Geometria differenziale

 $LT\ in\ Matematica$

Prova scritta - 2 febbraio 2018

Nome e Co	gnome:	 _
Numero di	matricola:	

Esercizio	Punti totali	Punteggio
1	8	
2	8	
3	9	
4	9	
Totale	34	

Occorre motivare le risposte. Una soluzione corretta priva di motivazione riceverà 0 punti. Verrà corretto solo quello che sarà scritto su queste pagine.

Voto/30:	
----------	--

Esercizio 1. (i) Mostrare che la curva $\beta:(0,+\infty)\to\mathbb{R}^3$ definita come

$$\beta(t) := \left(\frac{1+t^2}{t}, \ t+1, \ \frac{1-t}{t}\right)$$

giace su un piano affine Π in \mathbb{R}^3 . Determinare l'equazione cartesiana di Π .

(ii) Sia $\gamma:(a,b)\to\mathbb{R}^3$ una curva regolare in parametro d'arco e supponiamo che $\kappa_\gamma(t)\neq 0$ per ogni $t\in(a,b)$. Definiamo una nuova curva $\alpha:(a,b)\to\mathbb{R}^3$ come

$$\alpha(t) := \frac{d\gamma(t)}{dt}.$$

Mostrare che α è regolare. Se s è un parametro d'arco per α , dimostrare che $\frac{ds}{dt}=\kappa_{\gamma}$ ed esprimere la curvatura di α in funzione della curvatura κ_{γ} e della torsione τ_{γ} di γ .

Esercizio 2. Sia $\gamma:[a,b]\to\mathbb{R}^3$ una curva regolare in parametro d'arco s con $\kappa(s)>0$ per ogni $s\in(a,b)$. Sia inoltre $\sigma(u,v):=\gamma(u)+v\cdot\hat{n}(u)$, dove $\hat{n}(s)$ il vettore unitario normale a γ in $\gamma(s)$.

- (i) Dimostrare che esiste $\varepsilon>0$ tale che $S:=\sigma\Big((a,b)\times(-\varepsilon,\varepsilon)\Big)$ è una superficie regolare.
- (ii) Calcolare la prima forma fondamentale di S nelle coordinate u,v in funzione di curvatura κ_{γ} e torsione τ_{γ} di γ .

Esercizio 3. Sia γ una curva contenuta nel piano yz di \mathbb{R}^3 e sia S la superficie di rotazione ottenuta ruotando γ attorno all'asse z (supponiamo S non singolare).

- (i) Dimostrare che, se S ha tutti punti parabolici ma nessun punto ombelicale, allora S è localmente contenuta in un cilindro oppure in un cono.
- (ii) Sia $\lambda > 0$. Considerare il semicono $C_{\lambda} = \{\lambda^2 z^2 = x^2 + y^2, \ z > 0\}$ di vertice O e sia $\beta : \mathbb{R} \to C_{\lambda}$ una geodetica completa con velocità costante. Se f(t) è la distanza di $\beta(t)$ da O, dimostrare che la funzione $f: \mathbb{R} \to \mathbb{R}$ è strettamente convessa. [Suggerimento: può essere utile tagliare il cono lungo una generatrice e vederlo come sottoinsieme di \mathbb{R}^2 .]
- (iii) Con la stessa notazione di (ii), stimare il numero di autointersezioni della curva β in termini di λ .

Esercizio 4. Considerare la superficie $S=\{z^2=x^2+y^2-1\}$ in \mathbb{R}^3 e orientarla in modo che $N_{(1,0,0)}=e_1$.

- (i) Calcolare la curvatura normale κ_n e la curvatura geodetica κ_g della curva $S \cap \{z=c\}$ per ogni $c \geq 0$.
- (ii) Calcolare prima e seconda forma fondamentale di S e dN in coordinate cilindriche (z, θ) .
- (iii) Per ogni t > 0, calcolare

$$\int_{S_t} K \cdot \omega$$

dove K è la curvatura gaussiana di $S,\,S_t=S\cap\{z\in[0,t]\}$ e ω è la misura di area su S.