e. the metric
1
2m — I\ ™
v = €2U9R2m = (%) Gu-

Assuming that the volume of g, is finite, is equivalent to imposing fRzM e2midy <
00.

As we shall see, regularity is not an issue, since every solution to (2.1) with
e?™ ¢ Ll (R?*™) is smooth (Corollary 2.8).

loc

7
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Now given a solution u to (2.1) with e?™* € L', define the auxiliary function

v(z) = @m =1 /}R log <ﬂ|)e2mu@>dy, (2.2)

Tm |$ )
where 7, is defined by the following property: (—A)™ (,% log ﬁ) = §p in R?™
(compare Proposition 2.22 below). Then (—A)™v = (2m — 1)le?*™*. We prove
Theorem 2.1 Let u be a solution of (2.1) with

1
152 Jram

Q= 2@ dy < fo0. (2.3)

Then
u(z) = v(z) + p(z), (2.4)

where p is a polynomial of even degree at most 2m — 2, v is as in (2.2) and

sup p(z) < +oo,

zER2™
|l|irn Alv(xz) = 0, j=1,...,m—1,
v(z) = —2alogl|z|+ o(log|x|), as |x| — +oo.

It is well known that the function

2

’LL(SC) = IOg m

(2.5)

solves (2.1) and (2.3) with a = 1 for any A > 0, g € R?™. We call the
functions of the form (2.5) standard solutions. They all arise as pull-back under
the stereographic projection of metrics on $?™ which are round, i.e. conformally
diffeomorphic to the standard metric. A. Chang and P. Yang [CY] proved that
the round metrics are the only metrics on S?™ having Q-curvature identically
equal to (2m — 1)\

In the next theorem we give conditions under which an entire solution of
Liouville’s equation satisfying (2.3) is necessarily a standard solution.

Theorem 2.2 Let u be a solution of (2.2) satisfying (2.3). Then the following
are equivalent:

(i) u is a standard solution,

(i) lim |y o Au(z) =0
(4i°) Tim ) oo ANu(x) =0 forj=1,...,m—1,
(iii) u(x) = o(|z|?) as |x| — oo,
(iv) degp =0, where p is the polynomial in (2.4).
(v) liminf |, _ 4o Ry, > —o0, where g, = e*gpam.

(vi) 7 gy can be extended to a Riemannian metric on S*™, where 7 : S*™ —
R2™ s the stereographic projection.
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Moreover, if u is not a standard solution, there exist 1 < j < m —1 and a
constant a < 0 such that

Au(z) —a as |r] — 4o0. (2.6)

The 2-dimensional case (m = 1) of Theorem 2.2 was treated by W. Chen and
C. Li [CL], who proved that every solution with finite total Gaussian curvature
is a standard one. The 4-dimensional case was treated by C-S. Lin [Lin], with a
classification of u in terms of its growth, or of the behaviour of Au at oco. The
classification of C-S. Lin in terms of Au was used by F. Robert and M. Struwe
[RS] to study the blow-up behaviour of sequences of solutions uj, to

ug = —%7:1’“ = on 0f2,

{ Ay = )\ukew’rzui in Q c R?
and by A. Malchiodi [Mal] to show a compactness criterion for sequences of
solutions uy to the equation

P;uk + Qi = hpet™ . hy constant

on a closed 4-manifold. The same criterion could be used in higher dimension
in the proof of an analogous compactness result. This was observed by C. B.
Ndiaye [Ndi], who then used a different technique to show compactness. We
will discuss this in Chapters 4 and 5, where the above theorems will be used.

In higher dimension (m > 2), J. Wei and X. Xu [WX] (see also [Xu]) treated
a special case of Theorem 2.2: if u(z) = o(|z|?) at infinity, then u is always a
standard solution. This result is not sufficient to prove compactness. Moreover,
the proof appears to be overly simplified. For instance, in their Lemma 2.2 the
argument for showing that v < C' is not conclusive, and in the crucial Lemma
2.4 they simply refer to [Lin] for details. This latter lemma corresponds to
Lemma 2.13 here and it is the main regularity result, as it implies that u < C,
hence that the right-hand side of (2.1) belongs to L>°(R?*™). Its generalization
is a major issue, because Lin’s analysis is focused on the function Awu, and it
makes use of the Harnack’s inequality and of the fact that A(u —v) = C. In
the general case, Harnack’s inequality does not work and there are no uniform
bounds for A(™=2)(y — v) (while it is still true that A™=D(y —v) = C). To
overcome this difficulties, we spend a few pages in the following section to study
polyharmonic functions. As a reward we obtain a Liouville-type theorem for
polyharmonic functions (Theorem 2.6) which allows us to make the proof of
[Lin] more direct and transparent.

The characterization in terms of the scalar curvature at infinity is new and
quite interesting, as it shows that non-standard solutions have a geometry essen-
tially different from standard solutions, and it also shows that the Q)-curvature
and the scalar curvature are independent of each other in dimension 4 and
higher. On the other hand, since in dimension 2 we have 2@, = Ry, our char-
acterization (v) is consistent with the result of [CL].

The characterization in (vi) implies the result of A. Chang and P. Yang [CY]
described above, which here follows from the general case.

The chapter is organized as follows. In Section 2.2 we collect some relevant
results about polyharmonic functions which will be needed later. Section 2.3
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contains the proof of Theorems 2.1 and 2.2; in Section 2.4 we give examples to
show that the hypothesis of Theorem 2.2 are sharp in terms of the growth at
infinity and of the degree of p. Recently J. C. Wei and D. Ye [WY] proved that
already in dimension 4 there is a great abundance of non-radially symmetric
solutions. In the last section we collect some useful results, which were needed
in the previous sections.

In the following, the letter C' denotes a generic constant, which may change
from line to line and even within the same line.

2.2 A few remarks on polyharmonic functions

We briefly recall some properties of polyharmonic functions, which will be used
in the sequel. For the standard elliptic estimates for the Laplace operator, we
refer to [GT] or [GM]. The next lemma can be considered a generalized mean
value inequality. We give the short proof for the convenience of the reader, and
because identity (2.11) will be used in the next section.

Lemma 2.3 (Pizzetti [Piz]) Let A™h = 0 in Br(zo) C R"™, for some m,n
positive integers. Then

m—1

]l h(z)dz =Y ¢;R*A'h(w), (2.7)
Br(zo) 1=0
where
—2)!
=1, ¢=— (n—2) i> 1. (2.8)

n+2i (2012 +n—-2)I" —

Proof. We can translate and assume that zg = 0. We first prove by induction
on m that there are constants b(()m), ce bggi)l such that

m—1
][ h(2)dS = 3 BB AT0), 0<r <R, B.i=B.(0).  (29)

OB =0

For m = 1 this reduces to the mean value theorem for harmonic functions.
Assume now that the assertion has been proved up to m—1, and that A™h = 0.
Let G, be the Green function of A™ in B,.:

A"G, =6 in B,, G.=AG,=...=A""'G,=0ondB,. (2.10)
For simplicity, let us only consider the case n = 2m. Then G,(z) = G1 (%),

Gi(z) = B+ aplog|z| + 041|:L'|2 +...+ am,1|:c|2m72,
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where the constants can be computed inductively starting with ag up to au,—1
in order to satisfy (2.10). Notice that G is radial. Integrating by parts

0 = /GTAmhdx
B

m—1 ;
aAmflsz )
= h(0) — / — " A'hdS 2.11
(0) ; e (2.11)
m—1
= h(0) - f%WNM&
i=0

where each a; depends only on n and m. For each term on the right-hand side
with ¢ > 1, we can use the inductive hypothesis

m—i—1
r%fym&ﬂ%§:¢“%%www,oggme
9B, 3=0

and substituting we obtain (2.9). To conclude the induction it is enough to
multiply (2.9) by "1, integrate with respect to r from 0 to R and divide by
I

" To compute the ¢;’s, we test with the functions h(z) = r?* := |2|*, i > 1 (for
the case i = 0 use the function h(x) = 1). Since Ar?* = 2i(2i +n — 2)r?* =2, we
have that A*h(0) = 0 for k # i and A*h(0) = W Hence Pizzetti’s
formula reduces to

)2 +n —2)11

2 n 24
- de = —R
(n—2)1 fr Ty
Br

CiR2Z

whence (2.8). O

Remark. From (2.11), moreover, for an arbitrary C?™-function u it follows that
m—1

u(z)dz = Z ci R Alu(zg) + e R*™A™ u(€), (2.12)

BR(Z()) =0

for some £ € Br(zo).

Proposition 2.4 Let A™h =0 in By CR". For every 0 < a <1, p € [1,00)
and k > 0 there are constants C(k,p), C(k,«) independent of h such that

IPllwersy < Clh,p)IRllLy(sy)
<

[Allowe(my) C(k, a)||h|[ 21 (By)-

The proof of Proposition 2.4 is given in Section 2.5. As a consequence
of Proposition 2.4 and Pizzetti’s formula we have the following Liouville-type
theorem, compare [ARS].

Theorem 2.5 Consider h : R® — R with A™h = 0 and h(z) < O(1 + |z[%),
for some £ > 2m — 2. Then h(x) is a polynomial of degree at most .
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Proof. Thanks to Proposition 2.4, we have for any = € R™

C c _

|D k()] < Y ][ |h(y)|dy = T ][ h(y)dy+O(R™"), as R — oo.
BR(I) BR(I)
(2.13)
On the other hand, Pizzetti’s formula implies that
m—1 o
F Hwdy= Y B A = O(2),

Bi(x) i=0

and letting R — 0o, we obtain Dt1h = 0. O

A variant of the above theorem, which will be used later is the following

Theorem 2.6 Consider h : R™ — R with A™h =0 and h(z) < u — v, where
e’ € LY(R™) for some p > 0, v € L (R") and —v(x) < C(log(1 + |z|) + 1).
Then h is a polynomial of degree at most 2m — 2.

Proof. The only thing to change in the proof of Theorem 2.5, is the estimate of
the term =25 f h*dy, corresponding to the O(R™!) in (2.13). We have
R BR(I)

][ htdy < ][ utdy +C ][ log(1 + |y|)dy + C

BR(I) BR(CE) BR(I)
1
< - eP"dy + Clog R+ C,
p
BR(I)
and all terms go to 0 when divided by R*™~! and for R — oo. (I

The following estimate has been obtained by Brézis and Merle [BM] in di-
mension 2 and by C.S. Lin [Lin] and J. Wei [Wei] in dimension 4. Notice that
the constant ~,,, defined by the relation

1 1
(=A)™ (— log —) =Jp, inR*™
Tm ||

(see Proposition 2.22 in Section 2.5), plays an important role.

Theorem 2.7 Let f € L'(Bgr(xo)) and let v solve

(—A)™w = f in Br(zo) C R?™,
v=Av=...=A""ly=0 on dBg(xo).

Then, for any p € (0, 77’"), we have e*™PlVl € LY(Bg(xo)) and
722 5oy

/ eQmp\U|d$ < C(p)RQm,
Br(zo)

where v, is given by (2.50).
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Proof. We can assume o = 0 and, up to rescaling, that || f||;1(5,) = 1. Define

1 2R .
w(z) = — / log =0 |f(y)|dy, =€ R>™.
Ym JBr T =yl

Extend f to be zero outside Br(xg); then
(=A)™w = |f] in R*™,

We claim that w > |v| in Bg. Indeed by (2.51) below and from |z — y| < 2R
for x,y € Bg, we immediately see that

(=AYw >0, j=0,1,2,...
In particular the function z := w — v satisfies

(=A)™z >0 in Bg
(=AY 2>0 ondBgfor0<j<m-—1.

By the maximum principle (see Proposition 2.21 below), (—=A)?z > 0 in Bg,
0 <j <m—1 and the case j = 0 corresponds w > v. Working also with —v we
complete the proof of our claim.

Now it suffices to show that for p € (0,7m) we have [[e*P¥|| 1,y <
C(p)R®™. By Jensen’s inequality we have

/ e?mpwdz —_ / 62'::? fBR log %‘f(y”dydz
Br Br

2m, ]
/ / [F(y)le ™ 8 = dyda
Br J Br

9R \
/If(y)l(/ (—) dfc)dy
Br Br |~T*y|
On the other hand

OR \ IR\
L) e s [ (5) e
Br |‘T_y| Br |$|

R
_4_2mp 2mp
= w2m/ P50 (2R) e drr
0

Tm

IN

We then conclude

Corollary 2.8 Every solution u to (2.1) with e*™* € Li (R?™) is smooth.

loc
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Proof. Given By(zo) C R?™, write (2m — 1)!@2’”“’}94(10) = f1 + fo with

I fillLr(Bawo)) < Ym> f2 € L™ (Ba(zo)),

and u = uq + ug + ug, with

(=A)"u; = fi in By(wo)
= Au; = ... = Amil’ui =0 on 834($0)

for i = 1,2, and A™uz = 0. Then, by Theorem 2.7, e*™“t € LP(By4(xq)) for
some p > 1, while, by standard elliptic estimates us € L% (B4(z0)) and us
is smooth, hence uz € L>(Bs(xg)). Then e?*™“ € LP(Bs(zo)). Write now
Ul g gy = V1 + v9, where
(—A)™v; = (2m — 1)le?mu in Bs(xo)
v =Av =...= Amil’Ul =0 on 8B3(z0)

and A™vy, = 0. Then, by LP-estimates and Sobolev’s embedding theorem,
v1 € W2™P(Bs(xg)) — C%¥(Bs(w)) for some 0 < o < 1, while vy is smooth.
Then u € C%*(Bs(z)) and with the same procedure of writing u as the sum of
a polyharmonic (hence smooth) function plus a function with vanishing Navier
boundary condition, we can bootstrap and use Schauder’s estimate to prove
that u € 000(31(1'0)) [l

2.3 Proof of the main theorems

The proof of Theorems 2.1 and 2.2, which we give in this section, is divided
into several lemmas. It consists of a careful study of the functions v, defined in
(2.2), and u — v. In what follows the generic constant C may depend also on .

Remark. In general v # u, even if u is a standard solution. To see that, rescale
u by a factor r > 0 as follows:

u(zx) :=u(rz) + logr.

Then w is again a solution, with the same energy. On the other hand the
corresponding v satisfies

2m — 1)!
’17(56) ( m ) / IOg ( |y| >e2mu(ry)r2mdy
R2m

Ym |‘T - y|
2m — 1)! ! '
_ (2m-1) / log (Lﬂ)ezmuw Yy = vo(ra).  (2.14)
Tm R2m |T£L' -y |

That shows that after rescaling, u — v changes by a contant.

Lemma 2.9 Let u be a solution of (2.1), (2.3). Then, for |z| > 4,

v(z) > —2alog|z| + C. (2.15)
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Proof. The proof is similar to that in dimension 4, compare [Lin]. Fix z with
|z| > 4, and decompose R?™ = A; U Ay U By, where By = B(0) and

A = Bm/g(:c), Ay = RQm\(Al U BQ).

For y € A; we have

= el ==yl = > p oyl 0g 4 >0,
2 |z =yl
hence
/ log ﬂe%“(y)dy > 0. (2.16)
Ay |‘T - y|
For y € A, since |z|, |y| > 2, we have
< < 1 lyl 1
[z —yl < [z]+ [yl < |zlly], log > :
|z —yl ||
hence
/ log LeQm“(y)dy > —log || e2m W) dy. (2.17)
A lz -yl Ay

For y € By, log |z — y| < log|z| + C and, since u is smooth, we find

/ log L627"“(?/)6@ > / log |y|e?™*®) dy — log || e2mudy
B |1' - y| Bs B2
—-C eQmudy
B
> —log|x| e2™dy + C. (2.18)
B

Putting together (2.16), (2.17) and (2.18) and observing that logﬁ < 0, we
conclude that

2m —1)!
TYm AsUBso |:I; - y|

2m —1)!
> —7( m—1) log || eMidy + C
m AsUBo
2m — 1)!|5%m
> _Zm = DIS™ |alog|x|+C.

Finally, observing that (2m — 2)!! = 2m~1(m — 1)!, we infer
(2m —DUS*™|  (2m — 1)12(27)™ (2m — 2)!!

Y (2m — 1)N23m=2[(m — 1)!]27m

O

Lemma 2.10 Let u be a solution of (2.1) and (2.3), with m > 2. Then u =
v+ p, where p is a polynomial of degree at most 2m — 2. Moreover

Nuw) = Alve)+p,

_ (1)j22j(j1)!(m1)!/ e2mu(y) dy 4,
(m—j =D Jram |z —y[* .

where p; is a polynomial of degree at most 2(m — 1 — j).
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Proof. Let p:=u —v. Then A™p = 0. By Lemma 2.9 we have
p(x) < u(z) + 2alogla| + C,

and Theorem 2.6 implies that p is a polynomial of degree at most 2m — 2. To
compute AJv, one can use (2.51) and the definition of ,,. O

Lemma 2.11 Let p be the polynomial of Lemma 2.10. Then

sup p(z) < +o0.
IERQTYI

In particular degp s even.

Proof. Define
f(r) :=supp.

r

If supgem p = +00, there exists s > 0 such that

f(r)

lim = +o00, (2.19)
r—+oo 1S

see [Gor, Theorem 3.1].} Moreover |Vp(z)| < C|z|[*™~3 hence, also taking into
account Lemma 2.9, there is R > 0 such that for every r > R, we can find z,
with |z,| = r such that

u(y) =v(y) +ply) > r* for |y — x| <

r2m=3"°

Then, using Fubini’s theorem,

+oo s
/ e2midr > / / 2™ dodr
R2m OB, (O ﬁB r3—2m (Ir)

“+oo
exp(2mr®) B
Z C/ r(2m 3)(2m—1) —em—3)@m-1 4 = to°,
contradicting the hypothesis e?™* € L!(R?™). O

The following lemma will be used in the proof of Lemma 2.13.

Lemma 2.12 Let G = G(|z]) be the Green’s function for A™ in By C R™ for
n, m given positive integers. Then there are constants c; depending on m and
n such that for x| =1, and 0 <i <m — 1,

(_1)1-8Am*8:6‘(z)

Proof. Since G = G(]z|), we only need to show that ¢; > 0. Fix ¢ and let & solve

=c; > 0.

A™h =0 in By
(=A)Y'h=—1 on 0B
(-AYh=0 ondByfor0<j<m-—1,j#i.

IThe statement of Theorem 3.1 in [Gor] is about u(r) := infsp,. |p|, but the proof works
in our case too.



2.3 Proof of the main theorems 17

By the maximum principle (see Proposition 2.21 below), h(0) < 0, hence (2.11)
implies

) HAM—1-i}
0 < —h(0) = (—1)1/ 92 TS = ciwn.
OB 87"

O

Lemma 2.13 Let v: R*™ — R be defined as in (2.2). Then
‘1‘im A" iy(z) =0, j=1,...,m—1 (2.20)

and for any € > 0 there is R > 0 such that for |x| > R

v(z) < (—2a+ ¢€) log |z|. (2.21)

Proof. We proceed by steps.
Step 1. We claim that for any € > 0 there is R > 0 such that for |z| > R
(2m —1)!

v(z) < (—204—1—%) log |z| — o

/ log |z — yle?™ Wdy,  (2.22)
B, (z)

where 7 € (0,1) will be fixed later. Notice that the second term on the right-
hand side may be very large. To prove the claim, set R?™ = A; U Ay U Az,
where

A = {yeR¥ |y < Ro}
x
Ay = {yeR2m2 |z —y| < %, lyl ZRO}
A — 2m o m
5 = WERM e —yl= Tyl = Ry,
and where Ry is chosen so large that
2m — 1)!
@m = ! / log LeQm“(y)dy < ( —2a+ E) log || (2.23)
Ym  Ja, =yl 4
for |z| large enough. As for As we have
/ IOg |y| e2mudy — / IOg |y| e2mudy+/ 10g |y| e2mudy
A, |z =yl A, |z =yl A, |z =yl
< f/ log |z — y|e*™"dy — logT/ M dy
BT(I) A2
+/ log |y|e*™dy (2.24)
Aa
< = [ togle —ylet™dy + o{1)(1 + log(2fa))
B, (z)

where o(1) — 0 as Ry — oo and we used that fA2 e?mudy — 0 as Ry — 00

and log|y| < log(2|z|) for y € As. Finally, for y € As, one easily verifies that
lz—yl
lyl

/ log ﬁeQm“dy <log(4) - / e*™tdy = o(1), as Ro(e) — oo. (2.25)
As |z =yl As

1
> 7, hence
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Putting now (2.23), (2.24) and (2.25) together, choosing Ry large enough (de-
pending on 7 and ¢) and then R > 0 large enough, we get (2.22).
Together with Fubini’s theorem, (2.22) implies

1
/ vtde < C/ / x|m,y|§710g| — eQm“(y)dydx
R2m\ B (0) R2m JR2Zm Ll
1
= C eQm“(y)/ log ———dxdy
R2m B-(y) |z —yl
< C e ay < C. (2.26)

R2m

Step 2. From now on, z will be a point in R?*™ with |z| > R, where R is as in
Step 1. Fix p > 1 such that p(2m — 2) < 2m, and p’ = -£5. By Theorem 2.7,
there is & > 0 such that if

e*mudy < 6, (2.27)
Ba(z)

then
/ P2l gy < ¢, (2.28)
B4(CE)

with C independent of x, where z solves

ANiz=0 on OBy(z) for 0 < j <m — 1.

We now choose R > 0 such that (2.27) is satisfied whenever |z| > R, and claim
that for such z,

( Gars=n-uem i

/ e2mp'udy < C/ e?mp’\z\dy < (Ce. (229)
B (x) B (x)

We now observe that for any o > 0,

e?mu(y)
/ T——dy — 0 as|z] — o0 (2.30)
R2m\ B, (a) 1T — Y[#

by dominated convergence; by Holder’s inequality and (2.29), if ¢ is small
enough,

1

2mu o % 1
/ £ < (/ 2mp “dy) (/ _ - dy) < Cev.
B, (a) |7 —yl% Bo (2) B, (x) [T — y[?7?

Therefore

€2mu

(=AY v(z) =C 5y — 0, as |x| — oo.

r2m |2 — Y|
Finally (2.21) follows from (2.22), (2.29) and Holder’s inequality.
Step 3. It remains to prove (2.29). Set h := v — z, so that

A™h =0 in By(z)
Alh = AJv on dBy(z) for 0 < j <m —1,
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Integrating (—A)™v = (2m — 1)!e?™ and then integrating by parts we get

(—1)’"/ 0 —(A™ 10)dS = (2m — 1)!/ e2mudy.
) or B, (x)

Dividing by wamp?™~1, integrating on [0, R] and using Fubini’s, we find

/OR ][ b (& oy = /OR ][ (A op,0))0dp

0B, (x) B ()

R
][/Og(Amlv(p,H))dpdG ][ A" lyde — A" ().

OB1(x) OBR(x)

Similarly

[ =
o PPt /g

R
1
W dydp = / poTm— / MW i< pdydp
(z) o P Br(z)

2 f 1
:/ e WU(y)/ ——dpdy
Br(x) lz—y| P

1 1 1 2mu(y)
I i

(2m 1)!

P

(2m—1)!

and setting Cr, 1 7= G50,

Hence, multiplying above by

][(—A)m_lvd(f = (=A)" lu(z)

OBRr
1 1 2mu(y)
—Cn— — e d
o [ |

c |:/ 2mu(y) g e2mu(y)d
= m—1 T — Y+ / — y:|
lo—y|>R 1T — Y[*" 2 Br(z) 122

which implies at once, setting R = 4,

][ (—A)™tvdS < C, (2.31)
OB4(x)
with C independent of z. Similarly, one can show that
][ (~A)wdS <O, 1<i<m-—1. (2.32)
OBy (x)

By Lemma 2.12 and by (2.11) rescaled and translated to Bs(z) and with the
function —Ah instead of h, m — 1 instead of m, we obtain

—Ah(z) = —Z/a M AY(Ah)dS (2.33)

m—1
Z/ cio1(—A)'hdS < C,
i—1 Y OBa(z)
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where G is the Green function for A™~! on By(x):
A™G =6, A'G=0, on 0By(x), for 0 <i<m —2.

On the other hand, since the ¢; > 0, there is some 7 > 0 such that the following
holds: if £ € By, (x) and G¢ is the Green’s function defined by

A" Gy =8¢, A'Ge =0, on By(z), for 0 <i<m —2,

then also
'aAm_2_iG _
OS(*l)l—g(n) < C, formn€ dBy(x), r:= n x.
or 4
Therefore, as in (2.33), we infer
—Ah < C on By (), (2.34)

for some 7 € (0, 2).
On the other hand, thanks to (2.26) and (2.28),

/ htdy < / (vt + |2|)dy < C.
B4(I) B4($)

By elliptic estimates,

sup h < ][ h*dy + C sup (—Ah) < C,
B (x) Bi(@) Bar(z)

C independent of x, as usual. Since the polynomial p is bounded from above,
we infer
u<h+p+|z] <CH |z,

and (2.29) follows at once. O

Corollary 2.14 Any solution u of (2.1), (2.3) is bounded from above.
Proof. Indeed u is continuous, © = v + p, and

lim v(r) = —oc0, sup p(z) < +oo,

|z]—o00 zER2m

by Lemma 2.11. (I

Lemma 2.15 Assume that |u(z)| = o(|x|?) as |¥| — oo. Then u = v + C.
Furthermore, for any € > 0 there exists R > 0 such that

—2alog|z| — C < u(x) < (—2a+¢)log |z, (2.35)
for |z| > R.

Proof. Since v(z) = —2alog|x| 4+ o(log |z|) at oo, if degp > 2, we have that
u(x) = v(x) + p(z) cannot be o(|z|?). Hence, knowing that degp is even, we get
u = v+ C for some constant C. Then (2.35) follows at once from Lemma 2.9
and Lemma 2.13. g
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Lemma 2.16 Set g, = e*“ggem. If u is a standard solution, then
Ry, =2m(2m —1).
If u is not a standard solution, then

liminf Ry, (z) = —oo0. (2.36)

|| =00
Proof. Assume that u is a standard solution and set

2

1—|—)\72|[1;|2, ax ‘= eQukngm. (237)

ux(z) := log

Then, up to translation, u = uy for some A > 0. Since g; = (7 1)*ggzm, where
7 is the stereographic projection, we have Ry, = 2m(2m — 1). Then consider
the diffeomorphism of R?™ defined by ¢x(z) := Az. Then g = ¢}¢1, hence
Ry, = Ry, 0 oy =2m(2m — 1).

Assume now that u = v 4 p is not a standard solution. Since grem is flat,
the formula for the conformal change of scalar curvature, in the case m > 1,
reduces to

R,, = —2(2m — 1)e~2" (Au + (m— 1)|Vu|2), (2.38)

see for instance [SY] pag 184. Then differentiating the expression (2.2) for v
and using that v < C, we find that |Vo(z)] — 0 as |z| — oco. We have already
seen that Av(z) — 0 as || — oo; since degp > 2 implies

deg Ap < deg|Vp|?,
we then have

lim sup (Au + (m— 1)|Vu|2) = lim sup (Ap + (m — 1)|Vp|2) = +o00.

Observing that e=2% > % > 0, u being bounded from above, we easily obtain
(2.36). O

Proof of Theorem 2.1. Put together Lemmas 2.9, 2.10, 2.11 and 2.13. O

Proof of Theorem 2.2. (i) = (iii) is obvious, while (iii) = (i) follows from the
argument of [WX].

(iii) < (iv) follows from Theorem 2.1.

(iv) = (ii’) = (ii). Assume that degp = 0. Then by Theorem 2.1,

lim Aju(x): lim Ajp(x)zo, 1<j<m-1.

|z|—o0 |z — o0

(ii) = (iv). By Theorem 2.1, supgam p < 0o and

lim Ap(z) = lim Awu=0,

hence Ap = 0 and, by Liouville’s theorem, p is constant.
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(i) & (v) follows from Lemma 2.16.

(i) = (vi) Given a conformal diffeomorphism ¢ of R?™ ¢ =71 logporisa
conformal diffeomorphism of S?™. Any metric of the form g, = €2“ggam, with
u standard solution of (2.1), can be easily written as ¢*g1, for some conformal

diffeomorphism ¢ of R?*™ where g; is as in (2.37). Then
T gu=m"¢ g1 = (pom)g1=(T0P) g1 =¢ T g1 = P gse,
and clearly *gg> is a smooth Riemannian metric on S$%™.

(vi) = (i). Assume u is non-standard. Then u = v + p, degp > 2. Considering
that supgzm p < +00, we infer that p goes to —oo at least quadratically in some
directions. Let S = (0,...,0,1) € S?™ be the South Pole, and

(&17"'7§2m)

. Q2m N 2m o
m: SE\{S} = R*™, =w(€) : r—

be the stereographic projection from S. Then

4
—1\* _ .
(ﬂ' ) gs2m = PogRr2m, po(:c) . (1 + |.’I]|2)2,
and
* 62u 0o [ Q2m
T Gu = p1gszm, P1:= . om € C™(ST\{S}).
0

Since €**“(*) — 0 more rapidly than |z|~* in some directions, we have
- o et@
lim inf p1(§) = 1|lgcllrggof 0@ 0,

hence p;ggem does not extend to a Riemannian metric on S2™.

To prove (2.6), let j be the largest integer such that Afp # 0. Then A/ *1p =
0 and from Theorem 2.6 we infer that degp < 2j. In fact degp = 25 and
Aip = Cy # 0. From Pizzetti’s formula (2.9), we have

J
QmZbiRQiAip(O) = ][ 2mpdS
=0 Py

Exponentiating and using Jensen’s inequality and Lemma 2.9, we infer

J
exp (QmZbiR%Aip(O)) < ][ e’"PdS < CR"™ ][ e ds,
=0 9Bx .

for R > 4. Therefore
o(R) := R™Amat2m=1 oy (QmZ bZ-RQZNp(O)) e L'([4, +o0)),
1=0

and this is not possible if Cy = Afp > 0, hence Cy < 0.
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2.4 Examples

Generalizing an argument of [CC], we now see that solutions of the kind v + p
actually exist, even among radially symmetric functions, with degp = 2m — 2,
and with degp = 2. For simplicity, we only treat the case when m is even; if m
is odd, the proof is similar. We need the following lemma.

Lemma 2.17 Let u(r) be a smooth radially symmetric function on R™, n > 1.
Then for m > 0 we have

n
A™u(0) = 2m)(Q 2.39
where the c;’s are the constants in Pizzetti’s formula, and w@m) = %. In
particular A™u(0) has the sign of u(*™)(0).
Proof. We first prove that
A™y(0) = — L (0)d 2.40
emA™u(0) = T (Qm)!u (0)dx. (2.40)
Br(0)
Then, observing that
2m 2m
][ I = — , (2.41)
(2m)! (n 4 2m)(2m)!

Br(0)

(2.39) follows at once. We prove (2.40) by induction. The case m = 0 reduces to
1(0) = u(0). Let us now assume that (2.40) has been proven for i = 0,...,m—1
and let us prove it for m. Since u is smooth, we have u(Y(0) = 0 for any odd i,
hence Taylor’s formula reduces to

21

ur =2 (;i)!u(%)(o) +o(r®mHh).

We now divide by R?™ in (2.12), take the limit as R — 0 and, observing that
A™T1y(€) remains bounded as R — 0, we find

m
=0

Fon (0= S0 R Alu(0) ) d
A R2m = cnA™u(0).

Substituting Taylor’s formula and using the inductive hypothesis, we see that
most of the terms on the left-hand side cancel out (before taking the limit) and
we are left with

Jim — ][(TQmé(;:')(o) +0(r2m+1))dx = e A™u(0).

R—0 R2m
R

Finally, to deduce (2.40), observe that, s fBR(O) o(r*™tdx — 0 as R — 0,

y2m, (2m) (0)

while g —Gmy— da does not depend on R thanks to (2.41). O
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Proposition 2.18 For every m > 2 even, there erists a radially symmetric
function u solving (2.1), (2.3) with u(x) = —C|z[*™=2 4+ O(|z|*™~*).

Proof. Set wy = log H% Then A™wy = (2m — 1)le?™wo. Define u = u(r) to
be the unique solution to the following ODE

A™qy = (2m — 1)le?mu

u(0) = log 2
W@+ (0) = 0 j=0,...m—1
u®)(0) = a; < w?(0) j=1,...,m—2

uCm=2)(0) = a1 < wi™?(0)

where the a;’s are fixed. We shall first see that wg > u. Set g := wg — u. Then
g(r) > 0 for r > 0 small enough, hence also A™g > 0 for small » > 0. From
Lemma 2.17 we get

Ag(0)>0, j=1,...,m—2; A™1g(0) > 0. (2.42)
We can prove inductively that A™~7g >0, =0,...,m—1 as long as g(r) > 0.
Indeed HAI-1
. J—
/ Al gdx :/ gda, (2.43)
Br(0) oBr(0) O
AT "1g g

hence, as long as g(r) > 0, we have > 0, in particular % > 0, hence
g(r) > 0 for all » > 0 for which it is defined. From (2.42) and (2.43) we
inductively infer

A g(r) > Cr2 72,

and, since Awg(r) — 0 as r — oo, there is o > 0 such that
Au < —=Cr*™=4 forr >y,
integrating which, we find

u(r) < —Cr*™=2 for r > ry. (2.44)

To estimate u from below, we use the function

wi(r) =log2 — Cyr? — ... = Cpp_ 11272,

where the constants C; are chosen so that
ATu(0) > Alw;(0).

Then we can proceed as above to prove that ©w — w; > 0. Hence the solution
exists for all times and, thanks to (2.44) and Theorem 2.1, it has the asymptotic
behaviour

u(r) = —=Cr*™=2 £ O(r*™=1).

O

Remark. Observe the abundance of solutions: we can choose the (m — 1)-tuple
of initial data (aq,...,am—1) in a set containing an open subset of R™—L

In the next example we show a radially symmetric solution in R?™, m > 4
even, of the form v = v 4 p, with degp = 2, thus showing that the hypothesis
u(z) = o(|]x|?) as |x| — oo in Theorem 2.2 is sharp.
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Proposition 2.19 Let wy(r) = 1og1+% and let w = u(r) (r = |z|, z € R*™
and m even) solve the following ODE:

A™y = (2m — 1)le?mu

u(0) = log 2

w1 (0) =0 j=0,....,m—1
u®)(0) = w(0) i=23,...,m—-1
w”(0) = wf (0) — 1.

Then u(r) is defined for all v >0 and u(r) = —Cr? + O(logr) as r — +oo.

Proof. As in the proof of Proposition 2.18, we can show that ¢ := wg—u > 0 and

u(r) < —Cr?. To control u from below, we use the function wy (r) = wo(r) — 2,

so that redefining g := u — wy, we have
g'0)=1, ¢90)=0, j=0,1,3,4,...,2m—1.
and we can prove that g > 0 as before. Hence u(r) exists for all » > 0, it is

non-standard and u(r) = —Cr? + O(logr) as 7 — oo, as w; bounds it from
below. g

Remark. Using (2.38), we can easily compute that in the above examples

| 1|im Ry(z) — —o0,

where g = e2“gram.

2.5 Some useful results

We prove here a few results used above.

Lemma 2.20 Assume that u : By — R satisfies

Aullwrrpy < C
lullLrsy < C,

for some p € (1,00). Then
[ullwr+ze(my) < C.
Proof. By Fubini’s theorem we can choose r > 0 with 2 < r < 4 such that
lullLrom,) < CllullLr sy
Let’s now write u = uy + uo, where

Au; =0 in B, Aus = Au  in B,
U =u on 0B, us =0 on 0B,
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By standard LP-estimates we have |uz|[wr+2.5(5,) < Cl|Aullwrp,). From the
representation formula of Poisson

u@ = [ w)e - s
0B,
we obtain ||ui|lcrp,) < CklluillL1(as,) for every k>0 . O

Proof of Proposition 2.4. Let ||h|1p,) < C, and let us assume n > 2. We
proceed by steps.

