Esercizi di algebra lineare (30 novembre 2019) - Soluzione dell'es.5

Esercizio 1. Considerare l'applicazione $L_B: \mathbb{R}^3 \to \mathbb{R}^3$ associata a

$$B := \left(\begin{array}{rrr} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 14 & -13 & 4 \end{array} \right).$$

Considerare la fibra di $A_s = L_B^{-1}(w_s)$ sopra il punto $w_s = e_1 + se_2$ al variare di $s \in \mathbb{R}$. Per quegli s per cui A_s è non vuoto, determinare la giacitura \overrightarrow{A}_s di A_s e un punto $p_s \in A_s$.

SOLUZIONE.

$$A_s \neq \emptyset \iff s = 1. \text{ Inoltre, } p_1 = \begin{pmatrix} 13/27 \\ 14/27 \\ 0 \end{pmatrix} \in A_1 \text{ } e \overrightarrow{A}_1 = \operatorname{Span} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Infatti, per definizione $A_s = \{X \in \mathbb{R}^3 \mid BX = w_s\}$. Il sistema $BX = w_s$ si può riscrivere come

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 14 & -13 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ s \\ 0 \end{pmatrix}.$$

L'esistenza di soluzioni si può verificare con Rouché-Capelli, considerando la matrice completata

$$\widehat{B} = \left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & s \\ 14 & -13 & 4 & 0 \end{array} \right)$$

e facendo la riduzione di Gauss, fino ad ottenere una matrice

$$\widehat{B}' == \left(\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 0 & -27 & -18 & -14 \\ 0 & 0 & 0 & s-1 \end{array} \right).$$

Da cui concludiamo che una soluzione X esiste se e solo se s=1. Quindi $A_s \neq \emptyset$ se e solo se s=1.

 $Per \ s = 1, \ gli \ X \in A_1 \ sono \ quelli \ che \ soddisfino \ il \ sistema$

$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ -27x_2 + 18x_3 = -14 \end{cases}$$

e dunque una soluzione si ottiene prendendo $x_3=0,\ x_2=14/27$ e $x_1=1-14/27=13/27,\ ossia$

$$p_1 = \left(\begin{array}{c} 13/27\\14/27\\0 \end{array}\right).$$

Infine, la giacitura $\overrightarrow{A}_1 = \ker(L_B)$, ossia è data dagli X che soddisfino BX = 0. Facendo la riduzione di Gauss, la condizione è equivalente a

$$\begin{cases} x_1 + x_2 - x_3 = 0 \\ -3x_2 + 2x_3 = 0 \end{cases}$$

1

da cui otteniamo $X=\begin{pmatrix} t\\2t\\3t \end{pmatrix}$ per ogni $t\in\mathbb{R}.$ Ne segue che $\overrightarrow{A}_1=\mathrm{Span}(e_1+e_2+e_3).$