Regularization methods for nonlinear ill-posed problems

Federica Pes, Giuseppe Rodriguez

University of Cagliari, Italy

Due Giorni di Algebra Lineare Numerica Roma - 18-19 Febbraio 2019

Nonlinear least squares problem

Let $F(\mathbf{x})$ be a nonlinear Frechét differentiable function

$$F(\mathbf{x}) = egin{bmatrix} F_1(\mathbf{x}) \ F_2(\mathbf{x}) \ dots \ F_m(\mathbf{x}) \end{bmatrix} \in \mathbb{R}^m, \qquad \mathbf{x} \in \mathbb{R}^n.$$

For a given $\mathbf{b} \in \mathbb{R}^m$ we want to solve the least squares data fitting problem

$$\min_{\boldsymbol{x}} \|\boldsymbol{r}(\boldsymbol{x})\|^2, \qquad \boldsymbol{r}(\boldsymbol{x}) = \boldsymbol{F}(\boldsymbol{x}) - \boldsymbol{b},$$

where $\|\cdot\|$ denotes the Euclidean norm.

The Gauss-Newton method

Chosen an initial point $\mathbf{x}^{(0)}$, we consider the iterative method

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}$$

where the step $\mathbf{s}^{(k)}$ is computed minimizing, at each step, the linearization of the residual

$$\|\mathbf{r}(\mathbf{x}^{(k+1)})\|^2 \simeq \|\mathbf{r}(\mathbf{x}^{(k)}) + J(\mathbf{x}^{(k)})\mathbf{s}\|^2,$$

where $J(\mathbf{x}^{(k)})$ is the evaluation of the Jacobian matrix of $\mathbf{r}(\mathbf{x})$ at the point $\mathbf{x}^{(k)}$

$$J(\mathbf{x}^{(k)})_{ij} = \frac{\partial r_i}{\partial x_i}(\mathbf{x}^{(k)}), \qquad i = 1, \ldots, m, j = 1, \ldots, n.$$

So, $\mathbf{s}^{(k)}$ is computed as a solution to the linear least squares problem

$$\min_{\mathbf{s}} \|\mathbf{r}(\mathbf{x}^{(k)}) + J(\mathbf{x}^{(k)})\mathbf{s}\|^2.$$

The damped Gauss-Newton method

The iteration of the damped Gauss-Newton method is

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{s}^{(k)}$$

where the scalar $\alpha^{(k)}$ is a step length.

To choose it, we can use the Armijo-Goldstein principle, which selects $\alpha^{(k)}$ as the largest number in the sequence 2^{-i} , i=0,1,..., for which the following inequality holds

$$\|\mathbf{r}(\mathbf{x}^{(k)})\|^2 - \|\mathbf{r}(\mathbf{x}^{(k)} + \alpha^{(k)}\mathbf{s}^{(k)})\|^2 \geqslant \frac{1}{2}\alpha^{(k)}\|J(\mathbf{x}^{(k)})\mathbf{s}^{(k)}\|^2.$$

Minimal norm least squares / regularization

When $\min(m, \operatorname{rank}(J)) < n$, the solution of $\min_{\mathbf{s}} \|\mathbf{r}(\mathbf{x}^{(k)}) + J(\mathbf{x}^{(k)})\mathbf{s}\|^2$ is not unique.

To make it unique, the new iterate $\mathbf{x}^{(k+1)}$ can be obtained by solving the minimal norm least squares problem

$$\begin{cases} \min_{\mathbf{s}} \|\mathbf{s}\|^2 \\ \text{s. t. } \min_{\mathbf{s}} \|J(\mathbf{x}^{(k)})\mathbf{s} + \mathbf{r}(\mathbf{x}^{(k)})\|^2. \end{cases}$$

The nonlinear function $F(\mathbf{x})$ is considered ill-conditioned in a domain $\mathcal{D} \subset \mathbb{R}^n$ when the condition number $\kappa(J)$ of the Jacobian matrix $J = J(\mathbf{x})$ is very large for any $\mathbf{x} \in \mathcal{D}$.

In this situation, it is common to apply a regularization method to each step of the Gauss–Newton method.

A classical approach is Tikhonov regularization, which consists of minimizing the functional

$$||J(\mathbf{x}^{(k)})\mathbf{s} + \mathbf{r}(\mathbf{x}^{(k)})||^2 + \lambda^2 ||\mathbf{s}||^2$$

for a fixed value of the parameter $\lambda > 0$.

In the following we denote $J^{(k)} = J(\mathbf{x}^{(k)}), \quad \mathbf{r}^{(k)} = \mathbf{r}(\mathbf{x}^{(k)})$.

In

$$\min_{\mathbf{s}} \{ \| J^{(k)} \mathbf{s} + \mathbf{r}^{(k)} \|^2 + \lambda^2 \| \mathbf{s} \|^2 \}$$

the term $\|\mathbf{s}\|^2$ is often substituted by $\|\mathbf{L}\mathbf{s}\|^2$,

where $L \in \mathbb{R}^{q \times n}$ ($q \le n$) is a regularization matrix which incorporates available a priori information on the solution.

It is important to remark that it imposes some kind of regularity on the update vector \mathbf{s} for the solution $\mathbf{x}^{(k)}$, and not on the solution itself.

We will explore which is the consequence of imposing a regularity constraint directly on the solution of the problem

$$\min_{\mathbf{x}} \|\mathbf{r}(\mathbf{x})\|^2, \quad \mathbf{r}(\mathbf{x}) = F(\mathbf{x}) - \mathbf{b}.$$

We add a regularizing term to the least squares problem $\min_{\mathbf{x}} \|F(\mathbf{x}) - \mathbf{b}\|^2$, turning it to the minimization of the nonlinear Tikhonov functional

$$\min_{\mathbf{x}} \{ \| F(\mathbf{x}) - \mathbf{b} \|^2 + \lambda^2 \| L \mathbf{x} \|^2 \}.$$

Linearizing it we get

$$\min_{\mathbf{s}}\{\|\boldsymbol{J}^{(k)}\mathbf{s}+\mathbf{r}^{(k)}\|^2+\lambda^2\|\boldsymbol{L}(\mathbf{x}^{(k)}+\mathbf{s})\|^2\}.$$

We compare

$$\min_{\mathbf{s}} \{ \| \mathbf{J}\mathbf{s} + \mathbf{r}^{(k)} \|^2 + \lambda^2 \| L\mathbf{s} \|^2 \} \qquad \quad \min_{\mathbf{s}} \{ \| \mathbf{J}\mathbf{s} + \mathbf{r}^{(k)} \|^2 + \lambda^2 \| L(\mathbf{x}^{(k)} + \mathbf{s}) \|^2 \}$$

Normal equations:

$$(J^{T}J + \lambda^{2}L^{T}L)\mathbf{s} = -J^{T}\mathbf{r}^{(k)} \qquad (J^{T}J + \lambda^{2}L^{T}L)\mathbf{s} = -J^{T}\mathbf{r}^{(k)} - \lambda^{2}L^{T}L\mathbf{x}^{(k)}$$

We analyze the case $L = I_n$.

By using the SVD of $J = U\Sigma V^T$, assuming rank(J) = p, the normal equations become, respectively

$$(\boldsymbol{\Sigma}^{T}\boldsymbol{\Sigma} + \lambda^{2}\boldsymbol{I}_{n})\mathbf{y} = -\boldsymbol{\Sigma}^{T}\mathbf{c}^{(k)} \qquad (\boldsymbol{\Sigma}^{T}\boldsymbol{\Sigma} + \lambda^{2}\boldsymbol{I}_{n})\mathbf{y} = -\boldsymbol{\Sigma}^{T}\mathbf{c}^{(k)} - \lambda^{2}\mathbf{z}^{(k)}$$
with $\mathbf{y} = V^{T}\mathbf{s}$, $\mathbf{c}^{(k)} = U^{T}\mathbf{r}^{(k)}$, $\mathbf{z}^{(k)} = V^{T}\mathbf{x}^{(k)}$.

The solution of the diagonal normal equations

$$y_{i} = \begin{cases} -\frac{\sigma_{i}c_{i}^{(k)}}{\sigma_{i}^{2} + \lambda^{2}} & i = 1, \dots, p \\ 0 & i = p + 1, \dots, n \end{cases}$$

The resulting iterations for the two different approaches are

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \sum_{i=1}^{p} \frac{\sigma_i c_i^{(k)}}{\sigma_i^2 + \lambda^2} \mathbf{v}_i$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \sum_{i=1}^{p} \frac{\sigma_i c_i^{(k)} + \lambda^2 z_i^{(k)}}{\sigma_i^2 + \lambda^2} \mathbf{v}_i - V_2 V_2^T \mathbf{x}^{(k)}$$

where $V_2 = [\mathbf{v}_{p+1}, ..., \mathbf{v}_n]$.

Nonlinear model

The following parameters

- orientation (vertical/horizontal)
- height h over the ground
- angular frequency $\omega = 2\pi f$
- inter-coil distance ρ

can be varied in order to generate multiple measurements and realize data inversion, that is, approximate $\sigma(z)$ and/or $\mu(z)$.

Nonlinear model

We assume the soil has a layered structure.

For each layer

$$(k = 1, ..., n)$$

- depth z_k
- width d_k
- conductivity σ_k
- ullet permeability μ_k

Nonlinear model

We generate synthetic measurements corresponding to the following device/configuration:

Geophex GEM-2 (single-coil, multi-frequency)

- $\rho = 1.66 \, m$,
- $f = 775, 1.175, 3.925, 9.825, 21.725 \, KHz$,
- h = 0.75, 1.5 m
- orientation: vertical horizontal

⇒ 20 measurements

Model:
$$\sigma(z) = e^{-(z-1.2)^2}$$
, $\mu(z) = \mu_0 = 4\pi 10^{-7} \ H/m$
20 layers, noise 10^{-3} , $L = D_2$

Inversion of the nonlinear model

We consider the residual vector

$$\mathbf{r}(\boldsymbol{\sigma}) = F(\boldsymbol{\sigma}) - \mathbf{b},$$

with $F(\sigma) = \mathbf{M}(\sigma; \mu_0, \mathbf{h}, \omega, \rho)$, $\mathbf{h} = (h_1, \dots, h_{m_h})$, $\omega = (\omega_1, \dots, \omega_{m_\omega})$, $\rho = (\rho_1, \dots, \rho_{m_\rho})$, as a function of the conductivities σ_i , $i = 1, \dots, n$; \mathbf{b} is a vector containing the sensed data.

We perform a nonlinear least squares fitting

$$\min_{\boldsymbol{\sigma}\in\mathbb{R}^n}\|\mathbf{r}(\boldsymbol{\sigma})\|^2.$$

Inversion algorithm

The solution is computed by following the two different approaches to regularization.

We iterate the damped Gauss-Newton method $\sigma_{k+1} = \sigma_k + \alpha^{(k)} \mathbf{s}_k$ until

$$\|\boldsymbol{\sigma}_k - \boldsymbol{\sigma}_{k-1}\| < \tau \|\boldsymbol{\sigma}_k\|$$
 or $k > K_{\text{max}}$.

Federica Pes

Regularization methods for nonlinear ill-posed problems

$$\min_{\mathbf{s}} \{ \|J_k \mathbf{s} + \mathbf{r}(\boldsymbol{\sigma}_k)\|^2 + \lambda^2 \|L\mathbf{s}\|^2 \}$$

$$\min_{\mathbf{s}} \{ \|J_k \mathbf{s} + \mathbf{r}(\sigma_k)\|^2 + \lambda^2 \|L(\sigma_k + \mathbf{s})\|^2 \}$$

Observations

- $\min_{\mathbf{s}} \{ \| \mathbf{J}_k \mathbf{s} + \mathbf{r}(\boldsymbol{\sigma}_k) \|^2 + \lambda^2 \| L(\boldsymbol{\sigma}_k + \mathbf{s}) \|^2 \}$

In the 2nd approach the condition $\|\sigma_k - \sigma_{k-1}\| < \tau \|\sigma_k\|$ is reached faster than the 1st approach, so less iterations of the damped Gauss–Newton method are needed.

Research directions

- Analyze the case with a regularization matrix different from the identity matrix
- Investigate the same approach to the TSVD regularization
- Apply to other nonlinear problems
- Use other norms that are different from the 2-norm

Thanks!