Step 1. We show by induction on j that
||Am_jh|\Loo(BQ) <cC (2.45)

The step j = 0 is obvious, as A™h = 0. Let us prove the step j > 1. Let

Crlr) = —1n)wn <|x|’1’_2 - (2r)1"_2>

be the Green function for the Laplace operator on By, with singularity at O.
Then

AR (0) = ][ A" hd + / Gar A9 iy
2B, Bz,

By inductive hypothesis and the scaling property of Ga,, the last term is
bounded by Cr2, hence

A™Ih(0 ][ A™ I hdx + COr?,
BBZT
and integrating with respect to r on [1/2, 1], we obtain
A™Ih(0) < ][ A" I hdx + C. (2.46)
B2

To estimate fBQ A™ "I hdz, we use Pizzetti’s formula for h at x € By,

m—j—1 m
Cm—; A™T Ih(x Z ciA"h(z Z ciA'h(z) + ][ hdy
1=0 i=m—j+1

Bi(x)

<c

by the inductive hypothesis again, and the L'-bound on h and get

m—j—1
Cm—j A™ I h(z Z A +C. (2.47)
=0

Averaging in (2.47) over B and using (2.46), we find

(o fontonm) o

B

m—j—1

=0
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and its scaled version

m—j—1

Cm— i AT TIR(0 ( p2li=m+j) ][ N‘h(x)daz) +COr2Umm | (2.48)

=0 B,

Consider now a non-negative function ¢ € C2°((1,2)), with ff p(r)dr = 1.
From (2.48), we find

o j AT Jh Z / (2(1 m-‘r])][Az z)dz o ))dT+C

Each term in the sum on the right-hand side can be written as

2 ) ) Ai—1p
}c /1 p2limmt))=n /6 N O L s (ryr

(i—m n OA" Thiz
< of [ B8 s
Bz\Bl
e / ()| L A (r2m D o a])) | de
BZ\Bl al/
<

C’][|h(:c)|dx.

Working with —h and observing the local character of the above estimates, we
obtain (2.45).

Step 2. Fix £ > m. We can prove inductively that
1Al w2i(5,) < C(p)-

The step j = 0 is obvious, as A’h = 0. For the inductive step, we see that by
Lemma 2.20 applied to A*~7h (and a simple covering argument to fix the radii),
we have

HAlijh”WZJFP(Bl) < CHA(Ae*jh)szrlp(&) +C |\A27jh||L1(Bz) <C,
—_——
<C by Step 1

for every 1 < p < oo, and the usual covering argument extends the estimate
to By. Therefore ||Al|y20r(5,) < C(p,£), and we conclude applying Sobolev’s
theorem. 0

Proposition 2.21 Let u € C?™(B;) such that

{ (~A)"u < C, in B (2.49)

(-A)Yu<Cy ondBy for0<j<m-—1
Then there exists a constant C' independent of u such that
u<C in Bj.

If C1 =0 in (2.49), then u < 0 in By, unless u = 0.
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Proof. By induction on m. The case m = 1 follows from the maximum principle,
applied to the function v(z) := u(x) — C|z|?, which is subharmonic for C large
enough. Assume now that the case m — 1 has been dealt with and let us
consider u satisfying (2.49). Then v := —Auw satisfies v < C' in By by inductive
hypothesis. Applying the case m = 1 again we conclude. Similarly if C; = 0. O

Proposition 2.22 (Fundamental solution) For m > 1, set

Ym = wam 222 [(m — 1)1, (2.50)

where way, := |52m—1| = 2(3:‘—7_);)” Then the function

1 1
K(z) := Tlogm

is a fundamental solution of (—A)™ in R®™, i.e. (~A)™K = 6.

Proof. The case m = 1 is well-known, so we shall assume m > 2. Set r := |z|.
For radial functions we have A = g—; + ”;1 %, hence for j > 1
1 2(m—1) 1 4j(m—1-7)
TAlBTE T A T T e
Then
1 L G=Dm =11
—A)Ylog- = 2% 1M T -~ __ 2.51
(=4) o8 (m—j—1! r% (2:51)
1 . 1
(=A)™ !log - = 22m=3(m — 2)!(m — 1)!T2m—_2. (2.52)

Given a function ¢ € C°(R?*™), we can apply the usual procedure of integrating
by parts in R*™\ B.(0) using

lim |IDFK|dS =0, 0<k<2m—2,
—0.JaB.(0)
to obtain
(A" 1K
/ (—A)"pKdr = lim — (=4) ds
R2m <=0 Jap_(0) ov
= wdS — ¢(0).
0B:(0)



Chapter 3

Conformal metrics on R
with non-positive
()-curvature

We now turn to the study the conformal metrics on R?™ with constant non-
positive @Q-curvature @ < 0 having finite volume. We show that when @ < 0
such metrics exist in R?™ if and only if m > 1. Moreover we study their
asymptotic behavior at infinity, in analogy with the case @ > 0, which we treated
in Chapter 2. When @ = 0, we show that such metrics have the form e?Pgpom,
where p is a polynomial such that 2 < degp < 2m — 2 and supgem p < 400.
In dimension 4, such metrics are exactly the polynomials p of degree 2 with

lim || o0 P(7) = —00.

3.1 Introduction and statement of the main the-
orems

Given a constant () € R, we consider the solutions to the equation

(—=A)™u = Qe*™  on R*™, (3.1)
satisfying
1
Q= oo 2 gy < 400, (3.2)
|S m| R2m

Geometrically, if u solves (3.1) and (3.2), then the conformal metric g := e*“gpzm
has Q-curvature Q2" = @ and volume «|S*™|. Notice that given a solution
to (3.1) and A > 0, the function v := u — 7= log A solves

(—A)™v = AQe*™  in R*™,
hence what matters is just the sign of @), and we can assume without loss of
generality that @ € {0, 4(2m — 1)!}.

As for the positive case, every solution to (3.1) is smooth, see Corollary 2.8
(the proof does not depend on the sign of Q.).

29
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For @Q > 0, some explicit solutions to (3.1) are known. For instance every
polynomial of degree at most 2m — 2 satisfies (3.1) with @ = 0, and the function
u(z) = log ﬁ, which we already encountered in Chapter 2, satisfies (3.1)
with @ = (2m — 1)! and @ = 1. This latter solution has the property that
e?%gram = (77 1)*ggem, where 7 : S?™ — R2™ is the stereographic projection.

For the negative case, we notice that the function w(z) = log ﬁ solves
(—A)™w = —(2m — 1)!e?™ on the unit ball By C R*™ (in dimension 2 this
corresponds to the Poincaré metric on the disk). However, no explicit entire
solution to (3.1) with @ < 0 is known, hence one can ask whether such solutions
actually exist. In dimension 2 (m = 1) it is easy to see that the answer is
negative, but quite surprisingly the situation is different in dimension 4 and
higher and we have:

Theorem 3.1 Fiz Q < 0. For m = 1 there is no solution to (3.1)-
every m > 2, there exist (several) radially symmetric solutions to (3.

(3.2). For

1)-(3.2).
Having now an existence result, we turn to the study of the asymptotic be-

havior at infinity of solutions to (3.1)-(3.2) when m > 2, @ < 0, having in mind

applications to concentration-compactness problems in conformal geometry. To
this end, given a solution u to (3.1)-(3.2), we define the auxiliary function

2m — 1)!
v(z) = _(mi)/ log (L)e%ﬂuw)d% (3.3)
Ym  Jrem lz —yl
where 7, := w2, 22™~2[(m — 1)Y]? is characterized by the following property:

1 1
~A)"(—log— ) =dp in R*".
(—A) (’Ym og |z|) o in

Then (—A)™v = —(2m — 1)!e?*™*. We prove
Theorem 3.2 Let u be a solution of (3.1)-(3.2) with Q@ = —(2m — 1)!. Then
u(z) = v(z) + p(z), (3.4)

where p is a non-constant polynomial of even degree at most 2m — 2. Moreover
there exist a constant a # 0, an integer 1 < 7 < m — 1 and a closed set
Z C §?™~1 of Hausdorff dimension at most 2m — 2 such that for every compact
subset K C S*™~1\Z we have

Jim Alvte) = 0, £=1,...,m—1,
v(t€) = 2alogt+ o(logt), ast — +oo,
Jim Au(té) = a, (3.5)

for every € € K uniformly in &. If m = 2, then Z = 0 and supgem u < +00.
Finally
liminf Ry, (z) = —oo, (3.6)

|z|—+o00

) — p2u
where Ry, is the scalar curvature of g, := " ggam.
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Following the proof of Theorem 3.1, it can be shown that the estimate on
the degree of the polynomial is sharp. Recently J. Wei and D. Ye [WY] showed
the existence of solutions to A?u = 6e** in R* with [, e*"dz < 400 which are
not radially symmetric. It is plausible that also in the negative case non-radially
symmetric solutions exist.

For the case Q = 0 we have

Theorem 3.3 When Q =0, any solution to (3.1)-(3.2) is a polynomial p with
2 < degp < 2m — 2 and with

supp < +00.
R2m™

In particular in dimension 2 (case m = 1), there are no solutions. In dimension
4 the solutions are exactly the polynomials of degree 2 with lim|,|_, . p(x) = —o0.
Finally, there exist 1 < j <m —1 and a < 0 such that

lim Ap(z) = a. (3.7)

|z|— o0

There is an interesting geometric consequence of Theorems 3.2 and 3.3, with
applications in concentration-compactness: In the case of a closed manifold,
metrics of equibounded volumes and prescribed Q-curvatures of possibly varying
sign cannot concentrate at points of negative or zero Q-curvature, as we shall
see in Chapter 4 (Theorem 4.2).

In sharp contrast with the case of a closed manifold, on an open domain
Q) C R?™ (or a manifold with boundary), m > 1, concentration is possible at
points of negative or zero curvature. Indeed, take any solution u of (3.1)-(3.2)
with @ < 0, whose existence is given by Theorem 3.1, and consider the sequence

ug(z) == u(k(x — zp)) + logk, for x € Q

for some fixed zo € Q. Then (—A)™u, = Qe?™ * and uy, concentrates at zg
in the sense that as k — oo we have ug(xg) — 400, up — —oo a.e. in Q and
e?Mukdy — a|S?™|8,, in the sense of measures.

The 2 dimensional case (m = 1) is different and concentration at points of
non-positive curvature can be ruled out on open domains too, because otherwise
a standard blowing-up procedure would yield a solution to (3.1)-(3.2) with @ <
0, contradicting with Theorem 3.1.

This chapter is organized as follows. The proof of Theorems 3.1, 3.2 and 3.3
is given in the following three sections; in the last section we collect some open
questions. In the following, the letter C' denotes a generic constant, which may
change from line to line and even within the same line.

3.2 Existence theory

Theorem 3.1 follows from Propositions 3.4 and 3.5 below.

Proposition 3.4 For m =1, Q < 0 there are no solutions to (3.1)-(3.2).
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Proof. Assume that such a solution u exists. Then, by the maximum principle,
and Jensen’s inequality,

][ udo > u(0), / e2tdo > 2 Re?(0),
OBRr
OBRr

Integrating in R on [1,4+00), we get

/ e?tdx = 400,
R‘Z

contradiction. O

Proposition 3.5 For m > 2, Q < 0 there exist radial solutions to (3.1)-(3.2).

Proof. We consider separately the cases when m is even and when m is odd.
Case 1: m even. Let u = u(r) be the unique solution of the following ODE:

A" u(r) = —(2m — 1)le2mu()

uItD(0) =0 0<ji<m-—1

uD(0) = a; <0 0<j<m-—1,
where ag = 0 and a7 < 0. We claim that the solution exists for all » > 0. To
see that, we shall use barriers, compare [CC, Theorem 2|. Let us define

a1 o

wy(r) = o Jrm Wy T

Then A™g, > 0. By the divergence theorem,

; dAI~1
Agidx = / el Y
Br 0BRr dr

Moreover, from Lemma 2.17, we infer
Alg (0)>0 for0<j<m-—1,

hence we see inductively that A7g, (r) > 0 for every r such that g, (r) is defined
and for 0 < j <m — 1. In particular g+ > 0 as long as it exists.
Let us now define

m—1

; 2
w_(r) = Z Bir? _AIOglJr—rQ’ g— =u—w_,
i=0

where the §;’s and A will be chosen later. Notice that

Amw_(r):Am(—AlogTQTQ) :—(2m—1)!A(1 2 )2m.

+r?

Since a; < 0,

2 2m
lim (L"L) — +OO,

2
r—+4oo emair
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and taking into account that v < w4, we can choose A large enough, so that

Amg_(r) = (2m—1)! [A(HLTQ)% _ ezmum}

2 am maT2
(2m1)!{A<1+r2> e 1}20.

Y

We now choose each (3; so that
Alg_(0)>0, 0<j<m-—1,
and proceed by induction as above to prove that g_ > 0. Hence
w-(r) < ulr) < wy (r)

as long as u exists, and by standard ODE theory, that implies that u(r) exists
for all » > 0. Finally

/ e2mudlzl) g < / emo‘llzlqu} < 400.
R2m R2m

Case 2: m > 3 odd. Let u = u(r) solve

A" u(r) = (2m — 1)le2mu()
w2 (0) = 0 0<j<m-—1
W@ (0) = a; < 0 0<j<m-—1,

where the «;’s have to be chosen. Set

wi(r) == — 1> —log g4 = wy —u,

2
1472’

. .2 2
where 3 < 0 is such that e™" 6 < (1+2T2) , hence

2 1472

1—|——2 9 €_T2+B Z 0 for all r > 0.
r

Then, as long as g4 > 0, we have

ATgi(r) = (2m—1>!K1 2 Q)Qm_eww}

2 2m
> (2m1)!{<1+ 2> e2mw+(r)} >0
T

Choose now the a;’s so that, u(?”(0) < wfi) (0), for 0 < i < m —1. From
Lemma 2.17, we infer that

Algi(0)>0, 0<i<m-—1,

and we see by induction that gy > 0 as long as it is defined. As lower barrier,
define



34 Conformal metrics on R?” with non-positive Q-curvature

where the (3;’s are chosen so that A’g_(0) > 0. Then, observing that
A™g_(r) = (2m — 1)le?™(") > 0,

as long as u is defined, we conclude as before that g_ > 0 as long as it is defined.
Then v is defined for all times.
Let R > 0 be such that, for every r > R, w4 (r) < —%. Then

/ eQmu(lzl)dz S/ e2mu(|z|)d$+/ e—m|z|2d$ < +00.
R2m Br R2m\Bg

3.3 Asymptotic behaviour in the negative case

The proof of Theorem 3.2, to which this section is devoted, is divided in several
lemmas. The following Liouville-type theorem will prove very useful.

Theorem 3.6 Consider h : R — R with A™h = 0 and h < u — v, where
e’ € LY(R™) for some p > 0, (—v)* € L'(R™). Then h is a polynomial of
degree at most 2m — 2.

Proof. As in the proof of Theorem 2.5, for any z € R?™ we have

. C
|D*™h(z)| < Tam—T ][ |h(y)|dy
BR(Z)
C 2C
= T ][ h(y)dy + Tam 1 ][ htdy (3.8)
Br(x) Br(x)
and
][ h(y)dy = O(R*™~2), as R — oo.
BR(Z)
Then
][ htdy < ][ utdy+C ][ (—v)Tdy < 1 ][ ePdy + &
— —_ p R2m,
Br(x) Br(x) Br(x) Br(x)
and both terms in (3.8) divided by R?™~! go to 0 as R — oo. O

Lemma 3.7 Let u be a solution of (3.1)-(3.2). Then, for |z| > 4
v(z) < 2alog|z| + C. (3.9)

Proof. As in Lemma 2.9, changing v with —wv. (]
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Lemma 3.8 For any € > 0, there is R > 0 such that for |x| > R,

2m — 1)!
v(x) > (Qa - g) log || + (mi)/ log |z — y|e?™ W dy. (3.10)
m B (x)
Moreover
(—v)T € LY (R*™). (3.11)
Proof. To prove (3.10) we follow [Lin|, Lemma 2.4. Choose Ry > 0 such that
1 9 €
— e“"dr > o — —,
152 B, 16
and decompose
R?*™ = Bp, UA; U Ay,
A1 = {y eR¥™ 20w —y| < Jaf, |y| = Ro},
Ay = {yeR*™:2\xz —y|>|z|,|yl > Ro}.

Next choose R > 2 such that for || > R and |y| < Ry, we have log 2=yl >

[yl
(2m—1)!152™|
Ym

log |z| — €. Then, observing that

2m — 1)! —

= 2, we have for |z| > R

(log x| — i) (@Zm -1t > dy
16 ,Ym BRO

(2a - %) log |z| — Ce. (3.12)

Y

Ym |yl

Y

Observing that log |z — y| > 0 for y ¢ Bi(x), log|y| < log(2|z]) for y € Ay,
Ja, €mdy < 5‘516”1' and log(2|z|) < 2log |z| for |z| > R, we infer

/ log —|$ — yleQW‘(y)dy = / log |z — y|62m“(y)dy f/ log|y|62m“(y)dy
Ay |yl Ay 1

> / log [ — yle*™* W) dy — log(2|x|) / > dy
Bi(z) Aq

2m
> / log |z — y|e*™ W dy — log |90|EI 5 | (3.13)
Bi(z)
Finally, for y € As, |z| > R we have that ‘z‘;‘y‘ > 1 hence
/ log M62’"“(1/)6@ > —log(4)/ e?mudy > —Ce. (3.14)
Az | Az

Putting together (3.12), (3.13) and (3.14), and possibly taking R even larger,
we obtain (3.10). From (3.10) and Fubini’s theorem

1
/ (—v)tder < C / / X|z—y| <1108 T 2™ W) dyda:
R27m\ Br R2m JR2m |SC y|

1
= C eQm“(y)/ log dxdy
R27 Bi(y) |z — y|

< C/ 2™ W) dy < 0.
R‘Z‘rn

Since v € C*°(R*™), we conclude that [ (—v)*dx < oo and (3.11) follows. O
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Lemma 3.9 Let u be a solution of (3.1)-(3.2), with m > 2. Then u = v + p,
where p is a polynomial of degree at most 2m — 2.

Proof. Let p :=u —v. Then A™p =0. Apply (3.11) and Theorem 3.6. O

Lemma 3.10 Let p be the polynomial of Lemma 3.9. Then if m = 2, there
exists § > 0 such that
p(z) < =6|z]* + C. (3.15)

In particular lim ;| p(x) = —oco and degp = 2. Form > 3 there is a (possibly
empty) closed set Z C S*™~ 1 of Hausdorff dimension dim’*(Z) < 2m — 2 such
that for every K C S*™~1\Z closed, there exists § = 6(K) > 0 such that

p(z) < =822 +C for % € K. (3.16)

Consequently degp is even.

Proof. From (3.11), we infer that there is a set Ay of finite measure such that

v(z) > —C  in R*™\ A,. (3.17)

Case m = 2. Up to a rotation, we can write

4
p(z) = Z(bsz + ¢iwi) + bo.

i=1
Assume that b;, > 0 for some 1 <ip < 4. Then on the set

Ay = {x € R* : |a;| <1 for i # ig, ciyxiy >0}

we have p(z) > —C. Moreover |A;| = +oo. Then, from (3.17) we infer
/ etdr > / TP gz > C) A\ Ag| = +oo, (3.18)
R4 A1\ Ag

contradicting (3.2). Therefore b; < 0 for every ¢ and (3.15) follows at once.
Case m > 3. From (3.2) and (3.17) we infer that p cannot be constant. Write

p(t&) =) ai(Ot',  d:=degp,

d
=0

where for each 0 < i < d, a; is a homogeneous polynomial of degree i or a; = 0.
With a computation similar to (3.18), (3.2) and (3.17) imply that aq(§) < 0 for
each £ € S?™~1, Moreover d is even, otherwise aq(¢) = —aq(—€) < 0 for every
¢ € §?m~1 which would imply aq = 0. Set

Z ={¢c 5" aq(§) =0}
We claim that dim”(Z) < 2m — 2. To see that, set

Vi={x € R* : a4(z) =0} ={t& : t>0, £ € Z}.
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Since V is a cone and Z = V N 2"~ we only need to show that dim™ (V) <
2m — 1. Set

Vii={x € R*™ : qq(z) = ... = Viag(z) =0, VT ay(x) # 0}.

Noticing that V; = () for 4 > d (otherwise ag = 0), we find V = U?;&Vi. By the
implicit function theorem, dim’*(V;) < 2m — 1 for every i > 0 and the claim is
proved.

Finally, for every compact set K C S?™~1\ Z, there is a constant § > 0 such
that aq(¢) < —3, and since d > 2, (3.16) follows. O

Corollary 3.11 Any solution u of (3.1)-(3.2) with m = 2, Q < 0 is bounded
from above.

Proof. Indeed u = v 4 p and, for some § > 0,
v(r) < 2aloglz| +C, p(x) < —dlz)* + C.

O

Lemma 3.12 Let v : R*™ — R be defined as in (3.3) and Z as in Lemma 5.10.
Then for every K C S?™~1\Z compact we have

, Jim A" TIy(te) =0, j=1,....,m—1 (3.19)
for every & € K uniformly in &; for every e > 0 there is R = R(e, K) > 0 such

that, fort > R, £ € K,
v(t€) > (2a—¢)logt (3.20)

Proof. Fix K € 8?™~1\Z compact and set Cx := {t : t > 0,£ € K}. For any
c>0,1<j5<2m—-1,

eQmu(y)
———dy—0 aslz|— o0 (3.21)
R2m\ B, (z) |T — Y|

by dominated convergence. Choose a compact set K C S2m=1\ 7 such that
K C int(K) c 5™~ ! Since u < C(K) on Cj by Lemma 3.7 and Lemma 3.10,
we can choose 0 = o(g) > 0 so small that

2mu - 1 -
/ eijdy < C(K)/ T4y < C(K)e, forx € Ck, |z] large,
B, (a) |7 —yl% B, () 1T — Y%

where || is so large that B,(x) C Cz. Therefore

2mu

(=1) Tt Ady(z) = C -dy — 0, forx € Ck, as |z| — oo,

r2m [T — Y|
We have seen in Lemma 3.8, that for any € > 0 there is R > 0 such that for
|| > R

v(z) > (20& - %) log |x| + @m—1)!

m

/ log |z — yle*™ W dy, (3.22)
B (x)
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and (3.20) follows easily by choosing K as above and observing that u < C/(K)
on Cg, hence on By (x) for € Cx with |z| large enough. O

Proof of Theorem 8.2. The decomposition u = v + p and the properties of v
and p follow at once from Lemmas 3.7, 3.9, 3.10 and 3.12; (3.6) follow as in
Theorem 2.2. As for (3.5), let j be the largest integer such that Ap # 0. Then
Aty =0 and from Theorem 3.6 we infer that degp = 25, hence Afp = a # 0.

[l

3.4 The case Q =0

Proof of Theorem 3.3. From Theorem 3.6, with v = 0, we have that u is a
polynomial of degree at most 2m — 2. Then, as in [Marl, Lemma 11], we have

supu < 400,
RZTVL

and, since u cannot be constant, we infer that degu > 2 is even. The proof of
(3.7) is analogous to the case @) < 0, as long as we do not care about the sign
of a. To show that a < 0, one proceeds as in [Marl, Theorem 2]. For the case
m = 2 one proceeds as in Lemma 3.10, setting v = 0 and Ay = 0. O

Example One might believe that every polynomial p on R?™ of degree at most

2m — 2 with me e2mPdy < oo satisfies lim| ;|00 p(z) = —00, as in the case
m = 2. Consider on R?™ m > 3 the polynomial u(z) = —(1 + 22)|Z|?, where
T = (x2,...,%2m). Then A™y =0 and

/ €2mud$ _ / / e—2m(1+z§)|§\2didzl
RZTVL R R‘Zm,fl
d 712 g~
_ / _dm / 2l 47 < 400,
R (142%)72 R2m—1

On the other hand, limsup,|_ ., u(z) = 0.

3.5 Open questions

Open Question 1 Does the claim of Corollary 3.11 hold for m > 22 In other
words, is any solution u to (3.1)-(3.2) with Q < 0 bounded from above?

This is an important regularity issue, in particular with regard to the be-
havior at infinity of the function v defined in (3.3). If supgem © < 400, then one
can take Z = () in Theorem 3.2, as in the case Q > 0, see Theorem 2.1.

Definition 3.13 Let Pg™ be the set of polynomials p of degree at most 2m — 2
on R*™ such that e*™P € L'(R*™). Let P3™ be the set of polynomials p of
degree at most 2m — 2 on R?*™ such that there exists a solution u = v + p to
(3.1)-(3.2) with Q > 0. Similarly for P>™ with Q < 0.

Related to the first question is the following
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Open Question 2 What are the sets Pg™, P3"? Is it true that Pg™ C PI™
and Pg™ C P*me

J. Wei and D. Ye [WY] proved that P§ C P} (and actually more). Consider
now on R?™, m > 3, the polynomial

p(ZE) = _(1 +‘T%)|5|2a z= (:CQa o 7:52771)‘

As seen above, 2™ € L'(R?*™), hence p € P3™. Assume that p € P2™ as well,
i.e. there is a function u = v + p satisfying (3.1)-(3.2) and @ < 0. Then we
claim that supgem u = 0o. Assume by contradiction that w is bounded from
above. Then (3.9) and (3.10) imply that

v(z) = 2alog x| + o(log |z|), as |z| — .

Therefore,
lim w(z1,0,...,0) = lim 2alogz; = oo,

T1—00 L1 —00

contradiction.

Open Question 3 Fven in the case that u is not bounded from above, is it
true that one can take Z = () in Theorem 3.2 for m > 3 also?

For instance, in order to show that v(z) = 2alog|z| + o(log|z|) as |z| — +oo,
thanks to (3.10), it is enough to show that

/ logz — yle™*Wdy = o(log|a]), as |z] — +oo,
Bl(I)

which is true if supgzm 4 < 00, but it might also be true if supgem u = 0.

Open Question 4 What values can the a given by (3.1)-(3.2) assume for a
fizxed Q7

As usual, it is enough to consider @ € {0,+(2m — 1)!}. When m =1, Q = 1,
then a = 1, see [CL]. When m = 2, @ = 6, then « can take any value in (0, 1],
as shown in [CC]. Moreover o cannot be greater than 1 and the case o = 1
corresponds to standard solutions, as proved in [Lin]. For the trivial case @ = 0,
« can take any positive value, and for the other cases we have no answer.
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Chapter 4

Concentration-Compactness
for the Liouville equation

Using the tools developed in Chapter 2 and 3, we now investigate different
concentration-compactness phenomena related to the Q-curvature in arbitrary
even dimension. We first treat the case of an open domain in R?™, then that
of a closed manifold and, finally, the particular case of the sphere $?™. In all
cases we allow the sign of the Q-curvature to vary, and show that in the case of
a closed manifold, contrary to the case of open domains in R?™, concentration
phenomena can occur only at points of positive Q-curvature. As a consequence,
on a locally conformally flat manifold of non-positive Euler characteristic we
always have compactness. In the next chapter we shall apply some of these
results to prove an energy quantization estimate for an equation related to the
Adams-Moser-Trudinger inequality.

4.1 Introduction and statement of the main re-
sults

Before stating the main results of this chapter, we recall a few properties of the
Paneitz operator Png and the Q-curvature Qim on a 2m-dimensional smooth
Riemannian manifold (M, g), which shall be used later. First of all we have
the Gauss formula, describing how the @-curvature changes under a conformal
change of metric: If g, := e?“g, u € C°°(M), then
2 2m _ H2m 2

PyMu+ Q)" = Qgte™™". (4.1)
Then, we have the conformal invariance of the total Q-curvature, when M is
closed:

/1» ) Q2 dvoly, = /1» ) Q2" dvol,. (4.2)

Finally, assuming (M, g) closed and locally conformally flat , we have the Gauss-
Bonnet-Chern formula (see e.g. [Che], [Chal):

/ Q7" dvoly = ﬂX(M), (4.3)
o 2

41
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where x (M) is the Euler-Poincaré characteristic of M and
Ay = Qgerm dvolg_,,, = (2m — 1)![S*™| (4.4)
SQm,

is a constant which we shall meet often in the sequel. In the 4-dimensional case,
if (M, g) is not locally conformally flat, we have

/M (Q;} + IWEIQ) dvol, = 87%x (M), (4.5)

where W, is the Weyl tensor. Recently S. Alexakis [Ale2] (see also [Alel]) proved
an analogous to (4.5) for m > 3:

/M (Qi’" + W) dvol, = %X(M), (46)

where W is a local conformal invariant involving the Weyl tensor and its covari-
ant derivatives.

We can now state the main problem treated in this chapter. Given a 2m-
dimensional Riemannian manifold (M, g), consider a converging sequence of
functions Qr — Qo in C°(M), and let gj, := e*“* g be conformal metrics satisfy-
ing 3;” = Q. In view of (4.1), the uy’s satisfy the following elliptic equation
of order 2m with critical exponential non-linearity

P2y, + Q7™ = Qpre”™"x. (4.7)

Assume further that there is a constant C' > 0 such that

vol(gx) = / e?™ut dvol, < C for all k. (4.8)
M

What can be said about the compactness properties of the sequence (ug)?

In general non-compactness has to be expected, at least as a consequence
of the non-compactness of the Mdbius group on R*™ or $?™. For instance,
for every A > 0 and xy € R?™, the metric on R?>™ given by g, := e**ggom,
u(z) = log ﬁ, satisfies Q2™ = (2m — 1)1,

We start by considering the case when (M, g) is an open domain  C R?™
with Euclidean metric ggzm. Since Py, = (=A)™ and Qg ,, = 0, Equation
(4.7) reduces to (—A)™uy, = Qre?™* . The compactness properties of this equa-
tion were studied in dimension 2 by Brézis and Merle [BM]. They proved that
if Qr >0, |Qxllr~ < C and ||e***||,1 < C, then up to selecting a subsequence,
one of the following is true:

(i) (ug) is bounded in L2

loc

(62).
(il) ugp — —oo locally uniformly in .

(iii) There is a finite set S = {z®;i = 1,...,I} C Q such that up — —o0
locally uniformly in Q\S. Moreover Qe — 21'121 Bi0, weakly in the
sense of measures, where 3; > 2m for every 1 <1¢ < I.
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Subsequently, Li and Shafrir [LS] proved that in case (iii) §; € 47N for every
1<i< 1

Adimurthi, Robert and Struwe [ARS] studied the case of dimension 4 (m =
2). As they showed, the situation is more subtle because the blow-up set (the
set of points x such that uy(z) — oo as k — oo) can have dimension up to 3 (in
contrast to the finite blow-up set S in dimension 2). Moreover, as a consequence
of a result of Chang and Chen [CC], quantization in the sense of Li-Shafrir does
not hold anymore, see also [Robl], [Rob2].

In the following theorem we extend the result of [ARS] to arbitrary even
dimension (see also Proposition 4.5 below). The function aj in (4.9) has no
geometric meaning, and one can take ay = 1 at first. But we shall need it for
later applications (see Proposition 5.7).

Theorem 4.1 Let Q be a domain in R*™, m > 1, and let (uk)ren be a sequence
of functions satisfying

(—A) My, = Qpe Mk, (4.9)

where ag, Qo € C°(Q), Qo is bounded, and Qi — Qo, ar — 1 locally uniformly.
Assume that

/ e2martk dy < O, (4.10)
Q
for all k and define the finite (possibly empty) set
: : 2magu A1 (i) .
Si:=<xe€Q: lim lim |Qr|e“ "  dy > — :{x :13131},
r—0t k—oo B, () 2

where Ay is as in (4.4). Then one of the following is true.

(i) For every 0 < a < 1, a subsequence converges in C2"~ 1 (Q\Sy).

loc

(i) There exist a subsequence, still denoted by (uy), a closed nowhere dense set
So of Hausdorff dimension at most 2m — 1 such that, letting S = SoU S,
we have u — —oo locally uniformly in Q\S as k — oo. Moreover there is
a sequence of numbers B — oo such that

% — ¢ in O HO\S), 0<a<l,
k

where € C*(Q\S1), So = {z € Q: p(x) =0}, and

If S1 # 0 and Qo(z™) > 0 for some 1 <i < I, then case (ii) occurs.

In Theorem 3.1 above we proved the existence of solutions to the equation
(—A)™u = Qe*™ on R®™ with Q < 0 constant and e*™* € L!(R?*™), for m > 1.
Scaling any such solution we find a sequence of solutions uy(z) := u(kx) 4+ log k
concentrating at a point of negative Q-curvature. For m = 1 that is not possible.

On a closed manifold things are different in several respects. Under the
assumption (which we always make) that ker P;m contains only constant func-
tions, quantization of the total Q-curvature in the sense of Li-Shafrir (see (4.12)
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below) holds, as proved in dimension 4 by Druet and Robert [DR] and Mal-
chiodi [Mal], and in arbitrary dimension by Ndiaye [Ndi]. Moreover the con-
centration set is finite. In [DR], however, it is assumed that the @Q-curvatures
are positive, while in [Mal] and [Ndi], a slightly different equation is studied
(P;mu;C + Qr = hpe®™% with hy, constant and @Qj prescribed), for which the
negative case is simpler. With the help of Theorem 3.2 and 3.3 from Chapter3
and a technique of Robert and Struwe [RS], we can allow the prescribed Q-
curvatures to have varying signs and, contrary to the case of an open domain in
R?™ we can rule out concentration at points of negative Q-curvature. Moreover,
using Theorems 2.1 and 2.2 from Chapter 2, we can generalize the techniques
of [DR] to prove quantization of the total Q-curvature.

Theorem 4.2 Let (M,g) be a 2m-dimensional closed Riemannian manifold,
such that ker Py = {constants}, and let (ug) be a sequence of solutions to (4.7),
(4.8) where the Qr’s and Qo are given continuous functions and Qr — Qo in
C°(M). Let Ay be as in (4.4). Then one of the following is true.

(i) For every 0 < a < 1, a subsequence converges in C?™~1:%(M).

(ii) There exists a finite (possibly empty) set S = {x(® :1 < i < I} such that
Qo(z™) > 0 for 1 <4 < I and, up to taking a subsequence, uj, — —oo
locally uniformly on (M\S). Moreover

I
QkGQmuk dvol, — Z A1, (4.11)

i=1

in the sense of measures; then (4.2) gives

/ Qgdvoly = IA;. (4.12)
M

Finally, S =0 if and only if vol(gx) — 0.

An immediate consequence of Theorem 4.2 (Identity (4.12) in particular) and
the Gauss-Bonnet-Chern formulas (4.3) and (4.5), is the following compactness
result:

Corollary 4.3 Under the hypothesis of Theorem 4.2 assume that either
1. x(M) <0 and dim M € {2,4}, or
2. x(M) <0, dimM > 6 and (M, g) is locally conformally flat,

and that vol(gr) /> 0. Then (i) in Theorem 4.2 occurs.

It is not clear whether the hypothesis that (M, g) be locally conformally flat
when dim M > 6 is necessary in Corollary 4.3. For instance, we could drop it if
we knew that W > 0 in (4.6), in analogy with (4.5).

Theorems 4.1 and 4.2 will be proven in Sections 4.2 and 4.3 respectively. In
Section 4.4 we also consider the special case when M = S2™.

In the proofs of the above theorems we use techniques and ideas from several
of the cited papers, particularly from [ARS], [BM], [DR], [Mal], [MS] and [RS].

