Topologia algebrica

Anno accademico 2018/19

Prova scritta in itinere (6 novembre 2018)

Cognome:				
Nome:				
Numero di matrice	ola:			
	Esercizio	Punti totali	Punteggio	
	1	12		
	2	12		
	3	12		
	Totale	36		
				-
	ne nel quale affr (Per esempio, se	ontare le doma e si affrontano	nde, nella ri le domande	soluzione di un punto si possor dell'esercizio 1 nell'ordine dat
Verrà corretto solo quello c	he sarà scritto	su queste p	agine.	
Voto/30:				

Esercizio 1. Sia K un complesso simpliciale finito e connesso e sia $f: \widetilde{X} \to X := |K|$ un rivestimento di grado d.

- (a) Dimostrare che esiste un complesso simpliciale \widetilde{K} , un morfismo simpliciale $\varphi:\widetilde{K}\to K$ e un omeomorfismo $\widetilde{X}\cong |\widetilde{K}|$ tali che f si identifichi con $|\varphi|$. Calcolare $\chi(\widetilde{X})$.
- (b) Dire quali spazi topologici Y ammettono un rivestimento \widetilde{Y} omeomorfo a \mathbb{CP}^2 .
- (c) Sia A un gruppo abeliano. Dimostrare che l'applicazione che manda un simplesso di K nella somma delle sue preimmagini in \widetilde{K} definisce un morfismo $C^{ord}_*(K;A) \to C^{ord}_*(\widetilde{K};A)$ di complessi di catene, che quindi discende ad una applicazione $\varphi^!: H^{ord}_*(K;A) \to H^{ord}_*(\widetilde{K};A)$. Calcolare la composizione $\varphi_*\varphi^!: H^{ord}_*(K;A) \to H^{ord}_*(K;A)$.
- (d) Supponiamo che $f_*(\pi_1(\widetilde{X})) \subset \pi_1(X)$ sia un sottogruppo normale con quoziente finito $G \cong \operatorname{Aut}(f)$, cosicché $X = \widetilde{X}/G$. Dimostrare che G agisce su \widetilde{K} in modo simpliciale e quindi G agisce su $H^{ord}_*(\widetilde{K};\mathbb{Q})$. Dimostrare che $\varphi^!$ realizza un isomorfismo di spazi vettoriali tra $H^{ord}_*(K;\mathbb{Q})$ e $H^{ord}_*(\widetilde{K};\mathbb{Q})^G$.
- (d') Sia $p \geq 2$ un primo e $\zeta = \exp(2\pi i/p)$ una radice p-esima dell'unità e sia $1 \leq k \leq p-1$ un intero. Considerare $M := S^3/\sim$ ottenuta da $S^3 \subset \mathbb{C}^2$ tramite l'identificazione $(z_1,z_2) \sim (\zeta z_1,\zeta^k z_2)$. Calcolare le dimensioni di $H_q(M;\mathbb{Q})$ per ogni $q \geq 0$.

Risoluzione:

Esercizio 2. In \mathbb{R}^2 siano D_0 il disco chiuso di centro O e raggio 4, \mathring{D}_+ (risp. \mathring{D}_-) il disco aperto di centro (2,0) e raggio 1 (risp. di centro (-2,0) e raggio 1). Sia $P:=D_0\setminus (\mathring{D}_+\cup\mathring{D}_-)$.

- (a) Calcolare $H_2(P, P \setminus \{x\})$ quando x è un punto interno a P e quando x è un punto del bordo di P. Dimostrare che un omeomorfismo $f: P \to P$ si restringe a un omeomorfismo $\partial P \to \partial P$.
- (b) Dimostrare che un omeomorfismo $f: P \to P$ senza punti fissi necessariamente rovescia l'orientazione di P e permuta ciclicamente le tre componenti di bordo di P.
- (c) Dire se un omeomorfismo $f:P\to P$ senza punti fissi esista.

Risoluzione:

Esercizio 3. Siano X e Y spazi topologici compatti triangolabili (ossia $X \cong |K|$ e $Y \cong |L|$ com K, L complessi simpliciali finiti).

- (a) Calcolare $\chi(X \times Y)$ in funzione di $\chi(X)$ e $\chi(Y)$. (Suggerimento: procedere per induzione sulla dimensione e sul numero di simplessi di K.)
- (b) Calcolare la caratteristica di Eulero dei seguenti spazi

$$M_1 = \mathbb{RP}^2 \times \mathbb{RP}^2, \qquad M_2 = \mathbb{RP}^2 \times S^2, \qquad M_3 = \mathbb{RP}^4, \qquad M_4 = D^3 \times S^1.$$

- (c) Dire per quali $i \neq j$ lo spazio M_i è omotopicamente equivalente allo spazio M_j .
- (d) Dire se $GL^+(2,\mathbb{R})$ oppure U(2) siano omotopicamente equivalenti a qualcuno degli M_i .

Risoluzione: