Geometria (Fisica)

Proff. A. De Sole, G. Mondello, K. O'Grady, P. Papi

Prova scritta - 13 luglio 2017

Nome:	
Cognome:	
Numero di matricola:	

Esercizio	Punti totali	Punteggio
1	6	
2	6	
3	8	
4	6	
5	8	
Totale	34	

Occorre motivare le risposte. Una soluzione corretta priva di motivazione riceverà 0 punti. Verrà corretto solo quello che sarà scritto su queste pagine.

Voto/30:	
----------	--

Esercizio 1. Stabilire quali tra le seguenti funzioni sono applicazioni lineari tra spazi vettoriali:

- (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = x + 1;$
- (b) $g: \mathbb{R}^2 \to \mathbb{R}, g(x,y) = 3x \pi y;$
- (c) $h: \mathbb{R}^2 \to \mathbb{R}, h(x,y) = x + y + xy.$
- (d) $p: \mathbb{R}^2 \to \mathbb{R}^2$, $p(x,y) = (\frac{6xy^2 + 6x + y^3 + y}{y^2 + 1}, y)$.

Risoluzione:

Risposta (cerchiare quella corretta):

- (a) Sì / No
- (b) Sì / No
- (c) Sì / No (d) Sì / No

Esercizio 2. Sia $W \subset \mathbb{R}^5$ il sottospazio lineare $W := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \in \mathbb{R}^5 \quad \middle| \begin{array}{c} x_1 - x_2 = 0 \\ x_3 + x_4 = 0 \\ x_5 = 0 \end{array} \right\}.$

- (a) Determinare una base \mathcal{B} di W.
- (b) Determinare una base \mathcal{C} dello spazio vettoriale quoziente \mathbb{R}^5/W .

Risoluzione:

Risposta: (a)
$$\mathcal{B} =$$

(b)
$$C =$$

Esercizio 3. Sia $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ e $B(X,Y) := X^t \cdot A \cdot Y$ la corrispondente forma bilineare simmetrica su \mathbb{R}^2 e sia $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^2 . Costruire, se esiste, un'isometria $f: (\mathbb{R}^2, B) \to (\mathbb{R}^2, \langle \cdot, \cdot \rangle)$.

 ${\bf Risoluzione:}$

Risposta: f esiste? Sì / No

Se sì,
$$f\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) =$$

(cerchiare quella corretta)

Determinare il rango di T_M .		
Risoluzione:		
Risposta: Rango di $T_M =$		

Esercizio 4. Sia $M \in \mathcal{M}_{5\times 5}(\mathbb{R})$ una matrice di rango 4, e sia $T_M \colon \mathcal{M}_{5\times 5}(\mathbb{R}) \to \mathcal{M}_{5\times 5}(\mathbb{R})$ l'applicazione lineare data da $T_M(A) := A \cdot M.$

Esercizio 5. Sia $L_M:\mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo associato alla matrice

$$M := \left(\begin{array}{rrr} 5 & -10 & -8 \\ -10 & 2 & -2 \\ -8 & -2 & 8+t \end{array} \right)$$

dipendente dal parametro $t \in \mathbb{R}$.

- (a) Determinare per quali t il vettore $\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ sia un autovettore di L_M e calcolarne l'autovalore associato.
- (b) Al variare del parametro t, determinare rango e segnatura della forma bilineare simmetrica associata a M. [Suggerimento: può essere di aiuto calcolare $\det(M)$].

Risoluzione: