Geometria differenziale

Superfici in \mathbb{R}^3 con $K \equiv 0$ non ombelicali (27 gennaio 2018)

Proposizione 1. Sia $S \subset \mathbb{R}^3$ una superficie regolare con curvatura gaussiana K = 0 ovunque. Supponiamo che nessun punto di S sia ombelicale (ossia che dN abbia rango 1 ovunque). Allora S è rigata, ossia per ogni punto p di S esiste un intorno $V \subset S$ aperto e una carta $\varphi : U \to V \subset S$ con $U \subset \mathbb{R}^2$ tale che $\varphi(u,s) = \alpha(u) + s\beta(u)$ per opportune funzioni $\alpha, \beta : U \to \mathbb{R}^3$.

Ricordiamo che, se N è un campo di vettori normali unitari sulla superficie in \mathbb{R}^3 e w,z sono campi vettoriali tangenti alla superficie, allora

$$\nabla_{z}(w) = \frac{\partial}{\partial z}(\tilde{w}) - \langle N, \frac{\partial}{\partial z}(\tilde{w}) \rangle N =$$

$$= \frac{\partial}{\partial z}(\tilde{w}) - \frac{\partial}{\partial z} \langle N, w \rangle N + \langle \frac{\partial}{\partial z}(\tilde{N}), w \rangle N =$$

$$= \frac{\partial}{\partial z}(\tilde{w}) + \langle dN(z), w \rangle N$$

dove \tilde{w} è una estensione del campo vettoriale w a $\tilde{w}: \mathbb{R}^3 \to \mathbb{R}^3$ (e similmente \tilde{N} è l'estensione di N a \mathbb{R}^3) e $\frac{\partial}{\partial z}$ è la derivata direzionale ordinaria per funzioni a valori in \mathbb{R}^3 .

Dimostrazione della Proposizione 1. Sia $p \in S$ e consideriamo un piccolo intorno aperto connesso $V \subset S$ di p. Fissiamo una orientazione su V, ossia scegliamo una normale unitaria $N: V \to \mathbb{R}^3$.

Per ogni $q \in V$, il tangente T_qS si decompone in una somma diretta ortogonale $E_0(q) \oplus E_{\lambda}(q)$, dove $E_0(q) \subset T_qS$ è il nucleo di dN_q e $E_{\lambda}(q)$ è l'altro sottospazio di autovalore $\lambda(q)$, dove $\lambda: V \to \mathbb{R}$ è una funzione che non assume mai valore zero.

Fissiamo $v_p \in E_0(p)$ unitario (uno dei due a piacere). A meno di restringere V, il prodotto scalare standard tra v_p e un qualunque vettore non nullo in $E_0(q)$ è non zero. Dunque possiamo definire v_q come l'unico vettore unitario in $E_0(q)$ tale che $\langle v_p, v_q \rangle > 0$. Chiaramente $Jv_q \in E_\lambda(q)$.

Ora, per ogni $q \in V$ sia γ_q la curva integrale su S passante per $q = \gamma_q(0)$ e tale che $\dot{\gamma}_q(t) = v_{\gamma(t)}$. Essa è ben definita in un piccolo intervallo aperto di tempi $t \in (-\varepsilon_q, \varepsilon_q)$ che contiene 0.

Asserzione: γ_q è un segmento.

Essendo v unitario, è sufficiente mostrare che $I(\nabla_{\dot{\gamma}_q}\dot{\gamma}_q,\,J\dot{\gamma}_q)=0$, ossia che $I(\nabla_v(v),\,Jv)=0$.

Notiamo prima di tutto che $\frac{\partial}{\partial v}(\tilde{N}) = dN(v) = 0$ e che

$$\nabla_{v}(w) = \frac{\partial}{\partial v}(\tilde{w})$$

$$\nabla_{Jv}(w) = \frac{\partial}{\partial (Jv)}(\tilde{w}) + \lambda I(Jv, w)N.$$

Consideriamo ora

$$\nabla_v(dN(Jv)) = \nabla_v(\frac{\partial}{\partial (Jv)}\tilde{N}) = \frac{\partial}{\partial v}\frac{\partial}{\partial (Jv)}\tilde{N} = \frac{\partial}{\partial (Jv)}dN(v) = 0$$

e inoltre

$$0 = I(v, \nabla_v(dN(Jv))) = I(v, \nabla_v(\lambda Jv)) = v(\lambda)I(v, Jv) + \lambda I(v, \nabla_v(Jv)) = \lambda I(v, \nabla_v(Jv)) = \lambda (v \cdot I(v, Jv) - I(\nabla_v(v), Jv)) = \lambda I(\nabla_v(v), Jv)$$

da cui $I(\nabla_v(v),\,Jv)=0$, perché $\lambda\neq 0$ in ogni punto.

 $Asserzione:\ La\ superficie\ S\ \grave{e}\ rigata.$

Sia $\alpha:(-\varepsilon,\varepsilon)_u\to V$ la curva integrale (ben definita per $\varepsilon>0$ piccolo abbastanza) che soddisfa $\alpha(0)=p$ e $\dot{\alpha}(u)=Jv_{\alpha(u)}$. Per ogni $u\in(-\varepsilon,\varepsilon)$ sia inoltre $\beta(u):=v_{\alpha(u)}\in T_{\alpha(u)}S$, che possiamo vedere come una applicazione $\beta:(-\varepsilon,\varepsilon)\to\mathbb{R}^3$.

Consideriamo $\varphi: (-\varepsilon, \varepsilon) \times \mathbb{R} \to \mathbb{R}^3$ definita come $\varphi(u, s) = \alpha(u) + s\beta(u)$. Per ogni $0 < \varepsilon' < \varepsilon$, esiste un $\delta > 0$ tale che la restrizione di φ a $(-\varepsilon', \varepsilon') \times (-\delta, \delta)$ è contenuta in S. Inoltre, $(\dot{\alpha}(0), \beta(0)) = (v_p, Jv_p)$ è una base di T_pS e dunque, a meno di scegliere ε', δ piccoli a sufficienza, otteniamo che $\varphi\Big|_{(-\varepsilon', \varepsilon') \times (-\delta, \delta)}$ è un diffeomorfismo da $(-\varepsilon', \varepsilon') \times (-\delta, \delta)$ su un intorno aperto di p in S per il teorema della funzione implicita. Dunque φ è una carta per S intorno a p del tipo desiderato.