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Abstract

Consider a smooth Riemannian manifold (M, g) of arbitrary even dimension
2m, and a sequence of conformal metrics gk = e2ukg on M , uk ∈ C∞(M). In
this work we study the concentration-compactness behaviour of this sequence of
metrics, under the assumption that their volumes are equibounded and their Q-
curvatures Q2m

gk
converge uniformly or even in C0 to a given continuous function

Q0.

We start by taking (M, g) to be R2m with the Euclidean metric. Then, in
analogy with a 4-dimensional result of Adimurthy, F. Robert and M. Struwe,
we show that, in case of non-compactness and up to subsequences, the metrics
vanish in the limit uniformly locally outside a rectifiable set of dimension at
most 2m − 1.

We have a much stronger result, if (M, g) is a closed Riemannian manifold,
satisfying a generic (hence not restrictive) condition which will be discussed. In
this case, we either have compactness, or in the limit (up to subsequences) the
metrics vanish outside a finite concentration set S. Moreover Q0 is positive on
S, and the measures Q2m

gk
dvolgk

converge weakly to
∑

x∈S Λ1δx, where Λ1 =
(2m−1)!vol(S2m) is the total Q-curvature of the sphere. In particular the total
Q-curvature of the metrics gk (it does not depend on k) is an integer multiple of
the total Q-curvature of the sphere. Our approach generalizes the 4-dimensional
argument of O. Druet and F. Robert to arbitrary dimension, also allowing for
the Q-curvatures Q2m

gk
to have varying sign. Quantization results for similar

equations, have also been obtained by A. Malchiodi and C. B. Ndiaye using
other techniques.

In the case of the round sphere, (M, g) = (S2m, gS2m), the concentration
result is particularly explicit. We either have compactness, or we have concen-
tration at a single point, and the pull-back metrics Φ∗

kgk converge up to a sub-
sequence towards the round metric gS2m , if the Φk’s are suitably chosen Möbius
diffeomorphisms. This generalizes to arbitrary dimension previous results in
dimension 2 by M. Struwe and in dimension 4 by A. Malchiodi and M. Struwe.
We also allow the Q2m

gk
’s to have varying sign, and show that concentration only

occurs at places of positive Q-curvature.

These concentration-compactness results rely heavily on a blow-up technique
and on the classification and study of the asymptotic behaviour at infinity of
the conformal metrics on R2m of constant Q-curvature Q ∈ R and finite volume.
When Q > 0, we do this in arbitrary dimension, building upon several previous
partial results. For Q ≤ 0, we first show the existence of such metrics if m > 1,
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which was previously unknown, and then develop an analysis analogous to the
one done for the positive case.

Quite remarkably, the above geometrical results, can be used to give an
elegant proof of a concentration-compactness result for the equation

(−∆)muk = λkukemu2
k ,

which arises from the Adams-Moser-Trudinger inequality:

sup
u∈Hm

0 (Ω), ‖∇mu‖2
L2(Ω)

≤Λ1

∫

Ω

emu2

dx = c0(m) < +∞.

This generalizes previous works of Adimurthy, O. Druet, F. Robert and M.
Struwe. The proof we give, shows a clean relation between the geometric prob-
lem of prescribing the Q-curvature and an apparently unrelated imbedding prob-
lem in functional analysis. Here we use some sharp Lorentz-space estimates,
which allow a more transparent approach.



Zusammenfassung

Sei (M, g) eine glatte Riemannsche Mannigfaltigkeit beliebiger gerader Dimen-
sion 2m, und sei gk = e2ukg, mit uk ∈ C∞(M), eine Folge konformer Metriken
auf M . In dieser Arbeit studieren wir das Verhalten dieser Folge von Metriken
im Hinblick auf Konzentrations-Kompaktheit unter der Annahme, daß ihre Vo-
lumina gleichmässig beschränkt sind und ihre Q-Krümmungen Q2m

gk
gleichmäßig,

oder sogar in C0, gegen eine gegebene stetige Funktion Q0 konvergieren.

Zu Beginn wählen wir für (M, g) den euklidischen R2m. In Analogie zu einem
Resultat von Adimurthy, F. Robert und M. Struwe in Dimension 4 zeigen wir im
nicht-kompakten Fall zunächst, daß eine Teilfolge der Folge der Metriken gk im
Limes lokal gleichmäßig außerhalb einer rektifizierbaren Menge der Dimension
höchstens 2m − 1 verschwindet.

Eine viel stärkere Aussage erhalten wir, wenn (M, g) eine geschlossene Rie-
mannsche Mannigfaltigkeit ist, welche eine generische (also nicht restriktive)
Bedingung erfüllt, die wir später erklären. In diesem Fall liegt entweder Kom-
paktheit vor, oder eine Teilfolge der Metriken verschwindet im Limes außer-
halb einer endlichen Konzentrationsmenge S. Desweiteren ist Q0 positiv auf S,
und die Maße Q2m

gk
dvolgk

konvergieren schwach gegen
∑

x∈S Λ1δx, wobei wir
mit Λ1 = (2m − 1)!vol(S2m) die totale Q-Krümmung der Sphäre beschreiben.
Insbesondere ist die totale Q-Krümmung der Metriken gk (welche nicht von
k abhängt) ein ganzzahliges Vielfaches der totalen Q-Krümmung der Sphäre.
Unser Zugang verallgemeinert ein Argument, welches O. Druet and F. Robert
für den vierdimensionalen Fall gegeben haben, auf beliebige Dimensionen, wobei
das Vorzeichen der Q-Krümmungen Q2m

gk
nun springen darf. Mit anderen Meth-

oden A. Malchiodi und C. B. Ndiaye haben Quantisierungsresultate für ähnliche
Gleichungen erzielt.

Im Falle der runden Sphäre, (M, g) = (S2m, gS2m), können wir unser Resul-
tat über das Konzentrationsverhalten der Folge gk noch verfeinern: Entweder
liegt Kompaktheit vor, oder es kommt zur Konzentration an einem einzigen
Punkt und eine Teilfolge der zurückgezogenen Metriken Φ∗

kgk konvergiert gegen
die runde Metrik gS2m , unter der Voraussetzung, daß die Φk geeignet gewählte
Möbiusdiffeomorphismen sind. Dies verallgemeinert bekannte Resultate von M.
Struwe für Dimension 2 und von A. Malchiodi und M. Struwe für Dimension
4 auf den Fall beliebiger Dimension. Darüberhinaus lassen wir zu, daß das
Vorzeichen von Q2m

gk
springt, und zeigen, daß die Konzentration nur an Stellen

positiver Q-Krümmung auftritt.

Unsere Resultate zur Konzentrations-Kompaktheit fußen zum einen auf einer
blow-up-Technik, und zum anderen auf der Klassifikation und dem Studium des
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asymptotischen Verhaltens der konformen Metriken auf R2m von konstanter Q-
Krümmung Q ∈ R, und endlichem Volumen. Im Falle Q > 0 zeigen wir dies
unter Benutzung verschiedener früherer Teilresultate in beliebiger Dimension.
Im Falle Q ≤ 0 zeigen wir zunächst die Existenz solcher Metriken für m > 1 —
ein bis dahin unbekanntes Resultat — und führen sodann analoge Untersuchun-
gen wie im Falle Q > 0 durch.

Eine bemerkenswerte Tatsache ist, daß obige geometrische Ergebnisse einen
eleganten Beweis eines Konzentrations-Kompaktheits-Resultates für die Gle-
ichung

(−∆)muk = λkukemu2
k

liefern, welche mit der Adams-Moser-Trudinger Ungleichung

sup
u∈Hm

0 (Ω), ‖∇mu‖2
L2(Ω)

≤Λ1

∫

Ω

emu2

dx = c0(m) < +∞

verknüpft ist. Dies verallgemeinert frühere Arbeiten von Adimurthy, O. Druet,
F. Robert und M. Struwe. Unser Beweis deckt einen Zusammenhang zwis-
chen dem geometrischen Problem, die Q-Krümmung vorzuschreiben, und einem
offensichtlich damit nicht verwandten funktionalanalytischen Einbettungsprob-
lem auf. Wir benützen hierbei einige scharfe Abschätzungen für Lorentzräume,
welche eine besonders klare Argumentation ermöglichen.



Riassunto

Consideriamo una varietà riemanniana liscia (M, g) di dimensione pari 2m ed
una successione di metriche conformi gk = e2ukg su M , uk ∈ C∞(M). In questo
lavoro studiamo i fenomeni di concentrazione-compattezza di questa successione
di metriche, nell’ipotesi che i loro volumi siano equilimitati e che le loro Q-
curvature Q2m

gk
convergano uniformemente o addirittura in C0 verso una data

funzione Q0.

Iniziamo con il prendere (M, g) uguale a R2m con metrica euclidea. Quindi,
in analogia con un risultato di Adimurthy, F. Robert e M. Struwe in dimensione
4, mostriamo che in caso di non compattezza e a meno di una sottosuccessione,
le metriche vanno a zero nel limite per k → ∞ localmente uniformemente al di
fuori di un insieme rettificabile di dimensione al più 2m − 1.

Abbiamo un risultato molto più forte se (M, g) è una varietà riemanniana
chiusa, che soddisfa una certa condizione generica (quindi ben poco restrittiva)
che discuteremo. In questo caso, o abbiamo compattezza, oppure nel limite (a
meno di sottosuccessioni) le metriche vanno a zero al di fuori di un insieme
di concetrazione finito S. Inoltre Q0 è positivo su S, e le misure Q2m

gk
dvolgk

convergono debolmente verso
∑

x∈S Λ1δx, laddove Λ1 = (2m− 1)!vol(S2m) è la
Q-curvatura totale della sfera. In particolare, la Q-curvatura totale delle met-
riche gk (non dipende da k) è un multiplo intero della Q-curvatura totale della
sfera. Il nostro approccio generalizza a dimensione arbitraria un metodo che O.
Druet e F. Robert hanno sviluppato in dimensione 4. Inoltre permettiamo alle
Q-curvature Q2m

gk
di cambiare segno. Risultati di quantizzazione per equazioni

simili sono anche stati ottenuti da A. Malchiodi e C. B. Ndiaye usando tecniche
diverse.

Nel caso della sfera standard, (M, g) = (S2m, gS2m), il risultato di concentra-
zione-compattezza risulta particolarmente esplicito. O abbiamo compattezza, o
abbiamo concentrazione in un singolo punto, e i pull-back Φ∗

kgk delle metriche gk

convergono, a meno di una sottosuccessione, verso la metrica standard gS2m , se
le Φk sono diffeomorfismi di Möbius opportunamente scelti. Questo generalizza
a dimensione arbitraria precedenti risultati di M. Struwe in dimensione 2 e di
A. Malchiodi e M. Struwe in dimensione 4. Inoltre permettiamo alle Q2m

gk
di

cambiare segno, e mostriamo che la concentrazione può avvenire solo nei punti
di Q-curvatura positiva.

Questi risultati di concentrazione-compattezza dipendono fortemente da una
certa tecnica di blow-up e dalla classificazione e studio asintotico ad infinito delle
metriche conformi su R2m di Q-curvatura constante Q ∈ R e volume finito. Per
Q > 0, facciamo ciò in dimensione arbitraria, migliorando vari lavori precedenti.
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Per Q ≤ 0, dapprima mostriamo l’esistenza di tali metriche quando m > 1, cosa
precedentemente non nota, poi sviluppiamo un’analisi analoga a quella prodotta
nel caso positivo.

È molto interessante notare che i risultati geometrici sopra descritti possono
essere usati per dare un’elegante dimostrazione di un risultato di concentrazione-
compattezza per l’equazione

(−∆)muk = λkukemu2
k ,

che nasce nell’ambito della disuguaglianza di Adams-Moser-Trudinger:

sup
u∈Hm

0 (Ω), ‖∇mu‖2
L2(Ω)

≤Λ1

∫

Ω

emu2

dx = c0(m) < +∞.

Cos̀ı facendo, generalizziamo precedenti lavori di Adimurthy, O. Druet, F. Robert
e M. Struwe. La dimostrazione che diamo mostra una relazione molto chiara tra
il problema geometrico della Q-curvatura prescritta e un problema di immer-
sione in analisi funzionale che, in apparenza, è completamente scollegato. Qui
facciamo uso di alcune stime in spazi di Lorentz, che permettono un approccio
più trasparente.
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Chapter 1

Introduction

In this short introduction, we attempt to clarify how the various theorems proved
in this work happen to be tightly intertwined, though at a first sight it might
not seem so. In Section 1.1 we recall some facts about the Paneitz operators
and the Q-curvatures, as these objects will be largely used in what follows. In
Section 1.2 we provide the reader with a map to navigate through the following
chapters.

1.1 The Paneitz operators and the Q-curvatures

The study of the Paneitz operators moved into the center of conformal geometry
in the last decades, in part with regard to the problem of prescribing the Q-
curvature. Given a 4-dimensional Riemannian manifold (M, g), the Q-curvature
Q4

g and the Paneitz operator P 4
g were introduced by Branson-Oersted [BO] and

Paneitz [Pan]:

Q4
g := −

1

6

(
∆gRg − R2

g + 3|Ricg |
2
)

P 4
g (f) := ∆2

gf + div
(2

3
Rgg − 2 Ricg

)
df, for f ∈ C∞(M),

where Rg and Ricg denote the scalar and Ricci curvatures of g, and ∆g is
the Laplace-Beltrami operator of g with the analysts’ sign. Higher order Q-
curvatures Q2m and Paneitz operators P 2m on a 2m-dimensional manifold (ac-
tually more in general) were introduced in [Bra] and [GJMS].

One can think about the Paneitz operator as a higher order analog of the
Laplace-Beltrami operator, and the Q-curvature can be thought of as a higher
order analog of the Gaussian curvautre. In fact, in dimension 2 we simply have
P 2

g = −∆g and Q2
g = Kg. The expression higher order is justified, since in

general Q2m involves derivatives of the metric up to order 2m, and

P 2m
g = (−∆g)

m + Ag, (1.1)

where Ag is a differential operator of order at most 2m − 1. In particular P 2m
g

has order 2m.

1



2 Introduction

The interest of these objects lies in their covariant nature. If we consider in
dimension 2m the conformal metric gu := e2ug, we have

P 2m
gu

= e−2muP 2m
g , (1.2)

and
P 2m

g u + Q2m
g = Q2m

gu
e2mu, (1.3)

see for instance [Cha] Chapter 4. Notice that (1.3) is a generalized version of
Gauß’s identity, which states that in dimension 2

−∆gu + Kg = Kgue2u,

where Kg is the Gaussian curvature. The nice transformation (1.2) enjoyed by
the Paneitz operator is the reason why we do not simply take P 2m

g = (−∆g)
m,

and it explain the purpose of the correction term Ag in (1.1).
Although for the case m > 2 there are no explicit formulas for P 2m

g and Q2m
g

(we will not need them, anyway), we know that on flat R2m, P 2m
g = (−∆)m

and Q2m
g ≡ 0. Then (1.2) and (1.3) can be used to define the Paneitz operator

and the Q-curvature for any locally conformally flat manifold. For instance, in
the model case of the round sphere (S2m, g), we have

P 2m
g =

m−1∏

i=0

(−∆g + i(2m − i − 1)), Q2m
g ≡ (2m − 1)!,

which is consistent with (1.1). A formal definition of the Paneitz operator P k
g of

order k on an arbitrary Riemannian manifold (M, g) of dimension n can be given
by prescribing that P k

g satisfies the properties listed in the following theorem,
of which we shall only need that case n = k = 2m.

Theorem 1.1 ([GJMS]) Let k be a positive integer. Suppose n is odd, or
k ≤ n. Then for any Riemannian manifold of dimension n there is a linear
differential operator P k

g on scalar functions satisfying the following:

(i) If gu = e2ug, then

P k
gu

ϕ = e−
n+k

2 P k
g

(
e

n−k
2 ϕ

)
for every ϕ ∈ C∞(M).

(ii) The leading symbol of P k
g is (−∆g)

k
2 , and on Euclidean (Rn, gRn) we have

P k
gRn = (−∆)

k
2 .

(iii) P k
g = P̃ k

g + n−k
2 Qk

g, where Qk
g is a local scalar invariant, and P̃ k

g = δSk−2
g d,

where δ is the divergence operator on 1-forms and Sk−2
g is a differential

operator on 1-forms.

(iv) P k
g is self-adjoint.

The above theorem does not imply uniqueness of the operators P k
g , although

it follows easily that, in the locally conformally flat case, we do have uniqueness.
For example, given P 4

g as in the theorem above for n = 4, the operator P 4
g +

|Wg|2, where Wg is the Weyl tensor, satisfies the properties of the theorem as



1.2 Structure of the chapters 3

well. Since in dimension 2 local conformal flatness is for free, we can also easily
see that P 2

g = −∆g is the only Paneitz operator of order 2 in dimension 2. For

k = 2 and n > 2, Q2
g is a multiple of the scalar curvature Rg and P k

g is nothing
else than the well-known conformal Laplacian Lg.

Now the Q-curvature Qk
g in dimension n 6= k is defined by property (iii) in

the theorem above. In [Bra], T. Branson extended this definition to the case
n = k = 2m as follows. If we fix k ∈ N even, and call P k,n

g a Paneitz operator

of order k in dimension n, as given in Theorem 1.1. Then P k,n
g has coefficients

given by universal formulae in curvature and its derivatives which are rational
in n, and the zeroth order term of Pn,k

g is of the form n−k
2 Qn,k

g with coefficients

rational in n and regular at n = k. Then Q2m
g = Qk,k

g can be defined, roughly
speaking, as

Q2m
g = lim

n∈C
n→2m

Qn,2m
g .

An analytic continuation argument in the dimension n also show that the Q-
curvature so defined satisfies the transformation law (1.3). Equivalent defini-
tions of the Q-curvature have been provided by [FG], [FH] and [GH].

Let us from now on focus on the case n = k = 2m. A geometrically inter-
esting fact is that the total Q-curvature is a global conformal invariant, that is,
if M is closed and 2m-dimensional, then

∫

M

Q2m
gu

dvolgu =

∫

M

Q2m
g dvolg, gu = e2ug.

Further evidence of the geometric relevance of the Q-curvatures is given by the
Gauss-Bonnet-Chern’s theorem [Che]: On a locally conformally flat closed mani-
fold of dimension 2m, since Q2m

g is a multiple of the Pfaffian plus a divergence
term (see [BGP]), we have

∫

M

Q2m
g dvolg = (2m − 1)! vol(S2m)

χ(M)

2
, (1.4)

where χ(M) is the Euler-Poincaré characteristic of M . Recently S. Alexakis
[Ale1], [Ale2] proved that

Q2m
g = Wg + div Tg + C2mPfaffg,

where Wg is a local conformal invariant, Tg is a Riemannian vector field and
Pfaffg denotes the Pfaffian of g. Then, the Gauss-Bonnet-Chern formula can
be expressed in terms of the Q-curvature on any close manifold (M, g), without
the assumption that g be locally conformally flat. We then have

∫

M

(Q2m
g − Wg) dvolg = (2m − 1)! vol(S2m)

χ(M)

2
.

1.2 Structure of the chapters

We start in Chapter 2 by addressing the special case when (M, g) is R2m with the
Euclidean metric gR2m . Remember that P 2m

g
R2m

= (−∆)m and Q2m
g

R2m
≡ 0. Our

purpose now is to classify all conformal metrics e2ugR2m on R2m having constant



4 Introduction

positive Q-curvature and finite volume. Thanks to (1.3), this is equivalent to
classify the solutions u to

(−∆)mu = Qe2mu on R2m, (1.5)

satisfying
∫

R2m e2mudx < ∞, where Q > 0 is constant. Equation (1.5) is also
called Liouville equation (also when Q is not constant). We will see that there
exist standard solutions. These correspond to metrics which arise from the pull-
back of the round metric of S2m via the stereographic projection and possibly a
Möbius transformation. Such solutions have a well-controlled behaviour at in-
finity. Then we develop some criteria to characterize the non-standard solutions,
with the purpose of ruling out their appearance in the blow-up theory which
will be discussed later. Of particular importance is the following criterium: If a
solution u is non standard, then there exist 1 ≤ j ≤ m− 1 and a constant a 6= 0
such that

lim
|x|→∞

∆ju(x) = a. (1.6)

In Chapter 3 we discuss the existence and classification of conformal metrics
on R2m with non-positive constant Q-curvature Q ≤ 0 and finite volume. A
simple computation, based on the maximum principle shows that for m = 1 such
metrics do not exist at all. Then one might be led to believe that this is the case
also in higher dimension, but it actually turns out that such metrics do exist for
m > 1, as we show in Section 3.2. Then we study the asymptotic behaviour at
infinity, as in the case of positive Q-curvature. An important difference between
the two cases is that for Q ≤ 0 there are no standard solutions and there are
no solutions presenting a “nice” behaviour at infinity. In particular a property
similar to (1.6) can be shown for every solution in the negative case. This will
be crucial in proving that concentration phenomena on closed manifolds can
only occur at points of positive curvature.

In Chapter 4 we turn our attention to the concentration-compactness re-
sults. We are given a Riemannian manifold (M, g) and a sequence of conformal
metrics gk = e2ukg, with vol(gk) equi-bounded and Q2m

gk
→ Q0 uniformly for a

continuous function Q0. The first result we prove concerns the case when (M, g)
is R2m endowed with the Euclidean metric. Its proof is solely based on linear
elliptic estimates and the generalization of a non-linear estimate of Brézis and
Merle, Theorem 2.7.

Then we consider the case when (M, g) is a closed manifold with the property
that kerP 2m

g contains only the constant functions. This is a generic assumptions
and is needed in order for P 2m

g to have a Green’s function. Working with the
Green’s representation formula we can show integral gradient estimates (Lemma
4.7) which, combined to the classification results of Chapters 2 and 3 imply that
in the concentration case

(i) concentration can only occur at finitely many (sequences of) points where
Q0 > 0;

(ii) if we scale the metrics at such (sequences of) concentration points, we
obtain a sequence of metrics converging, up to a subsequence, to the round
metric on S2m.
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Still working with the gradient estimates, we can show that away from the
finitely many concentration points, the metrics are vanishing locally uniformly.
We then prove that the total Q-curvatures of the metrics gk of the concentrating
subsequence is an integer multiple of the total Q-curvature of the round S2m.
This also allows us to estimate the number of concentration points in terms
of the total Q-curvature of the initial metric g. An immediate consequence
is Corollary 4.3, which gives some compactness criteria in terms of the Euler
characteristic of M . Finally we consider the model case when (M, g) is the
round sphere S2m.

We conclude by studying in Chapter 5 the concentration-compactness be-
haviour of sequences (uk) of solutions to the following elliptic equation, related
to the Adams-Moser-Trudinger inequality






(−∆)muk = λkukemu2
k in Ω

uk > 0 in Ω

uk = ∂νuk = . . . = ∂m−1
ν uk = 0 on ∂Ω.

(1.7)

Here Ω is a bounded domain with smooth boundary. Assuming λk → 0 and

∫

Ω

uk(−∆)mukdx = λk

∫

Ω

u2
kemu2

kdx → Λ ≥ 0 as k → ∞, (1.8)

we will see that in the case of non-compactness, we have concentration on a
finite set S, with uk → 0 locally uniformly on Ω\S. Moreover we will show that
Λ ≥ Λ1, where Λ1 is the total Q-curvature of the round sphere S2m. The reason
for such an unexpected relation with the Q-curvature, is that, when we scale
uk at a blow-up sequence, we find a new sequence of functions ηk which solve
an approximate Liouville-type equation (1.5), see Corollary 5.4. Then in the
limit we find a solution to (1.5), which can be classified, thanks to the results
of Chapter 2. This requires, though, some a priori gradient bounds. We prove
them by observing that (1.8) implies that the right-hand side of (1.7) is slightly
more than integrable, as it belongs to a so-called Zygmund space:

(−∆)muk = λkukemu2
k ∈ L(logL)

1
2

(see the proof of Lemma 5.5 for the definition of L(log L)
1
2 ). Using some sharp

elliptic estimates for such Zygmund spaces, we obtain uniform bounds for ∇ℓuk

in the Lorentz space L(2m/ℓ,2)(Ω), 1 ≤ ℓ ≤ 2m− 1. The use of Lorentz spaces is
very natural here. In fact, the estimates that we would obtain, if we used the
usual Sobolev spaces instead, would not fully exploit the integrability hypotesis
(1.8), and they would be too weak for our purposes.

The content of Chapters 2 and 3 corresponds to the papers [Mar1] and [Mar2]
respectively. The content of Chapters 4 and 5 corresponds to the material in
[Mar3] and [Mar4] respectively. The list of authors from whom we borrowed
ideas is quite long, and is discussed chapter by chapter.
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Chapter 2

Conformal metrics on R2m

with positive constant

Q-curvature

In this chapter we classify the solutions to the equation (−∆)mu = (2m−1)!e2mu

on R2m giving rise to a conformal metric g = e2ugR2m with finite volume in terms
of analytic and geometric properties. The analytic conditions involve the growth
rate of u and the asymptotic behaviour of ∆u at infinity. As a consequence we
give a geometric characterization in terms of the scalar curvature of the metric
e2ugR2m at infinity, and we observe that the pull-back of this metric to S2m via
the stereographic projection can be extended to a smooth Riemannian metric if
and only if it is round.

2.1 Introduction and statement of the main the-

orems

Let gu = e2ugR2m be a conformal metric on R2m of Q-curvature identically
equal to (2m − 1)!. Since P 2m

g
R2m

= (−∆)m and Q2m
g

R2m
≡ 0, we infer from the

generalized Gauss identity (1.3) that u satisfies

(−∆)mu = (2m − 1)!e2mu on R2m, (2.1)

and, conversely, solutions to (2.1) yield metrics of Q-curvature (2m − 1)!. Ac-
tually, we can replace (2m − 1)! by any other positive constant Q, in that we

simply consider the function v := u + 1
2m log (2m−1)!

Q , i.e. the metric

gv := e2vgR2m =

(
(2m − 1)!

Q

) 1
m

gu.

Assuming that the volume of gu is finite, is equivalent to imposing
∫

R2m e2mudx <
∞.

As we shall see, regularity is not an issue, since every solution to (2.1) with
e2mu ∈ L1

loc(R
2m) is smooth (Corollary 2.8).

7
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Now given a solution u to (2.1) with e2mu ∈ L1, define the auxiliary function

v(x) :=
(2m − 1)!

γm

∫

R2m

log

(
|y|

|x − y|

)
e2mu(y)dy, (2.2)

where γm is defined by the following property: (−∆)m
(

1
γm

log 1
|x|

)
= δ0 in R2m

(compare Proposition 2.22 below). Then (−∆)mv = (2m − 1)!e2mu. We prove

Theorem 2.1 Let u be a solution of (2.1) with

α :=
1

|S2m|

∫

R2m

e2mu(x)dx < +∞. (2.3)

Then
u(x) = v(x) + p(x), (2.4)

where p is a polynomial of even degree at most 2m − 2, v is as in (2.2) and

sup
x∈R2m

p(x) < +∞,

lim
|x|→∞

∆jv(x) = 0, j = 1, . . . , m − 1,

v(x) = −2α log |x| + o(log |x|), as |x| → +∞.

It is well known that the function

u(x) := log
2λ

1 + λ2|x − x0|2
(2.5)

solves (2.1) and (2.3) with α = 1 for any λ > 0, x0 ∈ R2m. We call the
functions of the form (2.5) standard solutions. They all arise as pull-back under
the stereographic projection of metrics on S2m which are round, i.e. conformally
diffeomorphic to the standard metric. A. Chang and P. Yang [CY] proved that
the round metrics are the only metrics on S2m having Q-curvature identically
equal to (2m − 1)!.

In the next theorem we give conditions under which an entire solution of
Liouville’s equation satisfying (2.3) is necessarily a standard solution.

Theorem 2.2 Let u be a solution of (2.2) satisfying (2.3). Then the following
are equivalent:

(i) u is a standard solution,

(ii) lim|x|→∞ ∆u(x) = 0

(ii’) lim|x|→∞ ∆ju(x) = 0 for j = 1, . . . , m − 1,

(iii) u(x) = o(|x|2) as |x| → ∞,

(iv) deg p = 0, where p is the polynomial in (2.4).

(v) lim inf |x|→+∞ Rgu > −∞, where gu = e2ugR2m .

(vi) π∗gu can be extended to a Riemannian metric on S2m, where π : S2m →
R2m is the stereographic projection.
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Moreover, if u is not a standard solution, there exist 1 ≤ j ≤ m − 1 and a
constant a < 0 such that

∆ju(x) → a as |x| → +∞. (2.6)

The 2-dimensional case (m = 1) of Theorem 2.2 was treated by W. Chen and
C. Li [CL], who proved that every solution with finite total Gaussian curvature
is a standard one. The 4-dimensional case was treated by C-S. Lin [Lin], with a
classification of u in terms of its growth, or of the behaviour of ∆u at ∞. The
classification of C-S. Lin in terms of ∆u was used by F. Robert and M. Struwe
[RS] to study the blow-up behaviour of sequences of solutions uk to

{
∆2uk = λuke32π2u2

k in Ω ⊂ R4

uk = ∂uk

∂n = 0 on ∂Ω,

and by A. Malchiodi [Mal] to show a compactness criterion for sequences of
solutions uk to the equation

P 4
g uk + Q4

k = hke4uk , hk constant

on a closed 4-manifold. The same criterion could be used in higher dimension
in the proof of an analogous compactness result. This was observed by C. B.
Ndiaye [Ndi], who then used a different technique to show compactness. We
will discuss this in Chapters 4 and 5, where the above theorems will be used.

In higher dimension (m > 2), J. Wei and X. Xu [WX] (see also [Xu]) treated
a special case of Theorem 2.2: if u(x) = o(|x|2) at infinity, then u is always a
standard solution. This result is not sufficient to prove compactness. Moreover,
the proof appears to be overly simplified. For instance, in their Lemma 2.2 the
argument for showing that u ≤ C is not conclusive, and in the crucial Lemma
2.4 they simply refer to [Lin] for details. This latter lemma corresponds to
Lemma 2.13 here and it is the main regularity result, as it implies that u ≤ C,
hence that the right-hand side of (2.1) belongs to L∞(R2m). Its generalization
is a major issue, because Lin’s analysis is focused on the function ∆u, and it
makes use of the Harnack’s inequality and of the fact that ∆(u − v) ≡ C. In
the general case, Harnack’s inequality does not work and there are no uniform
bounds for ∆(m−2)(u − v) (while it is still true that ∆(m−1)(u − v) ≡ C). To
overcome this difficulties, we spend a few pages in the following section to study
polyharmonic functions. As a reward we obtain a Liouville-type theorem for
polyharmonic functions (Theorem 2.6) which allows us to make the proof of
[Lin] more direct and transparent.

The characterization in terms of the scalar curvature at infinity is new and
quite interesting, as it shows that non-standard solutions have a geometry essen-
tially different from standard solutions, and it also shows that the Q-curvature
and the scalar curvature are independent of each other in dimension 4 and
higher. On the other hand, since in dimension 2 we have 2Qg = Rg, our char-
acterization (v) is consistent with the result of [CL].

The characterization in (vi) implies the result of A. Chang and P. Yang [CY]
described above, which here follows from the general case.

The chapter is organized as follows. In Section 2.2 we collect some relevant
results about polyharmonic functions which will be needed later. Section 2.3
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contains the proof of Theorems 2.1 and 2.2; in Section 2.4 we give examples to
show that the hypothesis of Theorem 2.2 are sharp in terms of the growth at
infinity and of the degree of p. Recently J. C. Wei and D. Ye [WY] proved that
already in dimension 4 there is a great abundance of non-radially symmetric
solutions. In the last section we collect some useful results, which were needed
in the previous sections.

In the following, the letter C denotes a generic constant, which may change
from line to line and even within the same line.

2.2 A few remarks on polyharmonic functions

We briefly recall some properties of polyharmonic functions, which will be used
in the sequel. For the standard elliptic estimates for the Laplace operator, we
refer to [GT] or [GM]. The next lemma can be considered a generalized mean
value inequality. We give the short proof for the convenience of the reader, and
because identity (2.11) will be used in the next section.

Lemma 2.3 (Pizzetti [Piz]) Let ∆mh = 0 in BR(x0) ⊂ Rn, for some m, n
positive integers. Then

∫

BR(x0)

h(z)dz =

m−1∑

i=0

ciR
2i∆ih(x0), (2.7)

where

c0 = 1, ci =
n

n + 2i

(n − 2)!!

(2i)!!(2i + n − 2)!!
, i ≥ 1. (2.8)

Proof. We can translate and assume that x0 = 0. We first prove by induction

on m that there are constants b
(m)
0 , . . . , b

(m)
m−1 such that

∫

∂Br

h(z)dS =

m−1∑

i=0

b
(m)
i r2i∆ih(0), 0 < r < R, Br := Br(0). (2.9)

For m = 1 this reduces to the mean value theorem for harmonic functions.
Assume now that the assertion has been proved up to m−1, and that ∆mh = 0.
Let Gr be the Green function of ∆m in Br:

∆mGr = δ0 in Br, Gr = ∆Gr = . . . = ∆m−1Gr = 0 on ∂Br. (2.10)

For simplicity, let us only consider the case n = 2m. Then Gr(x) = G1

(
x
r

)
,

G1(x) = β + α0 log |x| + α1|x|
2 + . . . + αm−1|x|

2m−2,
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where the constants can be computed inductively starting with α0 up to αm−1

in order to satisfy (2.10). Notice that G1 is radial. Integrating by parts

0 =

∫

Br

Gr∆
mhdx

= h(0) −
m−1∑

i=0

∫

∂Br

∂∆m−1−iGr

∂n
∆ihdS (2.11)

= h(0) −
m−1∑

i=0

∫

∂Br

air
2i∆ihdS,

where each ai depends only on n and m. For each term on the right-hand side
with i ≥ 1, we can use the inductive hypothesis

r2i

∫

∂Br

∆ihdS = r2i
m−i−1∑

j=0

b
(m−1)
j r2j∆j+ih(0), 0 ≤ i ≤ m − 1,

and substituting we obtain (2.9). To conclude the induction it is enough to
multiply (2.9) by rn−1, integrate with respect to r from 0 to R and divide by
Rn

n .
To compute the ci’s, we test with the functions h(x) = r2i := |x|2i, i ≥ 1 (for

the case i = 0 use the function h(x) ≡ 1). Since ∆r2i = 2i(2i + n− 2)r2i−2, we

have that ∆kh(0) = 0 for k 6= i and ∆ih(0) = (2i)!!(2i+n−2)!!
(n−2)!! . Hence Pizzetti’s

formula reduces to

ciR
2i (2i)!!(2i + n − 2)!!

(n − 2)!!
=

∫

BR

r2idx =
n

n + 2i
R2i,

whence (2.8). �

Remark. From (2.11), moreover, for an arbitrary C2m-function u it follows that

∫

BR(x0)

u(z)dz =

m−1∑

i=0

ciR
2i∆iu(x0) + cmR2m∆mu(ξ), (2.12)

for some ξ ∈ BR(x0).

Proposition 2.4 Let ∆mh = 0 in B4 ⊂ Rn. For every 0 ≤ α < 1, p ∈ [1,∞)
and k ≥ 0 there are constants C(k, p), C(k, α) independent of h such that

‖h‖W k,p(B1) ≤ C(k, p)‖h‖L1(B4)

‖h‖Ck,α(B1) ≤ C(k, α)‖h‖L1(B4).

The proof of Proposition 2.4 is given in Section 2.5. As a consequence
of Proposition 2.4 and Pizzetti’s formula we have the following Liouville-type
theorem, compare [ARS].

Theorem 2.5 Consider h : Rn → R with ∆mh = 0 and h(x) ≤ C(1 + |x|ℓ),
for some ℓ ≥ 2m− 2. Then h(x) is a polynomial of degree at most ℓ.
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Proof. Thanks to Proposition 2.4, we have for any x ∈ Rn

|Dℓ+1h(x)| ≤
C

Rℓ+1

∫

BR(x)

|h(y)|dy = −
C

Rℓ+1

∫

BR(x)

h(y)dy+O(R−1), as R → ∞.

(2.13)
On the other hand, Pizzetti’s formula implies that

∫

BR(x)

h(y)dy =
m−1∑

i=0

ciR
2i∆ih(x) = O(R2m−2),

and letting R → ∞, we obtain Dℓ+1h = 0. �

A variant of the above theorem, which will be used later is the following

Theorem 2.6 Consider h : Rn → R with ∆mh = 0 and h(x) ≤ u − v, where
epu ∈ L1(Rn) for some p > 0, v ∈ L1

loc(R
n) and −v(x) ≤ C(log(1 + |x|) + 1).

Then h is a polynomial of degree at most 2m − 2.

Proof. The only thing to change in the proof of Theorem 2.5, is the estimate of
the term 2C

R2m−1

∫
–BR(x) h+dy, corresponding to the O(R−1) in (2.13). We have

∫

BR(x)

h+dy ≤

∫

BR(x)

u+dy + C

∫

BR(x)

log(1 + |y|)dy + C

≤
1

p

∫

BR(x)

epudy + C log R + C,

and all terms go to 0 when divided by R2m−1 and for R → ∞. �

The following estimate has been obtained by Brézis and Merle [BM] in di-
mension 2 and by C.S. Lin [Lin] and J. Wei [Wei] in dimension 4. Notice that
the constant γm, defined by the relation

(−∆)m

(
1

γm
log

1

|x|

)
= δ0, in R2m

(see Proposition 2.22 in Section 2.5), plays an important role.

Theorem 2.7 Let f ∈ L1(BR(x0)) and let v solve

{
(−∆)mv = f in BR(x0) ⊂ R2m,
v = ∆v = . . . = ∆m−1v = 0 on ∂BR(x0).

Then, for any p ∈
(
0, γm

‖f‖L1(BR(x0))

)
, we have e2mp|v| ∈ L1(BR(x0)) and

∫

BR(x0)

e2mp|v|dx ≤ C(p)R2m,

where γm is given by (2.50).
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Proof. We can assume x0 = 0 and, up to rescaling, that ‖f‖L1(BR) = 1. Define

w(x) :=
1

γm

∫

BR

log
2R

|x − y|
|f(y)|dy, x ∈ R2m.

Extend f to be zero outside BR(x0); then

(−∆)mw = |f | in R2m.

We claim that w ≥ |v| in BR. Indeed by (2.51) below and from |x − y| ≤ 2R
for x, y ∈ BR, we immediately see that

(−∆)jw ≥ 0, j = 0, 1, 2, . . .

In particular the function z := w − v satisfies

{
(−∆)mz ≥ 0 in BR

(−∆)jz ≥ 0 on ∂BR for 0 ≤ j ≤ m − 1.

By the maximum principle (see Proposition 2.21 below), (−∆)jz ≥ 0 in BR,
0 ≤ j ≤ m− 1 and the case j = 0 corresponds w ≥ v. Working also with −v we
complete the proof of our claim.

Now it suffices to show that for p ∈ (0, γm) we have ‖e2mpw‖L1(BR) ≤
C(p)R2m. By Jensen’s inequality we have

∫

BR

e2mpwdx =

∫

BR

e
2mp
γm

R
BR

log 2R
|x−y| |f(y)|dy

dx

≤

∫

BR

∫

BR

|f(y)|e
2mp
γm

log 2R
|x−y| dydx

=

∫

BR

|f(y)|

( ∫

BR

(
2R

|x − y|

) 2mp
γm

dx

)
dy

On the other hand

∫

BR

(
2R

|x − y|

) 2mp
γm

dx ≤

∫

BR

(
2R

|x|

) 2mp
γm

dx

= ω2m

∫ R

0

r2m−1− 2mp
γm (2R)

2mp
γm dr

= ω2m
γm

2mγm − 2mp
R2m2

2mp
γm .

We then conclude ∫

BR

e2mpwdx ≤
C(m)

γm − p
R2m.

�

Corollary 2.8 Every solution u to (2.1) with e2mu ∈ L1
loc(R

2m) is smooth.
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Proof. Given B4(x0) ⊂ R2m, write (2m − 1)!e2mu
∣∣
B4(x0)

= f1 + f2 with

‖f1‖L1(B4(x0)) < γm, f2 ∈ L∞(B4(x0)),

and u = u1 + u2 + u3, with

{
(−∆)mui = fi in B4(x0)
ui = ∆ui = . . . = ∆m−1ui = 0 on ∂B4(x0)

for i = 1, 2, and ∆mu3 = 0. Then, by Theorem 2.7, e2mu1 ∈ Lp(B4(x0)) for
some p > 1, while, by standard elliptic estimates u2 ∈ L∞(B4(x0)) and u3

is smooth, hence u3 ∈ L∞(B3(x0)). Then e2mu ∈ Lp(B3(x0)). Write now
u
∣∣
B3(x0)

= v1 + v2, where

{
(−∆)mv1 = (2m − 1)!e2mu in B3(x0)
v1 = ∆v1 = . . . = ∆m−1v1 = 0 on ∂B3(x0)

and ∆mv2 = 0. Then, by Lp-estimates and Sobolev’s embedding theorem,
v1 ∈ W 2m,p(B3(x0)) →֒ C0,α(B3(x0)) for some 0 < α < 1, while v2 is smooth.
Then u ∈ C0,α(B2(x0)) and with the same procedure of writing u as the sum of
a polyharmonic (hence smooth) function plus a function with vanishing Navier
boundary condition, we can bootstrap and use Schauder’s estimate to prove
that u ∈ C∞(B1(x0)). �

2.3 Proof of the main theorems

The proof of Theorems 2.1 and 2.2, which we give in this section, is divided
into several lemmas. It consists of a careful study of the functions v, defined in
(2.2), and u− v. In what follows the generic constant C may depend also on u.

Remark. In general v 6= u, even if u is a standard solution. To see that, rescale
u by a factor r > 0 as follows:

ũ(x) := u(rx) + log r.

Then ũ is again a solution, with the same energy. On the other hand the
corresponding ṽ satisfies

ṽ(x) =
(2m − 1)!

γm

∫

R2m

log

(
|y|

|x − y|

)
e2mu(ry)r2mdy

=
(2m − 1)!

γm

∫

R2m

log

(
|y′|

|rx − y′|

)
e2mu(y′)dy′ = v(rx). (2.14)

That shows that after rescaling, u − v changes by a contant.

Lemma 2.9 Let u be a solution of (2.1), (2.3). Then, for |x| ≥ 4,

v(x) ≥ −2α log |x| + C. (2.15)
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Proof. The proof is similar to that in dimension 4, compare [Lin]. Fix x with
|x| ≥ 4, and decompose R2m = A1 ∪ A2 ∪ B2, where B2 = B2(0) and

A1 := B|x|/2(x), A2 := R2m\(A1 ∪ B2).

For y ∈ A1 we have

|y| ≥ |x| − |x − y| ≥
|x|

2
≥ |x − y|, log

|y|

|x − y|
≥ 0,

hence ∫

A1

log
|y|

|x − y|
e2mu(y)dy ≥ 0. (2.16)

For y ∈ A2, since |x|, |y| ≥ 2, we have

|x − y| ≤ |x| + |y| ≤ |x||y|, log
|y|

|x − y|
≥ log

1

|x|
,

hence ∫

A2

log
|y|

|x − y|
e2mu(y)dy ≥ − log |x|

∫

A2

e2mu(y)dy. (2.17)

For y ∈ B2, log |x − y| ≤ log |x| + C and, since u is smooth, we find
∫

B2

log
|y|

|x − y|
e2mu(y)dy ≥

∫

B2

log |y|e2mu(y)dy − log |x|

∫

B2

e2mudy

−C

∫

B2

e2mudy

≥ − log |x|

∫

B2

e2mudy + C. (2.18)

Putting together (2.16), (2.17) and (2.18) and observing that log 1
|x| < 0, we

conclude that

v(x) ≥
(2m − 1)!

γm

∫

A2∪B2

log

(
|y|

|x − y|

)
e2mu(y)dy

≥ −
(2m − 1)!

γm
log |x|

∫

A2∪B2

e2mudy + C

≥ −
(2m − 1)!|S2m|

γm
α log |x| + C.

Finally, observing that (2m − 2)!! = 2m−1(m − 1)!, we infer

(2m − 1)!|S2m|

γm
=

(2m − 1)!2(2π)m(2m − 2)!!

(2m − 1)!!23m−2[(m − 1)!]2πm
= 2.

�

Lemma 2.10 Let u be a solution of (2.1) and (2.3), with m ≥ 2. Then u =
v + p, where p is a polynomial of degree at most 2m − 2. Moreover

∆ju(x) = ∆jv(x) + pj

= (−1)j 22j(j − 1)!(m − 1)!

(m − j − 1)!|S2m|

∫

R2m

e2mu(y)

|x − y|2j
dy + pj ,

where pj is a polynomial of degree at most 2(m − 1 − j).
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Proof. Let p := u − v. Then ∆mp = 0. By Lemma 2.9 we have

p(x) ≤ u(x) + 2α log |x| + C,

and Theorem 2.6 implies that p is a polynomial of degree at most 2m − 2. To
compute ∆jv, one can use (2.51) and the definition of γm. �

Lemma 2.11 Let p be the polynomial of Lemma 2.10. Then

sup
x∈R2m

p(x) < +∞.

In particular deg p is even.

Proof. Define
f(r) := sup

∂Br

p.

If supR2m p = +∞, there exists s > 0 such that

lim
r→+∞

f(r)

rs
= +∞, (2.19)

see [Gor, Theorem 3.1].1 Moreover |∇p(x)| ≤ C|x|2m−3 hence, also taking into
account Lemma 2.9, there is R > 0 such that for every r ≥ R, we can find xr

with |xr| = r such that

u(y) = v(y) + p(y) ≥ rs for |y − xr| ≤
1

r2m−3
.

Then, using Fubini’s theorem,

∫

R2m

e2mudx ≥

∫ +∞

R

∫

∂Br(0)∩Br3−2m (xr)

e2mrs

dσdr

≥ C

∫ +∞

R

exp(2mrs)

r(2m−3)(2m−1)
dr = +∞,

contradicting the hypothesis e2mu ∈ L1(R2m). �

The following lemma will be used in the proof of Lemma 2.13.

Lemma 2.12 Let G = G(|x|) be the Green’s function for ∆m in B1 ⊂ Rn for
n, m given positive integers. Then there are constants ci depending on m and
n such that for |x| = 1, and 0 ≤ i ≤ m − 1,

(−1)i ∂∆m−1−iG(x)

∂r
= ci > 0.

Proof. Since G = G(|x|), we only need to show that ci > 0. Fix i and let h solve






∆mh = 0 in B1

(−∆)ih = −1 on ∂B1

(−∆)jh = 0 on ∂B1 for 0 ≤ j ≤ m − 1, j 6= i.

1The statement of Theorem 3.1 in [Gor] is about µ(r) := inf∂Br |p|, but the proof works
in our case too.
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By the maximum principle (see Proposition 2.21 below), h(0) < 0, hence (2.11)
implies

0 < −h(0) = (−1)i

∫

∂B1

∂∆m−1−iG

∂r
dS = ciωn.

�

Lemma 2.13 Let v : R2m → R be defined as in (2.2). Then

lim
|x|→∞

∆m−jv(x) = 0, j = 1, . . . , m − 1 (2.20)

and for any ε > 0 there is R > 0 such that for |x| > R

v(x) ≤ (−2α + ε) log |x|. (2.21)

Proof. We proceed by steps.

Step 1. We claim that for any ε > 0 there is R > 0 such that for |x| ≥ R

v(x) ≤
(
− 2α +

ε

2

)
log |x| −

(2m − 1)!

γm

∫

Bτ (x)

log |x − y|e2mu(y)dy, (2.22)

where τ ∈ (0, 1) will be fixed later. Notice that the second term on the right-
hand side may be very large. To prove the claim, set R2m = A1 ∪ A2 ∪ A3,
where

A1 = {y ∈ R2m : |y| < R0}

A2 =
{
y ∈ R2m : |x − y| <

|x|

2
, |y| ≥ R0

}

A3 =
{
y ∈ R2m : |x − y| ≥

|x|

2
, |y| ≥ R0

}
,

and where R0 is chosen so large that

(2m − 1)!

γm

∫

A1

log
|y|

|x − y|
e2mu(y)dy ≤

(
− 2α +

ε

4

)
log |x| (2.23)

for |x| large enough. As for A2 we have
∫

A2

log
|y|

|x − y|
e2mudy =

∫

A2

log
|y|

|x − y|
e2mudy +

∫

A2

log
|y|

|x − y|
e2mudy

≤ −

∫

Bτ (x)

log |x − y|e2mudy − log τ

∫

A2

e2mudy

+

∫

A2

log |y|e2mudy (2.24)

≤ −

∫

Bτ (x)

log |x − y|e2mudy + o(1)(1 + log(2|x|)),

where o(1) → 0 as R0 → ∞ and we used that
∫

A2
e2mudy → 0 as R0 → ∞

and log |y| ≤ log(2|x|) for y ∈ A2. Finally, for y ∈ A3, one easily verifies that
|x−y|
|y| ≥ 1

4 , hence

∫

A3

log
|y|

|x − y|
e2mudy ≤ log(4) ·

∫

A3

e2mudy = o(1), as R0(ε) → ∞. (2.25)
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Putting now (2.23), (2.24) and (2.25) together, choosing R0 large enough (de-
pending on τ and ε) and then R > 0 large enough, we get (2.22).

Together with Fubini’s theorem, (2.22) implies

∫

R2m\BR(0)

v+dx ≤ C

∫

R2m

∫

R2m

χ|x−y|≤τ log
1

|x − y|
e2mu(y)dydx

= C

∫

R2m

e2mu(y)

∫

Bτ (y)

log
1

|x − y|
dxdy

≤ C

∫

R2m

e2mu(y)dy ≤ C. (2.26)

Step 2. From now on, x will be a point in R2m with |x| > R, where R is as in
Step 1. Fix p > 1 such that p(2m − 2) < 2m, and p′ = p

p−1 . By Theorem 2.7,
there is δ > 0 such that if ∫

B4(x)

e2mudy < δ, (2.27)

then ∫

B4(x)

e2mp′|z|dy ≤ C, (2.28)

with C independent of x, where z solves

{
(−∆)mz = (2m − 1)!e2mu in B4(x)
∆jz = 0 on ∂B4(x) for 0 ≤ j ≤ m − 1.

We now choose R > 0 such that (2.27) is satisfied whenever |x| ≥ R, and claim
that for such x,

∫

Bτ (x)

e2mp′udy ≤ C

∫

Bτ (x)

e2mp′|z|dy ≤ Cε. (2.29)

We now observe that for any σ > 0,

∫

R2m\Bσ(x)

e2mu(y)

|x − y|2j
dy → 0 as |x| → ∞ (2.30)

by dominated convergence; by Hölder’s inequality and (2.29), if σ is small
enough,

∫

Bσ(x)

e2mu

|x − y|2j
dy ≤

( ∫

Bσ(x)

e2mp′udy

) 1
p′

( ∫

Bσ(x)

1

|x − y|2jp
dy

) 1
p

≤ Cε
1
p′ .

Therefore

(−∆)jv(x) = C

∫

R2m

e2mu

|x − y|2j
dy → 0, as |x| → ∞.

Finally (2.21) follows from (2.22), (2.29) and Hölder’s inequality.

Step 3. It remains to prove (2.29). Set h := v − z, so that

{
∆mh = 0 in B4(x)
∆jh = ∆jv on ∂B4(x) for 0 ≤ j ≤ m − 1,
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Integrating (−∆)mv = (2m − 1)!e2mu and then integrating by parts we get

(−1)m

∫

∂Bρ(x)

∂

∂r
(∆m−1v)dS = (2m − 1)!

∫

Bρ(x)

e2mudy.

Dividing by ω2mρ2m−1, integrating on [0, R] and using Fubini’s, we find

∫ R

0

∫

∂Bρ(x)

∂

∂r
(∆m−1v)dσdρ =

∫ R

0

∫

∂B1(x)

∂

∂r
(∆m−1v(ρ, θ))dθdρ

=

∫

∂B1(x)

∫ R

0

∂

∂r
(∆m−1v(ρ, θ))dρdθ =

∫

∂BR(x)

∆m−1vdσ − ∆m−1v(x).

Similarly

∫ R

0

1

ρ2m−1

∫

Bρ(x)

e2mu(y)dydρ =

∫ R

0

1

ρ2m−1

∫

BR(x)

e2mu(y)χ|x−y|≤ρdydρ

=

∫

BR(x)

e2mu(y)

∫ R

|x−y|

1

ρ2m−1
dρdy

=
1

(2m − 2)

∫

BR(x)

[
1

|x − y|2m−2
−

1

R2m−2

]
e2mu(y)dy.

Hence, multiplying above by (2m−1)!
ω2m

and setting Cm−1 := (2m−1)!
(2m−2)ω2m

,

∫

∂BR

(−∆)m−1vdσ = (−∆)m−1v(x)

−Cm−1

∫

BR(x)

[
1

|x − y|2m−2
−

1

R2m−2

]
e2mu(y)dy

= Cm−1

[ ∫

|x−y|≥R

e2mu(y)

|x − y|2m−2
dy +

∫

BR(x)

e2mu(y)

R2m−2
dy

]

which implies at once, setting R = 4,
∫

∂B4(x)

(−∆)m−1vdS ≤ C, (2.31)

with C independent of x. Similarly, one can show that
∫

∂B4(x)

(−∆)ivdS ≤ C, 1 ≤ i ≤ m − 1. (2.32)

By Lemma 2.12 and by (2.11) rescaled and translated to B4(x) and with the
function −∆h instead of h, m − 1 instead of m, we obtain

−∆h(x) = −
m−2∑

i=0

∫

∂B4(x)

∂∆m−2−iG

∂n
∆i(∆h)dS (2.33)

=

m−1∑

i=1

∫

∂B4(x)

ci−1(−∆)ihdS ≤ C,
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where G is the Green function for ∆m−1 on B4(x):

∆m−1G = δx, ∆iG = 0, on ∂B4(x), for 0 ≤ i ≤ m − 2.

On the other hand, since the ci > 0, there is some τ > 0 such that the following
holds: if ξ ∈ B2τ (x) and Gξ is the Green’s function defined by

∆m−1Gξ = δξ, ∆iGξ = 0, on ∂B4(x), for 0 ≤ i ≤ m − 2,

then also

0 ≤ (−1)i ∂∆m−2−iGξ(η)

∂r
≤ C, for η ∈ ∂B4(x), r :=

η − x

4
.

Therefore, as in (2.33), we infer

−∆h ≤ C on B2τ (x), (2.34)

for some τ ∈ (0, 2).

On the other hand, thanks to (2.26) and (2.28),
∫

B4(x)

h+dy ≤

∫

B4(x)

(v+ + |z|)dy ≤ C.

By elliptic estimates,

sup
Bτ (x)

h ≤

∫

B4(x)

h+dy + C sup
B2τ(x)

(−∆h) ≤ C,

C independent of x, as usual. Since the polynomial p is bounded from above,
we infer

u ≤ h + p + |z| ≤ C + |z|,

and (2.29) follows at once. �

Corollary 2.14 Any solution u of (2.1), (2.3) is bounded from above.

Proof. Indeed u is continuous, u = v + p, and

lim
|x|→∞

v(x) = −∞, sup
x∈R2m

p(x) < +∞,

by Lemma 2.11. �

Lemma 2.15 Assume that |u(x)| = o(|x|2) as |x| → ∞. Then u = v + C.
Furthermore, for any ε > 0 there exists R > 0 such that

−2α log |x| − C ≤ u(x) ≤ (−2α + ε) log |x|, (2.35)

for |x| ≥ R.

Proof. Since v(x) = −2α log |x| + o(log |x|) at ∞, if deg p ≥ 2, we have that
u(x) = v(x)+ p(x) cannot be o(|x|2). Hence, knowing that deg p is even, we get
u = v + C for some constant C. Then (2.35) follows at once from Lemma 2.9
and Lemma 2.13. �
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Lemma 2.16 Set gu = e2ugR2m . If u is a standard solution, then

Rgu ≡ 2m(2m− 1).

If u is not a standard solution, then

lim inf
|x|→+∞

Rgu(x) = −∞. (2.36)

Proof. Assume that u is a standard solution and set

uλ(x) := log
2λ

1 + λ2|x|2
, gλ := e2uλgR2m . (2.37)

Then, up to translation, u = uλ for some λ > 0. Since g1 = (π−1)∗gS2m , where
π is the stereographic projection, we have Rg1 ≡ 2m(2m − 1). Then consider
the diffeomorphism of R2m defined by ϕλ(x) := λx. Then gλ = ϕ∗

λg1, hence
Rgλ

= Rg1 ◦ ϕλ ≡ 2m(2m− 1).
Assume now that u = v + p is not a standard solution. Since gR2m is flat,

the formula for the conformal change of scalar curvature, in the case m > 1,
reduces to

Rgu = −2(2m − 1)e−2u
(
∆u + (m − 1)|∇u|2

)
, (2.38)

see for instance [SY] pag 184. Then differentiating the expression (2.2) for v
and using that u ≤ C, we find that |∇v(x)| → 0 as |x| → ∞. We have already
seen that ∆v(x) → 0 as |x| → ∞; since deg p ≥ 2 implies

deg ∆p < deg |∇p|2,

we then have

lim sup
|x|→∞

(
∆u + (m − 1)|∇u|2

)
= lim sup

|x|→∞

(
∆p + (m − 1)|∇p|2

)
= +∞.

Observing that e−2u ≥ 1
C > 0, u being bounded from above, we easily obtain

(2.36). �

Proof of Theorem 2.1. Put together Lemmas 2.9, 2.10, 2.11 and 2.13. �

Proof of Theorem 2.2. (i) ⇒ (iii) is obvious, while (iii) ⇒ (i) follows from the
argument of [WX].

(iii) ⇔ (iv) follows from Theorem 2.1.

(iv) ⇒ (ii’) ⇒ (ii). Assume that deg p = 0. Then by Theorem 2.1,

lim
|x|→∞

∆ju(x) = lim
|x|→|∞

∆jp(x) = 0, 1 ≤ j ≤ m − 1.

(ii) ⇒ (iv). By Theorem 2.1, supR2m p < ∞ and

lim
|x|→∞

∆p(x) = lim
|x|→∞

∆u = 0,

hence ∆p ≡ 0 and, by Liouville’s theorem, p is constant.
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(i) ⇔ (v) follows from Lemma 2.16.

(i) ⇒ (vi) Given a conformal diffeomorphism ϕ of R2m, ϕ̃ := π−1 ◦ ϕ ◦ π is a
conformal diffeomorphism of S2m. Any metric of the form gu = e2ugR2m , with
u standard solution of (2.1), can be easily written as ϕ∗g1, for some conformal
diffeomorphism ϕ of R2m,where g1 is as in (2.37). Then

π∗gu = π∗ϕ∗g1 = (ϕ ◦ π)∗g1 = (π ◦ ϕ̃)∗g1 = ϕ̃∗π∗g1 = ϕ̃∗gS2 ,

and clearly ϕ̃∗gS2 is a smooth Riemannian metric on S2m.

(vi) ⇒ (i). Assume u is non-standard. Then u = v + p, deg p ≥ 2. Considering
that supR2m p < +∞, we infer that p goes to −∞ at least quadratically in some
directions. Let S = (0, . . . , 0, 1) ∈ S2m be the South Pole, and

π : S2m\{S} → R2m, π(ξ) :=
(ξ1, . . . , ξ2m)

1 + ξ2m+1

be the stereographic projection from S. Then

(π−1)∗gS2m = ρ0gR2m , ρ0(x) :=
4

(1 + |x|2)2
,

and

π∗gu = ρ1gS2m , ρ1 :=
e2u

ρ0
◦ π ∈ C∞(S2m\{S}).

Since e2u(x) → 0 more rapidly than |x|−4 in some directions, we have

lim inf
ξ→S

ρ1(ξ) = lim inf
|x|→∞

e2u(x)

ρ0(x)
= 0,

hence ρ1gS2m does not extend to a Riemannian metric on S2m.

To prove (2.6), let j be the largest integer such that ∆jp 6= 0. Then ∆j+1p ≡
0 and from Theorem 2.6 we infer that deg p ≤ 2j. In fact deg p = 2j and
∆jp ≡ C0 6= 0. From Pizzetti’s formula (2.9), we have

2m

j∑

i=0

biR
2i∆ip(0) =

∫

∂BR

2mpdS

Exponentiating and using Jensen’s inequality and Lemma 2.9, we infer

exp
(
2m

j∑

i=0

biR
2i∆ip(0)

)
≤

∫

∂BR

e2mpdS ≤ CR4mα

∫

∂BR

e2mudS,

for R ≥ 4. Therefore

ϕ(R) := R−4mα+2m−1 exp
(
2m

j∑

i=0

biR
2i∆ip(0)

)
∈ L1([4, +∞)),

and this is not possible if C0 = ∆jp > 0, hence C0 < 0.
�
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2.4 Examples

Generalizing an argument of [CC], we now see that solutions of the kind v + p
actually exist, even among radially symmetric functions, with deg p = 2m − 2,
and with deg p = 2. For simplicity, we only treat the case when m is even; if m
is odd, the proof is similar. We need the following lemma.

Lemma 2.17 Let u(r) be a smooth radially symmetric function on Rn, n ≥ 1.
Then for m ≥ 0 we have

∆mu(0) =
n

cm(n + 2m)(2m)!
u(2m)(0), (2.39)

where the ci’s are the constants in Pizzetti’s formula, and u(2m) := ∂2mu
∂r2m . In

particular ∆mu(0) has the sign of u(2m)(0).

Proof. We first prove that

cm∆mu(0) =
1

R2m

∫

BR(0)

r2m

(2m)!
u(2m)(0)dx. (2.40)

Then, observing that

∫

BR(0)

r2m

(2m)!
dx =

nR2m

(n + 2m)(2m)!
, (2.41)

(2.39) follows at once. We prove (2.40) by induction. The case m = 0 reduces to
u(0) = u(0). Let us now assume that (2.40) has been proven for i = 0, . . . , m−1
and let us prove it for m. Since u is smooth, we have u(i)(0) = 0 for any odd i,
hence Taylor’s formula reduces to

u(r) =

m∑

i=0

r2i

(2i)!
u(2i)(0) + o(r2m+1).

We now divide by R2m in (2.12), take the limit as R → 0 and, observing that
∆m+1u(ξ) remains bounded as R → 0, we find

lim
R→0

∫
–BR

(
u −

∑m−1
i=0 ciR

2i∆iu(0)
)
dx

R2m
= cm∆mu(0).

Substituting Taylor’s formula and using the inductive hypothesis, we see that
most of the terms on the left-hand side cancel out (before taking the limit) and
we are left with

lim
R→0

1

R2m

∫

BR

(
r2mu(2m)(0)

(2m)!
+ o(r2m+1)

)
dx = cm∆mu(0).

Finally, to deduce (2.40), observe that, 1
R2m

∫
–BR(0) o(r2m+1)dx → 0 as R → 0,

while 1
R2m

∫
–BR

r2mu(2m)(0)
(2m)! dx does not depend on R thanks to (2.41). �
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Proposition 2.18 For every m ≥ 2 even, there exists a radially symmetric
function u solving (2.1), (2.3) with u(x) = −C|x|2m−2 + O(|x|2m−4).

Proof. Set w0 = log 2
1+r2 . Then ∆mw0 = (2m − 1)!e2mw0 . Define u = u(r) to

be the unique solution to the following ODE




∆mu = (2m − 1)!e2mu

u(0) = log 2

u(2j+1)(0) = 0 j = 0, . . . , m − 1

u(2j)(0) = αj ≤ w
(2j)
0 (0) j = 1, . . . , m − 2

u(2m−2)(0) = αm−1 < w
(2m−2)
0 (0)

where the αj ’s are fixed. We shall first see that w0 ≥ u. Set g := w0 − u. Then
g(r) > 0 for r > 0 small enough, hence also ∆mg > 0 for small r > 0. From
Lemma 2.17 we get

∆jg(0) ≥ 0, j = 1, . . . , m − 2; ∆m−1g(0) > 0. (2.42)

We can prove inductively that ∆m−jg ≥ 0, j = 0, . . . , m−1 as long as g(r) > 0.
Indeed ∫

BR(0)

∆jgdx =

∫

∂BR(0)

∂∆j−1g

∂r
dσ, (2.43)

hence, as long as g(r) > 0, we have ∂∆j−1g
∂r > 0, in particular ∂g

∂r > 0, hence
g(r) > 0 for all r > 0 for which it is defined. From (2.42) and (2.43) we
inductively infer

∆m−jg(r) ≥ Cr2j−2,

and, since ∆w0(r) → 0 as r → ∞, there is r0 > 0 such that

∆u ≤ −Cr2m−4, for r ≥ r0,

integrating which, we find

u(r) ≤ −Cr2m−2 for r ≥ r0. (2.44)

To estimate u from below, we use the function

w1(r) = log 2 − C1r
2 − . . . − Cm−1r

2m−2,

where the constants Ci are chosen so that

∆ju(0) ≥ ∆jw1(0).

Then we can proceed as above to prove that u − w1 ≥ 0. Hence the solution
exists for all times and, thanks to (2.44) and Theorem 2.1, it has the asymptotic
behaviour

u(r) = −Cr2m−2 + O(r2m−4).

�

Remark. Observe the abundance of solutions: we can choose the (m − 1)-tuple
of initial data (α1, . . . , αm−1) in a set containing an open subset of Rm−1.

In the next example we show a radially symmetric solution in R2m, m ≥ 4
even, of the form u = v + p, with deg p = 2, thus showing that the hypothesis
u(x) = o(|x|2) as |x| → ∞ in Theorem 2.2 is sharp.
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Proposition 2.19 Let w0(r) := log 2
1+r2 and let u = u(r) (r = |x|, x ∈ R2m

and m even) solve the following ODE:






∆mu = (2m − 1)!e2mu

u(0) = log 2

u(2j+1)(0) = 0 j = 0, . . . , m − 1

u(2j)(0) = w
(2j)
0 (0) j = 2, 3, . . . , m − 1

u′′(0) = w′′
0 (0) − 1.

Then u(r) is defined for all r ≥ 0 and u(r) = −Cr2 + O(log r) as r → +∞.

Proof. As in the proof of Proposition 2.18, we can show that g := w0−u ≥ 0 and
u(r) ≤ −Cr2. To control u from below, we use the function w1(r) = w0(r)− r2,
so that redefining g := u − w1, we have

g′′(0) = 1, g(j)(0) = 0, j = 0, 1, 3, 4, . . . , 2m − 1.

and we can prove that g ≥ 0 as before. Hence u(r) exists for all r ≥ 0, it is
non-standard and u(r) = −Cr2 + O(log r) as r → ∞, as w1 bounds it from
below. �

Remark. Using (2.38), we can easily compute that in the above examples

lim
|x|→∞

Rg(x) → −∞,

where g = e2ugR2m .

2.5 Some useful results

We prove here a few results used above.

Lemma 2.20 Assume that u : B4 → R satisfies

‖∆u‖W k,p(B4) ≤ C

‖u‖L1(B4) ≤ C,

for some p ∈ (1,∞). Then

‖u‖W k+2,p(B1) ≤ C.

Proof. By Fubini’s theorem we can choose r > 0 with 2 ≤ r ≤ 4 such that

‖u‖L1(∂Br) ≤ C‖u‖L1(B4).

Let’s now write u = u1 + u2, where

{
∆u1 = 0 in Br

u1 = u on ∂Br

{
∆u2 = ∆u in Br

u2 = 0 on ∂Br
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By standard Lp-estimates we have ‖u2‖W k+2,p(Br) ≤ C‖∆u‖W k,p(Br). From the
representation formula of Poisson

u1(x) =

∫

∂Br

u1(y)Γ(x − y)dS(y),

we obtain ‖u1‖Ck(B1) ≤ Ck‖u1‖L1(∂Br) for every k ≥ 0 . �

Proof of Proposition 2.4. Let ‖h‖L1(B4) ≤ C, and let us assume n > 2. We
proceed by steps.

Step 1. We show by induction on j that

‖∆m−jh‖L∞(B2) ≤ C. (2.45)

The step j = 0 is obvious, as ∆mh ≡ 0. Let us prove the step j ≥ 1. Let

G2r(x) :=
1

(2 − n)ωn

(
1

|x|n−2
−

1

(2r)n−2

)

be the Green function for the Laplace operator on B2r with singularity at 0.
Then

∆m−jh(0) =

∫

∂B2r

∆m−jhdx +

∫

B2r

G2r∆
m−j+1hdx.

By inductive hypothesis and the scaling property of G2r, the last term is
bounded by Cr2, hence

∆m−jh(0) ≤

∫

∂B2r

∆m−jhdx + Cr2,

and integrating with respect to r on [1/2, 1], we obtain

∆m−jh(0) ≤

∫

B2

∆m−jhdx + C. (2.46)

To estimate
∫
–

B2
∆m−jhdx, we use Pizzetti’s formula for h at x ∈ B2,

cm−j∆
m−jh(x) = −

m−j−1∑

i=0

ci∆
ih(x)−

m∑

i=m−j+1

ci∆
ih(x) +

∫

B1(x)

hdy

︸ ︷︷ ︸
≤C

by the inductive hypothesis again, and the L1-bound on h and get

cm−j∆
m−jh(x) ≤ −

m−j−1∑

i=0

ci∆
ih(x) + C. (2.47)

Averaging in (2.47) over B2 and using (2.46), we find

cm−j∆
m−jh(0) ≤ −

m−j−1∑

i=0

(
ci

∫

B2

∆ih(x)dx

)
+ C.
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and its scaled version

cm−j∆
m−jh(0) ≤ −

m−j−1∑

i=0

(
cir

2(i−m+j)

∫

B2r

∆ih(x)dx

)
+ Cr2(j−m). (2.48)

Consider now a non-negative function ϕ ∈ C∞
c ((1, 2)), with

∫ 2

1 ϕ(r)dr = 1.
From (2.48), we find

cm−j∆
m−jh(0) ≤ −

m−j−1∑

i=0

ci

∫ 2

1

(
r2(i−m+j)

∫

B2r

∆ih(x)dx ϕ(r)

)
dr + C.

Each term in the sum on the right-hand side can be written as

∣∣∣∣C
∫ 2

1

r2(i−m+j)−n

∫

∂B2r

∂∆i−1h

∂ν
dSϕ(r)dr

∣∣∣∣

≤ C

∣∣∣∣
∫

B2\B1

r2(i−m+j)−n ∂∆i−1h(x)

∂ν
ϕ(|x|)dx

∣∣∣∣

= C

∫

B2\B1

|h(x)|

∣∣∣∣
∂

∂ν
∆i−1

(
r2(i−m+j)−nϕ(|x|)

)∣∣∣∣dx

≤ C

∫

B2

|h(x)|dx.

Working with −h and observing the local character of the above estimates, we
obtain (2.45).

Step 2. Fix ℓ ≥ m. We can prove inductively that

‖∆ℓ−jh‖W 2j,p(B2) ≤ C(p).

The step j = 0 is obvious, as ∆ℓh ≡ 0. For the inductive step, we see that by
Lemma 2.20 applied to ∆ℓ−jh (and a simple covering argument to fix the radii),
we have

‖∆ℓ−jh‖W 2j,p(B1) ≤ C‖∆(∆ℓ−jh)‖W 2j−2,p(B2) + C ‖∆ℓ−jh‖L1(B2)︸ ︷︷ ︸
≤C by Step 1

≤ C,

for every 1 < p < ∞, and the usual covering argument extends the estimate
to B2. Therefore ‖h‖W 2ℓ,p(B1) ≤ C(p, ℓ), and we conclude applying Sobolev’s
theorem. �

Proposition 2.21 Let u ∈ C2m(B1) such that

{
(−∆)mu ≤ C1 in B1

(−∆)ju ≤ C1 on ∂B1 for 0 ≤ j ≤ m − 1
(2.49)

Then there exists a constant C independent of u such that

u ≤ C in B1.

If C1 = 0 in (2.49), then u < 0 in B1, unless u ≡ 0.
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Proof. By induction on m. The case m = 1 follows from the maximum principle,
applied to the function v(x) := u(x) − C|x|2, which is subharmonic for C large
enough. Assume now that the case m − 1 has been dealt with and let us
consider u satisfying (2.49). Then v := −∆u satisfies v ≤ C in B1 by inductive
hypothesis. Applying the case m = 1 again we conclude. Similarly if C1 = 0. �

Proposition 2.22 (Fundamental solution) For m ≥ 1, set

γm := ω2m22m−2[(m − 1)!]2, (2.50)

where ω2m := |S2m−1| = (2π)m

(2m−2)!! . Then the function

K(x) :=
1

γm
log

1

|x|

is a fundamental solution of (−∆)m in R2m, i.e. (−∆)mK = δ0.

Proof. The case m = 1 is well-known, so we shall assume m ≥ 2. Set r := |x|.

For radial functions we have ∆ = ∂2

∂r2 + n−1
r

∂
∂r , hence for j ≥ 1

−∆log
1

r
=

2(m − 1)

r2
, −∆

1

r2j
=

4j(m − 1 − j)

r2j+2
.

Then

(−∆)j log
1

r
= 22j−1 (j − 1)!(m − 1)!

(m − j − 1)!

1

r2j
(2.51)

(−∆)m−1 log
1

r
= 22m−3(m − 2)!(m − 1)!

1

r2m−2
. (2.52)

Given a function ϕ ∈ C∞
c (R2m), we can apply the usual procedure of integrating

by parts in R2m\Bε(0) using

lim
ε→0

∫

∂Bε(0)

|DkK|dS = 0, 0 ≤ k ≤ 2m − 2,

to obtain
∫

R2m

(−∆)mϕKdx = lim
ε→0

∫

∂Bε(0)

−ϕ
∂(−∆)m−1K

∂ν
dS

=

∫

∂Bε(0)

ϕdS → ϕ(0).

�



Chapter 3

Conformal metrics on R2m

with non-positive

Q-curvature

We now turn to the study the conformal metrics on R2m with constant non-
positive Q-curvature Q ≤ 0 having finite volume. We show that when Q < 0
such metrics exist in R2m if and only if m > 1. Moreover we study their
asymptotic behavior at infinity, in analogy with the case Q > 0, which we treated
in Chapter 2. When Q = 0, we show that such metrics have the form e2pgR2m ,
where p is a polynomial such that 2 ≤ deg p ≤ 2m − 2 and supR2m p < +∞.
In dimension 4, such metrics are exactly the polynomials p of degree 2 with
lim|x|→+∞ p(x) = −∞.

3.1 Introduction and statement of the main the-

orems

Given a constant Q ∈ R, we consider the solutions to the equation

(−∆)mu = Qe2mu on R2m, (3.1)

satisfying

α :=
1

|S2m|

∫

R2m

e2mu(x)dx < +∞. (3.2)

Geometrically, if u solves (3.1) and (3.2), then the conformal metric g := e2ugR2m

has Q-curvature Q2m
g ≡ Q and volume α|S2m|. Notice that given a solution u

to (3.1) and λ > 0, the function v := u − 1
2m log λ solves

(−∆)mv = λQe2mv in R2m,

hence what matters is just the sign of Q, and we can assume without loss of
generality that Q ∈ {0,±(2m− 1)!}.

As for the positive case, every solution to (3.1) is smooth, see Corollary 2.8
(the proof does not depend on the sign of Q.).

29
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For Q ≥ 0, some explicit solutions to (3.1) are known. For instance every
polynomial of degree at most 2m−2 satisfies (3.1) with Q = 0, and the function
u(x) = log 2

1+|x|2 , which we already encountered in Chapter 2, satisfies (3.1)

with Q = (2m − 1)! and α = 1. This latter solution has the property that
e2ugR2m = (π−1)∗gS2m , where π : S2m → R2m is the stereographic projection.

For the negative case, we notice that the function w(x) = log 2
1−|x|2 solves

(−∆)mw = −(2m − 1)!e2mw on the unit ball B1 ⊂ R2m (in dimension 2 this
corresponds to the Poincaré metric on the disk). However, no explicit entire
solution to (3.1) with Q < 0 is known, hence one can ask whether such solutions
actually exist. In dimension 2 (m = 1) it is easy to see that the answer is
negative, but quite surprisingly the situation is different in dimension 4 and
higher and we have:

Theorem 3.1 Fix Q < 0. For m = 1 there is no solution to (3.1)-(3.2). For
every m ≥ 2, there exist (several) radially symmetric solutions to (3.1)-(3.2).

Having now an existence result, we turn to the study of the asymptotic be-
havior at infinity of solutions to (3.1)-(3.2) when m ≥ 2, Q < 0, having in mind
applications to concentration-compactness problems in conformal geometry. To
this end, given a solution u to (3.1)-(3.2), we define the auxiliary function

v(x) := −
(2m − 1)!

γm

∫

R2m

log

(
|y|

|x − y|

)
e2mu(y)dy, (3.3)

where γm := ω2m22m−2[(m − 1)!]2 is characterized by the following property:

(−∆)m
( 1

γm
log

1

|x|

)
= δ0 in R2m.

Then (−∆)mv = −(2m − 1)!e2mu. We prove

Theorem 3.2 Let u be a solution of (3.1)-(3.2) with Q = −(2m − 1)!. Then

u(x) = v(x) + p(x), (3.4)

where p is a non-constant polynomial of even degree at most 2m− 2. Moreover
there exist a constant a 6= 0, an integer 1 ≤ j ≤ m − 1 and a closed set
Z ⊂ S2m−1 of Hausdorff dimension at most 2m−2 such that for every compact
subset K ⊂ S2m−1\Z we have

lim
t→+∞

∆ℓv(tξ) = 0, ℓ = 1, . . . , m − 1,

v(tξ) = 2α log t + o(log t), as t → +∞,

lim
t→+∞

∆ju(tξ) = a, (3.5)

for every ξ ∈ K uniformly in ξ. If m = 2, then Z = ∅ and supR2m u < +∞.
Finally

lim inf
|x|→+∞

Rgu(x) = −∞, (3.6)

where Rgu is the scalar curvature of gu := e2ugR2m .
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Following the proof of Theorem 3.1, it can be shown that the estimate on
the degree of the polynomial is sharp. Recently J. Wei and D. Ye [WY] showed
the existence of solutions to ∆2u = 6e4u in R4 with

∫
R4 e4udx < +∞ which are

not radially symmetric. It is plausible that also in the negative case non-radially
symmetric solutions exist.

For the case Q = 0 we have

Theorem 3.3 When Q = 0, any solution to (3.1)-(3.2) is a polynomial p with
2 ≤ deg p ≤ 2m − 2 and with

sup
R2m

p < +∞.

In particular in dimension 2 (case m = 1), there are no solutions. In dimension
4 the solutions are exactly the polynomials of degree 2 with lim|x|→∞ p(x) = −∞.
Finally, there exist 1 ≤ j ≤ m − 1 and a < 0 such that

lim
|x|→∞

∆jp(x) = a. (3.7)

There is an interesting geometric consequence of Theorems 3.2 and 3.3, with
applications in concentration-compactness: In the case of a closed manifold,
metrics of equibounded volumes and prescribed Q-curvatures of possibly varying
sign cannot concentrate at points of negative or zero Q-curvature, as we shall
see in Chapter 4 (Theorem 4.2).

In sharp contrast with the case of a closed manifold, on an open domain
Ω ⊂ R2m (or a manifold with boundary), m > 1, concentration is possible at
points of negative or zero curvature. Indeed, take any solution u of (3.1)-(3.2)
with Q ≤ 0, whose existence is given by Theorem 3.1, and consider the sequence

uk(x) := u(k(x − x0)) + log k, for x ∈ Ω

for some fixed x0 ∈ Ω. Then (−∆)muk = Qe2muk and uk concentrates at x0

in the sense that as k → ∞ we have uk(x0) → +∞, uk → −∞ a.e. in Ω and
e2mukdx ⇀ α|S2m|δx0 in the sense of measures.

The 2 dimensional case (m = 1) is different and concentration at points of
non-positive curvature can be ruled out on open domains too, because otherwise
a standard blowing-up procedure would yield a solution to (3.1)-(3.2) with Q ≤
0, contradicting with Theorem 3.1.

This chapter is organized as follows. The proof of Theorems 3.1, 3.2 and 3.3
is given in the following three sections; in the last section we collect some open
questions. In the following, the letter C denotes a generic constant, which may
change from line to line and even within the same line.

3.2 Existence theory

Theorem 3.1 follows from Propositions 3.4 and 3.5 below.

Proposition 3.4 For m = 1, Q < 0 there are no solutions to (3.1)-(3.2).
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Proof. Assume that such a solution u exists. Then, by the maximum principle,
and Jensen’s inequality,

∫

∂BR

udσ ≥ u(0),

∫

∂BR

e2udσ ≥ 2πRe2u(0).

Integrating in R on [1, +∞), we get

∫

R2

e2udx = +∞,

contradiction. �

Proposition 3.5 For m ≥ 2, Q < 0 there exist radial solutions to (3.1)-(3.2).

Proof. We consider separately the cases when m is even and when m is odd.
Case 1: m even. Let u = u(r) be the unique solution of the following ODE:





∆mu(r) = −(2m − 1)!e2mu(r)

u(2j+1)(0) = 0 0 ≤ j ≤ m − 1

u(2j)(0) = αj ≤ 0 0 ≤ j ≤ m − 1,

where α0 = 0 and α1 < 0. We claim that the solution exists for all r ≥ 0. To
see that, we shall use barriers, compare [CC, Theorem 2]. Let us define

w+(r) =
α1

2
r2, g+ := w+ − u.

Then ∆mg+ ≥ 0. By the divergence theorem,

∫

BR

∆jg+dx =

∫

∂BR

d∆j−1g+

dr
dσ.

Moreover, from Lemma 2.17, we infer

∆jg+(0) ≥ 0 for 0 ≤ j ≤ m − 1,

hence we see inductively that ∆jg+(r) ≥ 0 for every r such that g+(r) is defined
and for 0 ≤ j ≤ m − 1. In particular g+ ≥ 0 as long as it exists.

Let us now define

w−(r) :=

m−1∑

i=0

βir
2i − A log

2

1 + r2
, g− := u − w−,

where the βi’s and A will be chosen later. Notice that

∆mw−(r) = ∆m

(
− A log

2

1 + r2

)
= −(2m− 1)!A

(
2

1 + r2

)2m

.

Since α1 < 0,

lim
r→+∞

(
2

1+r2

)2m

emα1r2 = +∞,
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and taking into account that u ≤ w+, we can choose A large enough, so that

∆mg−(r) = (2m − 1)!

[
A

(
2

1 + r2

)2m

− e2mu(r)

]

≥ (2m − 1)!

[
A

(
2

1 + r2

)2m

− emα1r2

]
≥ 0.

We now choose each βi so that

∆jg−(0) ≥ 0, 0 ≤ j ≤ m − 1,

and proceed by induction as above to prove that g− ≥ 0. Hence

w−(r) ≤ u(r) ≤ w+(r)

as long as u exists, and by standard ODE theory, that implies that u(r) exists
for all r ≥ 0. Finally

∫

R2m

e2mu(|x|)dx ≤

∫

R2m

emα1|x|
2

dx < +∞.

Case 2: m ≥ 3 odd. Let u = u(r) solve





∆mu(r) = (2m − 1)!e2mu(r)

u(2j+1)(0) = 0 0 ≤ j ≤ m − 1

u(2j)(0) = αj ≤ 0 0 ≤ j ≤ m − 1,

where the αi’s have to be chosen. Set

w+(r) := β − r2 − log
2

1 + r2
, g+ := w+ − u,

where β < 0 is such that e−r2+β ≤
(

2
1+r2

)2
, hence

2

1 + r2
−

1 + r2

2
e−r2+β ≥ 0 for all r > 0.

Then, as long as g+ ≥ 0, we have

∆mg+(r) = (2m − 1)!

[(
2

1 + r2

)2m

− e2mu(r)

]

≥ (2m − 1)!

[(
2

1 + r2

)2m

− e2mw+(r)

]
≥ 0

Choose now the αi’s so that, u(2i)(0) < w
(2i)
+ (0), for 0 ≤ i ≤ m − 1. From

Lemma 2.17, we infer that

∆ig+(0) ≥ 0, 0 ≤ i ≤ m − 1,

and we see by induction that g+ ≥ 0 as long as it is defined. As lower barrier,
define

w−(r) =

m−1∑

i=0

βir
2i, g− := u − w−,
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where the βi’s are chosen so that ∆ig−(0) ≥ 0. Then, observing that

∆mg−(r) = (2m − 1)!e2mu(r) > 0,

as long as u is defined, we conclude as before that g− ≥ 0 as long as it is defined.
Then u is defined for all times.

Let R > 0 be such that, for every r ≥ R, w+(r) ≤ − r2

2 . Then

∫

R2m

e2mu(|x|)dx ≤

∫

BR

e2mu(|x|)dx +

∫

R2m\BR

e−m|x|2dx < +∞.

�

3.3 Asymptotic behaviour in the negative case

The proof of Theorem 3.2, to which this section is devoted, is divided in several
lemmas. The following Liouville-type theorem will prove very useful.

Theorem 3.6 Consider h : Rn → R with ∆mh = 0 and h ≤ u − v, where
epu ∈ L1(Rn) for some p > 0, (−v)+ ∈ L1(Rn). Then h is a polynomial of
degree at most 2m − 2.

Proof. As in the proof of Theorem 2.5, for any x ∈ R2m we have

|D2m−1h(x)| ≤
C

R2m−1

∫

BR(x)

|h(y)|dy

= −
C

R2m−1

∫

BR(x)

h(y)dy +
2C

R2m−1

∫

BR(x)

h+dy (3.8)

and ∫

BR(x)

h(y)dy = O(R2m−2), as R → ∞.

Then
∫

BR(x)

h+dy ≤

∫

BR(x)

u+dy + C

∫

BR(x)

(−v)+dy ≤
1

p

∫

BR(x)

epudy +
C

R2m
,

and both terms in (3.8) divided by R2m−1 go to 0 as R → ∞. �

Lemma 3.7 Let u be a solution of (3.1)-(3.2). Then, for |x| ≥ 4

v(x) ≤ 2α log |x| + C. (3.9)

Proof. As in Lemma 2.9, changing v with −v. �
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Lemma 3.8 For any ε > 0, there is R > 0 such that for |x| ≥ R,

v(x) ≥
(
2α −

ε

2

)
log |x| +

(2m − 1)!

γm

∫

B1(x)

log |x − y|e2mu(y)dy. (3.10)

Moreover
(−v)+ ∈ L1(R2m). (3.11)

Proof. To prove (3.10) we follow [Lin], Lemma 2.4. Choose R0 > 0 such that

1

|S2m|

∫

BR0

e2mudx ≥ α −
ε

16
,

and decompose

R2m = BR0 ∪ A1 ∪ A2,

A1 := {y ∈ R2m : 2|x − y| ≤ |x|, |y| ≥ R0},

A2 := {y ∈ R2m : 2|x − y| > |x|, |y| ≥ R0}.

Next choose R ≥ 2 such that for |x| > R and |y| ≤ R0, we have log |x−y|
|y| ≥

log |x| − ε. Then, observing that (2m−1)!|S2m|
γm

= 2, we have for |x| > R

(2m − 1)!

γm

∫

BR0

log
|x − y|

|y|
e2mu(y)dy ≥

(
log |x| −

ε

16

) (2m − 1)!

γm

∫

BR0

e2mudy

≥
(
2α −

ε

8

)
log |x| − Cε. (3.12)

Observing that log |x − y| ≥ 0 for y /∈ B1(x), log |y| ≤ log(2|x|) for y ∈ A1,∫
A1

e2mudy ≤ ε|S2m|
16 and log(2|x|) ≤ 2 log |x| for |x| ≥ R, we infer

∫

A1

log
|x − y|

|y|
e2mu(y)dy =

∫

A1

log |x − y|e2mu(y)dy −

∫

A1

log |y|e2mu(y)dy

≥

∫

B1(x)

log |x − y|e2mu(y)dy − log(2|x|)

∫

A1

e2mudy

≥

∫

B1(x)

log |x − y|e2mu(y)dy − log |x|
ε|S2m|

8
. (3.13)

Finally, for y ∈ A2, |x| > R we have that |x−y|
|y| ≥ 1

4 , hence

∫

A2

log
|x − y|

|y|
e2mu(y)dy ≥ − log(4)

∫

A2

e2mudy ≥ −Cε. (3.14)

Putting together (3.12), (3.13) and (3.14), and possibly taking R even larger,
we obtain (3.10). From (3.10) and Fubini’s theorem

∫

R2m\BR

(−v)+dx ≤ C

∫

R2m

∫

R2m

χ|x−y|<1 log
1

|x − y|
e2mu(y)dydx

= C

∫

R2m

e2mu(y)

∫

B1(y)

log
1

|x − y|
dxdy

≤ C

∫

R2m

e2mu(y)dy < ∞.

Since v ∈ C∞(R2m), we conclude that
∫

BR
(−v)+dx < ∞ and (3.11) follows. �
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Lemma 3.9 Let u be a solution of (3.1)-(3.2), with m ≥ 2. Then u = v + p,
where p is a polynomial of degree at most 2m − 2.

Proof. Let p := u − v. Then ∆mp = 0. Apply (3.11) and Theorem 3.6. �

Lemma 3.10 Let p be the polynomial of Lemma 3.9. Then if m = 2, there
exists δ > 0 such that

p(x) ≤ −δ|x|2 + C. (3.15)

In particular lim|x|→∞ p(x) = −∞ and deg p = 2. For m ≥ 3 there is a (possibly

empty) closed set Z ⊂ S2m−1 of Hausdorff dimension dimH(Z) ≤ 2m − 2 such
that for every K ⊂ S2m−1\Z closed, there exists δ = δ(K) > 0 such that

p(x) ≤ −δ|x|2 + C for
x

|x|
∈ K. (3.16)

Consequently deg p is even.

Proof. From (3.11), we infer that there is a set A0 of finite measure such that

v(x) ≥ −C in R2m\A0. (3.17)

Case m = 2. Up to a rotation, we can write

p(x) =
4∑

i=1

(bix
2
i + cixi) + b0.

Assume that bi0 ≥ 0 for some 1 ≤ i0 ≤ 4. Then on the set

A1 := {x ∈ R4 : |xi| ≤ 1 for i 6= i0, ci0xi0 ≥ 0}

we have p(x) ≥ −C. Moreover |A1| = +∞. Then, from (3.17) we infer

∫

R4

e4udx ≥

∫

A1\A0

e4(v+p)dx ≥ C|A1\A0| = +∞, (3.18)

contradicting (3.2). Therefore bi < 0 for every i and (3.15) follows at once.

Case m ≥ 3. From (3.2) and (3.17) we infer that p cannot be constant. Write

p(tξ) =

d∑

i=0

ai(ξ)t
i, d := deg p,

where for each 0 ≤ i ≤ d, ai is a homogeneous polynomial of degree i or ai ≡ 0.
With a computation similar to (3.18), (3.2) and (3.17) imply that ad(ξ) ≤ 0 for
each ξ ∈ S2m−1. Moreover d is even, otherwise ad(ξ) = −ad(−ξ) ≤ 0 for every
ξ ∈ S2m−1, which would imply ad ≡ 0. Set

Z = {ξ ⊂ S2m−1 : ad(ξ) = 0}.

We claim that dimH(Z) ≤ 2m − 2. To see that, set

V := {x ∈ R2m : ad(x) = 0} = {tξ : t ≥ 0, ξ ∈ Z}.
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Since V is a cone and Z = V ∩ S2m−1, we only need to show that dimH(V ) ≤
2m − 1. Set

Vi := {x ∈ R2m : ad(x) = . . . = ∇iad(x) = 0, ∇i+1ad(x) 6= 0}.

Noticing that Vi = ∅ for i ≥ d (otherwise ad ≡ 0), we find V = ∪d−1
i=0 Vi. By the

implicit function theorem, dimH(Vi) ≤ 2m − 1 for every i ≥ 0 and the claim is
proved.

Finally, for every compact set K ⊂ S2m−1\Z, there is a constant δ > 0 such
that ad(ξ) ≤ − δ

2 , and since d ≥ 2, (3.16) follows. �

Corollary 3.11 Any solution u of (3.1)-(3.2) with m = 2, Q < 0 is bounded
from above.

Proof. Indeed u = v + p and, for some δ > 0,

v(x) ≤ 2α log |x| + C, p(x) ≤ −δ|x|2 + C.

�

Lemma 3.12 Let v : R2m → R be defined as in (3.3) and Z as in Lemma 3.10.
Then for every K ⊂ S2m−1\Z compact we have

lim
t→+∞

∆m−jv(tξ) = 0, j = 1, . . . , m − 1 (3.19)

for every ξ ∈ K uniformly in ξ; for every ε > 0 there is R = R(ε, K) > 0 such
that, for t > R, ξ ∈ K,

v(tξ) ≥ (2α − ε) log t (3.20)

Proof. Fix K ∈ S2m−1\Z compact and set CK := {tξ : t ≥ 0, ξ ∈ K}. For any
σ > 0, 1 ≤ j ≤ 2m − 1,

∫

R2m\Bσ(x)

e2mu(y)

|x − y|2j
dy → 0 as |x| → ∞ (3.21)

by dominated convergence. Choose a compact set K̃ ⊂ S2m−1\Z such that

K ⊂ int(K̃) ⊂ S2m−1. Since u ≤ C(K̃) on C eK by Lemma 3.7 and Lemma 3.10,
we can choose σ = σ(ε) > 0 so small that

∫

Bσ(x)

e2mu

|x − y|2j
dy ≤ C(K̃)

∫

Bσ(x)

1

|x − y|2j
dy ≤ C(K̃)ε, for x ∈ CK , |x| large,

where |x| is so large that Bσ(x) ⊂ C eK . Therefore

(−1)j+1∆jv(x) = C

∫

R2m

e2mu

|x − y|2j
dy → 0, for x ∈ CK , as |x| → ∞,

We have seen in Lemma 3.8, that for any ε > 0 there is R > 0 such that for
|x| ≥ R

v(x) ≥
(
2α −

ε

2

)
log |x| +

(2m − 1)!

γm

∫

B1(x)

log |x − y|e2mu(y)dy, (3.22)
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and (3.20) follows easily by choosing K̃ as above and observing that u ≤ C(K̃)
on C eK , hence on B1(x) for x ∈ CK with |x| large enough. �

Proof of Theorem 3.2. The decomposition u = v + p and the properties of v
and p follow at once from Lemmas 3.7, 3.9, 3.10 and 3.12; (3.6) follow as in
Theorem 2.2. As for (3.5), let j be the largest integer such that ∆jp 6≡ 0. Then
∆j+1p ≡ 0 and from Theorem 3.6 we infer that deg p = 2j, hence ∆jp ≡ a 6= 0.

�

3.4 The case Q = 0

Proof of Theorem 3.3. From Theorem 3.6, with v ≡ 0, we have that u is a
polynomial of degree at most 2m − 2. Then, as in [Mar1, Lemma 11], we have

sup
R2m

u < +∞,

and, since u cannot be constant, we infer that deg u ≥ 2 is even. The proof of
(3.7) is analogous to the case Q < 0, as long as we do not care about the sign
of a. To show that a < 0, one proceeds as in [Mar1, Theorem 2]. For the case
m = 2 one proceeds as in Lemma 3.10, setting v ≡ 0 and A0 = ∅. �

Example One might believe that every polynomial p on R2m of degree at most
2m − 2 with

∫
R2m e2mpdx < ∞ satisfies lim|x|→∞ p(x) = −∞, as in the case

m = 2. Consider on R2m, m ≥ 3 the polynomial u(x) = −(1 + x2
1)|x̃|

2, where
x̃ = (x2, . . . , x2m). Then ∆mu ≡ 0 and

∫

R2m

e2mudx =

∫

R

∫

R2m−1

e−2m(1+x2
1)|ex|2dx̃dx1

=

∫

R

dx1

(1 + x2
1)

2m−1
2

·

∫

R2m−1

e−2m|ey|2dỹ < +∞.

On the other hand, lim sup|x|→∞ u(x) = 0.

3.5 Open questions

Open Question 1 Does the claim of Corollary 3.11 hold for m > 2? In other
words, is any solution u to (3.1)-(3.2) with Q < 0 bounded from above?

This is an important regularity issue, in particular with regard to the be-
havior at infinity of the function v defined in (3.3). If supR2m u < +∞, then one
can take Z = ∅ in Theorem 3.2, as in the case Q > 0, see Theorem 2.1.

Definition 3.13 Let P2m
0 be the set of polynomials p of degree at most 2m− 2

on R2m such that e2mp ∈ L1(R2m). Let P2m
+ be the set of polynomials p of

degree at most 2m − 2 on R2m such that there exists a solution u = v + p to
(3.1)-(3.2) with Q > 0. Similarly for P2m

− with Q < 0.

Related to the first question is the following
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Open Question 2 What are the sets P2m
0 , P2m

± ? Is it true that P2m
0 ⊂ P2m

+

and P2m
0 ⊂ P2m

− ?

J. Wei and D. Ye [WY] proved that P4
0 ⊂ P4

+ (and actually more). Consider
now on R2m, m ≥ 3, the polynomial

p(x) = −(1 + x2
1)|x̃|

2, x̃ = (x2, . . . , x2m).

As seen above, e2mp ∈ L1(R2m), hence p ∈ P2m
0 . Assume that p ∈ P2m

− as well,
i.e. there is a function u = v + p satisfying (3.1)-(3.2) and Q < 0. Then we
claim that supR2m u = ∞. Assume by contradiction that u is bounded from
above. Then (3.9) and (3.10) imply that

v(x) = 2α log |x| + o(log |x|), as |x| → ∞.

Therefore,
lim

x1→∞
u(x1, 0, . . . , 0) = lim

x1→∞
2α log x1 = ∞,

contradiction.

Open Question 3 Even in the case that u is not bounded from above, is it
true that one can take Z = ∅ in Theorem 3.2 for m ≥ 3 also?

For instance, in order to show that v(x) = 2α log |x| + o(log |x|) as |x| → +∞,
thanks to (3.10), it is enough to show that

∫

B1(x)

log |x − y|e2mu(y)dy = o(log |x|), as |x| → +∞,

which is true if supR2m u < ∞, but it might also be true if supR2m u = ∞.

Open Question 4 What values can the α given by (3.1)-(3.2) assume for a
fixed Q?

As usual, it is enough to consider Q ∈ {0,±(2m − 1)!}. When m = 1, Q = 1,
then α = 1, see [CL]. When m = 2, Q = 6, then α can take any value in (0, 1],
as shown in [CC]. Moreover α cannot be greater than 1 and the case α = 1
corresponds to standard solutions, as proved in [Lin]. For the trivial case Q = 0,
α can take any positive value, and for the other cases we have no answer.
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Chapter 4

Concentration-Compactness

for the Liouville equation

Using the tools developed in Chapter 2 and 3, we now investigate different
concentration-compactness phenomena related to the Q-curvature in arbitrary
even dimension. We first treat the case of an open domain in R2m, then that
of a closed manifold and, finally, the particular case of the sphere S2m. In all
cases we allow the sign of the Q-curvature to vary, and show that in the case of
a closed manifold, contrary to the case of open domains in R2m, concentration
phenomena can occur only at points of positive Q-curvature. As a consequence,
on a locally conformally flat manifold of non-positive Euler characteristic we
always have compactness. In the next chapter we shall apply some of these
results to prove an energy quantization estimate for an equation related to the
Adams-Moser-Trudinger inequality.

4.1 Introduction and statement of the main re-

sults

Before stating the main results of this chapter, we recall a few properties of the
Paneitz operator P 2m

g and the Q-curvature Q2m
g on a 2m-dimensional smooth

Riemannian manifold (M, g), which shall be used later. First of all we have
the Gauss formula, describing how the Q-curvature changes under a conformal
change of metric: If gu := e2ug, u ∈ C∞(M), then

P 2m
g u + Q2m

g = Q2m
gu

e2mu. (4.1)

Then, we have the conformal invariance of the total Q-curvature, when M is
closed: ∫

M

Q2m
gu

dvolgu =

∫

M

Q2m
g dvolg. (4.2)

Finally, assuming (M, g) closed and locally conformally flat , we have the Gauss-
Bonnet-Chern formula (see e.g. [Che], [Cha]):

∫

M

Q2m
g dvolg =

Λ1

2
χ(M), (4.3)

41
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where χ(M) is the Euler-Poincaré characteristic of M and

Λ1 :=

∫

S2m

QgS2m dvolgS2m = (2m − 1)!|S2m| (4.4)

is a constant which we shall meet often in the sequel. In the 4-dimensional case,
if (M, g) is not locally conformally flat, we have

∫

M

(
Q4

g +
|Wg|2

4

)
dvolg = 8π2χ(M), (4.5)

where Wg is the Weyl tensor. Recently S. Alexakis [Ale2] (see also [Ale1]) proved
an analogous to (4.5) for m ≥ 3:

∫

M

(
Q2m

g + W

)
dvolg =

Λ1

2
χ(M), (4.6)

where W is a local conformal invariant involving the Weyl tensor and its covari-
ant derivatives.

We can now state the main problem treated in this chapter. Given a 2m-
dimensional Riemannian manifold (M, g), consider a converging sequence of
functions Qk → Q0 in C0(M), and let gk := e2ukg be conformal metrics satisfy-
ing Q2m

gk
= Qk. In view of (4.1), the uk’s satisfy the following elliptic equation

of order 2m with critical exponential non-linearity

P 2m
g uk + Q2m

g = Qke2muk . (4.7)

Assume further that there is a constant C > 0 such that

vol(gk) :=

∫

M

e2muk dvolg ≤ C for all k. (4.8)

What can be said about the compactness properties of the sequence (uk)?
In general non-compactness has to be expected, at least as a consequence

of the non-compactness of the Möbius group on R2m or S2m. For instance,
for every λ > 0 and x0 ∈ R2m, the metric on R2m given by gu := e2ugR2m ,
u(x) := log 2λ

1+λ2|x−x0|2
, satisfies Q2m

gu
≡ (2m − 1)!.

We start by considering the case when (M, g) is an open domain Ω ⊂ R2m

with Euclidean metric gR2m . Since Pg
R2m = (−∆)m and Qg

R2m ≡ 0, Equation
(4.7) reduces to (−∆)muk = Qke2muk . The compactness properties of this equa-
tion were studied in dimension 2 by Brézis and Merle [BM]. They proved that
if Qk ≥ 0, ‖Qk‖L∞ ≤ C and ‖e2uk‖L1 ≤ C, then up to selecting a subsequence,
one of the following is true:

(i) (uk) is bounded in L∞
loc(Ω).

(ii) uk → −∞ locally uniformly in Ω.

(iii) There is a finite set S = {x(i); i = 1, . . . , I} ⊂ Ω such that uk → −∞

locally uniformly in Ω\S. Moreover Qke2uk ⇀
∑I

i=1 βiδx(i) weakly in the
sense of measures, where βi ≥ 2π for every 1 ≤ i ≤ I.
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Subsequently, Li and Shafrir [LS] proved that in case (iii) βi ∈ 4πN for every
1 ≤ i ≤ I.

Adimurthi, Robert and Struwe [ARS] studied the case of dimension 4 (m =
2). As they showed, the situation is more subtle because the blow-up set (the
set of points x such that uk(x) → ∞ as k → ∞) can have dimension up to 3 (in
contrast to the finite blow-up set S in dimension 2). Moreover, as a consequence
of a result of Chang and Chen [CC], quantization in the sense of Li-Shafrir does
not hold anymore, see also [Rob1], [Rob2].

In the following theorem we extend the result of [ARS] to arbitrary even
dimension (see also Proposition 4.5 below). The function ak in (4.9) has no
geometric meaning, and one can take ak ≡ 1 at first. But we shall need it for
later applications (see Proposition 5.7).

Theorem 4.1 Let Ω be a domain in R2m, m > 1, and let (uk)k∈N be a sequence
of functions satisfying

(−∆)muk = Qke2makuk , (4.9)

where ak, Q0 ∈ C0(Ω), Q0 is bounded, and Qk → Q0, ak → 1 locally uniformly.
Assume that ∫

Ω

e2makukdx ≤ C, (4.10)

for all k and define the finite (possibly empty) set

S1 :=

{
x ∈ Ω : lim

r→0+
lim

k→∞

∫

Br(x)

|Qk|e
2makukdy ≥

Λ1

2

}
=

{
x(i) : 1 ≤ i ≤ I

}
,

where Λ1 is as in (4.4). Then one of the following is true.

(i) For every 0 ≤ α < 1, a subsequence converges in C2m−1,α
loc (Ω\S1).

(ii) There exist a subsequence, still denoted by (uk), a closed nowhere dense set
S0 of Hausdorff dimension at most 2m− 1 such that, letting S = S0 ∪ S1,
we have uk → −∞ locally uniformly in Ω\S as k → ∞. Moreover there is
a sequence of numbers βk → ∞ such that

uk

βk
→ ϕ in C2m−1,α

loc (Ω\S), 0 ≤ α < 1,

where ϕ ∈ C∞(Ω\S1), S0 = {x ∈ Ω : ϕ(x) = 0}, and

(−∆)mϕ ≡ 0, ϕ ≤ 0, ϕ 6≡ 0 in Ω\S1.

If S1 6= ∅ and Q0(x
(i)) > 0 for some 1 ≤ i ≤ I, then case (ii) occurs.

In Theorem 3.1 above we proved the existence of solutions to the equation
(−∆)mu = Qe2mu on R2m with Q < 0 constant and e2mu ∈ L1(R2m), for m > 1.
Scaling any such solution we find a sequence of solutions uk(x) := u(kx)+ log k
concentrating at a point of negative Q-curvature. For m = 1 that is not possible.

On a closed manifold things are different in several respects. Under the
assumption (which we always make) that kerP 2m

g contains only constant func-
tions, quantization of the total Q-curvature in the sense of Li-Shafrir (see (4.12)
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below) holds, as proved in dimension 4 by Druet and Robert [DR] and Mal-
chiodi [Mal], and in arbitrary dimension by Ndiaye [Ndi]. Moreover the con-
centration set is finite. In [DR], however, it is assumed that the Q-curvatures
are positive, while in [Mal] and [Ndi], a slightly different equation is studied
(P 2m

g uk + Qk = hke2muk , with hk constant and Qk prescribed), for which the
negative case is simpler. With the help of Theorem 3.2 and 3.3 from Chapter3
and a technique of Robert and Struwe [RS], we can allow the prescribed Q-
curvatures to have varying signs and, contrary to the case of an open domain in
R2m, we can rule out concentration at points of negative Q-curvature. Moreover,
using Theorems 2.1 and 2.2 from Chapter 2, we can generalize the techniques
of [DR] to prove quantization of the total Q-curvature.

Theorem 4.2 Let (M, g) be a 2m-dimensional closed Riemannian manifold,
such that kerPg = {constants}, and let (uk) be a sequence of solutions to (4.7),
(4.8) where the Qk’s and Q0 are given continuous functions and Qk → Q0 in
C0(M). Let Λ1 be as in (4.4). Then one of the following is true.

(i) For every 0 ≤ α < 1, a subsequence converges in C2m−1,α(M).

(ii) There exists a finite (possibly empty) set S = {x(i) : 1 ≤ i ≤ I} such that
Q0(x

(i)) > 0 for 1 ≤ i ≤ I and, up to taking a subsequence, uk → −∞
locally uniformly on (M\S). Moreover

Qke2muk dvolg ⇀

I∑

i=1

Λ1δx(i) (4.11)

in the sense of measures; then (4.2) gives
∫

M

Qgdvolg = IΛ1. (4.12)

Finally, S = ∅ if and only if vol(gk) → 0.

An immediate consequence of Theorem 4.2 (Identity (4.12) in particular) and
the Gauss-Bonnet-Chern formulas (4.3) and (4.5), is the following compactness
result:

Corollary 4.3 Under the hypothesis of Theorem 4.2 assume that either

1. χ(M) ≤ 0 and dimM ∈ {2, 4}, or

2. χ(M) ≤ 0, dimM ≥ 6 and (M, g) is locally conformally flat,

and that vol(gk) 6→ 0. Then (i) in Theorem 4.2 occurs.

It is not clear whether the hypothesis that (M, g) be locally conformally flat
when dimM ≥ 6 is necessary in Corollary 4.3. For instance, we could drop it if
we knew that W ≥ 0 in (4.6), in analogy with (4.5).

Theorems 4.1 and 4.2 will be proven in Sections 4.2 and 4.3 respectively. In
Section 4.4 we also consider the special case when M = S2m.

In the proofs of the above theorems we use techniques and ideas from several
of the cited papers, particularly from [ARS], [BM], [DR], [Mal], [MS] and [RS].

As usual the letter C will denote a generic positive constant, which may
change from line to line and even within the same line.
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4.2 The case of an open domain in R2m

In this section we devote ourselves to the proof of Theorem 4.1. In the following
the constants γm (defined in Proposition 2.22) and Λ1 (see (4.4)) are often used,
and it is useful to notice that γm := Λ1

2 .
Preliminary to the proof on Theorem 4.1 we need the following Lemma.

Lemma 4.4 Let f ∈ L1(Ω) ∩ Lp
loc(Ω\S1) for some p > 1, where Ω ⊂ R2m and

S1 ⊂ Ω is a finite set. Assume that

{
(−∆)mu = f in Ω
∆ju = 0 on ∂Ω for 0 ≤ j ≤ m − 1.

Then u is bounded in W 2m,p
loc (Ω\S1); more precisely, for any B4R(x0) ⊂ (Ω\S1),

there is a constant C independent of f such that

‖u‖W 2m,p(BR(x0)) ≤ C(‖f‖Lp(B4R(x0)) + ‖f‖L1(Ω)). (4.13)

The proof of Lemma 4.4 is given at the end of this Section.

Proof of Theorem 4.1. We closely follow [ARS]. Choose a subsequence (uk) and
a maximal set (finite by (4.10)) S1 = {x(i) ∈ Ω : 1 ≤ i ≤ I} such that for every
i and 0 < R < dist(x(i), ∂Ω) we have

lim inf
k→∞

∫

BR(x(i))

|Qk|e
2makukdx ≥ γm.

By maximality of S1, given x0 ∈ Ω\S1, we have, for some 0 < R < dist(x0, ∂Ω),

α := lim sup
k→∞

∫

BR(x0)

|Qk|e
2makukdx < γm. (4.14)

For such x0 and R write uk = vk + hk in BR(x0), where

{
(−∆)mvk = Qke2makuk in BR(x0)
vk = ∆vk = . . . = ∆m−1vk = 0 on ∂BR(x0)

and (−∆)mhk = 0. Set h+
k := χ{hk≥0}hk, h−

k := hk −h+
k . Since h+

k ≤ u+
k + |vk|,

we have
‖h+

k ‖L1(BR(x0)) ≤ ‖u+
k ‖L1(BR(x0)) + ‖vk‖L1(BR(x0)).

Observe that, for k large enough mu+
k ≤ 2maku+

k ≤ e2makuk , on BR(x0), hence
by (4.10) ∫

BR(x0)

u+
k dx ≤ C

∫

BR(x0)

e2makukdx ≤ C.

As for vk, observe that 1 < γm

α , hence by Theorem 2.7

∫

BR(x0)

2m|vk|dx ≤

∫

BR(x0)

e2m|vk|dx ≤ CR2m,

with C depending on α and not on k. Hence

‖h+
k ‖L1(BR(x0)) ≤ C. (4.15)
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We distinguish 2 cases.

Case 1. Suppose that ‖hk‖L1(BR/2(x0)) ≤ C uniformly in k. Then by Proposition

2.4 we have that hk is equibounded in Cℓ(BR/8(x0)) for every ℓ ≥ 0. Moreover,
by Pizzetti’s formula (Identity (2.7) in the appendix) and (4.15),

∫

BR(x0)

|hk(x)|dx =

∫

BR(x0)

h+
k (x)dx −

∫

BR(x0)

h−
k (x)dx ≤ C −

∫

BR(x0)

hk(x)dx

= C − hk(x0) +

m−1∑

i=0

ciR
2i∆ihk(x0) ≤ C.

Hence we can apply Proposition 2.4 locally on all of BR(x0) and obtain bounds
for (hk) in Cℓ

loc(BR(x0)) for any ℓ ≥ 0.
Fix p ∈ (1, γm/α). By Theorem 2.7 ‖e2m|vk|‖Lp(BR(x0)) ≤ C(p), hence, using

that ak → 1 uniformly on BR(x0), we infer

‖(−∆m)vk‖Lp(B) = ‖(Qke2makhk)e2makvk‖Lp(B) ≤ C(B, p) (4.16)

for every ball B ⊂⊂ BR(x0) and for k large enough. In addition ‖vk‖Lp(BR(x0)) ≤
C, hence by elliptic estimates, ‖vk‖W 2m,p(B) ≤ C(B, p) for every ball B ⊂⊂

BR(x0). By the immersion W 2m,p →֒ C0,α, (vk), is bounded in C0,α
loc (BR(x0)).

Going back to (4.16), we now see that ∆mvk is locally bounded, hence

‖vk‖W 2m,p(B) ≤ C(B, p)

for every p > 1, B ⊂⊂ BR(x0), and by the immersion W 2m,p →֒ C2m−1,α we
obtain that (vk), hence (uk), is bounded in C2m−1,α

loc (BR(x0)).

Case 2. Assume that ‖hk‖L1(BR/2(x0)) =: βk → ∞ as k → ∞. Set ϕk := hk

βk
, so

that

1. ∆mϕk = 0,

2. ‖ϕk‖L1(BR/2(x0)) = 1,

3. ‖ϕ+
k ‖L1(BR(x0)) → 0 by (4.15).

As above we have that ϕk is bounded in C2m−1,α
loc (BR(x0)) for every α ∈ [0, 1),

hence a subsequence converges in C2m−1,α
loc (BR(x0)) to a function ϕ, with

1. ∆mϕ = 0,

2. ‖ϕ‖L1(BR/2(x0)) = 1,

3. ‖ϕ+‖L1(BR(x0)) = 0, hence ϕ ≤ 0.

Let us define S0 = {x ∈ BR(x0) : ϕ(x) = 0}. Take x ∈ S0; then by (2.7),
∆ϕ(x), . . . , ∆m−1ϕ(x) cannot all vanish, unless ϕ ≡ 0 on Bρ(x) ⊂ BR(x0) for
some ρ > 0, but then by analyticity, we would have ϕ ≡ 0, contradiction. Hence
there exists j with 1 ≤ j ≤ 2m − 3 such that

Djϕ(x) = 0, Dj+1ϕ(x) 6= 0,
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i.e.

S0 ⊂
2m−3⋃

j=1

{x ∈ BR(x0) : Djϕ(x) = 0, Dj+1ϕ(x) 6= 0}.

Therefore S0 is (2m − 1)-rectifiable. Then ϕ < 0 almost everywhere and by
continuity

hk = βkϕk → −∞, e2makhk → 0

locally uniformly on BR(x0)\S0. Then, as before, from

(−∆)mvk = (Qke2makhk)(e2makvk),

we have that vk is bounded in C2m−1,α
loc (Ω\S0). Then uk = hk + vk → −∞

uniformly locally away from S0.

Since Case 1 and Case 2 are mutually exclusive, we obtain that away from
S1 we have that either a subsequence uk is bounded in C2m−1,α

loc (Ω), or a sub-
sequence uk → −∞ locally uniformly.

We now show that if I ≥ 1 and Q0(x
(i)) > 0 for some 1 ≤ i ≤ I, then Case

2 occurs. Assume by contradiction that Q0(x0) > 0 for some x0 ∈ S1 and Case
1 occurs, i.e. (uk) is bounded in C2m−1,α

loc (Ω\S1), so that fk := Qke2makuk is
bounded in L∞

loc(Ω\S1). Then there exists a finite signed measure µ on Ω, with
µ ∈ L∞

loc(Ω\S1) such that

fk ⇀ µ as measures

fk ⇀ µ in Lp
loc(Ω\S1) for 1 ≤ p < ∞.

Let us take R > 0 such that BR(x0) ⊂ Ω, BR(x0) ∩ S1 = {x0} and Q0 > 0 on
BR(x0). By our assumption,

(−∆)juk ≥ C, on ∂BR(x0) for 0 ≤ j ≤ m − 1. (4.17)

Let zk be the solution to
{

(−∆)mzk = Qke2makuk in BR(x0)
zk = ∆zk = . . . = ∆m−1zk = 0 on ∂BR(x0).

By Proposition 2.21 and (4.17)

uk ≥ zk − C. (4.18)

By Lemma 4.4 zk → z in C2m−1,α
loc (BR(x0)\{x0}), where

{
(−∆)mz = µ in BR(x0)
z = ∆z = . . . = ∆m−1z = 0 on ∂BR(x0).

Since Q0(x0) > 0, we have µ ≥ γmδx0 = (−∆)m ln 1
|x−x0|

, and Proposition 2.21

applied to the function z(x) − ln 1
|x−x0|

implies

z(x) ≥ ln
1

|x − x0|
− C,

hence ∫

BR(x0)

e2mzdx ≥ C

∫

BR(x0)

1

|x − x0|2m
dx = +∞.
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Then (4.18) and Fatou’s lemma imply

lim inf
k→∞

∫

BR(x0)

e2makukdx ≥

∫

BR(x0)

lim inf
k→∞

e2makukdx

≥ C

∫

BR(x0)

lim inf
k→∞

e2makzkdx (4.19)

≥ C

∫

BR(x0)

e2mzdx = +∞,

contradicting (4.10). �

The following proposition gives a general procedure to blow up at points
where uk goes to infinity.

Proposition 4.5 In the hypothesis of Theorem 4.1, assume that ak ≡ 1 for ev-
ery k and that case (ii) occurs. Then, for every x0 ∈ S such that supBR(x0) uk →
∞ for every 0 < R < dist(x0, ∂Ω) as k → ∞, there exist points xk → x0 and
positive numbers rk → 0 such that

vk(x) := uk(xk + rkx) + ln rk ≤ 0 ≤ ln 2 + vk(0), (4.20)

and as k → ∞ either a subsequence vk → v in C2m−1,α
loc (R2m), where

(−∆)mv = Q0(x0)e
2mv,

or vk → −∞ almost everywhere and there are positive numbers γk → +∞ such
that

vk

γk
→ p in C2m−1,α

loc (R2m),

where p is a polynomial on even degree at most 2m − 2.

Proof. Following [ARS], take x0 such that supBR(x0) uk → +∞ for every R and

select, for R < dist(x0, ∂Ω), 0 ≤ rk < R and xk ∈ Brk
(x0) such that

(R − rk)euk(xk) = (R − rk) sup
Brk

(x0)

euk = max
0≤r<R

(
(R − r) sup

Br(x0)

euk

)
=: Lk.

Then Lk → +∞ and sk := R−rk

2Lk
→ 0 as k → ∞, and

vk(x) := uk(xk + skx) + ln sk ≤ 0 in BLk
(0)

satisfies
(−∆)mvk = Q̃ke2mvk , Q̃k(x) := Qk(xk + skx),

and ∫

BLk
(0)

Q̃ke2mvkdx =

∫

B 1
2
(R−rk)

(xk)

Qke2mukdx ≤ C.

We can now apply the first part of the theorem to the functions vk, observing
that there are no concentration points (S1 = ∅), since vk ≤ 0, and using Theorem
2.5 to characterize the function p. �

We now give a proof of Lemma 4.4. Preliminary to that, we need the fol-
lowing lemma.
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Lemma 4.6 Let ∆u ∈ L1(Ω) and u = 0 on ∂Ω, where Ω ⊂ Rn is a bounded
domain. Then for every 1 ≤ p < n

n−1 we have

‖u‖W 1,p(Ω) ≤ C(p)‖∆u‖L1(Ω)

Proof. Let u ∈ C∞(Ω) and u|∂Ω = 0. If 1 ≤ p < n
n−1 , then q := p

p−1 > n. From

Lp-theory (see e.g. [Sim, Pag. 91]) and the imbedding W 1,q →֒ L∞ we infer

‖∇u‖Lp(Ω) ≤ C sup
ϕ∈W 1,q

0 (Ω)
‖∇ϕ‖Lq(Ω)≤1

∫

Ω

∇u · ∇ϕdx = C sup
ϕ∈W 1,q

0 (Ω)
‖∇ϕ‖Lq(Ω)≤1

∫

Ω

−∆uϕdx

≤ C sup
ϕ∈L∞(Ω)

‖ϕ‖L∞(Ω)≤1

∫

Ω

−∆uϕdx ≤ C‖∆u‖L1.

To estimate ‖u‖Lp(Ω) we use Poincaré’s inequality. For the general case one can
use a standard mollifying procedure. �

Proof of Lemma 4.4. By Lemma 4.6, ‖∆m−1u‖W 1,r(Ω) ≤ C(r)‖f‖L1(Ω) for

1 ≤ r < 2m
2m−1 . Then, by Lp-theory, ‖u‖W 2m−1,r(Ω) ≤ C(r)‖f‖L1(Ω), and by

Sobolev’s embedding,

‖u‖Ls(Ω) ≤ C(s)‖f‖L1(Ω), for all 1 ≤ s < ∞. (4.21)

Now fix B = B4R(x0) ⊂⊂ (Ω\S1) and write u = u1 + u2, where

{
(−∆)mu2 = f in B4R(x0)
∆ju2 = 0 on ∂B4R(x0) for 0 ≤ j ≤ m − 1.

By Lp-theory

‖u2‖W 2m,p(B4R(x0)) ≤ C(p, B)‖f‖Lp(B4R(x0)), (4.22)

with C(p, B) depending on p and the chosen ball B. Together with (4.21), we
find

‖u1‖L1(B4R(x0)) ≤ C(p, B)(‖f‖Lp(B4R(x0)) + ‖f‖L1(Ω)).

By Proposition 2.4

‖u1‖W 2m,p(BR(x0)) ≤ C(p, B)(‖f‖Lp(B4R(x0)) + ‖f‖L1(Ω)),

and (4.13) follows. �

4.3 The case of a closed manifold

To prove Theorem 4.2 we assume that supM uk → ∞ and we blow up at I
suitably chosen sequences of points xi,k → x(i) with uk(xi,k) → ∞ as k → ∞,
1 ≤ i ≤ I. We call the x(i)’s concentration points. Then we show the following:

(i) If x(i) is a concentration point, then Q0(x
(i)) > 0.

(ii) The profile of the uk’s at any concentration point is the function η0 defined
in (5.4), hence it carries the fixed amount of energy Λ1, see (5.7).
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(iii) uk → −∞ locally uniformly in M\{x(i) : 1 ≤ i ≤ I}.

(iv) The neck energy vanishes in the sense of (4.43) below, hence in the limit
only the energy of the profiles at the concentration points appears.

Parts (i) and (ii) (Proposition 4.8) follow from Lemma 4.7 below and the
classification results of [Mar1] (or [Xu]) and [Mar2]. For parts (iii) and (iv) we
adapt a technique of [DR], see also [Mal], [Ndi] for a different approach.

The following lemma (compare [Mal, Lemma 2.3]) is important, because
its failure in the non-compact case is responsible for the rich concentration-
compactness behavior in Theorem 4.1. Its proof relies on the existence and on
basic properties of the Green function for the Paneitz operator P 2m

g , as proven
in [Ndi, Lemma 2.1] (here we need the hypothesis kerP 2m

g = {constants}).

Lemma 4.7 Let (uk) be a sequence of functions on (M, g) satisfying (4.7) and
(4.8). Then for ℓ = 1, . . . , 2m− 1, we have

∫

Br(x)

|∇ℓuk|
p dvolg ≤ C(p)r2m−ℓp, 1 ≤ p <

2m

ℓ
,

for every x ∈ M , 0 < r < rinj and for every k, where rinj is the injectivity radius
of (M, g).

Proof. Set fk := Qke2muk − Q2m
g , which is bounded in L1(M) thanks to (4.8).

Let Gξ be the Green’s function for P 2m
g on (M, g) such that

uk(ξ) =

∫

M

uk dvolg +

∫

M

Gξ(y)fk(y) dvolg(y). (4.23)

For x, ξ ∈ M , x 6= ξ, we have

|∇ℓ
ξGξ(x)| ≤

C

dist(x, ξ)ℓ
, 1 ≤ ℓ ≤ 2m − 1. (4.24)

Then, differentiating (4.23) and using (4.24) and Jensen’s inequality, we get

|∇ℓuk(ξ)|p ≤ C

( ∫

M

1

dist(ξ, y)ℓ
|fk(y)| dvolg(y)

)p

≤ C

∫

M

(
‖fk‖L1(M)

dist(ξ, y)ℓ

)p
|fk(y)|

‖fk‖L1(M)
dvolg(y).

From Fubini’s theorem we then conclude
∫

Br(x)

|∇ℓuk(ξ)|p dvolg(ξ) ≤ C‖fk‖
p
L1(M) sup

y∈M

∫

Br(x0)

1

dist(ξ, y)ℓp
dvolg(ξ)

≤ Cr2m−ℓp.

�

Let expx : TxM ∼= R2m → M denote the exponential map at x.
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Proposition 4.8 Let (uk) be a sequence of solutions to (4.7), (4.8) with

maxuk → ∞ as k → ∞.

Choose points xk → x0 ∈ M (up to a subsequence) such that uk(xk) = maxM uk.
Then Q0(x0) > 0 and, setting

µk := 2

(
(2m − 1)!

Q0(x0)

) 1
2m

e−uk(xk) (4.25)

we find that the functions ηk : B rinj
µk

⊂ R2m → R, given by

ηk(y) := uk(expxk
(µky)) + log µk −

1

2m
log

(2m − 1)!

Q0(x0)
,

converge up to a subsequence to η0(y) = ln 2
1+|y|2 in C2m−1,α

loc (R2m). Moreover

lim
R→+∞

lim
k→∞

∫

BRµk
(xk)

Qke2muk dvolg = Λ1. (4.26)

Proof. Step 1. Set σk = e−uk(xk), and consider on B rinj
σk

⊂ R2m the functions

zk(y) := uk(expxk
(σky)) + log(σk) ≤ 0, (4.27)

and the metrics

g̃k := (expxk
◦Tk)∗g,

where Tk : R2m → R2m, Tky = σky. Then, setting Q̂k(y) := Qk(expxk
(σky)),

and pulling back (4.7) via expxk
◦Tk, we get

P 2m
g̃k

zk + Q2m
g̃k

= σ−2m
k Q̂ke2mzk . (4.28)

Setting now ĝk := σ−2
k g̃k, we have P 2m

ĝk
= σ2m

k P 2m
g̃k

, Q2m
ĝk

= σ2m
k Q2m

g̃k
, and from

(4.28) we infer

P 2m
ĝk

zk + Q2m
ĝk

= Q̂ke2mzk . (4.29)

Then, since the principal part of the Paneitz operator is (−∆g)
m, we can write

Pĝk
= (−∆ĝk

)m + Ak,

where Ak is a linear differential operator of order at most 2m− 1; moreover the
coefficients of Ak are going to 0 locally in all norms, since ĝk → gR2m locally in
all norms, and Pg

R2m = (−∆)m. Then (4.29) can be written as

(−∆ĝk
)mzk + Akzk + Q2m

ĝk
= Q̂ke2mzk . (4.30)

Step 2. We now claim that zk → z0 in C2m−1
loc (R2m), where

(−∆)mz0 = Q0(x0)e
2mz0 ,

∫

R2m

e2mz0dx < ∞. (4.31)
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We first assume m > 1. Fix R > 0 and write zk = hk + wk on BR, where
∆m

ĝk
hk = 0 and

{
(−∆ĝk

)mwk = (−∆ĝk
)mzk. in BR(x0)

wk = ∆wk = . . . = ∆m−1wk = 0 on ∂BR(x0)
(4.32)

From zk ≤ 0 we infer ‖Q̂ke2mzk‖L∞(BR) ≤ C, and clearly Q2m
ĝk

= σ2m
k Q2m

g̃k
→ 0

in L∞
loc(R

2m). Lemma 4.7 implies that (Akzk) is bounded in Lp(BR), 1 ≤ p <
2m

2m−1 , hence from (4.32) and elliptic estimates we get uniform bounds for (wk)

in W 2m,p(BR), 1 ≤ p < 2m
2m−1 , hence in C0(BR). Again using Lemma 4.7, we

get
‖∆ĝk

hk‖L1(BR) ≤ C(‖zk‖W 2,1(BR) + ‖wk‖W 2,1(BR)) ≤ C.

Since ∆m−1
ĝk

(∆ĝk
hk) = 0, elliptic estimates (compare Proposition 2.4) give

‖∆ĝk
hk‖Cℓ(BR/2) ≤ C(ℓ) for every ℓ ∈ N. (4.33)

This, together with |hk(0)| = |wk(0)| ≤ C, and hk ≤ −wk ≤ C and elliptic
estimates (e.g. [GT, Thm. 8.18]), implies that ‖hk‖L1(BR/2) ≤ C, hence, again
using elliptic estimates,

‖hk‖Cℓ(BR/4) ≤ C(ℓ) for every ℓ ∈ N. (4.34)

Therefore (zk) is bounded in W 2m,p(BR/4), 1 ≤ p < 2m
2m−1 . We now go back to

(4.32), replacing R with R/4 and redefining hk and wk accordingly on BR/4. We

now have that (Akzk) is bounded in Lp(BR/4) for 1 ≤ p < 2m
2m−2 by Sobolev’s

embedding, and we infer as above that (wk) is bounded in W 2m,p(BR/4), 1 ≤

p < 2m
2m−2 , and hk is bounded in Cℓ(BR/16), ℓ ≥ 0. Iterating, we find that (zk)

is bounded in W 2m,p(BR/4m) for every p ∈ [1,∞[. Hence, for every α ∈ [0, 1[
there is a function w ∈ C2m−1,α(BR/4m) such that up to a subsequence

wk → w in C2m−1,α(BR/4m).

By (4.34) and Ascoli-Arzelà’s Theorem (zk) converges in C2m−1,α(BR/4m) up
to a subsequence. Then (4.31) follows from Fatou’s lemma, letting R → ∞, and
the claim is proven.

When m = 1, since P 2
g = −∆g, (4.30) implies at once that (∆ĝk

zk) is locally
bounded in L∞. Then, since zk ≤ 0 and zk(0) = 0, the claim follows from
elliptic estimates (e.g. [GT, Thm. 8.18]).

Step 3. We shall now rule out the possibility that Q0(x0) ≤ 0.

Case Q0(x0) = 0. By Theorem 3.3, if m = 1 there exists no solution z0 to
(4.31), contradiction. If m ≥ 2, still by Theorem 3.3, then z0 is a non-constant
polynomial of degree at most 2m − 2, and there are 1 ≤ j ≤ m − 1 and a < 0
such that ∆jz0 ≡ a. Following an argument of [RS], see also [Mal], we shall find
a contradiction. Indeed we have

lim
k→∞

∫

BR

|∆jzk|dx =

∫

BR

|∆jz0|dx =
|a|ω2m

2m
R2m + o(R2m), as R → +∞.

Scaling back to uk, we find

lim
k→∞

(
σ2j−2m

k

∫

BRσk
(xk)

|∇2juk| dvolg

)
≥ C−1R2m + o(R2m), as R → +∞,
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while, from Lemma 4.7,

∫

BRσk
(xk)

|∇2juk| dvolg ≤ C(Rσk)2m−2j . (4.35)

This yields the desired contradiction as k, R → +∞.

Case Q0(x0) < 0. By Theorem 3.1 there exists no solution to (4.31) for m = 1,
contradiction. If m ≥ 2, from Theorem 3.2 we infer that there are a constant
a 6= 0 and 1 ≤ j ≤ m − 1 such that

lim
|x|→+∞

x∈C

∆jz0(x) = a,

where C := {tξ ∈ R2m : t ≥ 0, ξ ∈ K} and K ⊂ S2m−1 is a compact set with
H2m−1(K) > 0. Then, as above,

lim
k→∞

(
σ2j−2m

k

∫

BRσk
(xk)

|∇2juk| dvolg

)
≥ C−1

∫

BR∩C

|∆jz0|dx

≥ C−1R2m + o(R2m),

again contradicting (4.35). Then we have shown that Q0(x0) > 0.

Step 4. Since Qk(x0) > 0, µk and ηk are well-defined. Repeating the proce-
dure of Step 2, we find a function η ∈ C2m−1,α

loc (R2m) such that ηk → η in

C2m−1,α
loc (R2m), where (compare (4.31))

(−∆)mη = (2m − 1)!e2mη,

∫

R2m

e2mηdx < +∞.

By Theorem 2.2, either η is a standard solution, i.e. there are x0 ∈ R2m, λ > 0
such that

η(y) = log
2λ

1 + λ2|y − y0|2
, (4.36)

or ∆jη(x) → a as |x| → ∞ for some constant a < 0 and for some 1 ≤ j ≤ m−1.
In the latter case, as in Step 3, we reach a contradiction. Hence (4.36) is satisfied.
Since maxM ηk = ηk(0) = log 2 for every k, we have y0 = 0, λ = 1, i.e. η = η0.
Since, by Fatou’s lemma

lim
R→∞

lim
k→∞

∫

Rµk(xk)

Qke2muk dvolg = (2m − 1)!

∫

R2m

e2mη0dx,

(4.26) follows from (5.7). �

Proof of Theorem 4.2. Assume first that uk ≤ C. Then P 2m
g uk is bounded in

L∞(M) and by elliptic estimates uk − uk is bounded in W 2m,p(M) for every
1 ≤ p < ∞, hence in C2m−1,α(M) for every α ∈ [0, 1[, where uk :=

∫
–

M
uk dvolg.

Observe that by Jensen’s inequality and (4.8), uk ≤ C.
If uk remains bounded (up to a subsequence), then by Ascoli-Arzelà’s theo-

rem, for every α ∈ [0, 1[, uk is convergent (up to a subsequence) in C2m−1,α(M),
and we are in case (i) of Theorem 4.2.
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If uk → −∞, we have that uk → −∞ uniformly on M and we are in case
(ii) of the theorem, with S = ∅.

From now on we shall assume that maxM uk → ∞ as k → ∞.

Step 1. There are I > 0 converging sequences xi,k → x(i) ∈ M with uk(xi,k) →
∞ as k → ∞, such that

(A1) Q0(x
(i)) > 0, 1 ≤ i ≤ I.

(A2)
dist(xi,k,xj,k)

µi,k
→ +∞ as k → +∞ for all 1 ≤ i, j ≤ I, i 6= j, where

µi,k := 2

(
(2m − 1)!

Q0(x(i))

) 1
2m

e−uk(xi,k).

(A3) Set ηi,k(y) := uk(expxi,k
(µi,ky)) − uk(xi,k). Then for 1 ≤ i ≤ I

ηi,k(y) → η0(y) = log
2

1 + |y|2
in C2m

loc (R2m) (k → ∞). (4.37)

(A4) For 1 ≤ i ≤ I

lim
R→+∞

lim
k→+∞

∫

BRµi,k
(xi,k)

Qke2mukdx → Λ1. (4.38)

(A5) There exists C > 0 such that for all k

sup
x∈M

[
euk(x)Rk(x)

]
≤ C, Rk(x) := min

1≤i≤I
dist(x, xi,k).

Step 1 follows from Proposition 4.8 and induction as follows. Define x1,k = xk

as in Proposition 4.8. Then (A1), (A3) and (A4) are satisfied with i = 1. If
supx∈M

[
euk(x) dist(xi,k, x)

]
≤ C, then I = 1 and also (A5) is satisfied, so we

are done. Otherwise we choose x2,k such that

R1,k(x2,k)euk(x2,k) = max
x∈M

R1,k(x)euk(x) → ∞, R1,k(x) := dist(x, x1,k).

(4.39)
Then (A2) with i = 2, j = 1 follows at once from (4.39), while (A2) with i = 1,
j = 2 follows from (A3), as in [DR]. A slight modification of Proposition 4.8
shows that (x2,k, µ2,k) satisfies (A1), (A3) and (A4), and we continue so, until
also property (A5) is satisfied. The procedure stops after finitely many steps,
thanks to (A2), (A4) and (4.26).

Step 2. We now prove that

sup
x∈M

Rk(x)ℓ|∇ℓuk(x)| ≤ C, ℓ = 1, 2, . . . , 2m − 1. (4.40)

We differentiate the Green representation formula (4.23) ℓ times and we use
(4.24) to estimate

|∇ℓuk(ξ)| ≤ C

∫

M

e2muk(y)

dist(ξ, y)ℓ
dvolg(y) + C.
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Set for 1 ≤ i ≤ I

Ωi,k :=
{
y ∈ M : Rk(y) = dist(xi,k, y)

}

and further, assuming ξ 6= xi,k for 1 ≤ i ≤ I (otherwise (4.40) is trivial), set

Ω
(1)
i,k := Ωi,k ∩ Bdist(xi,k,ξ)/2(xi,k), Ω

(2)
i,k := Ωi,k\Bdist(xi,k,ξ)/2(xi,k).

Observing that for y ∈ Ω
(1)
i,k we have 1

dist(ξ,y) ≤ 2
dist(ξ,xi,k) and using (A5) from

Step 1, we infer

∫

Ωi,k

e2muk

dist(ξ, y)ℓ
dvolg(y) ≤

C

dist(ξ, xi,k)ℓ

∫

Ω
(1)
i,k

e2muk(y) dvolg(y)

+C

∫

Ω
(2)
i,k

dvolg(y)

dist(ξ, y)ℓ dist(y, xi,k)2m
.

The first integral on the right-hand side is bounded by C
dist(ξ,xi,k)ℓ . As for the

integral over Ω
(2)
i,k , write Ω

(2)
i,k = Ω

(3)
i,k ∪ Ω

(4)
i,k , with

Ω
(3)
i,k = Ω

(2)
i,k ∩ B2 dist(ξ,xi,k)(ξ), Ω

(3)
i,k = Ω

(2)
i,k\B2 dist(ξ,xi,k)(ξ).

We have
∫

Ω
(3)
i,k

dvolg(y)

dist(ξ, y)ℓ dist(y, xi,k)2m
≤

C

dist(ξ, xi,k)2m

∫

Ω
(3)
i,k

dvolg(y)

dist(ξ, y)ℓ

≤
C

dist(ξ, xi,k)ℓ
.

Observing that

1

C
dist(y, xi,k) ≤ dist(ξ, y) ≤ C dist(y, xi,k) on Ω

(4)
i,k ,

we estimate
∫

Ω
(4)
i,k

dvolg(y)

dist(ξ, y)ℓ dist(y, xi,k)2m
≤ C

∫

Ω
(4)
i,k

dvolg(y)

dist(xi,k, y)2m+ℓ

≤ C

∫

R2m\Bdist(xi,k,ξ)

dz

|z|2m−ℓ

≤
C

dist(xi,k, ξ)ℓ
.

Putting these last inequalities together yields

|∇ℓuk(ξ)| ≤
C

inf1≤i≤I dist(ξ, xi,k)ℓ
=

C

Rk(ξ)ℓ
,

whence (4.40).

Step 3. uk → −∞ locally uniformly in M\S, S := {x(i) : 1 ≤ i ≤ I}. This
follows easily from (4.40) above and (4.42) below (which implies that uk → −∞
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locally uniformly in Bδν (x(i))\{x(i)} for any 1 ≤ i ≤ I, ν ∈ [1, 2[ and δν as
in Step 4), but we also sketch an instructive alternative proof, which does not
make use of (4.42).

Our Theorem 4.1 can be reproduced on a closed manifold, with a similar
proof and using Proposition 3.1 from [Mal] instead of Theorem 2.7 above. Then
either

(a) uk is bounded in C2m−1
loc (M\S), or

(b) uk → −∞ locally uniformly in M\S, or

(c) There exists a closed set S0 ⊂ M\S of Hausdorff dimension at most 2m−1
and numbers βk → +∞ such that

uk

βk
→ ϕ in C2m−1

loc (M\(S0 ∪ S)),

where
∆mϕ ≡ 0, ϕ ≤ 0, ϕ 6≡ 0, ϕ ≡ 0 on S0. (4.41)

Case (a) can be ruled out using (4.8) as in (4.19) at the end of the proof of
Theorem 4.1. Case (c) contradicts Lemma 4.7, as in the proof of Proposition
5.7 below (compare (5.30), (5.31)). Hence Case (b) occurs, as claimed.

Step 4. We claim that for every 1 ≤ ν < 2, there exist δν > 0 and Cν > 0 such
that for 1 ≤ i ≤ I

dist(x, xi,k)2mνe2muk(x) ≤ Cνµ
2m(ν−1)
i,k , for x ∈ Bδν (xi,k). (4.42)

Then on the necks Σi,k := Bδν (xi,k)\BRµi,k
(xi,k) we have

∫

Σi,k

e2muk dvolg ≤ Cνµ
2m(ν−1)
i,k

∫

Σi,k

dist(x, xi,k)−2mν dvolg(x)

≤ Cνµ
2m(ν−1)
i,k

∫ δν

Rµi,k

r2m−1−2mνdr

= CνR2m(1−ν) − Cνµ
2m(ν−1)
i,k δ2m(1−ν)

ν ,

whence

lim
R→+∞

lim
k→+∞

∫

Σi,k

Qke2muk dvolg = 0. (4.43)

This, together with (4.26) and Step 3 implies (4.11), assuming that x(i) 6= x(j)

for i 6= j. This we be shown in Step 4c below. Then (4.12) follows at once from
(4.2).

Let us prove (4.42). Fix 1 ≤ ν < 2 and set for 1 ≤ i ≤ I

R̃i,k := min
j 6=i

dist(xi,k, xj,k).

Step 4a. Let i ∈ {1, . . . , I} be such that for some θ > 0 we have

R̃i,k ≤ θR̃j,k for 1 ≤ j ≤ I, k ≥ 1. (4.44)
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Set

ϕi,k(r) := r2mν exp

( ∫

∂Br(xi,k)

2mukdσg

)
, (4.45)

for 0 < r < rinj, where dσg is the measure on ∂Br(xi,k) induced by g. Observe
that

ϕ′
i,k(rµi,k) < 0 if and only if rµi,k < −ν

( ∫

∂Brµi,k
(xi,k)

∂uk

∂n
dσg

)−1

. (4.46)

From (4.37) we infer

µi,k
∂uk

∂n

∣∣∣∣
∂Bµi,kr(xi,k)

→
∂

∂r
log

2

1 + r2
=

−2r

1 + r2
,

hence

µi,k

∫

∂Bµi,kr(xi,k)

∂uk

∂n
dσg → −

2r

1 + r2
, for r > 0 as k → ∞,

and (4.46) implies that for any R ≥ 2Rν := 2
√

ν
2−ν , there exists k0(R) such

that
ϕ′

i,k(rµi,k) < 0 for k ≥ k0(R), r ∈ [2Rν, R]. (4.47)

Define

ri,k := sup
{

r ∈ [2Rνµi,k, R̃i,k/2] : ϕ′
i,k(ρ) < 0 for ρ ∈ [2Rνµi,k, r)

}
. (4.48)

From (4.47) we infer that

lim
k→+∞

ri,k

µi,k
= +∞. (4.49)

Let us assume that
lim

k→∞
ri,k = 0. (4.50)

Consider

vi,k(y) := uk(expxi,k
(ri,ky)) − Ci,k, Ci,k :=

∫

∂Bri,k
(xi,k)

ukdσg, (4.51)

and let

ĝi,k := r−2
i,k (expxi,k

◦Ti,k)∗g, Q̂i,k(y) := Qk(expxi,k
(ri,ky)),

where
Ti,k(y) := ri,ky for y ∈ R2m.

Then

P 2m
ĝi,k

vi,k + r2m
i,k Qĝi,k

= r2m
i,k Q̂i,ke2m(vi,k+Ci,k)

= r
2m(1−ν)
i,k ϕi,k(ri,k)Q̂i,ke2mvi,k . (4.52)
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We also set

Ji = {j 6= i : dist(xi,k, xj,k) = O(ri,k) as k → ∞}, (4.53)

and

x̃
(i)
j,k :=

1

ri,k
exp−1

xi,k
(xj,k), x̃

(i)
j = lim

k→∞
x̃j,k, (4.54)

after passing to a subsequence, if necessary. Thanks to (4.44) and (4.48), we

have that |x̃
(i)
j | ≥ 2 for all j ∈ Ji and that

|x̃
(i)
j − x̃

(i)
ℓ | ≥

2

θ
for all j, ℓ ∈ Ji, j 6= ℓ.

By (4.40) and the choice of Ci,k in (4.51), vi,k is uniformly bounded in

C2m−1
loc (R2m\{0, x̃

(i)
j : j ∈ Ji}).

Thanks to (4.48) and (4.49), given R > 2Rν , there exists k0(R) such that
ϕi,k(ri,k) < ϕi,k(Rµi,k) for all k ≥ k0. From (4.37), we infer

µ2m
i,k exp

( ∫

∂BRµi,k(xi,k)

2mukdσ

)
= exp

( ∫

∂BRµi,k
(xi,k)

2m(uk + log µi,k)dσ

)

= C(R) + o(1), as k → ∞, (4.55)

where
C(R) → 0, as R → ∞. (4.56)

Then, together with (4.49), letting k → +∞ we get

r
2m(1−ν)
i,k ϕi,k(ri,k) ≤ r

2m(1−ν)
i,k ϕi,k(Rµi,k)

= µ2m
i,k exp

( ∫

∂BRµi,k(xi,k)

2mukdσ

)
R2mν

(
µi,k

ri,k

)2m(ν−1)

→ 0. (4.57)

Therefore the right-hand side of (4.52) goes to 0 locally uniformly in

R2m\{0, x̃
(i)
j : j ∈ Ji};

moreover

ĝi,k → gR2m in Ck
loc(R

2m) for every k ≥ 0, r2m
i,k Q̂i,k → 0 in C1

loc(R
2m).

(4.58)
It follows that, up to a subsequence,

vi,k → hi in C2m−1,α
loc (R2m\{0, x̃

(i)
j : j ∈ Ji}), (4.59)

where, taking (4.40) into account,

∆mhi(x) = 0, x ∈ R2m\{0, x̃
(i)
j : j ∈ Ji}
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and

R̃(x)ℓ|∇ℓhi(x)| ≤ Cℓ, for ℓ = 1, . . . , 2m− 1, x ∈ R2m\{0, x̃
(i)
j : j ∈ Ji},

with R̃(x) := min{|x|, |x − x̃
(i)
j | : j ∈ Ji}. Then Proposition 4.9 from the

appendix implies that

hi(x) = −λ log |x| −
∑

j∈Ji

λj log |x − x̃
(i)
j | + β, (4.60)

for some λ, β, λj ∈ R. We now recall that the Paneitz operator is in divergence
form, hence we can write

P 2m
ĝi,k

vi,k = divĝi,k
(Aĝi,k

vi,k) (4.61)

for some differential operator Aĝi,k
of order 2m− 1, with coefficients converging

to the coefficient of (−1)m∇∆m−1 uniformly in B1, thanks to (4.58). Then
integrating (4.52), using (4.58), (4.59) and (4.61), we get

lim
k→∞

∫

Bri,k
(xi,k)

Qke2muk dvolg = lim
k→∞

ϕi,k(ri,k)r
2m(1−ν)
i,k

∫

B1

Q̂i,ke2mvi,k dvolĝi,k

= lim
k→∞

∫

B1

(
divĝi,k

(Aĝi,k
vi,k) + r2m

i,k Qĝi,k

)
dvolĝi,k

= lim
k→∞

∫

∂B1

n · (Aĝi,k
vi,k)dσĝi,k

= (−1)m

∫

∂B1

∂∆m−1hi

∂n
dσ = λ

Λ1

2
, (4.62)

where here n denotes the exterior unit normal to ∂B1 and the last identity can
be inferred using (2.22) and the following:

∫

∂B1

∂∆m−1hi

∂n
dσ = λ

∫

∂B1

∂∆m−1 log 1
|x|

∂n
dσ

+
∑

j∈Ji

λj

∫

B1

∆m log
1

|x − x̃
(i)
j |

︸ ︷︷ ︸
≡0 on B1

dx

From (4.40) with ℓ = 1, we get

|uk(expxi,k
(ri,ky1)) − uk(expxi,k

(ri,ky2))| ≤ Cri,kr sup
∂Bri,kr(xi,k)

|∇uk| ≤ C,

(4.63)
for 0 ≤ r ≤ 3

2 , |y1| = |y2| = r. For 2Rνµi,k ≤ Rµi,k ≤ r ≤ ri,k, we infer from
(4.55)

ϕi,k(r) ≤ ϕi,k(Rµi,k) ≤ C(R)µ
2m(ν−1)
i,k + o(µ

2m(ν−1)
i,k ).

This, (4.45), (4.55), (4.56) and (4.63) imply that for any η > 0 there exist
Rη ≥ 2Rν and kη ∈ N such that

dist(x, xi,k)2mνe2muk ≤ ηµ
2m(ν−1)
i,k for x ∈ Bri,k

(xi,k)\BRηµi,k
(xi,k), k ≥ kη.

(4.64)
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It now follows easily that

lim
R→+∞

lim
k→∞

∫

Bri,k
(xi,k)\BRµi,k

(xi,k)

Qke2mukdx = 0,

and from (4.38)

lim
k→+∞

∫

Bri,k
(xi,k)

Qke2mukdx = Λ1.

That implies that λ = 2. With a similar computation, integrating on Bδ(x̃
(i)
j )

for δ small instead of B1(0), one proves that λj ≥ 2 for all j ∈ Ji. Now set

hi(r) :=

∫

∂Br(0)

hidσ.

Then

d

dr

(
r2mνe2mhi(r)

)
= 2m

(
ν − 2 −

( ∑

j∈Ji

λj

2|x̃
(i)
j |2

)
r2

)
r2mν−1e2mhi(r),

for 0 < r < 3
2 . In particular

d

dr

(
r2mνe2mhi(r)

)∣∣
r=1

< 0

hence, for k large enough, ϕ′
i,k(ri,k) < 0. This implies that

ri,k =
R̃i,k

2
for k large. (4.65)

This in turn implies limk→∞ R̃i,k = 0, when i satisfies (4.44) and limk→∞ ri,k =

0. For i satisfying (4.44) and lim supk→∞ R̃i,k > 0, we infer, instead, that
lim supk→∞ ri,k > 0. In both cases (4.64) holds.

Step 4b. Now assume that

lim sup
k→∞

R̃i,k > 0, for every 1 ≤ i ≤ I. (4.66)

Then (4.44) is satisfied for every 1 ≤ i ≤ I, hence lim supk→∞ ri,k > 0, 1 ≤ i ≤
I. Up to selecting a subsequence, we can set

δν := inf
1≤i≤I

1

2
lim

k→∞
ri,k > 0.

Take now η = 1 in (4.64), and let R1 be the corresponding Rη. Then (4.42)
is true for x ∈ Bδν (xi,k)\BR1µi,k

(xi,k). On the other hand, thanks to (A3), we
have uk(x) ≤ uk(xi,k) + C on BR1µi,k

(x). Then, using (4.25), we get

dist(x, xi,k)2mνe2muk(x) ≤ C(R1µi,k)2mνe2muk(xi,k)

≤ CR2mν
1 µ

2m(ν−1)
i,k for x ∈ BR1µi,k

(xi,k).

This completes the proof of (4.42), under the assumption that (4.66) holds.
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Step 4c. We now prove that in fact (4.66) holds true. Choose 1 ≤ i0 ≤ I so
that, up to a subsequence,

R̃i0,k = min
1≤i≤I

R̃i,k for every k ∈ N,

and assume by contradiction that limk→∞ R̃i0,k = 0. Clearly (4.44) holds for
i = i0, hence also (4.65) holds for i = i0, by Step 4a. Then, setting Ji0 as is
(4.53), we claim that, for any i ∈ Ji0 , there exists θ(i) > 0 such that

R̃i,k ≤ θ(i)R̃j,k for 1 ≤ j ≤ I.

Indeed
R̃i,k = O(ri0,k) = O(R̃i0,k) as k → ∞.

It then follows that (4.44) holds for all i ∈ Ji0 , and that Step 4a applies to
them. Observing that Ji0 6= ∅ thanks to Step 4a (Identity (4.65) with i0 instead
of i), we can pick i ∈ Ji0 such that, up to a subsequence,

dist(xi,k, xi0,k) ≥ dist(xj,k, xi0,k) for all j ∈ Ji0 , k > 0.

Recalling the definition of x̃
(i)
j for j ∈ Ji, we get |x̃

(i)
i0
| ≥ |x̃

(i)
j − x̃

(i)
i0
| for all

j ∈ Ji. A consequence of this inequality is that the scalar product

x̃
(i)
i0

· x̃
(i)
j > 0 (4.67)

for all j ∈ Ji. In other words all the x̃
(i)
j ’s with j ∈ Ji lie in the same half space

orthogonal to x̃
(i)
i0

and whose boundary contains 0 = x̃
(i)
i . Multiplying (4.52) by

∇vi,k and integrating over Bδ = Bδ(0) (δ > 0 small), we get

∫

Bδ

P 2m
ĝi,k

vi,k∇vi,k dvolĝi,k
= −

∫

Bδ

r2m
i,k Q̂i,k∇vi,k dvolĝi,k

+
r
2m(1−ν)
i,k

2m
ϕi,k(ri,k)

∫

Bδ(0)

Q̂i,k∇e2mvi,k dvolĝi,k

=: (I)k + (II)k. (4.68)

Recalling (4.58) and (4.59), we see at once that limk→∞(I)k = 0. Integrating
by parts, we also see that

|(II)k| ≤ C
r
2m(1−ν)
i,k

2m
ϕi,k(ri,k)

∫

Bδ(0)

∇Q̂i,k

Q̂i,k

Q̂i,ke2mvi,kd volĝi,k

+
r
2m(1−ν)
i,k

2m
ϕi,k(ri,k)

∫

∂Bδ(0)

O(1)dσĝi,k

→ 0 as k → ∞,

where the last term vanishes thanks to (4.57), and the first term on the right of
(II)k vanishes thanks to (4.62) and the remark that

∇Q̂i,k

Q̂i,k

→ 0 in L∞(Bδ). (4.69)
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Recalling (4.59), using (4.40) and (4.58), we arrive at

∫

Bδ

∇hi(−∆)mhidx = 0. (4.70)

Let us assume m even. Then, integrating by parts, we get

0 =
1

2

∫

∂Bδ

((−∆)
m
2 hi)

2ndσ

−

m
2 −1∑

j=0

∫

∂Bδ

(∇(−∆)jhi)
∂(−∆)m−1−jhi

∂n
dσ (4.71)

+

m
2 −1∑

j=0

∫

∂Bδ

∇

(
∂(−∆)jhi

∂n

)
(−∆)m−1−jhidσ.

Then, taking the limit as δ → 0, and writing

hi(x) = 2 log
1

|x|
+ Gi(x)

we see that all terms in (4.71) vanish (Gi is regular in a neighborhood of 0 and
the vector function ∇ log 1

|x| is anti-symmetric), up to at most

lim
δ→0

∫

∂Bδ

(−∇Gi)∂ν(−∆)m−1
(
2 log

1

|x|

)
dσ = 2γm∇Gi(0),

see (2.22). But then (4.71) gives

2γm∇Gi(0).

Also when m is odd, in a completely analogous way, we get ∇Gi(0) = 0, a
contradiction with (4.60) and (4.67). This ends the proof of Step 4.

Step 5. Finally, if case (ii) occurs and S 6= ∅, then (4.38) implies

lim sup
k→∞

vol(gk) ≥ Q0(x
(1))−1Λ1 > 0.

This justifies the last claim of the theorem. �

The proposition below was used in the above proof.

Proposition 4.9 Let S = {x1, . . . , xI} ⊂ R2m be a finite set and let h ∈
C∞(R2m\S) satisfy ∆mh = 0 and

dist(x, S)|∇h(x)| ≤ C, for x ∈ R2m\S. (4.72)

Then there are constants β and λi, 1 ≤ i ≤ I, such that

h(x) =

I∑

i=1

λi log
1

|x − xi|
+ β. (4.73)
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Proof. Thanks to (4.72), h ∈ L1
loc(R

2m), so that ∆mh is well defined in the
sense of distributions and it is supported in S. Therefore

∆mh =

I∑

i=1

βiδxi ,

for some constants βi. Then, recalling (2.22), if we set

v(x) := h(x) −
I∑

i=1

λi log
1

|x − xi|
, λi := (−1)m βi

γm
,

we get ∆mv ≡ 0 in R2m in the sense of distributions (hence v is smooth) and

|∇v(x)||x| ≤ C in R2m. (4.74)

Then |v(x)| ≤ C(log(1 + |x|) + 1). By Theorem 2.5 v is a polynomial, which
(4.74) forces to be constant, say v ≡ −β. Now (4.73) follows at once. �

4.4 The case of S2m

In the case of the 2m-dimensional round sphere, the concentration-compactness
of Theorem 4.2 becomes quite explicit: only one concentration point can appear
and, by composing with suitable Möbius transformations, we have a global
understanding of the concentration behavior. This was already noticed in [Str4]
and [MS], in dimension 2 and 4 under the assumption, which we now drop, that
the Q-curvatures are positive.

Theorem 4.10 Let (S2m, g) be the 2m-dimensional round sphere, and let uk :
M → R be a sequence of solutions of

Pguk + (2m − 1)! = Qke2muk , (4.75)

where Qk → Q0 in C0 for a given continuous function Q0. Assume also that

vol(gk) =

∫

S2m

e2mukdvolg = |S2m|, (4.76)

where gk := e2mukg. Then one of the following is true.

(i) For every 0 ≤ α < 1, a subsequence converges in C2m−1,α(S2m).

(ii) There is a point x0 ∈ S2m such that up to a subsequence uk → −∞ locally
uniformly in S2m\{x0}. Moreover Q0(x0) > 0,

Qke2muk dvolg ⇀ Λ1δx0

and there exist Möbius diffeomorphisms Φk such that the metrics hk :=
Φ∗

kgk satisfy

hk → g, in C2m−1,α
loc (S2m), Qhk

→ (2m − 1)! in L2(S2m). (4.77)
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Proof. On the round sphere

P 2m
g =

m−1∏

i=0

(−∆g + i(2m − i − 1)). (4.78)

Moreover ker∆g = {constants} and the non-zero eigenvalues of −∆g are all
positive. That easily implies that kerP 2m

g = {constants}. From Theorem 4.2,
and the Gauss-Bonnet-Chern theorem, we infer that in case (ii) we have

Λ1 =

∫

M

Qg dvolg = IΛ1,

hence I = 1, and Qke2muk dvolg ⇀ Λ1δx0 .
To prove the second part of the theorem, for every k we define Möbius

transformations Φk : S2m → S2m such that the normalized metrics hk := Φ∗
kgk

satisfy ∫

S2m

xdvolhk
= 0, (4.79)

and are normalized with respect to rotations, so that Φk → Φ0 ≡ x0 locally
uniformly on S2m\{p} for some p ∈ S2m. The metrics hk can be expressed in
the form

hk = e2vkgS2m , vk = uk ◦ Φk +
1

2m
log det(dΦk).

Also notice that
Qhk

= Qk ◦ Φk → Q0(x0) (4.80)

locally uniformly on S2m\{p}. We now claim that
∫

S2m

Φk · P 2m
g Φk dvolg = C. (4.81)

Indeed, using the conformal invariance of the Paneitz operator, and writing
Φk = π−1 ◦ δk ◦ π, where π is the stereographic projection from a point which
we may take to be the South Pole, and δk is a dilation of R2m, we have

∫

S2m

Φk · P 2m
g Φk dvolg =

∫

R2m

(−∆R2m)m(π−1 ◦ δk) · π−1 ◦ δkdx

=

∫

R2m

|∇mπ−1|2dx < ∞,

where ∇m denotes ∆
m
2 for m even and ∇∆

m−1
2 for m odd. Using (4.78), we

infer that

P 2m
g =

m∑

i=1

Ci(−∆g)
i,

where Cm = 1 and C1 > 0 for 1 ≤ i ≤ m. Then (4.81) and integration by parts
imply

m∑

i=1

∫

S2m

|∇iΦk|
2 dvolg = C.

Since Φk is a bounded map, elliptic estimates give uniform bounds for Φk in
Hm(S2m, g):

‖Φk‖Hm(S2m,g) ≤ C.
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Hence up to a subsequence (Φk) converges weakly in Hm(S2m, g) to Φ0 ≡ x0.
By (4.80), we infer

‖Q0 ◦ Φk − Q0(x0)‖L2(S2m,hk) = ‖Q0 − Q0(x0)‖L2(S2m,gk) → 0, as k → ∞,

hence

‖Qhk
− Q0(x0)‖L2(S2m,hk) = ‖Qhk

− Q0 ◦ Φk‖L2(S2m,gk) + o(1)

= ‖Qk − Q0‖L2(S2m,gk) + o(1) → 0 as k → ∞.

We can now apply a slight modification of Theorem 4.2 to the sequence hk

(Qhk
is uniformly bounded in L∞ and the above L2 convergence is enough to

make the proof work), and obtain that one of the following is true:

(a) For every 0 ≤ α < 1, up to a subsequence

hk → h0, in C2m−1,α(S2m),

for some metric h0.

(b) There is a point x1 ∈ S2m such that up to a subsequence vk → −∞ locally
uniformly in S2m\{x1}.

Qhk
e2mvk dvolg ⇀ Λ1δx1 . (4.82)

Since (4.82) contradicts (4.79), we are in case (a) and hk → h0 in C2m−1,α(S2m),
where Q2m

h0
≡ Q0(x0) > 0. By Theorem 2.2 (vi),

h0 =

(
(2m − 1)!

Q(x0)

) 1
2m

g.

On the other hand, the volume constraint (4.76) implies that

vol(h0) = vol(hk) = vol(gk) = |S2m|,

hence Q0(x0) = (2m − 1)!, and the theorem is proved. �
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Chapter 5

Concentration-Compactness

for an equation with critical

quadratic exponential

non-linearity

We now switch to a different problem. Given a bounded domain Ω ⊂ R2m with
smooth boundary, and a sequence 0 < λk → 0, consider a sequence (uk) of
smooth solutions to






(−∆)muk = λkukemu2
k in Ω

uk > 0 in Ω

uk = ∂νuk = . . . = ∂m−1
ν uk = 0 on ∂Ω.

(5.1)

Assume also that
∫

Ω

uk(−∆)mukdx = λk

∫

Ω

u2
kemu2

kdx → Λ ≥ 0 as k → ∞. (5.2)

We have another concentration-compactness result:

Theorem 5.1 Let (uk) be a sequence of solutions to (2.1), (5.2). Then either

(i) Λ = 0 and uk → 0 in C2m−1,α(Ω),1 or

(ii) We have supΩ uk → ∞ as k → ∞. Moreover there exists I ∈ N\{0} such
that Λ ≥ IΛ1, where Λ1 := (2m−1)!vol(S2m), and up to a subsequence there are
I converging sequences of points xi,k → x(i) and of positive numbers ri,k → 0,
the latter defined by

λkr2m
i,k u2

k(xi,k)emu2
k(xi,k) = 22m(2m − 1)!, (5.3)

such that the following is true:

1. For every 1 ≤ i ≤ I we have limk→∞
dist(xi,k,∂Ω)

ri,k
= +∞.

1Here and in the following α ∈ [0, 1) is an arbitrary Hölder exponent.

67
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2. If we define

ηi,k(x) := uk(xi,k)(uk(xi,k + ri,kx) − uk(xi,k)) + log 2

for 1 ≤ i ≤ I, then

ηi,k(x) → η0(x) = log
2

1 + |x|2
in C2m−1

loc (R2m) (k → ∞). (5.4)

3. For every 1 ≤ i 6= j ≤ I we have limk→∞
|xi,k−xj,k|

ri,k
= ∞.

4. Set Rk(x) := inf1≤i≤I |x − xi,k|. Then

λkR2m
k (x)u2

k(x)emu2
k(x) ≤ C, (5.5)

where C does not depend on x or k.

Finally uk ⇀ 0 in Hm(Ω) and uk → 0 in C2m−1,α
loc (Ω\{x(1), . . . , x(I)}).

The function η0 in (5.4) satisfies (−∆)mη0 = (2m− 1)!e2mη0 , which is (4.9)
with Qk ≡ (2m−1)! and ak ≡ 1. This shows a surprising relation between (4.9)
and (5.1). In fact η0 has a remarkable geometric interpretation: If π : S2m →
R2m is the stereographic projection, then

e2η0gR2m = (π−1)∗gS2m , (5.6)

where gS2m is the round metric on S2m. Then (5.6) implies

(2m − 1)!

∫

R2m

e2mη0dx =

∫

S2m

QS2mdvolgS2m = (2m − 1)!|S2m| = Λ1. (5.7)

This is the reason why Λ ≥ IΛ1 in case (ii) of Theorem 5.1 above, compare
Proposition 5.7.

Solutions to (2.1) arise from the Adams-Moser-Trudinger inequality [Ada]
(see also [Mos], [Tru] and [BW]):

sup
u∈Hm

0 (Ω), ‖u‖2
Hm

0
≤Λ1

∫

Ω

emu2

dx = c0(m) < +∞, (5.8)

where c0(m) is a dimensional constant, and Hm
0 (Ω) is the Beppo-Levi defined

as the completion of C∞
c (Ω) with respect to the norm2

‖u‖Hm
0

:= ‖∆
m
2 u‖L2 =

( ∫

Ω

|∆
m
2 u|2dx

) 1
2

, (5.9)

and we used the following notation:

∆
m
2 u :=

{
∆nu ∈ R if m = 2n is even,
∇∆nu ∈ R2m if m = 2n + 1 is odd.

(5.10)

2The norm in (5.9) is equivalent to the usual Sobolev norm ‖u‖Hm :=
`
P

m

ℓ=0
‖∇ℓ

u‖
L2

´
1
2 ,

thanks to elliptic estimates.
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In fact (2.1) is the Euler-Lagrange equation of the functional

F (u) :=
1

2

∫

Ω

|∆
m
2 u|2dx −

λ

2m

∫

Ω

emu2

dx

(where λ = λk plays the role of a Lagrange multiplier), which is well defined and
smooth thanks to (5.8), but does not satisfy the Palais-Smale condition. For a
more detailed discussion, in the context of Orlicz spaces, we refer to [Str3].

Theorem 5.1 has been proven by Adimurthi and M. Struwe [AS] and Adimurthi
and O. Druet [AD] in the case m = 1, and by F. Robert and M. Struwe [RS]
for m = 2. The extraction of a blow-up profile from a concentrating sequence
of solutions to a nonlinear PDE was pioneered by J. Sack and K. Uhlenbeck
[SU] and Wente [Wen]. Their ideas were later expanded in various ways by
M. Struwe [Str1], [Str2], H. Brezis and J. M. Coron [BC1], [BC2] who, in par-
ticular, first wrote down separation conditions like conditions 1 and 3 in part
(ii) of Theorem 5.1 (see also the works of T. H. Parker [Par], E. Hebey and F.
Robert [HR] and many others). For further motivations and references we refer
to M. Struwe [Str6]. Here, instead, we want to point out the main ingredients
of our approach. Crucial to the proof of Theorem 5.1 are the gradient estimates
in Lemma 5.6 and the blow-up procedure of Proposition 5.7. For the latter,
we rely on a concentration-compactness result from [Mar2] and a classification
result from [Mar1], which imply, together with the gradient estimates, that at
the finitely many concentration points {x(1), . . . , x(I)}, the profile of uk is η0,
hence an energy not less that Λ1 accumulates, namely

lim
R→0

lim sup
k→∞

∫

BR(x(i))

λku2
kemu2

kdx ≥ Λ1, for every 1 ≤ i ≤ I.

As for the gradient estimates, if one uses (2.1) and (5.2) to infer ‖∆muk‖L1(Ω) ≤

C, then elliptic regularity gives ‖∇ℓuk‖Lp(Ω) ≤ C(p) for every p ∈ [1, 2m/ℓ).
These bounds, though, turn out to be too weak for Lemma 5.6 (see also the
remark after Lemma 5.5). One has, instead, to fully exploit the integrability of
∆muk given by (5.2), namely ‖∆muk‖L(log L)1/2(Ω) ≤ C, where L(log L)1/2 ( L1

is the Zygmund space. Then an interpolation result from [BS] gives uniform
estimates for ∇ℓuk in the Lorentz space L(2m/ℓ,2)(Ω), 1 ≤ ℓ ≤ 2m − 1, which
are sharp for our purposes (see Lemma 5.5).

We remark that when m = 1, things simplify dramatically, as we can simply
integrate by parts (5.2) and get

‖∇uk‖L(2,2)(Ω) = ‖∇uk‖L2(Ω) ≤ C.

In the case m = 2, F. Robert and M. Struwe [RS] proved a slightly weaker
form of our Lemma 5.6 by using subtle estimates in the BMO space, whose
generalization to arbitrary dimensions appears quite challenging. Our approach,
on the other hand, is simpler and more transparent.

Recently O. Druet [Dru] for the case m = 1, and M. Struwe [Str5] for m = 2
improved the previous results by showing that in case (ii) of Theorem 5.1 we
have Λ = LΛ1 for some positive L ∈ N. Whether the same holds true for m > 2
is still an open question. In is also unknown whether L = I in case m = 1, 2.

If we assume that supΩ uk ≤ C, we have that ∆muk → 0 uniformly, since
λk → 0. By elliptic estimates we infer uk → 0 in W 2m,p(Ω) for every 1 ≤ p < ∞,
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hence uk → 0 in C2m−1,α(Ω), Λ = 0 and we have proven that we are in case
(i) of the Theorem. Therefore in the following we shall assume that, up to a
subsequence, supΩ uk → ∞ and show that we are in case (ii) of the Theorem.
In Section 5.1 we analyze the asymptotic profile at blow-up points. In Section
5.2 we sketch the inductive procedure which completes the proof.

5.1 Analysis of the first blow-up

Let xk = x1,k be a point such that uk(xk) = maxΩ uk, and let rk = r1,k be as
in (5.3). Throughout this section (uk)k∈N is a sequence of functions satisfying

(5.1), (5.2). We use the following notation: when m is odd ∆
m
2 u := ∇∆

m−1
2 u.

Integrating by parts in (5.2), we find ‖∆
m
2 uk‖L2(Ω) ≤ C which, together with

the boundary condition and elliptic estimates, gives

‖uk‖Hm(Ω) ≤ C. (5.11)

Lemma 5.2 We have

lim
k→∞

dist(xk, ∂Ω)

rk
= +∞.

Proof. Set

uk(x) :=
uk(rkx + xk)

uk(xk)
for x ∈ Ωk := {r−1

k (x − xk) : x ∈ Ω}.

Then uk satisfies






(−∆)muk =
22m(2m − 1)!

u2
k(xk)

ukemu2
k(xk)(u2

k−1) in Ωk

uk > 0 in Ωk

uk = ∂νuk = . . . = ∂m−1
ν uk = 0 on ∂Ωk.

Assume for the sake of contradiction that up to a subsequence we have

lim
k→∞

dist(xk, ∂Ω)

rk
= R0 < +∞.

Then, passing to a further subsequence, Ωk → P , where P is a half-space, and
uk → u in C2m

loc (P), where u(0) = uk(0) = 1 and





(−∆)mu = 0 in P
u > 0 in P
u = ∂νu = . . . = ∂m−1

ν u = 0 on ∂P .

By (5.11) and the Sobolev imbedding Hm−1(Ω) →֒ L2m(Ω), we find

∫

Ωk

|∇uk|
2mdx =

1

uk(xk)2m

∫

Ω

|∇uk|
2mdx ≤

C

uk(xk)2m
→ 0.

Then ∇u ≡ 0, hence u ≡ const = 0 thanks to the boundary condition. That
contradicts u(0) = 1. �
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Lemma 5.3 We have

uk(xk + rkx) − uk(xk) → 0 in C2m−1
loc (R2m) as k → ∞. (5.12)

Proof. Set

vk(x) := uk(xk + rkx) − uk(xk), x ∈ Ωk

Then vk solves

(−∆)mvk = 22m(2m − 1)!
uk(x)

uk(xk)
emu2

k(xk)(u2
k−1) ≤ 22m (2m − 1)!

uk(xk)
→ 0. (5.13)

Assume that m > 1. By (5.11) and the Sobolev embedding Hm−2(Ω) →֒ Lm(Ω),
we get

‖∇2vk‖Lm(Ωk) = ‖∇2uk‖Lm(Ω) ≤ C. (5.14)

Fix now R > 0 and write vk = hk + wk on BR = BR(0), where ∆mhk = 0 and
wk satisfies the Navier-boundary condition on BR. Then, (5.13) gives

wk → 0 in C2m−1,α(BR). (5.15)

This, together with (5.14) implies

‖∆hk‖Lm(BR) ≤ C. (5.16)

Then, since ∆m−1(∆hk) = 0, we get from Proposition 2.4

‖∆hk‖Cℓ(BR/2) ≤ C(ℓ) for every ℓ ∈ N. (5.17)

By Pizzetti’s formula (2.7),

∫

BR

hkdx = hk(0) +

m−1∑

i=1

ciR
2i∆ihk(0),

and (5.17), together with |hk(0)| = |wk(0)| ≤ C and hk ≤ −wk ≤ C, we find

∫

BR

|hk|dx ≤ C.

Again by Proposition 2.4 it follows that

‖hk‖Cℓ(BR/2) ≤ C(ℓ) for every ℓ ∈ N. (5.18)

By Ascoli-Arzelà’s theorem, (5.15) and (5.18), we have that up to a subsequence

vk → v in C2m−1,α(BR/2),

where ∆mv ≡ 0 thanks to (5.13). We can now apply the above procedure with
a sequence of radii Rk → ∞, extract a diagonal subsequence (vk′ ), and find a
function v ∈ C∞(R2m) such that

v ≤ 0, ∆mv ≡ 0, vk′ → v in C2m−1,α
loc (R2m). (5.19)
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By Fatou’s Lemma

‖∇2v‖Lm(R2m) ≤ lim inf
k→∞

‖∇2vk′‖Lm(Ωk) ≤ C. (5.20)

By Theorem 2.5 and (5.19), v is a polynomial of degree at most 2m − 2. Then
(5.20) implies that v is constant, hence v ≡ v(0) = 0. Therefore the limit
does not depend on the chosen subsequence (vk′ ), and the full sequence (vk)
converges to 0 in C2m−1

loc (R2m), as claimed.
When m = 1, Pizzetti’s formula and (5.13) imply at once that for every

R > 0 ‖vk‖L1(BR) → 0, hence vk → 0 in W 2,p(BR) as k → ∞, 1 ≤ p < ∞. �

Now set

ηk(x) := uk(xk)[uk(rkx + xk) − uk(xk)] + log 2. (5.21)

An immediate consequence of Lemma 5.3 is the following

Corollary 5.4 The function ηk satisfies

(−∆)mηk = Vke2makηk , (5.22)

where

Vk(x) = 2m(1−uk)(2m − 1)!uk(x) → (2m − 1)!, ak =
1

2
(uk + 1) → 1

in C0
loc(R

2m).

Lemma 5.5 For every 1 ≤ ℓ ≤ 2m − 1, ∇ℓuk belongs to the Lorentz space
L(2m/ℓ,2)(Ω) and

‖∇ℓuk‖(2m/ℓ,2) ≤ C. (5.23)

Proof. We first show that fk := (−∆)muk is bounded in L(log L)
1
2 (Ω), where

L(log L)α(Ω) :=

{
f ∈ L1(Ω) : ‖f‖L(logL)α :=

∫

Ω

|f | logα(2 + |f |)dx < ∞

}
.

Indeed, set log+ t := max{0, log t} for t > 0. Then, using the simple inequalities

log(2 + t) ≤ 2 + log+ t, log+(ts) ≤ log+ t + log+ s, t, s > 0,

one gets

log(2 + λkukemu2
k) ≤ 2 + log+ λk + log+ uk + mu2

k ≤ C(1 + uk)2.

Then, since fk ≥ 0, we have

‖fk‖
L(log L)

1
2

≤

∫

Ω

fk log
1
2 (2 + fk)dx

≤ C

∫

{x∈Ω:uk(x)≥1}

λku2
kemukdx + C|Ω| ≤ C

by (5.2), as claimed. Now (5.23) follows from Theorem 5.15. �
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Remark. The inequality (5.23) is intermediate between the L1 and the L logL
estimates. Indeed, the bound of fk := (−∆)muk in L1 implies ‖∇ℓuk‖Lp ≤ C
for every 1 ≤ ℓ ≤ 2m − 1, 1 ≤ p < 2m

ℓ , compare Lemma 4.6, and actually
‖∇ℓuk‖(2m/ℓ,∞) ≤ C (compare [Hél, Thm. 3.3.6]), but that is not enough for our
purposes (Lemma 5.6 below). On the other hand, was fk bounded in L(log L),
we would have ‖∇ℓuk‖(2m/ℓ,1) ≤ C, which implies ‖uk‖L∞ ≤ C (compare [Hél,
Thm. 3.3.8]). But we know that this is not the case in general.

Actually, the cases 1 ≤ ℓ ≤ m in (5.23) follow already from (5.11) and the
improved Sobolev embeddings, see [O’N]. What really matters here are the
cases m < ℓ < 2m. In fact, when m = 1 Lemma 5.5 reduces to (5.11).

The following lemma, which is reminiscent of Lemma 4.7, replaces Proposi-
tion 2.3 in [RS].

Lemma 5.6 For any R > 0, 1 ≤ ℓ ≤ 2m − 1 there exists k0 = k0(R) such that

uk(xk)

∫

BRrk
(xk)

|∇ℓuk|dx ≤ C(Rrk)2m−ℓ, for all k ≥ k0.

Proof. We first claim that

‖∆m(u2
k)‖L1(Ω) ≤ C. (5.24)

To see that, observe that

|∆m(u2
k)| ≤ 2uk(−∆)muk + C

2m−1∑

ℓ=1

|∇ℓuk||∇
2m−ℓuk|. (5.25)

The term 2uk(−∆)muk is bounded in L1 thanks to (5.2). The other terms
on the right-hand side of (5.25) are bounded in L1 thanks to Lemma 5.5 and
Proposition 5.11 belows. Hence (5.24) is proven.

Now set fk := (−∆)m(u2
k), and for any x ∈ Ω, let Gx be the Green’s function

for (−∆)m on Ω with Dirichlet boundary condition. Then

u2
k(x) =

∫

Ω

Gx(y)fk(y)dy.

Thanks to the basic estimate on the Greens’s function (see [DAS, Thm. 12]),
|∇ℓGx(y)| ≤ C|x − y|−ℓ, we infer

|∇ℓ(u2
k)(x)| ≤

∫

Ω

|∇ℓ
xGx(y)||fk(y)|dy ≤ C

∫

Ω

|fk(y)|

|x − y|ℓ
dy.

Let µk denote the probability measure |fk(y)|
‖fk‖L1(Ω)

dy. By Fubini’s theorem

∫

BRrk
(xk)

|∇ℓ(u2
k)(x)|dx ≤ C‖fk‖L1(Ω)

∫

BRrk
(xk)

∫

Ω

1

|x − y|ℓ
dµk(y)dx

≤ C

∫

Ω

∫

BRrk
(xk)

1

|x − y|ℓ
dxdµk(y)

≤ C sup
y∈Ω

∫

BRrk
(xk)

1

|x − y|ℓ
dx ≤ C(Rrk)2m−ℓ.
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To conclude the proof, observe that Lemma 5.3 implies that on BRrk
(xk), for

1 ≤ ℓ ≤ 2m − 1, we have rℓ
k∇

ℓuk → 0 uniformly, hence

uk(xk)|∇ℓuk| ≤ Cuk|∇
ℓuk| ≤ C

(
|∇ℓ(u2

k)| +
ℓ−1∑

j=1

|∇juk||∇
ℓ−juk|

)

≤ C|∇ℓ(u2
k)| + o(r−ℓ

k ), as k → ∞.

Integrating over BRrk
(xk) and using the above estimates we conclude. �

Proposition 5.7 Let ηk be as in (5.21). Then ηk(x) → η0(x) = log 2
1+|x|2 in

C2m
loc (R2m), and

lim
R→∞

∫

BRrk
(xk)

λku2
kemu2

kdx = lim
R→∞

(2m − 1)!

∫

BR(0)

e2mη0dx = Λ1. (5.26)

Proof. Let ak be as in Corollary 5.4. Notice that, thanks to Lemma 5.3,
∫

BR(0)

Vke2makηkdx =

∫

BRrk
(xk)

uk(xk)ukλkemu2
kdx (5.27)

≤ (1 + o(1))

∫

BRrk
(xk)

u2
kλkemu2

kdx ≤ Λ + o(1),

where Vk and ak are as in Corollary 5.4, and o(1) → 0 as k → ∞.

Step 1. We claim that ηk → η in C2m−1
loc (R2m), where η satisfies

(−∆)mη = (2m − 1)!e2mη, (5.28)

and letting R → ∞ in (5.27), from Corollary 5.4 we infer e2mη ∈ L1(R2m).
Let us prove the claim. Corollary 5.4, Theorem 4.1, and (5.27), together

with ηk ≤ log 2, imply that up to subsequences either

(i) ηk → η in C2m−1
loc (R2m) for some function η ∈ C2m−1

loc (R2m), or

(ii) ηk → −∞ locally uniformly, or

(iii) there exists a closed set S0 6= ∅ of Hausdorff dimension at most 2m − 1
and numbers βk → +∞ such that

ηk

βk
→ ϕ in C2m−1

loc (R2m\S0),

where

∆mϕ ≡ 0, ϕ ≤ 0, ϕ 6≡ 0 on R2m, ϕ ≡ 0 on S0. (5.29)

Since ηk(0) = log 2, (ii) can be ruled out. Assume now that (iii) occurs. From
Liouville’s theorem and (5.29) we get ∆ϕ 6≡ 0, hence for some R > 0 we have∫

BR
|∆ϕ|dx > 0 and

lim
k→∞

∫

BR

|∆ηk|dx = lim
k→∞

βk

∫

BR

|∆ϕ|dx = +∞. (5.30)
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On the other hand, we infer from Lemma 5.6

∫

BR

|∇ℓηk|dx = uk(xk)rℓ−2m
k

∫

BRrk
(xk)

|∇ℓuk|dx ≤ CR2m−ℓ, (5.31)

contradicting (5.30) when ℓ = 2 and therefore proving our claim.

Step 2. We now prove that η is a standard solution of (5.28), i.e. there are
λ > 0, x0 ∈ R2m such that

η(x) = log
2λ

1 + λ2|x − x0|2
. (5.32)

Was this not the case, according to [Mar1, Thm. 2], there would exist j ∈ N

with 1 ≤ j ≤ m − 1 and a < 0 such that

lim
|x|→∞

(−∆)jη(x) = a.

This would imply

lim
k→∞

∫

BR(0)

|∆jηk|dx = |a| · vol(B1(0))R2m + o(R2m) as R → ∞,

contradicting (5.31) for ℓ = 2j. Hence (5.32) is established. Since ηk ≤ ηk(0) =
log 2, it follows immediately that x0 = 0, λ = 1, i.e. η = η0, and (5.26) follows
from (5.7), (5.27) and Fatou’s lemma. �

5.2 Exhaustion of the blow-up points and proof

of Theorem 5.1

For ℓ ∈ N we say that (Hℓ) holds if there are ℓ sequences of converging points
xi,k → x(i), 1 ≤ i ≤ ℓ such that

sup
x∈Ω

λkR2m
ℓ,k (x)u2

k(x)emu2
k(x) ≤ C, (5.33)

where
Rℓ,k(x) := inf

1≤i≤ℓ
|x − xi,k|.

We say that (Eℓ) holds if there are ℓ sequences of converging points xi,k → x(i)

such that, if we define ri,k as in (5.3), the following hold true:

(E1
ℓ ) For all 1 ≤ i 6= j ≤ ℓ

lim
k→∞

dist(xi,k, ∂Ω)

ri,k
= ∞, lim

k→∞

|xi,k − xj,k|

ri,k
= ∞.

(E2
ℓ ) For 1 ≤ i ≤ ℓ (5.4) holds true.

(E3
ℓ ) limR→∞ limk→∞

∫
∪ℓ

i=1BRri,k
(xi,k)

λku2
kemu2

kdx = ℓΛ1.
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To prove Theorem 5.1 we show inductively that (HI) and (EI) hold for
some positive I ∈ N, following the approach of [AD] and [RS]. First observe
that (E1) holds thanks to Lemma 5.2 and Proposition 5.7. Assume now that
for some ℓ ≥ 1 (Eℓ) holds and (Hℓ) does not. Choose xℓ+1,k ∈ Ω such that

λkR2m
ℓ,k (xℓ+1,k)u2

k(xℓ+1,k)emu2
k(xℓ+1,k) = λk max

Ω
R2m

ℓ,k u2
kemu2

k → ∞, (5.34)

and define rℓ+1,k as in (5.3). It easily follows from (5.34) that

lim
k→∞

|xℓ+1,k − xi,k|

rℓ+1,k
= 0, 1 ≤ i ≤ ℓ. (5.35)

We now need to replace Lemma 5.2 and Lemma 5.3 with the lemma below.

Lemma 5.8 Under the above assumptions and notation, we have

lim
k→∞

dist(xℓ+1,k, ∂Ω)

rℓ+1,k
= ∞ (5.36)

and

uk(xℓ+1,k + rℓ+1,kx) − uk(xℓ+1,k) → 0 in C2m−1
loc (R2m), as k → ∞. (5.37)

Proof. To simplify the notation, let us write yk := xℓ+1,k and ρk := rℓ+1,k.
Evaluating the right-hand side of (5.34) at the point yk − ρkx we get

(
inf

1≤i≤ℓ
|yk − xi,k − ρkx|2m

)
u2

k(yk + ρkx)emu2
k(yk+ρkx)

≤
(

inf
1≤i≤ℓ

|yk − xi,k|
2m

)
u2

k(yk)emu2
k(yk),

that is

u2
ℓ+1,k(x)emu2

k(yk)(u2
ℓ+1,k(x)−1) ≤

inf1≤i≤ℓ |yk − xi,k|2m

inf1≤i≤ℓ |yk − xi,k − ρkx|2m
= 1+o(1), (5.38)

where o(1) → 0 as k → ∞ locally uniformly in x, as (5.35) immediately implies.
Then (5.36) follows as in the proof of Lemma 5.2, since (5.38) implies

(−∆)uℓ+1,k =
22m(2m − 1)!

u2
k(yk)

uℓ+1,kemu2
k(yk)(u2

ℓ+1,k−1) = o(1), (5.39)

where o(1) → 0 as k → ∞ uniformly locally in x.

Similarly, if we define vk(x) := uk(xℓ+1,k + rℓ+1,kx)−uk(xℓ+1,k), we can use
(5.39) to replace (5.13) in the proof of Lemma 5.3 and get

(−∆)mvk → 0

locally uniformly in R2m. Then the rest of the proof of Lemma 5.3 applies
without changes, and also (5.37) is proved. �

Still repeating the arguments of the preceding section with xℓ+1,k instead of
xk and rℓ+1,k instead of rk, we define

ηℓ+1,k(x) := uk(xℓ+1,k)[uk(rℓ+1,kx + xℓ+1,k) − uk(xℓ+1,k)],

and we have
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Proposition 5.9 We have ηℓ+1,k(x) → η0(x) = log 2
1+|x|2 in C2m

loc (R2m) and

lim
R→∞

∫

BRrℓ+1,k
(xℓ+1,k)

λku2
kemu2

kdx = lim
R→∞

∫

BR(0)

e2mη0dx = Λ1. (5.40)

Summarizing, we have proved that (E1
ℓ+1), (E2

ℓ+1) and (5.40) hold. These
also imply that (E3

ℓ+1) holds, hence we have (Eℓ+1). Because of (5.2) and (E3
ℓ ),

the procedure stops in a finite number I of steps, and we have (HI).

Finally, we claim that λk → 0 implies uk ⇀ 0 in Hm(Ω). This, (5.5) and
elliptic estimates then imply that

uk → 0 in C2m−1,α
loc (Ω\{x(1), . . . , x(I)}).

To prove the claim, we observe that for any α > 0

∫

Ω

(−∆)mukdx =

∫

Ω

λkukemu2
kdx

≤
λk

α

∫

{x∈Ω:uk≥α}

u2
kemu2

kdx + λk

∫

{x∈Ω:uk<α}

ukemu2
kdx

≤
C

α
+ λkCα,

where Cα depends only on α. Letting k and α go to infinity, we infer

∆muk → 0 in L1(Ω). (5.41)

Thanks to (5.11), we infer that up to a subsequence uk ⇀ u0 in Hm(Ω). Then
(5.41) and the boundary condition imply that u0 ≡ 0, in particular the full
sequence converges to 0 weakly in Hm(Ω). This completes the proof of the
theorem.

5.3 A Lorentz-space estimate

In this section we want to give a proof of an elliptic estimate for functions u
satisfying Navier or Dirichlet (or even more general) boundary conditions and
with ∆mu being slightly more than integrable, Theorem 5.15 below. We start
by recalling the definition and some properties of the Lorentz spaces.

Given a measurable function u : Ω → R, Ω ⊂ Rn, we define the distribution
function of u as

λu(t) := µ{x ∈ Ω : |u(x)| > t},

where µ denotes the Lebesgue measure in Rn. Then we define the equimeasurable
decreasing rearrangement of u as

u∗(s) := inf{t : λu(t) ≤ s}.

Definition 5.10 (Lorentz spaces) For u : Ω → R measurable, set

u∗∗(t) :=
1

t

∫ t

0

u∗(s)ds.
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Set, for 1 ≤ p ≤ ∞

‖u‖(p,q) :=





( ∫ ∞

0

(
t

1
p u∗∗(t)

)
q
dt

t

) 1
q

if 1 ≤ q < ∞

sup
t>0

t
1
p u∗∗(t) if q = ∞.

The Lorentz space L(p,q)(Ω) is defined as

L(p,q)(Ω) :=
{
u : Ω → R measurable : ‖u‖(p,q) < ∞

}
,

endowed with the norm ‖ · ‖(p,q).

The Lorentz spaces generalize the Lebesgue spaces in that L(p,p)(Ω) = Lp(Ω)
for 1 < p < ∞. Moreover L(p,q)(Ω) ⊂ L(p,r) for 1 < p < ∞ and 1 ≤ q ≤ r ≤ ∞.

The following is a generalization of Hölder’s inequality, and can be found in
[O’N].

Proposition 5.11 Let 1 < p < ∞, 1 ≤ q ≤ ∞ and Ω ⊂ Rn. Let p′ and q′ be
the conjugate exponents, i.e.

1

p
+

1

p′
= 1,

1

q
+

1

q′
= 1.

Let f ∈ L(p,q)(Ω), g ∈ L(p′,q′)(Ω). Then fg ∈ L1(Ω), and

‖fg‖L1(Ω) ≤ ‖f‖(p,q)‖g‖(p′,q′).

We also have the following improved Sobolev imbedding.

Proposition 5.12 Let f ∈ Lp(Ω), Ω ⊂ Rn, 1 ≤ p ≤ n, and assume that
∇f ∈ L(p,q)(Ω). Then f ∈ L(p∗,q)(Ω), where 1

p∗ = 1
p − 1

n . Moreover

‖f‖(p∗,q) ≤ C(‖∇f‖(p,q) + ‖f‖Lp).

Finally, we also need an interpolation result for Lorentz spaces.

Theorem 5.13 ([SW], [Hun]) Let Ω be an open subset of Rn. Let r0, r1, p0,
be real numbers such that

1 ≤ r0 < r1 ≤ ∞

and
1 ≤ p0 6= p1 ≤ ∞.

Let T be a linear operator whose domain D contains
⋃

r0≤r≤r1

Lr(Ω)

and which maps continuously Lr0(Ω) to Lp0(R) and Lr1(Ω) to Lp1(R), with
norms

‖Tf‖Lp0(R) ≤ C0‖f‖Lr0(Ω) for every f ∈ Lr0(Ω)

‖Tf‖Lp1(R) ≤ C1‖f‖Lr1(Ω) for every f ∈ Lr1(Ω).
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Then, for each 1 ≤ q ≤ ∞, and for every pair (p, r) such that there exists
θ ∈ (0, 1) with

1

p
=

1 − θ

p0
+

θ

p1
and

1

r
=

1 − θ

r0
+

θ

r1
,

T maps continuously L(r,q)(Ω) to L(p,q)(R), and

‖Tf‖L(p,q)(R) ≤ C‖f‖L(r,q)(Ω) for every f ∈ L(r,q)(Ω),

where C = C(C0, C1, r, p, q, r0, r1, p0, p1).

The following theorem can be found in [BS, Cor. 6.16] (see also the discussion
in [BS, Page 254]).

Theorem 5.14 Let Tλ be the fractional integral operator defined by

Tλf = Iλ ∗ f, Iλ(x) :=
1

|x|n−λ
,

for 0 < λ < n and f : Rn → R measurable. Then, for any 0 ≤ α < 1, Tλ is

bounded from L(log L)α(Rn) to L

(
n

n−λ , 1
α

)
(Rn).

Theorem 5.15 Let u solve ∆mu = f ∈ L(log L)α in Ω with Dirichlet or Navier
boundary conditions, 0 ≤ α ≤ 1, Ω ⊂ Rn bounded and with smooth boundary,

n ≥ 2m. Then ∇2m−ℓu ∈ L

(
n

n−ℓ , 1
α

)
(Ω), 1 ≤ ℓ ≤ 2m − 1 and

‖∇2m−ℓu‖( n
n−ℓ , 1

α

) ≤ C‖f‖L(log L)α . (5.42)

Proof. Define

f̂ :=

{
f in Ω
0 in Rn\Ω,

and let w := K ∗ f̂ , where K is the fundamental solution of ∆m. Then

|∇2m−1w| = |(∇2m−1K) ∗ f̂ | ≤ CI1 ∗ |f̂ |,

where I1(x) = |x|1−n. According to theorem 5.14, |∇2m−1w| ∈ L

(
n

n−1 , 1
α

)
(Rn)

and
‖∇2m−1w‖( n

n−1 , 1
α

) ≤ C‖f̂‖L(log L)α = C‖f‖L(log L)α . (5.43)

We now use (5.43) to prove (5.42), following a method that we learned from
[Hél]. Given g : Ω → Rn measurable, let vg be the solution to ∆mvg = div g
in Ω, with the same boundary condition as u, and set P (g) := |∇2m−1vg|.
By Lp estimates (see e.g. [ADN]), P is bounded from Lp(Ω; Rn) into Lp(Ω)
for 1 < p < ∞. Then, thanks to Theorem 5.13 above, P is bounded from
L(p,q)(Ω; Rn) into L(p,q)(Ω) for 1 < p < ∞ and 1 ≤ q ≤ ∞. Choosing now
g = ∇∆m−1w, we get vg = u, hence |∇2m−1u| = P (∇∆m−1w), and from (5.43)
we infer

‖∇2m−1u‖( n
n−1 , 1

α

) ≤ C‖∇∆m−1w‖( n
n−1 , 1

α

) ≤ C‖f‖L(logL)α .

For 1 < ℓ ≤ 2m − 1, (5.42) follows from Proposition 5.12. �
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