Algebra lineare

Anno accademico 2018/19

Prova scritta - 22 gennaio 2019

Nome:					
Cognome:					
$Numero\ di$	matricola:				
Can ale:	anale: A-L (Fiorenza-De Concini)			M- Z (Mondello)	
\Box Esam	$ne\ completo$,	\square Second	lo esonero	o (solo esercizi 3
		Esercizio	Punti totali	Punteggio	
		1	8]
		2	8		
		3	8		
		4	8		
		Totale	32		
					,
Occorre motiva Verrà corretto s					e riceverà 0 punti.
Voto/30:					

Esercizio 1. (a) Determinare gli $z \in \mathbb{C}$ che soddisfino $z(z-2) = z + \bar{z}$.

(b) Siano $p_1=x^3-3x^2+4x-2$ e $p_2=x^3-5x^2+8x-6$ sono polinomi reali in x. Calcolare il $\mathrm{MCD}(p_1,p_2)$.

${\bf Risoluzione:}$

Esercizio 2. Sia $V = \mathbb{R}[x]_{\leq 3}$ lo spazio vettoriale reale dei polinomi in x di grado al più 3 e si considerino i seguenti sottoinsiemi di V:

$$W_1 = \{p \in V \mid p \text{ non ha radici negative}\}, \quad W_2 = \{p \in V \mid p(x-1) + p(x+1) = 2p(x)\}.$$

- (i) Determinare se ciascun W_i sia un sottospazio vettoriale di V.
- (ii) Determinare una base di quei W_i che sono sottospazi vettoriali di V.

Risoluzione:

Esercizio 3. Considerare lo spazio vettoriale reale $\mathcal{M}_{3,3}(\mathbb{R})$ delle matrici 3×3 reali e l'applicazione lineare $f: \mathcal{M}_{3,3}(\mathbb{R}) \to \mathcal{M}_{3,3}(\mathbb{R})$ definita come $f(A) := A - 4A^T$.

- (i) Determinare autovalori e autospazi di f.
- (ii) Determinare le molteplicità geometriche degli autovalori di f e dire se f sia diagonalizzabile.
- (ii) Determinare polinomi caratteristico e minimo di f.

Risoluzione:

Esercizio 4. Sia $A \in \mathcal{M}_{4,4}(\mathbb{R})$ la matrice

$$A = \begin{pmatrix} 4 & 0 & 0 & 1 \\ 0 & 5 & 1 & 0 \\ 0 & 1 & 5 & -1 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

- (i) Calcolare gli autovalori di A, le loro molteplicità algebriche, il 5 polinomio caratteristico p_A e dire se A sia triangolabile.
- (ii) Determinare le dimensioni degli autospazi e degli autospazi generalizzati di A e dire se A sia diagonalizzabile.
- (iii) Calcolare il polinomio minimo di A e determinare la forma di Jordan di A.
- (iv) Determinare una base di Jordan per A.

Risoluzione: