GIT Versus Baily-Borel Compactification = m)
for Quartic K3 Surfaces Cisch

Radu Laza and Kieran G. O’Grady

Abstract Looijenga has introduced new compactifications of locally symmetric
varieties that give a complete understanding of the period map from the GIT moduli
space of plane sextics to the Baily-Borel compactification of the moduli space
polarized K3’s of degree 2, and also of the period map of cubic fourfolds. On
the other hand, the period map of the GIT moduli space of quartic surfaces is
significantly more subtle. In our paper (Laza and O’Grady, Birational geometry of
the moduli space of quartic K3 surfaces, 2016. ArXiv:1607.01324) we introduced a
Hassett-Keel-Looijenga program for certain locally symmetric varieties of Type IV.
As a consequence, we gave a complete conjectural decomposition into a product of
elementary birational modifications of the period map for the GIT moduli spaces of
quartic surfaces. The purpose of this note is to provide compelling evidence in favor
of our program. Specifically, we propose a matching between the arithmetic strata
in the period space and suitable strata of the GIT moduli spaces of quartic surfaces.
We then partially verify that the proposed matching actually holds.

1 Introduction

The general context of our paper is the search for a geometrically meaningful
compactification of moduli spaces of polarized K3 surfaces, and similar varieties
(with Hodge structure of K3 type). While there exist well-known geometrically
meaningful compactifications of moduli spaces of smooth curves and of (polarized)
abelian varieties, the situation for K3’s is much murkier. The basic fact about the
moduli space of degree-d polarized K3 surfaces .#; is that, as a consequence of
Torelli and properness of the period map, it is isomorphic to a locally symmetric
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218 R. Laza and K. G. O’Grady

variety %y = I';\%, where Z is a 19-dimensional Type IV Hermitian symmetric
domain, and Iy is an arithmetic group. As such, .%#; has many known compact-
ifications (Baily-Borel, toroidal, etc.), but the question is whether some of these
are modular (by way of comparison, we recall that the second Voronoi toroidal
compactification of %7, is modular, cf. Alexeev [1]). The most natural approach to
this question is to compare birational models of % (e.g. those given by GIT moduli
spaces of plane sextic curves, quartic surfaces, complete intersections of a quadric
and a cubic in P*) and the known compactifications of .%; via the period map.
The most basic compactification of .%; is the one introduced by Baily-Borel; we
denote it by .7 ;. In ground-breaking work, Looijenga [40, 41] gave a framework for
the comparison of GIT and Baily-Borel compactifications of moduli spaces of low
degree K3 surfaces and similar examples (e.g. cubic fourfolds). Roughly speaking,
Looijenga proved that, under suitable hypotheses, natural GIT birational models of a
moduli space of polarized K 3 surfaces can be obtained by arithmetic modifications
from the Baily-Borel compactification. In particular, Looijenga and others have
given a complete, and unexpectedly nice, picture of the period map for the GIT
moduli space of plane sextics (which is birational to the moduli space of polarized
K3’s of degree 2), see [10, 39, 50], and for the GIT moduli space of cubic fourfolds
(which is birational to the moduli space of polarized hyper-kihler varieties of Type
K 3121 with a polarization of degree 6 and divisibility 2), see [31,32,42]. By contrast,
at first glance, Looijenga’s framework appears not to apply to the GIT moduli space
of quartic surfaces (and their cousins, double EPW sextics): [51] and [47] showed
that the GIT stratification of moduli spaces of quartic surfaces and EPW sextics,
respectively, is much more complicated than the analogous stratification of the GIT
moduli spaces of plane sextics or cubic fourfolds, and there is no decomposition
of the (birational) period map to the Baily-Borel compactification into a product of
elementary modifications as simple as that of the period map of degree 2 K3’s or
cubic fourfolds. In our paper [34], we refined Looijenga’s work and we proved that,
morally speaking, Looijenga’s framework can be successfully applied to the period
map of quartic surfaces and EPW sextics. In fact, we have noted that Looijenga’s
work should be viewed as an instance of the study of variation of (log canonical)
models for moduli spaces (a concept that matured more recently, starting with the
work of Thaddeus [56], and continued, for example, with the so-called Hassett—Keel
program). This led to the introduction, in [34], of a program, which might be dubbed
Hassett—Keel-Looijenga program, whose aim is to study the log-canonical models
of locally symmetric varieties of Type IV equipped with a collection of Heegner
divisors (in that paper we concentrated on a specific series of locally symmetric
varieties and Heegner divisors, but the program makes sense in complete generality).
In particular, in [34] we made very specific predictions for the decomposition into
products of elementary birational modifications of the period maps for the GIT
moduli spaces of quartic K3 surfaces.

Our predictions are in the spirit of Looijenga [41], i.e. the elementary birational
modifications are dictated by arithmetic. There are two related issues arising here:
First, the various strata in the period space should correspond to geometric strata in
the GIT compactification. Secondly, our work in [34] is only predictive, i.e. there is
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no guarantee that the given list of birational modifications is complete, or even that
all these modifications occur. The purpose of this note is to partially address these
two issues. Namely, we give what we believe to be a complete matching between the
geometric and arithmetic strata, thus addressing the first issue. We view this result
as strong evidence towards the completeness and accuracy of our predictions. While
our previous paper [34] looks at the period map from the point of view of the target
(the Baily-Borel compactification of the period space), the present paper’s vantage
point is that of the GIT moduli spaces of quartic surfaces: we get what appears to
be a snapshot of the predicted decomposition of the period map into a product of
simple birational modifications.

Let us discuss more concretely the content of this note, and its relationship to
[34]. To start with, we recall that in [34] we have introduced, foreach N > 3, an N-
dimensional locally symmetric variety . (N) associated to the D lattice U2@Dy_».
The space % (19) is the period space of degree 4 polarized K3 surfaces, and also
Z (18), .#(20) are period spaces for natural polarized varieties (see Sect. 2.4 for
details). The main goal of that paper is to predict the behavior of the schemes

F (N, B) =ProjR(F(N), L(N) + BA(N)), g €10,11NQ,

where A(N) is the Hodge (automorphic) divisor class on .#(N), A(N) is a
“boundary” divisor, with a clear geometric meaning for N € {18, 19,20}, and
R(Z(N),M(N) + BA(N)) is the graded ring associated to the Q-Cartier divisor
class A(N) + BA(N).

For all N, the scheme .%# (N, 0) is the Baily-Borel compactification .% (N)*. At
the other extreme, for N = 19, 18, the scheme .% (N, 1) is isomorphic to a natural
GIT moduli space MM (N) (and we are confident that the same remains true for N =
20). From now on, we will concentrate our attention on .% = .% (19) (see [35] for
a complete discussion of the case N = 18). The relevant GIT moduli space is that
of quartic surfaces, i.e.

M := |Op3(4)| JPGL(4).
The period map
p: M --» 7"

is birational by Global Torelli. We expect (following Looijenga) that the inverse p~!
decomposes as the product of a Q-factorialization, a series of flips, and, at the last
step, a divisorial contraction.

In order to be more specific, we need to describe the boundary divisor A for .%.
First, let H,, H, C .% be the (prime) divisors parametrizing periods of hyperelliptic
degree 4 polarized K 3’s, and unigonal degree 4 polarized K 3’s respectively—they
are both Heegner (i.e. Noether-Lefschetz) divisors. The boundary divisor is given by

A= (Hyp + Hy)/2.
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The birational transformations mentioned above are obtained by considering
F(B) =719, B) for B € [0,1]1NQ.

The main result of our previous paper is the prediction of the critical values of
corresponding to the flips, together with the description of (the candidates for) the
centers of the flips on the .% side. In fact in [34] we have defined towers of closed
subsets (see (14))

2°cz8c7’czcz*cZ?cz’cz' =suppA C 7, (1)

where k denotes the codimension (Z° is missing, no typo). Our prediction is that the
critical values of 8 are

1111111
0, = =0 = 2= =0 = 1, )

"9°7°6°5°4°372°

and that the center of the n-th flip (corresponding to the n-th critical value) is
the closure of the strict transform of the n-th term in the relevant tower (the Q-
factorialization corresponds to small 8 > 0, hence the corresponding 0-th critical 8
is 0). The last critical value of B, i.e. B = 1 corresponds to the contraction of the
strict transform of the boundary divisor.

On the GIT moduli space side, Shah [51] has defined a closed locus mV cm
containing the indeterminacy locus of the period maps (we predict that it coincides
with the indeterminacy locus), which has a natural stratification (see Definition 5)

MY =(WsLi{v}) D(W7L{v}) D(WeLi{v}) D(Wall{v}) D(W3L{v}) D(WaLi{u}) D(W; L{u}) D(WoL{u}),

where v is the point corresponding to the tangent developable of a twisted cubic
curve, and the index denote dimension. As predicted by Looijenga, and refined by
us, we expect that the center in 9t corresponding to the center Z¥ is Wir_; U {v}
(N.B. the indices represent the codimension and respectively the dimension of the
corresponding loci. Since Z*® and W, are related via flips, there is a shift by 1 for
the indices.). The purpose of this note is to give evidence in favor of the above
matching. We prove that the described matching holds for Z! and Z? (equivalently,
for (W7 U {v}) and (Wp U {v})), and we provide evidence for the matching between
7%, 78, Z7 and (Wg U {v}), (W7 L {v}), (We U {u}) respectively.

In Sect. 2 we give a very brief overview of the framework developed by Looijenga
in order to compare the GIT and Baily-Borel compactifications of moduli spaces
of polarized K3 surfaces, or similar varieties, and we will illustrate it by giving a
bird’s-eye-view of the period map for degree-2 K3’s and cubic fourfolds. We then
introduce the point of view developed in [34], and we describe in detail the predicted
decomposition of the inverse of the period map for quartic surfaces as product of
elementary birational maps (i.e. flips or contractions), see (9).

We continue in Sect. 3, by revisiting the work of Shah [51] on the GIT for
quartic surfaces. Usually, in a GIT analysis, by boundary one understands the locus
(in the GIT quotient) parameterizing strictly semistable objects, which then can
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be stratified in terms of stabilizers of the polystable points (see Kirwan [24]). In
his works on periods of quartic surfaces, Shah (see [49, 50]) noted that a more
refined stratification emerges when studying the period map, resulting into four
Types of quartic surfaces, labeled I-1V, with corresponding locally closed subsets
of M denoted M, ... MV, A quartic is of Type I-III if it is cohomologically
insignificant (or from a more modern point of view, it is semi-log-canonical), and
thus the period map extends over the open subset of the moduli space parametrizing
such surfaces; moreover the Type determines whether the period point belongs to
the period space (Type I), or it belongs to one of the Type II or Type III boundary
components of the Baily-Borel compactification. The remaining surfaces are of
Type 1V, in particular the indeterminacy locus of p: 9t --» .%(19)* is contained in
I’V (we predict that it coincides with 9t/V). In the analogous case of the period
map from the GIT moduli space of plane sextics to the period space for polarized
K3’s of degree 2, the Type IV locus consists of a single point (corresponding to
the triple conic). On the other hand, for quartic surfaces the Type IV locus is of
big dimension and it has a complicated structure. In our revision of Shah’s work, we
shed some light on the structure of Type IV (and Type II and III) loci. While arguably
everything that we do here is contained in Shah, we believe that the structure
becomes transparent only after one knows the predicted arithmetic behavior. In some
sense, the main point of Looijenga is to bring order to the world of GIT quotients of
varieties of K3 type, by relating it to the orderly world of hyperplane arrangements.

In Sect. 4, we define partitions of 90t/ and 9t/ into locally closed subsets (our
partitions are slightly finer than partitions which have already been defined by Shah
in [51]), and we define the stratification of 9t/V discussed above.

