Esercizi di algebra lineare (16 dicembre 2018)

Esercizio 1. Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare definita da

$$f(x_1e_1 + x_2e_2) := x_1e_2$$
 per ogni $x_1, x_2 \in \mathbb{R}$.

Determinare i sottospazi vettoriali f-invarianti di \mathbb{R}^2 .

Esercizio 2. Calcolare autovalori, autospazi, polinomio caratteristico e polinomio minimo degli endomorfismi $L_A, L_B : \mathbb{R}^3 \to \mathbb{R}^3$ indotti dalle matrici

$$A = \begin{pmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & 6 & -3 \\ -1 & 0 & 1 \\ 2 & 2 & -1 \end{pmatrix}.$$

Dire inoltre se L_A e L_B siano diagonalizzabili (o triangolabili). In caso, determinare una base di \mathbb{R}^3 che diagonalizza (o triangola) tale endomorfismo.

Esercizio 3. Sia V uno spazio vettoriale di dimensione finita sul campo \mathbb{C} e sia $f:V\to V$ una applicazione lineare. Supponiamo che esistano un intero $k\geq 2$ e un $\lambda\in\mathbb{C}$ tali che $f^k=\lambda f$. Dimostrare che f è diagonalizzabile.

Esercizio 4. Sia V uno spazio vettoriale di dimensione finita sul campo \mathbb{C} , sia $f:V\to V$ una applicazione lineare e sia $k\geq 2$ intero.

- (a) Supponiamo f invertibile. Dimostrare che f è diagonalizzabile se e solo se f^k è diagonalizzabile.
- (b) Esibire una $L_A: \mathbb{R}^2 \to \mathbb{R}^2$ non invertibile tale che L_A non sia diagonalizzabile ma L_{A^2} sia diagonalizzabile.

Esercizio 5. Siano $A, B \in \mathcal{M}_{n,n}(\mathbb{R})$. Ricordiamo che A, B sono simili se esiste una matrice invertibile $Q \in \mathcal{M}_{n,n}(\mathbb{R})$ tale che $B = QAQ^{-1}$. D'altra parte, A, B possono essere viste come matrici complesse: A, B sono simili come matrici complesse se esiste una matrice $P \in \mathcal{M}_{n,n}(\mathbb{C})$ invertibile tale che $B = PAP^{-1}$.

- (a) Dimostrare che, se A è simile a B come matrici reali, allora A è simile a B come matrici complesse.
- (b) Dimostrare che, se A è simile a B come matrici complesse, allora A è simile a B come matrici reali.

(Suggerimento: mostrare che, se $B = PAP^{-1}$ con $P = M + iN \in \mathcal{M}_{n,n}(\mathbb{C})$ invertibile e M = Re(P), N = Im(P) reali, allora $B = (M + tN)A(M + tN)^{-1}$ per ogni $t \in \mathbb{C}$.)

Esercizio 6. Sia $f:V\to V$ una applicazione lineare tale che $f^6=I-f-f^5$. Dire se f sia necessariamente triangolabile o diagonalizzabile nel caso $V=\mathbb{Q}^3,\mathbb{Q}^4,\mathbb{R}^3,\mathbb{C}^n$.

1