As usual the letter C' will denote a generic positive constant, which may
change from line to line and even within the same line.
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4.2 The case of an open domain in R*"

In this section we devote ourselves to the proof of Theorem 4.1. In the following

the constants v, (defined in Proposition 2.22) and A; (see (4.4)) are often used,

and it is useful to notice that v, := %

Preliminary to the proof on Theorem 4.1 we need the following Lemma.

Lemma 4.4 Let f € L*(Q) N LY (Q\S1) for some p > 1, where Q@ C R*™ and

S1 C Q is a finite set. Assume that

(—A)"u=f inQ
Auy=0 on I for0 < j<m-—1.

Then u is bounded in W2TP(Q\S1); more precisely, for any Byr(zo) C (Q\S1),

loc

there is a constant C independent of f such that

lullw2m.p(Br(o)) < CUSILr(Bir (o)) + I fllz1())- (4.13)

The proof of Lemma 4.4 is given at the end of this Section.

Proof of Theorem 4.1. We closely follow [ARS]. Choose a subsequence (u) and
a maximal set (finite by (4.10)) S; = {2(V € Q: 1 <i < I} such that for every
i and 0 < R < dist(z(¥, Q) we have

lim inf/ | Qx| ™ dy > .
Br(z®)

k—o0

By maximality of S1, given zy € Q\51, we have, for some 0 < R < dist(xg, 99),

o :=lim sup/ |Qr|e*™ ™, dx < . (4.14)
BR(CE())

k—oo
For such zp and R write uy = v + hy in Br(xo), where

(—A)My, = Qpe?marur in Bg(zo)
vp = Avg = ... =A™y, =0 on OBr(xg)

and (—A)™hg = 0. Set hz = X{hp>0y ks By = by fhz. Since h: < uZJr |vgl,
we have
1Rl (Brwo)) < Ut 1Lt (Bao)) + 10kl L1 (Br(20))-

Observe that, for k large enough mu;’ < 2magu; < e*™%“ on Br(x), hence

by (4.10)
/ u;:dz < C’/ e2marti gy < (),
BR(CE()) BR(IU)

As for vy, observe that 1 < 2= hence by Theorem 2.7

/ 2m|vg|dx < / e2mlvkl gy < CR*™,
BR(CE()) BR(IO)

with C' depending on « and not on k. Hence

1Al L1 (Br(ze)) < C- (4.15)
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We distinguish 2 cases.

Case 1. Suppose that HthLl(BR/Q(mo)) < C uniformly in k. Then by Proposition

2.4 we have that hy is equibounded in Cé(BR/g(ZEQ)) for every £ > 0. Moreover,
by Pizzetti’s formula (Identity (2.7) in the appendix) and (4.15),

hi(2)dz = ][ W () da — ][ b (@)de < C — ][ he(2)da
Br(zo) Br(zo) Br(zo) Br(zo0)
m—1
= C—hi(xo) + Y ciR¥A'hy(xo) < C.
1=0

Hence we can apply Proposition 2.4 locally on all of Br(zp) and obtain bounds
for (hi) in Cf, (Br(wo)) for any £ > 0.

loc

Fix p € (1,m/a). By Theorem 2.7 [[€2™"*|| 115, (20)) < C(p), hence, using
that ar — 1 uniformly on Br(zp), we infer

[(=A™ okl o () = [(Qre®™ ™ )e>™ V|| 1,5y < C(B, p) (4.16)

for every ball B CC Bg(xo) and for k large enough. In addition ||vg || Lr (B (2e)) <

C, hence by elliptic estimates, ||vg||w2mr) < C(B,p) for every ball B CC
Br(zo). By the immersion W2™? < 0% (), is bounded in O (Bg(zo)).

Going back to (4.16), we now see that A™uvy, is locally bounded, hence

lvkllwem.r 5y < C(B,p)

for every p > 1, B CC Bg(xo), and by the immersion W?2™?P — C?m=La e
obtain that (vy), hence (uy), is bounded in C27~ 5% (Bg(x)).

loc
glzste 2. Assume that [|hgl|L1(Bg . (20)) = Bk — 00 as k — o0. Set ¢y, 1= ZE, s0
L A" =0,
2. lekllLr(Br a(zo)) = 1,
3. i L2 (Brzo)) — O by (4.15).

As above we have that ¢y, is bounded in CIQOT_LO‘(BR(QUO)) for every a € [0,1),

C2m =1 Bp(20)) to a function ¢, with

hence a subsequence converges 1 C; .

1. Amp =0
2. ||90||L1(BR/2(10)) =1,
3. ||50+HL1(BR(10)) =0, hence ¢ < 0.

Let us define So = {z € Br(xo) : p(x) = 0}. Take x € Sp; then by (2.7),
Ap(z),...,A™ 1p(x) cannot all vanish, unless ¢ = 0 on B,(z) C Bgr(zo) for
some p > 0, but then by analyticity, we would have ¢ = 0, contradiction. Hence
there exists j with 1 < 5 < 2m — 3 such that

Dip(x) =0, D'*lp(z) #0,
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ie.
2m—3

So € |J {= € Brlwo) : DVp(x) = 0, DI p(x) # 0}.
j=1
Therefore Sy is (2m — 1)-rectifiable. Then ¢ < 0 almost everywhere and by
continuity
hi = Brep, — —o00, XM

locally uniformly on Bgr(x0)\So. Then, as before, from
(—A)m’l}k _ (Qk€2makhk)(€2makvk)’

we have that vy is bounded in CIQOT_LO‘(Q\SO). Then uy = hy + v — —00
uniformly locally away from Sp.

Since Case 1 and Case 2 are mutually exclusive, we obtain that away from
S1 we have that either a subsequence uy, is bounded in Cp7"~"*(Q), or a sub-
sequence uy — —oo locally uniformly.

‘We now show that if 7 > 1 and Qo(ac(i)) > 0 for some 1 < i < I, then Case
2 occurs. Assume by contradiction that Qq(z¢) > 0 for some x5 € S; and Case
1 occurs, i.e. (ug) is bounded in C27 1 (Q\S}), so that fr = Qpe?™®*u is
bounded in L{2, (Q\S1). Then there exists a finite signed measure p on €2, with

loc

€ L2 (2\S1) such that

ft — p as measures

fe — p inLP (Q\Sp) for 1 < p < 0.

loc

Let us take R > 0 such that Br(zg) C Q, Br(zo) NS1 = {zo} and Qp > 0 on
Bg(xp). By our assumption,

(=AY up > C, on dBp(xg) for 0 < j <m — 1. (4.17)
Let zx be the solution to

(—A)"z, = Qre?mart in Br(zo)
2k =0z =...= Am_lzk =0 on aBR(.To).

By Proposition 2.21 and (4.17)

ug >z, — C. (4.18)
By Lemma 4.4 z;, — z in Co7" " "*(Bp(zo)\{zo}), where
(—A)"z=p in Br(xo)
z2=Az=...=A""12=0 on dBg(zo).

Since Qo(xo) > 0, we have p > yndg, = (—A)™ In ﬁ and Proposition 2.21

_‘TO‘ Y
applied to the function z(z) — In m implies
1

|z — o] B

1
/ e2m3dy > C/ 72mdz = +00.
Br(zo) Br(zo) |z — o

z(z) > 1n

)

hence
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Then (4.18) and Fatou’s lemma imply

hminf/ e2martkdy > / lim inf 2™ ¥k dy
Br(zo) B

k—oo R(w()) k—o0

> C / liminf e*™**dy  (4.19)
BR(IU) k—oo
> C/ 2™ dx = 400,
BR(IU)
contradicting (4.10). O

The following proposition gives a general procedure to blow up at points
where uy goes to infinity.

Proposition 4.5 In the hypothesis of Theorem 4.1, assume that ax, = 1 for ev-
ery k and that case (ii) occurs. Then, for every xg € S such that SUDP B, (20) Uk —
oo for every 0 < R < dist(xg,0Q) as k — oo, there exist points x, — xo and
positive numbers ri, — 0 such that

v (z) == ug(zp + rpx) + Inrg, <0 <1In2+ v(0), (4.20)

, . ~2m—1
and as k — oo either a subsequence v, — v in Cio~ “(R*™), where

(=A)™ = Qo (wo)e*™,

or vy, — —oo almost everywhere and there are positive numbers v, — 400 such

that v
* p in Cﬁ,T_l’a(R2m),
Tk

where p is a polynomial on even degree at most 2m — 2.

Proof. Following [ARS], take x such that sup Br(zo) Wk — +o00 for every R and

select, for R < dist(zg,99), 0 < rp < R and xj, € By, (x9) such that

(R—rp)e" @) = (R—r,) sup e"* = max ((R —7r) sup e“’f) =: L.
B, (%0) Osr<h B, (z0)

R—Tk

Then L — +oo and s := T,

— 0 as k — oo, and
v () = ug(zr + skx) +Insp, <0 in Br,(0)

satisfies B N
(=A)™vy, = Qre®™™,  Qi(w) := Qr(xk + sk2),

/ @ke%””“dx = / Qre®™ dy < C.
BLk (0) B%(Rfrk)(zk)

We can now apply the first part of the theorem to the functions vy, observing
that there are no concentration points (S; = (), since v, < 0, and using Theorem
2.5 to characterize the function p. (]

and

We now give a proof of Lemma 4.4. Preliminary to that, we need the fol-
lowing lemma.
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Lemma 4.6 Let Au € L'(Q2) and u = 0 on 9Q, where Q@ C R™ is a bounded
domain. Then for every 1 < p < 25 we have

[ullwrr@) < Cp)|Aull Ly (o)

Proof. Let u € C*°(Q) and u[sq = 0. If 1 < p < 2=, then ¢ := ﬁ > n. From
LP-theory (see e.g. [Sim, Pag. 91]) and the imbedding W14 < L* we infer

IVullrro) < C  sup Vu-Vede=C  sup —Aupdx
PpEW,1(Q) YO pewli) Jo
IVellLa) <1 IVellLa)<1
< C sup / —Aupdr < C||Aul| .
per=©) Jo
lellLoo @) <1

To estimate ||ul| z»(q) We use Poincaré’s inequality. For the general case one can
use a standard mollifying procedure. (I

Proof of Lemma 4.4. By Lemma 4.6, [[A™  u|wirq) < C)|fllLiq for
1 <7 < 522 Then, by LP-theory, ullwam-1r) < C()|fllz1(), and by
Sobolev’s embedding,

||U||LS(Q) < C(S)||f||L1(Q), for all 1 < s < 00. (4.21)
Now fix B = Bag(zo) CC (Q\S1) and write u = u; + ug, where

(_A)mUQ = f in B4R(£EQ)
A]UQ =0 on aB4R(l‘0) fOI‘OSj Sm—l.

By LP-theory

HuQHWQm’p(Bz;R(Io)) < C(po)||f||LP(B4R(Zo))’ (422)

with C(p, B) depending on p and the chosen ball B. Together with (4.21), we
find

lurll L2 (Bar(zo)) < C0s B) ISl Lo (Bar(zo)) + 1 [L1(2))-
By Proposition 2.4
lluillweme(Bro)) < C@, B)fllLe(Bar(o)) + 1 flr(@))s
and (4.13) follows. O

4.3 The case of a closed manifold

To prove Theorem 4.2 we assume that sup,, ux — oo and we blow up at I
suitably chosen sequences of points z; ;, — 2D with up (k) — 00 as k — oo,
1 <i<1I. We call the z(9’s concentration points. Then we show the following:

(i) If () is a concentration point, then Qq(z®) > 0.

(ii) The profile of the uy’s at any concentration point is the function ny defined
in (5.4), hence it carries the fixed amount of energy Ay, see (5.7).
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(iil) ugp — —oo locally uniformly in M\{z® :1 <i < I}.
(iv) The neck energy vanishes in the sense of (4.43) below, hence in the limit

only the energy of the profiles at the concentration points appears.

Parts (i) and (ii) (Proposition 4.8) follow from Lemma 4.7 below and the
classification results of [Marl] (or [Xu]) and [Mar2]. For parts (iii) and (iv) we
adapt a technique of [DR], see also [Mal], [Ndi] for a different approach.

The following lemma (compare [Mal, Lemma 2.3]) is important, because
its failure in the non-compact case is responsible for the rich concentration-
compactness behavior in Theorem 4.1. Its proof relies on the existence and on
basic properties of the Green function for the Paneitz operator szm, as proven
in [Ndi, Lemma 2.1] (here we need the hypothesis ker P2™ = {constants}).

Lemma 4.7 Let (uy) be a sequence of functions on (M, g) satisfying (4.7) and
(4.8). Then for £ =1,...,2m — 1, we have

/ |V ug|P dvol, < C(p)r*™=®, 1<p< —,
B (x)

for everyx € M, 0 <1 < riyj and for every k, where riy; is the injectivity radius
of (M, g).

Proof. Set fi, := Qre*™"* — Q2™, which is bounded in L'(M) thanks to (4.8).

Let G¢ be the Green’s function for P;™ on (M, g) such that

un(€) = ]1 wp dvol, + / Ge () fi(y) dvol, (y). (4.23)

M M

For z, £ € M, x # &, we have

IVEGe(x) 1<l<2m—1. (4.24)

<~
= dist(x,£)*’

Then, differentiating (4.23) and using (4.24) and Jensen’s inequality, we get

Vel < o [ il )

dist (&, y)*
|fk||L1<M>)p o)
C dvol .
< M(dist@,yv Tallzran Srl @)

From Fubini’s theorem we then conclude

IN

C”fk”il(M) Sélp dVOlg(E)

Viu P dvol S
/B PO dvol o | e

< ol

Let exp, : T M = R?>™ — M denote the exponential map at z.
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Proposition 4.8 Let (ux) be a sequence of solutions to (4.7), (4.8) with
maxug — 0o as k — oo.

Choose points xy, — xo € M (up to a subsequence) such that ug(xy) = maxys u.
Then Qo(xo) > 0 and, setting

1
k= 2 - e Uk Tk 425
: ( Qo(z0) (4.25)
we find that the functions Ny, : Briny, C R?™ — R, given by
E
1 (2m—1)
= up(exp, +1lo — —log—*,
1k(y) = un(expy, (ky)) +log p — o—log Qo)

converge up to a subsequence to ny(y) = In TQW m CIQC)T_l’O‘(RQW). Moreover

lim lim Qpe®mur dvol, = Ay. (4.26)

R—+o00 k—oo Bry, (xx)

Proof. Step 1. Set oy, = e~ *“(**) and consider on Br,; C R*™ the functions
Kk

2k(y) := ur(expy, (ory)) +log(ox) <0, (4.27)

and the metrics
gk = (eszk OTk)*ga

where T, : R2™ — R2™, Tyy = opy. Then, setting Qp(y) := Qr(exp,, (0xYy)),
and pulling back (4.7) via exp,, oTy, we get
P2z 4+ QI = 0 2 Qe (4.28)

(Sjt;gi;)lg no'wfg;c := 0}, 2 Gk, we have P2 = g™ P2™, Q2 = o™ Q2™ and from
.28) we infer
Pl + Q= Qre”™ . (4.29)

Then, since the principal part of the Paneitz operator is (—A,)™, we can write
Py, = (=8g)™ + A,

where Ay, is a linear differential operator of order at most 2m — 1; moreover the
coefficients of Ay are going to 0 locally in all norms, since g — grzm locally in
all norms, and P, = (—A)™. Then (4.29) can be written as

9r2m

(—Ag) " 2k + Arzk + Q3 = Qre™™ . (4.30)
Step 2. We now claim that zj, — zo in CE™ ! (R>™), where

loc

(—A)" 25 = Qo(wp)e* ™, / e dx < oo. (4.31)
R2m
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We first assume m > 1. Fix R > 0 and write 2z = hy + wi on Bg, where
Ag;z hk =0 and

{ (=Ag)mwk = (=g, )" 2k in Br(zo)

wp = Awg =...= Amflwk =0 on aBR(SCO) (432)

From z; < 0 we infer ||Qk€2mzk”Loc(BR) < C, and clearly Qg;" = a"Q¥" — 0
in L (R?™). Lemma 4.7 implies that (Ayz2y) is bounded in LP(Bg), 1 < p <
hence from (4.32) and elliptic estimates we get uniform bounds for (wy)

2m
2m—1°

in W2mP(Bg), 1 <p< 23;?1, hence in C°(Bgr). Again using Lemma 4.7, we
get

[AgbrllLr(Br) < Clllzkllw21(Br) + wkllw21(Br)) < C.

Since Ag;_l(Agk hi) = 0, elliptic estimates (compare Proposition 2.4) give
Az kel ce(Bry) < C(€)  for every £ € N. (4.33)

This, together with |hi(0)] = |wg(0)] < C, and hy < —wy, < C and elliptic
estimates (e.g. [GT, Thm. 8.18]), implies that [|hx|z1(By,,,) < C, hence, again
using elliptic estimates,

hkllce(By,) < C)  for every £ € N. (4.34)

Therefore (z;) is bounded in WQm’p(BRM), 1<p< 231"11. We now go back to
(4.32), replacing R with R/4 and redefining hy and wy, accordingly on Br/4. We
now have that (Agzy) is bounded in LP(Bg/4) for 1 < p < 272;?2 by Sobolev’s
embedding, and we infer as above that (wy) is bounded in W2 (Bp/y), 1 <
p < 722, and hy, is bounded in C*(Bpg/16), £ > 0. Iterating, we find that (z;)
is bounded in W2m7p(BR/47n) for every p € [1,00[. Hence, for every o € [0,1]

there is a function w € C*"™~1*(Bp 4m ) such that up to a subsequence

wp — w in CQm_l’a(BR/4nL).

By (4.34) and Ascoli-Arzeld’s Theorem (z;) converges in C*"~1*(Bp /4m ) up
to a subsequence. Then (4.31) follows from Fatou’s lemma, letting R — oo, and
the claim is proven.

When m = 1, since P; = —A,, (4.30) implies at once that (A, zx) is locally
bounded in L. Then, since z; < 0 and z,(0) = 0, the claim follows from
elliptic estimates (e.g. [GT, Thm. 8.18]).

Step 3. We shall now rule out the possibility that Qo(zg) < 0.

Case Qo(xo) = 0. By Theorem 3.3, if m = 1 there exists no solution zy to
(4.31), contradiction. If m > 2, still by Theorem 3.3, then zp is a non-constant
polynomial of degree at most 2m — 2, and there are 1 < 7 <m —1and a < 0
such that AJzy = a. Following an argument of [RS], see also [Mal], we shall find
a contradiction. Indeed we have

_ alwam

R*™ 4+ o(R®™), as R — 4o0.

k—o0 m

lim |Ajzk|dx:/ |A7 2| dz:
Br Br

Scaling back to ug, we find

k—o0

lim (oij_%"/ |V 2 | dvolg) > C7'R?*™ 4 o(R*™), as R — oo,
BRak(zk)
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while, from Lemma 4.7,

/ |V#uy| dvol, < C(Roy,)*™ 2. (4.35)
BRro, (k)

This yields the desired contradiction as k, R — +oc.

Case Qo(xo) < 0. By Theorem 3.1 there exists no solution to (4.31) for m =1,
contradiction. If m > 2, from Theorem 3.2 we infer that there are a constant
a#0and 1 <j<m—1 such that

lim  A7zy(x) = a,
|z|—+o00
zeC

where C := {t£ e R*™ : ¢t >0, £ € K} and K C S?™~! is a compact set with
H?™~1(K) > 0. Then, as above,

lim (aij_Qm/ |V2juk|dvolg) > ot |AT 2o |da
k—oo Bra, (1) BrNC

Z 071R2m+0(R2m),

V

again contradicting (4.35). Then we have shown that Qg (zg) > 0.

Step 4. Since Qr(xo) > 0, ur and n; are well-defined. Repeating the proce-
dure of Step 2, we find a function 7 € CIQOT_LO‘(RQ’”) such that np, — 7 in
C2m=Lbo(R2m) where (compare (4.31))

loc
(=A™ = (2m — 1)1e®™7 / e*™dr < +o0.
R‘Z‘rn

By Theorem 2.2, either 7 is a standard solution, i.e. there are o € R?™, A >0

such that
2\

—— 4.
1+ 22|y — yof2” (4.36)

7(y) = log
or A/1j(z) — a as |z| — oo for some constant a < 0 and for some 1 < j < m—1.
In the latter case, as in Step 3, we reach a contradiction. Hence (4.36) is satisfied.
Since maxys nr = N, (0) = log 2 for every k, we have yo = 0, A = 1, i.e. 7= 1.
Since, by Fatou’s lemma

lim lim Qpe?mur dvoly = (2m — 1)!/ e2mmo dy.
R— o0 k—oo Ry (1) R2m
(4.26) follows from (5.7). O

Proof of Theorem 4.2. Assume first that ux < C. Then P;muk is bounded in
L>(M) and by elliptic estimates uj — U, is bounded in W2™P(M) for every
1 < p < 00, hence in C?"~1*(M) for every a € [0, 1], where Ty, := f,, uy dvoly.
Observe that by Jensen’s inequality and (4.8), ux < C.

If Wy, remains bounded (up to a subsequence), then by Ascoli-Arzeld’s theo-
rem, for every a € [0, 1], uy is convergent (up to a subsequence) in C?™=5(M),
and we are in case (i) of Theorem 4.2.



54 Concentration-Compactness for the Liouville equation

If wp, — —oo, we have that uy — —oo uniformly on M and we are in case
(i) of the theorem, with S = .
From now on we shall assume that maxy; up, — oo as k — oo.

Step 1. There are I > 0 converging sequences x; j — ) e M with wuy, (k) —
oo as k — oo, such that

(A1) Qo(z™M)>0,1<i<1.

(Ag) dist(@repn) 400 as k — +oo forall 1 < i,5 < I, i # j, where

Hi, k
(2m—1)!)2+n o)
Wik = 2(7_ e~ Wk \Tik)
QO(:C(Z))

(As) Set nik(y) == uk(exp,, , (Hi,ky)) — uk(zik). Then for 1 <i <[

in C2™(R*™)  (k — o0). (4.37)

2
i — =log ——

(Ag) For1<i<I

lim  lim Qre*™ " dx — A. (4.38)
R—+o00 k—+oco BR”i,k (zi1)

(As) There exists C' > 0 such that for all k

uk () < — mi ; .
Isgj\% e Ri(z)] <C, Rui(x): 12;£Idlst(z,xzﬁk).

Step 1 follows from Proposition 4.8 and induction as follows. Define 2, = 2
as in Proposition 4.8. Then (A4;), (A43) and (A4) are satisfied with ¢ = 1. If
sup ey (€% (@) dist(z; 5, 2)] < C, then I = 1 and also (As) is satisfied, so we
are done. Otherwise we choose x5 j such that

R17k($2,k)euk(m2’k) = maXRl,k(x)e“’“(z) — 00, Ryg(x):=dist(z,z1).

TrEM
(4.39)
Then (Az) with ¢ = 2, j =1 follows at once from (4.39), while (A3) with ¢ = 1,
j = 2 follows from (Ajz), as in [DR]. A slight modification of Proposition 4.8
shows that (z2k, po,x) satisfies (A1), (Az) and (A4), and we continue so, until
also property (As) is satisfied. The procedure stops after finitely many steps,
thanks to (Asz), (A4) and (4.26).

Step 2. We now prove that

sup Ry (2)*|Viug(z)| < C, £=1,2,...,2m — 1. (4.40)
xeM

We differentiate the Green representation formula (4.23) ¢ times and we use
(4.24) to estimate

e2muk(y)
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Set for 1 <i<1T
Q= {y € M: Ri(y) = dist(xi7k,y)}

and further, assuming & # x; , for 1 <47 < I (otherwise (4.40) is trivial), set

Qz(,lk) = Qi,k N Bdist(zi,k,f)/2(xi7k), QZ(,Qk) = Qi,k\Bdist(mi’k,f)/Q(xi,k)-

Observing that for y € lek) we have dist%& m < dist(gm_ D and using (A4s) from
Step 1, we infer

eQmuk C
7 dvol < 2muc(y) dyol
/Qi,k diSt(§7 y)e VO g(y) - dist(f, :Eiﬁk)l /951)2 € Vo g(y)

C/ dvoly(y) .
o) dist(&,y)" dist(y, k)™

The first integral on the right-hand side is bounded by m As for the
integral over 952,3, write 952,3 = 953,3 U nglk), with
Q) = 0F) N Badisiewn () 2 = AN\ Bodistie a0 (6):

We have

/ dvoly(y) < C / dvol, (y)
o dist(&, ) dist(y, xi)?™ T dist(§, @ik)>™ Jo@) dist(€,y)*
G
dist(E, 2 )l

Observing that
1
ol dist(y, z;) < dist(§,y) < Cdist(y,z; %) on nglk),

we estimate

/ dvol, (y) < C/ dvoly(y)

4 3 AN . \2m — 1 . 2m—+~

Qi’g dlSt(E,y) dlSt(yvxl,k) QE%]Z dlSt(-Tz,kay) +
dz

|Z|2m7€

IN

C

R\ Baist(a; 1.6
C
dist (@, )t

Putting these last inequalities together yields

C C
14
< =
|V uk(§)| = inflgig] dlSt(g, wi,k)e Rk(f)f’

whence (4.40).

Step 3. up, — —oo locally uniformly in M\S, S := {2 : 1 < i < I}. This
follows easily from (4.40) above and (4.42) below (which implies that up — —oo
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locally uniformly in Bs, (z)\{z®} for any 1 < i < I, v € [1,2[ and 6, as
in Step 4), but we also sketch an instructive alternative proof, which does not
make use of (4.42).

Our Theorem 4.1 can be reproduced on a closed manifold, with a similar
proof and using Proposition 3.1 from [Mal] instead of Theorem 2.7 above. Then
either

(a) wy is bounded in CZ~1(M\S), or
(b) ur — —oo locally uniformly in M\ S, or

(¢) There exists a closed set Sy C M\ S of Hausdorff dimension at most 2m—1
and numbers [; — +oo such that

u

ﬁ_’“ — ¢ in CE™HM\(Sp U S)),
k

where
A"p=0, <0, ¢#0, ¢=0o0nLSp. (4.41)

Case (a) can be ruled out using (4.8) as in (4.19) at the end of the proof of
Theorem 4.1. Case (c) contradicts Lemma 4.7, as in the proof of Proposition
5.7 below (compare (5.30), (5.31)). Hence Case (b) occurs, as claimed.

Step 4. We claim that for every 1 < v < 2, there exist 6, > 0 and C, > 0 such
that for 1 <i¢<1T

dist(m,xi7k)2m”62m“’“(z) < Cl,ui?:(yfl), for x € Bs, (xi k). (4.42)

Then on the necks ¥ x := Bs, (%4,x)\Bry, , (zir) we have

/ €2muk dVOlg < CUM?,T]:L(U*U / diSt(Z’, zi,k)—le/ dVOlg (1')
Sk Yk

0w
’ Rpik
_ CVR2m(17V) o Culﬁzl(u_l)(s?,m(lfy)a
whence
lim  lim Qre*™" dvol, = 0. (4.43)

R—+o00 k——+o00 ik

This, together with (4.26) and Step 3 implies (4.11), assuming that () # 20)
for i # j. This we be shown in Step 4c below. Then (4.12) follows at once from
(4.2).

Let us prove (4.42). Fix 1 <v <2andset for 1 <i<T

R; 1, »= mindist(z; k, Tj k)
J#i

Step 4a. Let i € {1,...,1} be such that for some 6 > 0 we have

Rix <OR;y for1<j<I, k>1. (4.44)
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Set

@i k(1) == r*™ exp ( ][ 2mukdag), (4.45)
OBy (k)

for 0 < r < riyj, where doy is the measure on 9B, (z; ) induced by g. Observe
that

—1
@ig(rpig) <0 if and only if w,k<u< ][ %dog> . (4.46)
’ n
BBTui,k(zi,k)

From (4.37) we infer

- Ouy
Hi K on

0 2 —2r

T og —2 = =
_>8T Og1+r2 1472’

OBy, yr(ik)

hence

0 2
Hi k ][ %d(fg—’_H—er, forr>0ask:—>oo,

OBy, yr(ik)

and (4.46) implies that for any R > 2R, := 2, /5%, there exists ko(R) such

2—v’
that
@i w(rpin) <0 for k> ko(R), r € [2R,, R]. (4.47)

Define
ik 1= SUp {r € 2Ry pti g, Ri/2] : @i x(p) <0 for p e [2Ruui7k,r)}. (4.48)

From (4.47) we infer that

lim —E — oo (4.49)
k=00 [ij |

Let us assume that
Consider

Vi k(y) = uk(eszi,k(m‘,ky)) —Cik, Ciy:= ][ ugdo,, (4.51)

OBy, (wix)
and let
gik =i p(exp,, , oT;x)"g, Qi nly) = Qulexp,,, (riey)),
where
Tik(y) :==ripy forye R2™.

Then

2 2 _2mA 2m(vi x+C;
Pyl + i Qg = il Qe vint )

= T?,lel(l_u)@i,k(ﬁ,k)Qi,kGvai'k- (4.52)
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We also set

Ji={j #i:dist(xir, ;) =O(rir) as k — oo}, (4.53)
and .
B = o) (ge), 2 = Jim E (4.54)

after passing to a subsequence, if necessary. Thanks to (4.44) and (4.48), we
have that |z\"| > 2 for all j € J; and that

D) 2 . )
&9 — &) > 5 forallj,le g, j#L.
By (4.40) and the choice of C; j in (4.51), v; i, is uniformly bounded in
Cioe H®™ {0,572 j € 7)),

Thanks to (4.48) and (4.49), given R > 2R, there exists ko(R) such that
©ik(Tik) < wik(Rpi ) for all k > ko. From (4.37), we infer

,uf’,? exp ( ][ 2mukd0) = exp ( ][ 2m(uy + log ui,k)da)

OBRu; gy (i 1) Bru, 4, (zik)
= C(R)+o0(1), ask — oo, (4.55)
where
C(R) — 0, as R— . (4.56)

Then, together with (4.49), letting k — +o0 we get

ri’,?(lfy)%,k(m,k) < T?y?(liy)@i,k(Rﬂi,k)

i 2m(v—1)
= puiMexp < ][ 2mukdo> R2m”<L>
’ Tik

6BRM,k(Ti,k)

~ 0. (4.57)
Therefore the right-hand side of (4.52) goes to 0 locally uniformly in
R*™\ {0,z : j € Tik;
moreover

Gik — grem in CF_(R?™) for every k > 0, rf?@m — 0 in Cj, (R*™).

(4.58)
It follows that, up to a subsequence,
X s 2m—1,« 2m ~(’L) L -
Vi — h; in O (R™™\{0,2;” : j € Ti}), (4.59)

where, taking (4.40) into account,

A™hi(x) =0, = eR*™\{0,i ) e 7}
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and

R(@)!|V'hi(z)| < Cp, for £=1,...,2m —1, z e R*™\[0,7\" : j € T},

with R(z) := min{|z|, |z — :i§i)| : j € Ji}. Then Proposition 4.9 from the
appendix implies that

hi(z) = —Mogle| — Y Ajlogla — &7| + 5, (4.60)
j€Ti

for some A, 3, \; € R. We now recall that the Paneitz operator is in divergence
form, hence we can write

P2mm k= divg,  (Ag, Vi) (4.61)

for some differential operator Ay, , of order 2m — 1, with coefficients converging
to the coefficient of (—1)"VA™~! uniformly in Bj, thanks to (4.58). Then
integrating (4.52), using (4.58), (4.59) and (4.61), we get

. 2 1— A .
lim Qre*™ dvol, = hm ©i ke (T k)7 m( v) Qi pe>mvik dvolg, ,
k—o0 By, (xik) B

= lim ( divgi,k (Aéi,kviﬁk) + T?,TQgi,k) dVOlQi,k

k—oo B
= lim n- (A,  vik)dog, ,
k—o0 oB1 ' Y
aAm—lhi A
9B, on 2

where here n denotes the exterior unit normal to dB; and the last identity can
be inferred using (2.22) and the following:

m—1p 8Am’1logL
/ 08" higy = A / —— 1y
oB, On 0B, on

=0 on B;

From (4.40) with ¢ = 1, we get

lug(exp,, , (riky1)) — uk(exp,, , (rixy2))| < Crigr  sup  |[Vu| < C,
’ ’ OB, o (i0)

(4.63)
foro0<r<3 5, w1l = |yo| = r. For 2R, puix < Rpip < 1 < 74, we infer from
(4.55)

@i k(1) < @ik(Rpix) < C(R)u?f,?(yfl) + o(uff('kl)).
This, (4.45), (4.55), (4.56) and (4.63) imply that for any n > 0 there exist
R, > 2R, and k, € N such that

dist(z, z; 5, )" 2™k < anm(V Y forze By, (%5 ) \BRyy, . (i), k> ky.
(4.64)
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It now follows easily that

lim lim Qre?™r dx = 0,
R—+o0 k—o0 Br, (i, 0)\Bry, ) (i,k)

and from (4.38)

lim Qre*™urdy = A,.
k—+o0 Br,  (zik)

@y

That implies that A = 2. With a similar computation, integrating on Bg(ii']

for ¢ small instead of B1(0), one proves that A; > 2 for all j € J;. Now set

Ta(r) = ][ hado.

8B (0)
Then
i (T2mve2mﬁi (’l“)) —omly—92_ Z Aj r2 T2mV71€2mﬁ.;(T)
dr = 9702 ’
J€T: J

for0 <r < % In particular

% (T2ml/62mﬁi(7‘)) ’TZl <0

hence, for k large enough, ¢; ; (7;x) < 0. This implies that

R;
Tik = 2’k for k large. (4.65)

This in turn implies limy_.o R; x = 0, when 7 satisfies (4.44) and limy_,00 751 =
0. For i satisfying (4.44) and limsup,_,., R;x > 0, we infer, instead, that
lim supy,_, o 7,k > 0. In both cases (4.64) holds.

Step 4b. Now assume that

limsup R;, >0, forevery 1 <i<1. (4.66)

k—o00

Then (4.44) is satisfied for every 1 <i < I, hence limsup;,_,,, rix > 0,1 <1i <
I. Up to selecting a subsequence, we can set

. 1
0, := inf = lim r;;, > 0.
1<i<I 2 k—oo

Take now 1 = 1 in (4.64), and let Ry be the corresponding R,. Then (4.42)
is true for x € Bs, (%ix)\BR,y, , (i,x). On the other hand, thanks to (Asz), we
have uy(z) < ug(xix) + C on Bg,,, , (x). Then, using (4.25), we get

diSt(,ﬁE, wi,k)vae2muk (z) C(R1Mi7k)2mve2muk (z4,k)

<
< O 2my , 2m(v—1) f B )
> Rl Hi g Oor r € Rlﬂi,k(xlyk)'

This completes the proof of (4.42), under the assumption that (4.66) holds.
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Step 4c. We now prove that in fact (4.66) holds true. Choose 1 < ig < I so
that, up to a subsequence,

R: r = min Ri,k for every k € N,

0 1<i<I

and assume by contradiction that limg_. . Rio,k = 0. Clearly (4.44) holds for
i = 10, hence also (4.65) holds for i = ig, by Step 4a. Then, setting J;, as is
(4.53), we claim that, for any i € J;,, there exists 6(i) > 0 such that

Ry <O(i)Rj for1<j<I.

Indeed

Riy =O(rig k) = O(Riy 1) as k — oco.
It then follows that (4.44) holds for all i € J;,, and that Step 4a applies to
them. Observing that J;, # () thanks to Step 4a (Identity (4.65) with i instead
of i), we can pick i € J;, such that, up to a subsequence,

dist(z4 &, Tig,k) > dist(xjx, Tio,x) forall j € Jiy, k> 0.

Recalling the definition of ,fc;i) for j € J;, we get |§c§;)| > |5c§l) - j§;)| for all
j € J;. A consequence of this inequality is that the scalar product

#2070 >0 (4.67)

(

for all j € J;. In other words all the D5 with j € J; lie in the same half space

J
orthogonal to igé) and whose boundary contains 0 = 501(-1). Multiplying (4.52) by
Vo, and integrating over Bs = B;s(0) (6 > 0 small), we get

/ P;;’;vi’kVUi,k dvolg, , = —/ ri’]jQ@kVUi,k dvolg, ,
Bs Bs
2m(1—v)
+riak . ( ) oF \V4 2mu; i, dvol-
5 ik (Ti k) QixVe volg,
m B5(0)
=: (I)k + (If)k. (4.68)

Recalling (4.58) and (4.59), we see at once that limg_,o (I); = 0. Integrating
by parts, we also see that

2m(1—v) A
Tik VQik A ome,
I < C—F— %‘,k(n,k)/ —= Qi re“ " dvoly,
2m Bs(0) Qik o
2m(1—v)

Tk
LIk i) / O(1)doy,,
2m aB5(0) gk

— 0 ask — oo,

where the last term vanishes thanks to (4.57), and the first term on the right of
(I1), vanishes thanks to (4.62) and the remark that
vQ;
Qik o i [%(By), (4.69)
Qi k
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Recalling (4.59), using (4.40) and (4.58), we arrive at

Vhl(—A)mhzdl‘ =0. (470)

Bs

Let us assume m even. Then, integrating by parts, we get

1 o
0 — 5/635((A) hi)?ndo
_ Z /(9B (V(—A)jhi)wda (4.71)
j=0 g

m_q .
: 8(A)Jhi> iy
+ V<7 —A)™ Jh;do.
;0 - 5 ) (=4

Then, taking the limit as § — 0, and writing

1
hi(x) = QIOgH + Gi(z)

we see that all terms in (4.71) vanish (G; is regular in a neighborhood of 0 and

the vector function V log ‘—i‘ is anti-symmetric), up to at most

1
li —VG;)0, (A" 21og — = 27, VG;(0),
lim aBJ( VG;)0,(—-A) ( og |$|)d0 ¥m VG;(0)

see (2.22). But then (4.71) gives
27mVG1(0)

Also when m is odd, in a completely analogous way, we get VG,;(0) = 0, a
contradiction with (4.60) and (4.67). This ends the proof of Step 4.

Step 5. Finally, if case (ii) occurs and S # 0, then (4.38) implies

lim sup vol(gx) > Qo(z™M) 1A, > 0.

k—oo

This justifies the last claim of the theorem. (I
The proposition below was used in the above proof.

Proposition 4.9 Let S = {z1,...,27} C R?>™ be a finite set and let h €
C>(R?™\S) satisfy A™h =0 and

dist(z, S)|Vh(z)| < C, for x € R*™\S. (4.72)
Then there are constants 3 and \;, 1 < i < I, such that

I
h(z) = Ailog 1 8. (4.73)
1=1

|z — @]
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Proof. Thanks to (4.72), h € L{ (R*™), so that A™h is well defined in the
sense of distributions and it is supported in S. Therefore

1
A= Bids,,
i=1

for some constants ;. Then, recalling (2.22), if we set

I
v(z) = h(z) — Z)‘i log #’ A = (_Umﬂ,
i=1

|:C - 1'1| Tm
we get A™v =0 in R?>™ in the sense of distributions (hence v is smooth) and
|Vo(z)||z] <C  in R*™. (4.74)

Then |v(z)| < C(log(1 + |z|) + 1). By Theorem 2.5 v is a polynomial, which
(4.74) forces to be constant, say v = —3. Now (4.73) follows at once. O

4.4 The case of S?"

In the case of the 2m-dimensional round sphere, the concentration-compactness
of Theorem 4.2 becomes quite explicit: only one concentration point can appear
and, by composing with suitable Mobius transformations, we have a global
understanding of the concentration behavior. This was already noticed in [Str4]
and [MS], in dimension 2 and 4 under the assumption, which we now drop, that
the Q-curvatures are positive.

Theorem 4.10 Let (5*™,g) be the 2m-dimensional round sphere, and let uy, :
M — R be a sequence of solutions of

Pyuy + (2m — 1)l = Qpre®™*, (4.75)

where Qr, — Qo in C° for a given continuous function Qq. Assume also that
vol(gx) = / e*™uk dvol, = |S*™], (4.76)
SQ‘n’I,

where gy, := e>™g. Then one of the following is true.
(i) For every 0 < a < 1, a subsequence converges in C*™=1(§2m),

(ii) There is a point xo € S*™ such that up to a subsequence uj, — —oo locally
uniformly in S*™\{zo}. Moreover Qo(zo) > 0,

Qre’mur dvoly — A0z,

and there exist Mébius diffeomorphisms ® such that the metrics hy =
D7 g1 satisfy

hi — g, in CE™7 082 Qp. — (2m — D)V in L2(S?™).  (4.77)

loc
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Proof. On the round sphere
m—1
P = [ (~Ag +i(@m —i—1)). (4.78)
i=0
Moreover ker A, = {constants} and the non-zero eigenvalues of —A, are all

positive. That easily implies that ker szm = {constants}. From Theorem 4.2,
and the Gauss-Bonnet-Chern theorem, we infer that in case (ii) we have

A1:/ divolg:IAl,
M

hence I = 1, and Qge*™** dvol, — A16y,.

To prove the second part of the theorem, for every k we define Md&bius
transformations @y, : S%™ — S*™ such that the normalized metrics hy := ®}gx
satisfy

/ x dvolp, =0, (4.79)
S2m

and are normalized with respect to rotations, so that &, — &y = zo locally
uniformly on S?™\{p} for some p € S?™. The metrics hy can be expressed in
the form

1
hy, = e27jkgszm, v = up o Pp + 2— 1ogdet(d<1)k).
m

Also notice that
Qny, = Qr 0 Pr — Qo(o) (4.80)
locally uniformly on S?™\{p}. We now claim that

/ Oy, - P2y dvoly = C. (4.81)
SZm
Indeed, using the conformal invariance of the Paneitz operator, and writing

®, = 71 06, om, where 7 is the stereographic projection from a point which
we may take to be the South Pole, and 6, is a dilation of R?™, we have

/2 Dy .P;m(l)k dvol, /2 (—AR2m)m(7T_1 o 6k) - lo Ordx
s2m R2m

/ |V~ 2de < oo,
R2m

where V™ denotes A% for m even and VA™ for m odd. Using (4.78), we
infer that

Png = Z Ci(*Ag)iv
i=1

where C,,, =1 and C; > 0 for 1 <4 < m. Then (4.81) and integration by parts

imply
§ / |Vid|* dvol, = C.
=1 SQm,

Since ®j is a bounded map, elliptic estimates give uniform bounds for ®; in
H™(S?™ g):
| Pxl 7 (52m gy < C.
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Hence up to a subsequence (®) converges weakly in H™(S?™, g) to ®g = 0.
By (4.80), we infer

[Qo 0 @k — Qo(zo) |l z2(s2m 1y) = [|Q0 — Qo(wo)||L2(52m 4,) — 0, as k — oo,
hence

HQhk - QO(ZEO)HLZ(SZW,}],C) = ||Qhk — QO o (I)k”LQ(SZm,gk) —+ 0(1)
|Qr — QollL2(s2m g,y +0(1) = 0 as k — oo.

We can now apply a slight modification of Theorem 4.2 to the sequence hy
(Qp,, is uniformly bounded in L and the above L? convergence is enough to
make the proof work), and obtain that one of the following is true:

(a) For every 0 < o < 1, up to a subsequence
hk N hOa in CQm—l,a(st)’
for some metric hyg.

(b) There is a point 1 € S?™ such that up to a subsequence v — —oo locally
uniformly in S2™\{z1}.

Qn, €™ dvoly — A1d,, . (4.82)

Since (4.82) contradicts (4.79), we are in case (a) and hy — hg in C?m L (§2m),
where Q2™ = Qo(z0) > 0. By Theorem 2.2 (vi),

On the other hand, the volume constraint (4.76) implies that
vol(hg) = vol(hy,) = vol(gx) = |S%™|,

hence Qo(xo) = (2m — 1)!, and the theorem is proved. O
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Chapter 5

Concentration-Compactness
for an equation with critical
quadratic exponential
non-linearity

We now switch to a different problem. Given a bounded domain 2 C R*™ with
smooth boundary, and a sequence 0 < A — 0, consider a sequence (uy) of
smooth solutions to

(—A)"uy, = )\kukem“i in Q
up >0 in (5.1)
ukzauukZ...ZaLnilukZO on 0f2.
Assume also that
/ up(—A) " updr = )\k/ uiem“ida: —-A>0 ask — oo. (5.2)
Q Q

We have another concentration-compactness result:

Theorem 5.1 Let (ug) be a sequence of solutions to (2.1), (5.2). Then either
(i) A = 0 and uj, — 0 in C*™=12(Q),! or

(1) We have supg ur — oo as k — oco. Moreover there exists I € N\{0} such
that A > IAq, where Ay := (2m—1)vol(S?™), and up to a subsequence there are
I converging sequences of points x; ) — 9 and of positive numbers rik — 0,
the latter defined by

NP (g, ) e @ir) = 22m (2 — 1)1, (5.3)

such that the following is true:

dist(x; £,09) _
Tik B

1. For every 1 <1 < I we have limy_ o +00.

IHere and in the following « € [0, 1) is an arbitrary Holder exponent.

67
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2. If we define
Nike(x) = wr (25 k) (up (@i gk + 73 px) — up(zik)) + log 2

for 1 <i <1, then

2
Nik(x) = no(x) =log ———— in Cﬁ,Tfl(RQW) (k — 00). (5.4)

1+ |z|?
3. For every 1 <i # j < I we have limy_, o _C”H;—zﬂml - .
4. Set Ri(z) :=infi<i<r | — z;1|. Then
M RE™ (@) (w)e™ () < ¢, (5.5)

where C' does not depend on x or k.

Finally u — 0 in H™(Q) and ug, — 0 in C’mel’a(ﬁ\{x(l), e z(I)}).

loc

The function 7y in (5.4) satisfies (—A)™no = (2m — 1)!e*™™ which is (4.9)
with Qr = (2m —1)! and ar, = 1. This shows a surprising relation between (4.9)
and (5.1). In fact 9 has a remarkable geometric interpretation: If 7 : $?™ —
R?™ is the stereographic projection, then

¥ ggam = (771)"ggam, (5.6)

where ggzm is the round metric on S?™. Then (5.6) implies
(2m — 1)!/ e2mmo dy; — Qszmdvoly,, = (2m — DI[S*™| = Ay (5.7)
R2m g2m

This is the reason why A > ITA; in case (ii) of Theorem 5.1 above, compare
Proposition 5.7.

Solutions to (2.1) arise from the Adams-Moser-Trudinger inequality [Ada]
(see also [Mos], [Tru] and [BW]):

sup ][em“de = ¢o(m) < +o0, (5.8)

wEHE (). |ulg <A1

where ¢o(m) is a dimensional constant, and H{*(€?) is the Beppo-Levi defined
as the completion of C'°(Q) with respect to the norm?

1
3
lullag = 18%ulia = ([ 1%uPaz)”, (5.9)
and we used the following notation:

(5.10)

m A"y e R if m = 2n is even,
Azu:= n 2m :
VA™ € R if m=2n+1 is odd.

1
2The norm in (5.9) is equivalent to the usual Sobolev norm |[u| gm = (372, ||V ull12) 2,

thanks to elliptic estimates.
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In fact (2.1) is the Euler-Lagrange equation of the functional

1 m )\ 2
F(u):== [ |A%uf*de — —— [ ™ dx
2 Ja 2m Jg
(where A\ = \i, plays the role of a Lagrange multiplier), which is well defined and
smooth thanks to (5.8), but does not satisfy the Palais-Smale condition. For a
more detailed discussion, in the context of Orlicz spaces, we refer to [Str3].

Theorem 5.1 has been proven by Adimurthi and M. Struwe [AS] and Adimurthi
and O. Druet [AD] in the case m = 1, and by F. Robert and M. Struwe [RS]
for m = 2. The extraction of a blow-up profile from a concentrating sequence
of solutions to a nonlinear PDE was pioneered by J. Sack and K. Uhlenbeck
[SU] and Wente [Wen]. Their ideas were later expanded in various ways by
M. Struwe [Strl], [Str2], H. Brezis and J. M. Coron [BC1], [BC2] who, in par-
ticular, first wrote down separation conditions like conditions 1 and 3 in part
(ii) of Theorem 5.1 (see also the works of T. H. Parker [Par], E. Hebey and F.
Robert [HR] and many others). For further motivations and references we refer
to M. Struwe [Str6]. Here, instead, we want to point out the main ingredients
of our approach. Crucial to the proof of Theorem 5.1 are the gradient estimates
in Lemma 5.6 and the blow-up procedure of Proposition 5.7. For the latter,
we rely on a concentration-compactness result from [Mar2] and a classification
result from [Marl], which imply, together with the gradient estimates, that at
the finitely many concentration points {z(1), ... (D}, the profile of uy is 7o,
hence an energy not less that A; accumulates, namely

lim lim sup/ )\ku%em“idx > Ay, foreveryl <i<I.
R=0 knoo JBR=™)

As for the gradient estimates, if one uses (2.1) and (5.2) to infer [|A™ug|[11(0) <
C, then elliptic regularity gives ||V ui|1oo) < C(p) for every p € [1,2m/¢).
These bounds, though, turn out to be too weak for Lemma 5.6 (see also the
remark after Lemma 5.5). One has, instead, to fully exploit the integrability of
A™uy, given by (5.2), namely [|A™u||f,(10g 11720y < C, where L(log L)*/? ¢ L
is the Zygmund space. Then an interpolation result from [BS] gives uniform
estimates for V%uy, in the Lorentz space L(QW/M)(Q), 1 </ <2m — 1, which
are sharp for our purposes (see Lemma 5.5).

We remark that when m = 1, things simplify dramatically, as we can simply
integrate by parts (5.2) and get

[VurllLe2 @) = [[Vuklr2@) < C.

In the case m = 2, F. Robert and M. Struwe [RS] proved a slightly weaker
form of our Lemma 5.6 by using subtle estimates in the BMO space, whose
generalization to arbitrary dimensions appears quite challenging. Our approach,
on the other hand, is simpler and more transparent.

Recently O. Druet [Dru] for the case m = 1, and M. Struwe [Str5] for m = 2
improved the previous results by showing that in case (ii) of Theorem 5.1 we
have A = LA; for some positive L € N. Whether the same holds true for m > 2
is still an open question. In is also unknown whether L = I in case m = 1, 2.

If we assume that supgur < C, we have that A™uy; — 0 uniformly, since
Ar — 0. By elliptic estimates we infer uy — 0 in W?2™P(Q) for every 1 < p < oo,
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hence ur — 0 in C?™~59(Q)), A = 0 and we have proven that we are in case
(i) of the Theorem. Therefore in the following we shall assume that, up to a
subsequence, supq, ur — 0o and show that we are in case (ii) of the Theorem.
In Section 5.1 we analyze the asymptotic profile at blow-up points. In Section
5.2 we sketch the inductive procedure which completes the proof.

5.1 Analysis of the first blow-up

Let x, = x1,, be a point such that ug(xy) = maxqug, and let 7, = 711 be as
in (5.3). Throughout this section (uy)ken is a sequence of functions satisfying
(5.1), (5.2). We use the following notation: when m is odd A%y := VA" u.
Integrating by parts in (5.2), we find [|A% u||2(0) < C which, together with

the boundary condition and elliptic estimates, gives

lugll gm0y < C. (5.11)

Lemma 5.2 We have

. diSt(:L'k, 89)
m — ' 7

li = +00.
k—oo Tk
Proof. Set
+ _
g (x) := % for x € Qp := {r; "(z — ) 1 2 € Q}.
Then w;, satisfies
m— 22m(2m — 1)'— mu (zg) (w2 —1 .
(—A) U = WU]CG k( k) k ) m Qk
ui >0 in Qy
ﬂkzaﬂk:...:@”*lﬂk: on 0.

Assume for the sake of contradiction that up to a subsequence we have

. dist(zg, 00)
lim ———~— 7

= Ry < +o0.
k—o0 Tk

Then, passing to a further subsequence, {2, — P, where P is a half-space, and
U — u in CZ™(P), where u(0) = u(0) = 1 and

(—A)™7 =0 in P
>0 in P
T=0u=...=0" =0 ondP.

By (5.11) and the Sobolev imbedding H™~1(Q) — L?*™(Q), we find

1
/ |V * ™ dx = 72/ |Vug|*"dx < LQ — 0.
o uk()*™ Jo ug (g )"

Then Vu = 0, hence u = const = 0 thanks to the boundary condition. That
contradicts u(0) = 1. O
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Lemma 5.3 We have

ug(zp + rpx) —ug(zk) — 0 in Cﬁ)’?_l(RQm) as k — oo. (5.12)

Proof. Set
vp(z) = ug(zr + rex) — uk(xg), x € Qi

Then v solves

u — 2m — 1)!
—A)™, = 22" (2m — 1)! Uk (7) emui (@) (@ —1) 227"(7 —0. (5.13
(=A)™ vy ( ) e < wr () (5.13)

Assume that m > 1. By (5.11) and the Sobolev embedding H™~2(£2) — L™(Q),
we get
HVQU;CHLm(Qk) = ||V2ukHLm(Q) <C. (5.14)

Fix now R > 0 and write vy = hy, + wi, on Bg = Br(0), where A™h;, = 0 and
wy, satisfies the Navier-boundary condition on Bg. Then, (5.13) gives

wy, — 0 in C*™~1(Bg). (5.15)
This, together with (5.14) implies
|Ahk|lLmBg) < C. (5.16)
Then, since A™ 1 (Ahy) = 0, we get from Proposition 2.4
[Ahkllce(ny,,) < C() for every £ € N. (5.17)

By Pizzetti’s formula (2.7),

m—1

][hkdx = hi(0) + > ¢;R* A'hy(0),

Br i=1

and (5.17), together with |h(0)| = |wg(0)| < C and hy < —wy, < C, we find

][|hk|dx <c
Br

Again by Proposition 2.4 it follows that
[hillce(By,,) < C(4)  for every £ € N. (5.18)
By Ascoli-Arzeld’s theorem, (5.15) and (5.18), we have that up to a subsequence
vp — v in C’mel’o‘(BR/g),

where A™v = 0 thanks to (5.13). We can now apply the above procedure with
a sequence of radii Ry — oo, extract a diagonal subsequence (vy ), and find a
function v € C°°(R?™) such that

v<0, A™p=0, v —ov inC2"THYRE™), (5.19)

loc
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By Fatou’s Lemma

V20| pm (g2my < lim inf [V20r | Lm0y < C. (5.20)

By Theorem 2.5 and (5.19), v is a polynomial of degree at most 2m — 2. Then
(5.20) implies that v is constant, hence v = v(0) = 0. Therefore the limit
does not depend on the chosen subsequence (vy), and the full sequence (vy)

converges to 0 in C2"~1(R?™), as claimed.

When m = 1, Pizzetti’s formula and (5.13) imply at once that for every
R >0 |lvkllz1(Br) — 0, hence vy — 0in W2P(Bg) as k — 00, 1 <p<oco. [

Now set
e (x) := ug(xp) [uk (ree + xx) — uk(xg)] + log 2. (5.21)
An immediate consequence of Lemma 5.3 is the following
Corollary 5.4 The function ny satisfies
(—A)™ay, = ViePmarie, (5.22)
where
Vi) = 2701 (2 — Dl (x) — (2m — 1)), ap = %(m 1) =1

; 0
m C‘loc

(RQW)

Lemma 5.5 For every 1 < £ < 2m — 1, Vluy belongs to the Lorentz space
LEC™/E2)(Q) and

IV urll 2mye,2) < C. (5.23)

Proof. We first show that f := (—A)™uy is bounded in L(log L)z (Q), where
Llog £)*(9) = { £ € L) U flngopsye = [ 1711082+ ) < oo},
Indeed, set log™ ¢ := max{0,logt} for ¢t > 0. Then, using the simple inequalities
log(2+41t) <2+1logtt, log™(ts) <logtt+logts, ¢ s>0,

one gets
log(2 + )\kukem“i) <24 log™ A\ 4 log™ ug +mui < C(1 4 ug)?.

Then, since fr > 0, we have

/ka log%(2 + fir)dx

-

< C/ )\kuiem“’“der ci<c
{zeQuy(xz)>1}

by (5.2), as claimed. Now (5.23) follows from Theorem 5.15. O
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Remark. The inequality (5.23) is intermediate between the L' and the Llog L
estimates. Indeed, the bound of f := (—=A)™uy, in L' implies ||Viug||z» < C
forevery 1 < £ <2m—-1,1<p< 277”, compare Lemma 4.6, and actually
[V ur|| (2m/¢,00) < C (compare [Hél, Thm. 3.3.6]), but that is not enough for our
purposes (Lemma 5.6 below). On the other hand, was f;, bounded in L(log L),
we would have ||V u||(2m/¢,1) < C, which implies [Juy||z~ < C (compare [Hél,
Thm. 3.3.8]). But we know that this is not the case in general.

Actually, the cases 1 < £ < m in (5.23) follow already from (5.11) and the
improved Sobolev embeddings, see [O’N]. What really matters here are the
cases m < £ < 2m. In fact, when m = 1 Lemma 5.5 reduces to (5.11).

The following lemma, which is reminiscent of Lemma 4.7, replaces Proposi-
tion 2.3 in [RS].

Lemma 5.6 For any R >0, 1 <{<2m — 1 there exists ko = ko(R) such that

uk(xk)/ |Viur|dz < C(Rry)>™=*,  for all k > k.
Brr, (k)

Proof. We first claim that

[A™ ()| L1 (o) < C. (5.24)
To see that, observe that
2m—1
A" ()] < 2up(—=A)"ux +C D | Viug| [V (5.25)
=1

The term 2uy(—A)™uy is bounded in L! thanks to (5.2). The other terms
on the right-hand side of (5.25) are bounded in L' thanks to Lemma 5.5 and
Proposition 5.11 belows. Hence (5.24) is proven.

Now set fj, := (—A)™(u}), and for any x € €, let G, be the Green’s function
for (—A)™ on Q with Dirichlet boundary condition. Then

uj(z) = | G fky)dy.
Thanks to the basic estimate on the Greens’s function (see [DAS, Thm. 12]),
IVEGL(y)| < Clz — y| =%, we infer

o

lz —ylt

V() ()] < /Q V.G )| fely)ldy < C /Q

|/ (v)]

Ifell1o dy. By Fubini’s theorem

Let pr denote the probability measure

A

1
/ Vi) @)ldr < Ollfellze / ()
Brr, (2x) Brr, () Jo [T =Yl

1
¢ [ ——dudu)
Q BR'rk (Ik) |‘T - y|
1

< Csup/ T——dr < C(Rrk)%"_e.
y€QJ Br,, (z1) |z =yl

IN
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To conclude the proof, observe that Lemma 5.3 implies that on Bg,, (zx), for
1 <4< 2m —1, we have rﬁveuk — 0 uniformly, hence

-1
up(21)|Viug| < Cug|Viug| < c(|vf(u§)| + |ijk||vf-juk|)
j=1
< CIV' )| +o(ry "), ask — occ.
Integrating over Bpy, (x)) and using the above estimates we conclude. O

Proposition 5.7 Let ny be as in (5.21). Then ni(z) — no(z) = 1OgT21\2 in
CE™(R?™), and

loc

lim )\ku%em“idx = lim (2m — 1)!/ ™M dy = Ay, (5.26)
Br(0)

R—oo BRrk (Zk) —00

Proof. Let ai be as in Corollary 5.4. Notice that, thanks to Lemma 5.3,

/ Vi, 2Rk gy = / uk(zk)uk)\kem“i‘dx (5.27)
Br(0) Brry, (zx)
< (1+ 0(1))/ ui)\kem“idx < A+o0(1),
BRTk (‘Tk)

where V}, and ay are as in Corollary 5.4, and o(1) — 0 as k — oo.

Step 1. We claim that 7, — 7 in C2™~H(R?™), where 7 satisfies

loc
(—A)™7 = (2m — 1)le*™7, (5.28)

and letting R — oo in (5.27), from Corollary 5.4 we infer ™7 € L!(R?*™).
Let us prove the claim. Corollary 5.4, Theorem 4.1, and (5.27), together
with n, < log2, imply that up to subsequences either

(i) me — 7 in C2 1 (R?™) for some function 77 € CE™~(R?™), or

(ii) nr — —oo locally uniformly, or

(iii) there exists a closed set So # @ of Hausdorfl dimension at most 2m — 1
and numbers By — +oo such that

LLAN @ in CIMHR?™\Sp),
Br

where

A"p=0, ¢<0, p#0 onR*™ ¢=0onS. (5.29)

Since 7 (0) = log 2, (ii) can be ruled out. Assume now that (iii) occurs. From
Liouville’s theorem and (5.29) we get Ay Z 0, hence for some R > 0 we have
fBR |Ap|dz > 0 and

|Ang|dx = klim 6k/ |Ap|dz = +o0. (5.30)

lim
k— Br

Br
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On the other hand, we infer from Lemma 5.6
/ |V |de = uk(xk)ridm/ |Viuy|de < CR*™¢, (5.31)
Br Brry, (zk)

contradicting (5.30) when ¢ = 2 and therefore proving our claim.

Step 2. We now prove that 77 is a standard solution of (5.28), i.e. there are
A >0, zg € R?™ such that

2\

—_——. 5.32
14+ A2z — xzo)? (5:32)

n(x) = log

Was this not the case, according to [Marl, Thm. 2|, there would exist j € N
with 1 < j7 <m — 1 and a < 0 such that

lim (—A)7(z) = a.

2] —o00
This would imply
klim |ATny|dx = |a| - vol(B1(0))R*™ + o(R*™) as R — oo,

contradicting (5.31) for £ = 2j. Hence (5.32) is established. Since 7 < n;(0) =
log 2, it follows immediately that 2o = 0, A = 1, i.e. 1 = 1, and (5.26) follows
from (5.7), (5.27) and Fatou’s lemma. O

5.2 Exhaustion of the blow-up points and proof
of Theorem 5.1

For ¢ € N we say that (Hy) holds if there are ¢ sequences of converging points
Tik — x(i), 1 < ¢ </ such that

sup )\kaf};‘(x)ui(x)em“i(I) <C, (5.33)
€N
where
Ry i(z) == 1%111;} |z — 2 k|

We say that (E,) holds if there are ¢ sequences of converging points z; , — z(®
such that, if we define r; ;, as in (5.3), the following hold true:

(E}) Forall 1 <i#j</(

dist(x; i, 092) .
im —————— = o0, lim
k—oo Tik k—oo Tik

|1'i,k — Tkl

(E?) For 1 <4 </ (5.4) holds true.

3 : : 2 mu? —
(E}) Hmp oo limg oo fUﬁ':lBRri’k(zi,k) ApuZe™edy = (Ay.
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To prove Theorem 5.1 we show inductively that (H;) and (Ey) hold for
some positive I € N, following the approach of [AD] and [RS]. First observe
that (E7) holds thanks to Lemma 5.2 and Proposition 5.7. Assume now that
for some ¢ > 1 (E,) holds and (Hy) does not. Choose x¢11 % € 2 such that

2 2
AkR?,TI?($e+1,k)Ui(fcﬂl,k)emu’“m“'k) = A max R?,T“iemu’“ — 00, (5.34)

and define rp41  as in (5.3). It easily follows from (5.34) that

lim |$e+1,k - xi,k| _

0, 1<i<¢t (5.35)
k—o0 To+1,k

We now need to replace Lemma 5.2 and Lemma 5.3 with the lemma below.

Lemma 5.8 Under the above assumptions and notation, we have

lim diSt(:L'ngLk, 89)

= 00 5.36
k—o0 To+1,k ( )

and

g (Tos1 gk + res1 k) — uk(Terr k) — 0 in CEPTHRP™),  as k — co. (5.37)

loc

Proof. To simplify the notation, let us write yi := z¢11,%x and pg = To41 k-
Evaluating the right-hand side of (5.34) at the point y, — prx we get

( inf |yk — Tik — pk$|2m)ui (yk + pkx)em“i(ykJrka)
1<i<e

<( ; o 2m) 2 mug (yx)
_(gielyk T k|7 )ug (yr)e ,

that is

: 2m
2 (y) (@2, 4 4 (2)—1) inf1<i<s |yx — Ti k| _
z)e™lk 41k < - =14o0(1), (5.38
(@) infi<i<e lyp — ik — prx?™ (1), (5.38)

—2
Upy1,k

where o(1) — 0 as k — oo locally uniformly in z, as (5.35) immediately implies.
Then (5.36) follows as in the proof of Lemma 5.2, since (5.38) implies

22m(2m — 1)!

2 —2
Up 17kemuk(yk)(u2+1,k_1) = o(1), 5.39

(—A)Upyq =

where o(1) — 0 as k — oo uniformly locally in z.

Similarly, if we define vg(x) := ug(Tet1,k + Te41,6T) — Uk (Te41,5), We can use
(5.39) to replace (5.13) in the proof of Lemma 5.3 and get

(—A)m?}k — 0

locally uniformly in R?™. Then the rest of the proof of Lemma 5.3 applies
without changes, and also (5.37) is proved. ([

Still repeating the arguments of the preceding section with x4 1 instead of
xp and 7o41 k instead of ry, we define

N1,k (@) = wr(Tog1, 1) [k (Ter 1,60 + Tog1,5) — Wk(Teg1,k)],

and we have
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Proposition 5.9 We have ng41,1(x) — no(z) = log ﬁ in CZ™(R?*™) and

loc

lim )\kuiem“i dxr = lim A dr = Ay (5.40)
R—o0 BRryyy g (Tet1,k) =00 JBR(0)

Summarizing, we have proved that (Ej,,), (E7,;) and (5.40) hold. These
also imply that (E7, ;) holds, hence we have (Eg41). Because of (5.2) and (E7),
the procedure stops in a finite number I of steps, and we have (Hj).

Finally, we claim that Ay — 0 implies ux, — 0 in H™(Q). This, (5.5) and
elliptic estimates then imply that

up — 0 in C2hO\{zW . 2D},

loc

To prove the claim, we observe that for any o > 0

/(—A)mukdz = / )\kukem“idz
Q Q
Ak

O J{zeQup>al

2 2
uiem“k dx + A\ / upe s dx
{zeQur<a}

C
< _+)\kcou
(6%

where C, depends only on a. Letting £ and « go to infinity, we infer
A™up — 0 in LY(Q). (5.41)

Thanks to (5.11), we infer that up to a subsequence up — ug in H™(2). Then
(5.41) and the boundary condition imply that ug = 0, in particular the full
sequence converges to 0 weakly in H"(Q). This completes the proof of the
theorem.

5.3 A Lorentz-space estimate

In this section we want to give a proof of an elliptic estimate for functions u
satisfying Navier or Dirichlet (or even more general) boundary conditions and
with A" being slightly more than integrable, Theorem 5.15 below. We start
by recalling the definition and some properties of the Lorentz spaces.

Given a measurable function u : Q@ — R, Q C R™, we define the distribution
function of u as

Au(t) == p{z € Q@ |u(z)| >t}

where p denotes the Lebesgue measure in R™. Then we define the equimeasurable
decreasing rearrangement of u as

u*(s) :=inf{t : A\, (¢) < s}.

Definition 5.10 (Lorentz spaces) For u: € — R measurable, set
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Set, for 1 <p < o0

1
> dt\ «
(/ (tEu**(t))q?) if 1 <q<oo
0
lull p,q) =
1
sup tru**(t) if g = oo.
t>0

The Lorentz space LP9(Q) is defined as
LPD(Q) = {u : Q — R measurable : [[ul|,q) < oo},

endowed with the norm || - ||(p,q)-

The Lorentz spaces generalize the Lebesgue spaces in that L(PP)(Q) = LP(Q)
for 1 < p < co. Moreover L(pvq)(ﬂ) c L@ for 1 < p<ooand1<q<r<oo.

The following is a generalization of Holder’s inequality, and can be found in
[O'N].

Proposition 5.11 Let 1 <p < oo, 1 < g < oo and Q C R™. Let p' and ¢’ be
the conjugate exrponents, i.e.

1

- =1, —+-==1

)

1
p 7 q q
Let f € LPD(Q), g € L9)(Q). Then fg e L*(Q), and

Ifgllzr@) < 1l @allglle.a)-

We also have the following improved Sobolev imbedding.

and assume that

Proposition 5.12 Let f € LP(2), Q C R", 1 < p < n,
== — % Moreover

Vfe L(WJ)(Q), Then f € L(p*"Z)(Q), where p% %

1 l=.0) < CUV fllp,g) + 11 2r)-

Finally, we also need an interpolation result for Lorentz spaces.

Theorem 5.13 ([SW], [Hun]) Let Q be an open subset of R™. Let ro, r1, po,
be real numbers such that
1<rg<r <0

and
1 <po#p1 < oo
Let T be a linear operator whose domain D contains

U @

ro<r<ri
and which maps continuously L™ (2) to LP°(R) and L™ () to LPr(R), with
norms
ITF | Lrow)
1Tl e ()

Collfllroy for every f e L™(Q)

<
< Cillflleri)  for every f € L™ ().
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Then, for each 1 < q < oo, and for every pair (p,r) such that there exists
6 € (0,1) with
1 1-6 6 1 1-60 6
- = +— and -—=
p Po P r To T1

T maps continuously L9 (Q) to L®9(R), and

”TfHL(M)(]R) < C||f||L<rvq>((z) Jor every f € L(T’Q)(Q),

)

where C' = C(CO’ Clarapa q,70, rlapO’pl)'

The following theorem can be found in [BS, Cor. 6.16] (see also the discussion
in [BS, Page 254]).

Theorem 5.14 Let Ty be the fractional integral operator defined by
1
Inf=IDIvxf, I(z):= =y
for0 < A <n and f: R® — R measurable. Then, for any 0 < a < 1, T is
bounded from L(log L)*(R"™) to L(#’é) (R™).

Theorem 5.15 Let u solve A™u = f € L(log L)* in Q with Dirichlet or Navier
boundary conditions, 0 < a < 1, Q C R™ bounded and with smooth boundary,

n

n > 2m. Then V2" {y e L("*f’é)(Q), 1<0<2m—1 and

) <O fllog Lye- (5.42)

HVQ”HUH(

_n_ 1
n—0'a

Proof. Define
f L f in Q
1 0 inR™M\Q,
and let w := K x f , where K is the fundamental solution of A™. Then

(V2 —tw| = |(V2" 1K) « f| < Oy + | f],

where I (z) = |2|*™™. According to theorem 5.14, |[V*" 1| € L(ﬁ’i)(R”)
and R
”vszle(L 1) = Clifllzgogye = Cllfllgog 2ye- (5.43)

n—1"a

We now use (5.43) to prove (5.42), following a method that we learned from
[Hél]. Given g : Q2 — R™ measurable, let v, be the solution to A™v, = divg
in Q, with the same boundary condition as u, and set P(g) := |V*" 1y,
By LP estimates (see e.g. [ADN]), P is bounded from LP(Q;R™) into LP(Q)
for 1 < p < oco. Then, thanks to Theorem 5.13 above, P is bounded from
LP9)(Q:R™) into LPD(Q) for 1 < p < oo and 1 < g < co. Choosing now
g = VA™ Ly, we get vy, = u, hence |V>™~ly| = P(VA™ 1), and from (5.43)
we infer

n—17"«a

HV2’"_1UH(%,A) < CHVA’"_%UH(L 1) < Clfllzqogye-

For 1 < £ <2m — 1, (5.42) follows from Proposition 5.12. O
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