In Sects.5 and 6 we provide evidence in favor of the predictions of [34] for
p: M --» F*. We start (Sect.5) by showing that the period map behaves as
predicted in neighborhoods of the points v, w € 9 corresponding to the tangent
developable of a twisted cubic curve and a double (smooth) quadric respectively.
By blowing up those points one “improves” the behavior of the period map; the
exceptional divisor over v maps regularly to the (closure of the) unigonal divisor
in .7 *, the exceptional divisor over w maps to the (closure of the) hyperelliptic
divisor Hj in .Z#*, and the image of the set of regular points for the map in Hj,
is precisely the complement of Z2. This result is essentially present in [51] (and
belongs to “folk™ tradition); we take care in specifying the weighted blow up that
one needs to perform around v in order to make the map regular above v. In the
language that we introduced previously, the above results match Z! with Wy L {v}).
Next, we match Z% and W, U {v}. This is the first flip in the chain of birational
modifications transforming the GIT into the Baily-Borel compactification, and it is
more involved than the blow-ups of v and w. It suffices here to mention that W
parametrizes quartics Q1 + Q2, where Q1, Q> are quadrics tangent along a smooth
conic. (Warning: we do not provide full details of some of the proofs.) We note that
while some similar arguments and computations occur previously in the literature
(esp. in work of Shah [50, 51]), to our knowledge, the discussion here is the most
complete and detailed analysis of an explicit (partial) resolution of a period map for
K 3 surfaces (esp. the discussion of the flip is mostly new).
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In Sect. 6, we provide evidence in favor of the matching of Z9, Zg, Z7 and
Wg U {v}, W7 U {v}, We U {v}. It is interesting to note that the flips of 7%, 78,77
are associated to the so-called Dolgachev singularities (aka triangle singularities or
exceptional unimodular singularities) E12, E13, and E14 respectively. These are the
simplest non-log canonical singularities, essentially analogous to cusp for curves.
The geometric behavior of variation of .% (8) at the corresponding critical values is
analogous to the behavior of the Hassett-Keel space 91, (o) around o = % (when
stable curves with an elliptic tail are replaced by curves with cusps, see [19]). While
hints of this behavior exist in the literature (see Hassett [17], Looijenga [37], and
Gallardo [12]), our .7 (B) example is the first genuine analogue of a Hassett-Keel
behavior for surfaces (the existence of this is well-known speculation among experts
in the field).

In the final section (Sect.7), we discuss Looijenga’s Q-factorialization of .7*,
that we denote .7, and the matching between the irreducible components of 9t//
(i.e. the elements of the partition of 9!/ defined in Sect.4) and the irreducible
components of .#!! (i.e. the Type II boundary components of .%*). From our
point of view, Looijenga’s (Q-factorialization of .#* is nothing else but .# (¢) for
€ > 0 small (the prediction of [34] is that 0 < € < 1/9 will do). We compute
the dimensions of the inverse images in .% of the Type II boundary components of
Z*. Lastly, we match the irreducible components of 9t// and the Type II boundary
components of .#*. This matching deserves a more detailed discussion elsewhere.
On the GIT side, 9’/ has 8 components (of varying dimension), while .Z* has
9 Type II boundary components (as computed in [48]), each of them is a modular
curve. By adapting arguments of Friedman in [10], we can match each of the 8
components of M’/ to one of the 9 Type II boundary components of .%*, and hence
exactly one Type II boundary component is left out. The discrepancy of dimensions
between GIT and Baily-Borel strata (for the 8 matching strata) is explained by
Looijenga’s Q-factorialization of the Baily-Borel compactification (one of the main
results of [41]). A mystery, at least for us, was the presence of a “missing” Type 11
boundary of .%*. This has to do with what we call the second order corrections to
Looijenga’s predictions (one of the main discoveries of [34]).

To conclude, we believe that while further work is needed (and small adjustments
might occur), there is very strong evidence that our predictions from [34] are
accurate. In any case, Looijenga’s visionary idea that the natural (or “tautological”)
birational models (such as GIT) of the moduli space of polarized K 3s are controlled
by the arithmetic of the period space is validated in the highly non-trivial case of
quartic surfaces (by contrast, in the previous known examples [2, 32, 39, 42, 43, 50]
only first order phenomena were visible, and thus a bit misleading). As possible
applications of our program, starting from the period domain side, one can bring
structure and order to the (a priori) wild side of GIT. Conversely, starting from GIT
and the work of Kirwan [24, 25], one can follow our factorization of the period map
(and do “wall crossing” computations) and compute, say, the Betti numbers of .%.

Remark 1 In subsequent work [35], we have obtained a complete validation of the
predictions of [34] for the related case of hyperelliptic quartic K 3 surfaces (the case
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N = 18 in the notation of loc. cit.). The geometric matching that we obtain in [35]
(e.g. strata Zfl C Fn = #(18) flipped to strata W), 1 C I, = M(18)) is parallel
to the geometric matching that we discuss in this paper. The main technique of [35]
is VGIT, and the methods there can be regarded as complementary to what we do in
this paper.

Definition 1 A K3 surface is a complex projective surface X with DuVal singular-
ities, trivial dualizing sheaf wy, and H Loy) = 0.

We let U be the hyperbolic plane, and root lattices are always negative definite.
Let A be alattice, and v, w € A. We let (v, w) be the value of the bilinear symmetric
form on the couple v, w, and we let g(v) := (v, v). The divisibility of v is the
positive integer div(v) such that (v, A) = div(v)Z. Let v be primitive (i.e. v = mw
implies that m = =£1); if A is unimodular, then div(v) = 1, in general it might be
greater than 1.

2 GIT vs. Baily-Borel for Locally Symmetric Varieties
of Type IV

The purpose of this section is to give a very brief account of Looijenga’s framework
and our enhancement from [34] (with a focus on quartic surfaces). We start with the
simplest non-trivial example that fits into Looijenga’s framework—degree-2 K3
surfaces (see [39, 50], [10, §5], and [33, §1] for a concise account). We then briefly
touch on the general case, and we recall how it applies to the moduli space of cubic
fourfolds. Lastly, we describe in detail our (conjectural) decomposition of the period
map for quartic surfaces into a product of elementary birational modifications,
see [34].

Remark 2 To the best of our knowledge, the first instance of Looijenga’s framework
is in Igusa’s celebrated paper [21] on modular forms of genus 2. The paper by Igusa
analyzes the (birational) period map between the compactification of the moduli
space of (smooth) genus 2 curves provided by the GIT quotient of binary sextics
and the Satake compactification of .@% (notice that .@% is a locally symmetric variety
of Type IV). Igusa describes explicitly the blow-up of a non-reduced point in the
GIT moduli space needed to resolve the period map. See [18] for a more recent
version of this story.

2.1 Degree-2 K3 Surfaces

Let %, be the period space of degree-2 polarized K3 surfaces, i.e. %2 = I»\%,
where I and & are defined as follows. Let A := U? @ E% @ Ai. Thus A is
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isomorphic to the primitive integral cohomology of a polarized K3 of degree 2.
Then

2 :={[0] e P(AQC) | g(0) =0, g(o+0)>0}", D =01, 3)

Here the first superscript + means that we choose one connected component (there
are two, interchanged by complex conjugation), the second one means that I is the
index-2 subgroup of O(A) which maps & to itself. Let .%, C .#; be the Baily-
Borel compactification. Let 0 := |Op2(6)|/PGL(3) be the GIT moduli space of
plane sextics. We let

p: My —-» 5\* p_lz 352* e 0)

be the (birational) period map and its inverse, respectively. By Shah [50] the period
map p is regular away from the pointg € N, parametrizing the PGL(3)-orbit of 3C,
where C C P? is a smooth conic (a closed orbit in |Op2(6)]°*). Let 93?5 C My be
the open dense subset of orbits of curves with simple singularities, and let H, C %,
be the unigonal divisor, i.e. the divisor parametrizing periods of unigonal degree-
2 K3’s. Thus H, is a Heegner divisor; it is the image in .%; of a hyperplane

L N 2, where v € A is such that q(v) = —2 and div(v) = 2 (any two such
elements of A are [>-equivalent). Then the period map defines an isomorphism

imé = (P \ H,). Let L € Pic(M3)q be the class induced by the hyperplane
class on |Op2(6)|, let A be the Hodge divisor class on %, and A = H,/2;
a computation similar (but simpler) to those carried out in Sect. 4 of [34] gives
that

1
p—1L|%=x+EHu=A+A (4)

(the 1 5 factor indicates that H, is a ramification divisor of the quotient map

9 — ). Arguing as in Sect. 4.2 of [34], one shows that p~! is regular on all of
%, (one key point is that .7, is Q- factorlal) On the other hand p~_ Uis not regular
on all of Z}. In order to describe p 1 on the boundary of .9, let Jz C F5 x My
be the graph of p~!, and let IT: ﬁz — F), D Jz — My be the projections:

7
VRN
p—l
ﬁz* —————— - 93?2 (5)

Thus IT is an isomorphism over .%, (because p~! is regular on .%>). On the
other hand, it follows from Shah’s description of semistable orbits in |Op2(6)],
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that the fibers of IT over two of the four 1-dimensional boundary components
of 9’2* are 1-dimensional (namely those labeled by E% @® A; and Dig D Aq; see
Remark 5.6 of [10] for the notation), and they are O-dimensional over the remaining
two boundary components. From this it follows that .7} is not Q-factorial, because
if it were (Q-factorial, the exceptional set of IT would have pure codimension 1.
Moreover, it follows that IT is a Q-factorialization of .. In fact, since .7, is
(Q-factorial, with rational Picard group freely generated by A and H,, the rational
class group CI(.%7)q is freely generated by A* and H,; (obvious notation). Since
A® s the class of a Q-Cartier divisor, it followi that H} is not QQ-Cartier. Let
ﬁu C %, be the strict transform of H,. Then H, is Q-Cartier, because by (4),
there exists m > 0 such that mﬁu is the diViSOI; of a section of the line-bundle
@* L2 @ IT*(1*)~2™ . Moreover we can identify .7, with Proj(@nzo ﬁyz* (nH)),
because H,, is IT-ample (clearly ax™(A*) + b®@*L is ample for any a,b € Q,
using (4) and the triviality of 7*(A*) on fibers of I7, it follows that ﬁu is IT-ample).
Thus (as in [39]) we have decomposed p~! as follows: first we construct the Q-
factorialization of .7} given by Proj((D,~o O 73 (nH)), then we blow down the

strict transform of H, i.e. ﬁu In this case the Mori chamber decomposition of
the cone {A + BA | B € [0, 1] N Q} is very simple; there are exactly two walls,
correspondingto 8 =0 and 8 = 1.

2.2 A Quick Overview of Looijenga’s Framework

Let M° be a moduli space of (polarized) varieties which are smooth or “almost”
smooth (e.g. surfaces with ADE singularities), with Hodge structure of K3 type.
In particular the corresponding period space is % = I'\Z, where ¥ is a
Type IV domain or a complex ball, and I" is an arithmetic group. An example
of M" is provided by the moduli space of degree-d polarized K3 surfaces,
embedded by a suitable multiple of the polarization (one also has to specify the
linearized ample line-bundle on the relevant Hilbert scheme), and .% = %;—
in particular the example discussed in Sect.2.1. We let " C 91 be a GIT
compactification, and we let .# C .#* be the Baily-Borel compactification.
Let

p: M --» F*
be the period map, and assume that it is birational. Looijenga [40, 41] tackled
the problem of resolving p. First, he observed that in many instances p(9N") =
Z \ supp A, where A is an effective linear combination of Heegner divisors—
in the example of Sect.2.1, one chooses A = H,/2. It is reasonable to expect

that

M = ProjR(Z, ) + A), (6)
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where A is the Hodge (automorphic) Q-line bundle on .%# (of course here the
choice of coefficients for A is crucial), and for a Q-line bundle .Z on . we
let R(%,.Z) be the graded ring of sections associated to .Z. In the example
of Sect. 2.1, Eq. (6) holds by (4). On the other hand, Baily-Borel’s compactification
is characterized as

F* =ProjR(Z, \).

Thus, in order to analyze the period map, we must examine ProjR(.%#, 1 + BA) for
B € (0, 1) N Q (we assume throughout that R(.%, A + BA) is finitely generated).
Let us first consider the two extreme cases: B close to 0 or to 1, that we denote
B =€ and B = (1 — €), respectively. The space

F = ProjR(F, » + €A)

constructed by Looijenga [41] as a semi-toric compactification, has the effect of
making A Q-Cartier (notice that the period space .7 is Q-factorial, the problems
occur only at the Baily-Borel boundary). The map % — 7™ is a small map—in the
example of Sect. 2.1 this is the map IT: .7, — .ZJ. At the other extreme, we expect
that 91 := ProjR(#, A + (1 — €)A) is a Kirwan type blow-up of the GIT quotient
90t with exceptional divisor the strict transform of A—in the example of Sect. 2.1
this is the map @ : .7, — 9y.

In between, we expect a series of flips, dictated by the structure of the preimage
of A under the quotient map 7 : 2 — .%. More precisely, let 5 := 7~ (supp A);
then .77 is a union of hyperplane sections of &, and hence is stratified by closed
subsets, where a stratum is determined by the number of independent sheets
(“independent sheets” means that their defining equations have linearly independent
differentials) of .7# containing the general point of the stratum. The stratification of
¢ induces a stratification of supp A, where the strata of supp A are indexed by
the “number of sheets” (in Z, not in % = I'\%). Roughly speaking, Looijenga
predicts that a stratum of supp A corresponding to k (at least) sheets meeting (in &)
is flipped to a dimension k — 1 locus on the GIT side. In the example of Sect. 2.1,
the divisor /¢ := 7~ H, is smooth, and this is the reason why no flips appear in
the resolution of p given by (5). In Sect.2.3 we give an example in which one flip
occurs.

Summarizing, Looijenga predicts that in order to resolve the inverse of the period
map p one has to follow the steps below:

1. Q-factorialize A.
2. Flip the strata of A defined above, starting from the lower dimensional strata,
3. Contract the strict transform of A.

All these operations have arithmetic origin, and thus, when applicable, give a
meaningful stratification of the GIT moduli space.
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2.3 Cubic Fourfolds

The period space is similar to that of degree-2 polarized K3 surfaces (see (3)).
Specifically, A is replaced by A" := U? & E% @ A, and the arithmetic group is
O+ (A) := O(A) N OF(A'), where O(A’) is the stable orthogonal group. The
divisor A is H, /2, where this time H,, is the image in .% of v N Z for v € A such
that g (v) = —6 and div(v) = 3. In this case at most two sheets of 77 := 7~ H,
meet, and correspondingly there is exactly one flip f, fitting into the diagram

7---_sm

I @
-1

Fr- -2 o

Here, @ is the blow-up of the polystable point corresponding to the secant variety
of a Veronese surface. The map f is the flip of the codimension 2 locus where
two sheets of 77 = n_lHu meet, and the corresponding locus in 91 is the curve
parametrizing cubic fourfolds singular along a rational normal curve. For a detailed
treatment, see [31, 32, 42].

2.4 Periods of Polarized K3’s of Degree 4 According to [34]

We start by recalling notation and constructions from [34]. For N > 3, let Ay :=
U2@® Dy_». In [34] we defined a group Ot (Ay) < I'y < O (Ay) which is equal
to O (Ay) if N # 6 (mod 8), and is of index 3in O (Ay) if N = 6 (mod 8),
see Proposition 1.2.3 of [34]. Next, we let

In ={lo]1€P(Ay®C) | q(0) =0, q(0+7) >0}, (7
F(N) :=T'N\Zn. (8)

(The meaning of the superscript + is as in (3).) Then .% := .%(19) is the period
space for polarized K3’s of degree 4—we will explain the relevance of the other
# (N) at the end of the present subsection. Let (X, L) be a polarized K3 surface of
degree 4; we let and p(X, L) € .# be its period point.

The hyperelliptic divisor Hj, C .Z is the image of v N Z;q for v € Ajg such that
q(v) = —4, and div(v) = 2 (any two such v’s are O (A9)-equivalent). Let (X, L)
be a polarized K3 surface of degree 4; then p(X, L) € Hj, if and only if (X, L) is
hyperelliptic, i.e. ¢z : X --» |L|Y is a regular map of degree 2 onto a quadric—this
explains our terminology.
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The unigonal divisors H, C .%, is the image of vt N P9 for v € A such that
g(v) = —4, and div(v) = 4 (any two such v’s are O (A9)-equivalent). If (X, L)
is a polarized K3 surface of degree 4, then p(X, L) € H, if and only if (X, L) is
unigonal, i.e. L = Ox (A + 3B), where B is an elliptic curve and A is a section of
the elliptic fibration | B|.

