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Nonlinear least squares problem

Let F(x) be a nonlinear Frechét differentiable function

Fx)=| . | eR™"  xeR"

Fm(X)

For a given b € R™ we want to solve the least squares data fitting

problem
min [r(X)[%,  r(x) = F(x) b,

where || - || denotes the Euclidean norm.
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The Gauss-Newton method

Chosen an initial point x(°), we consider the iterative method

XK1 — x(K) | g0

where the step s(¥) is computed minimizing, at each step, the
linearization of the residual

(D)2 = fir(x ) + J(xW)s] 2,

where J(x(¥) is the evaluation of the Jacobian matrix of r(x) at the
point x(¥)

_on

J(x¥); = %

(xt), i=1,...,m, j=1,....n.

So, s*) is computed as a solution to the linear least squares problem

min [r(x®)) + J(xk))s|2,
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The damped Gauss-Newton method

The iteration of the damped Gauss—Newton method is
XD — x(0 | (gl
where the scalar o¥) is a step length.
To choose it, we can use the Armijo-Goldstein principle, which selects

af) as the largest number in the sequence 2=/, i = 0, 1, ..., for which
the following inequality holds

—_

[r (XD = [r(x® + a®@s) 2 > ZalJ(x)s|2.
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Minimal norm least squares / regularization

When min(m, rank(J)) < n, the solution of min [r(x®)) + J(x")s|? is
not unique.

To make it unique, the new iterate x(**") can be obtained by solving
the minimal norm least squares problem

min |ls|?
s. t. min [J(x*Ns + r(xk))|2.

The nonlinear function F(x) is considered ill-conditioned in a domain
D C R” when the condition number «(J) of the Jacobian matrix
J = J(x) is very large for any x € D.

In this situation, it is common to apply a regularization method to
each step of the Gauss—Newton method.
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Tikhonov regularization

A classical approach is Tikhonov regularization, which consists of
minimizing the functional

19(x")s + r(x1)|2 + 22 s|?

for a fixed value of the parameter A > 0.

In the following we denote J*) = J(x*)), k) = r(x(9))
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Tikhonov regularization

In
msin{lld“‘)s + )2 + \2||s||?}

the term ||s||? is often substituted by ||Ls||?,

where L € R9*" (q < n) is a regularization matrix which incorporates
available a priori information on the solution.

It is important to remark that it imposes some kind of regularity on the

update vector s for the solution x(¥), and not on the solution itself.

We will explore which is the consequence of imposing a regularity
constraint directly on the solution of the problem

min [r(X)|I2,  r(x) = F(x) —b.
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Nonlinear Tikhonov regularization

We add a regularizing term to the least squares problem
miny || F(x) — b||2, turning it to the minimization of the nonlinear
Tikhonov functional

min{[|F(x) = b|[* + N[|Lx][*}.

Linearizing it we get

min{[[J¥s +r]2 + 22| L(x¥ + 8)|2}.
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Nonlinear Tikhonov regularization

We compare

min{[lJs + r|Z + 22| Ls|?} min{[[Js + )2 + 22| L(x") + s)||?}

Normal equations:

(JTJ+XLTL)s = —JTr® (JTI+XLTL)s = —JTr) — N2 T x(K)

We analyze the case L = /.
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Nonlinear Tikhonov regularization

By using the SVD of J = UX VT, assuming rank(J) = p, the normal
equations become, respectively

(ZTE + 22y = —xTc® (ZTE + X2y = —2 etk — \22(0

with y=VTs, ¢k =y z(k) = yTxK),

The solution of the diagonal normal equations

i

oic® oic’) 4 2225
Yi= 0,?+A2 Yi= 0,-2—1—)\2

0 —z i=p+1,....n

1
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Nonlinear Tikhonov regularization

The resulting iterations for the two different approaches are

where Vo = [vp+1,...,v,,].
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Nonlinear model

me—————m D The following parameters

0 RN @ orientation
z (vertical/horizontal)

@ height h over the ground
@ angular frequency w = 2« f
@ inter-coil distance p

can be varied in order to generate
multiple measurements and real-
ize data inversion, that is, approx-
imate o(z) and/or u(z).

7

.
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Nonlinear model

We assume the soil has a layered structure.

For each layer
(k=1,...,n)
@ depth z
@ width dk
@ conductivity ok
@ permeability px
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Nonlinear model

We generate synthetic measurements corresponding to the following
device/configuration:

Geophex GEM-2 (single-coil, multi-frequency)
@ p=166m,
@ f=775,1.175,3.925,9.825,21.725 KHz,
@ h=0.7515m
@ orientation: vertical - horizontal

— 20 measurements

Model: o(z) =e @ 12" 1(z) = o = 4710~7 H/m
20 layers, noise 1073, L =D
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Inversion of the nonlinear model

We consider the residual vector
r(o) = F(o)—Db,

with F(o) = M(o; pg, h,w, p), h = (h1,..., hp,), w = (w1,...,wm,),
p = (p1,...,prm,), as a function of the conductivities o;, i = 1,...,n;
b is a vector containing the sensed data.

We perform a nonlinear least squares fitting

. 2
m ro .
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Inversion algorithm

The solution is computed by following the two different approaches to
regularization.

@ min{|[Js + r(o)[2 + A2 Ls|2}
@ min{|lJks + F(ak) |2 + N2|[L(rk + 5)|1?}

We iterate the damped Gauss-Newton method ok, 1 = ok + a®sy
until
ok — ksl < 7lloxl or k> Komax.
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Tikhonov regularization

best solution

solution ]
- = ~regterm||Ls|| 2 \=5.46e-04
"""" reg term ||L( o(k)+s)|| 2 \=1.27e-04
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L-curve criterion

g,
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Tikhonov regularization

min{[|Jks + F(o)l|* + A?[[Ls [}

25
error
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2| % discrepancy
L-curve

error

solution
0 F|= = =best \=5.46e-04
- discrepancy A=4.83e-03
L-curve 1=3.36e-03
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Tikhonov regularization

min{]|Jks + K(o)||* + X[ L(ok + s)II*}
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Observations

@ min{|[is + H(ax)|* + N2|ILs|*}

Q@ min{||Jks + K(ow)l* + || L(ok + S)II*}

In the 2nd approach the condition ||ox — ok_1|| < 7||ok] is reached
faster than the 1st approach, so less iterations of the damped
Gauss—Newton method are needed.
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Research directions

@ Analyze the case with a regularization matrix different from the
identity matrix

@ Investigate the same approach to the TSVD regularization
@ Apply to other nonlinear problems
@ Use other norms that are different from the 2-norm
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Thanks!