We let A := (Hj, + H,)/2. Fork > 1,1let A%  supp A be the k-th stratum
of the stratification defined in Sect. 2.2, i.e. the closure of the image of the locus
in =g} (supp A) where k (at least) independent sheets of .7 meet. One has
AU £ & and there is a strictly increasing ladder A1 C AU® ¢ C AD =
(Hp U Hy,). This is in stark contrast with the cases discussed above: in fact (with
analogous notation) in the case of degree 2 K 3 surfaces one has A®) = @ fork > 2,
and in the case of cubic fourfolds one has A% = & for k > 3. In fact, since for
quartic surfaces there are O-dimensional strata of A, strictly speaking Looijenga’s
theory does not apply (see Lemma 8.1 in [41]). Our refinement in [34] takes care
of this issue and, at least to first order, Looijenga’s framework still applies, as we
proceed to explain. For the rest of the paper, the GIT moduli space 901 is that of
quartic surfaces:

M := |Op3(4)| JPGL(4).

Of course, we do not “see” hyperelliptic polarized K 3’s of degree 4 among quartic
surfaces, nor do we see unigonal polarized K3’s of degree 4—and that is where
all the action takes place. Let A be the Hodge Q-Cartier divisor class on .%. The
period map p: M --+» .F#* (denoted p9 in [34]) is birational by Global Torelli, and
it defines an isomorphism

M = ProjR(F, A + A)

by Proposition 4.1.2 of [34]. On the other hand, the Baily-Borel compactification
ZF* is identified with ProjR(.%#, A). For B € [0, 1] N Q, we let

F(B) = ProjR(Z, A + BA).

F2F0,4)— — > F(A) — — 2 FGhE) — — > F(L LGN - EACRIE
1 7(§) 7 (1) Z () 7(3) ®
F*=F(0) Z(1)=9m

)

The predictions of [34] are as follows. First, we expect that R(#, A+ A) is finitely
generated for all 8 € [0, 1] N Q, and that the critical values of 8 € [0, 1] N Q are
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given by
1111111
,3 € Oa PR R R R B _’1 . (10)

(Note: B = 1/8 is missing, no typo.) This means that for 8; < B < B’ < Bi+1,
where B;, Bi+1 are consecutive critical values, the birational map .% (B8) --» .Z% (8')
is an isomorphism. We let

F(Bi, Bi+1) == F(B), B € (Bi, Bi+1) NQ. (11)

As we have already mentioned, .% (¢) is expected to be the QQ-factorialization of
Z*. On the other hand, .%# (1 — ¢€) is the blow-up of 91 with center a scheme
supported on the two points representing the tangent developable of a twisted cubic
curve, and a double (smooth) quadric. For later reference we denote by v and w the
corresponding points of 91; explicitly

v = [V (4(x1x3 — x3) (x0x2 — x7) — (x1x2 — x0x3)%)], (12)
w = [V((x§ + x} +x3 + xDH)]. (13)

We predict that one goes from .% (¢) to .# (1 — €) via a stratified flip, summarized
in (9). More precisely, in [34] we have defined a tower of closed subsets

22cz8c7Zczcz*cz?cz’cz'=H,UH, C .Z, (14)

where k denotes the codimension (Z° is missing, no typo). In fact, with the notation
of [34],

fork <35,z = A®),

Z" =Im(fiz,19 0 q13: F (Il 10 ® A2) — F),

Z8 =Im(fia190miz: F(lp10® A1) — %), and

79 = Im(fi1.19 o l11: FAl210) — F) (Z° is one of the two components of
A,

sl

Letm € {2,3,...,7,9}; we predict that the birational map
1 1 1
Lg.(a(n/l)’ _) -2 y(_a —)
m m m—1

(here a(m) = m%rl ifm #7,9,a(7) = 1/9, and a(9) = 0) is a flip with center
the strict transform of (the closure) of 7k where k = m, except form = 7,6,
in which case k = m + 1. Thus we expect that Z* is replaced by a closed
Wi—1 C N of dimension k — 1. Correspondingly, we should have a stratification
of the indeterminacy locus Ind(p) of the period map. Now, according to Shah, the
indeterminacy locus Ind(p) is contained in the locus 9t/V parametrizing polystable
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quadrics of Type IV (i.e. those which do not have slc singularities, see Sect. 3.3)—
and it is natural to expect that Ind(p) = MMV . The first evidence in favor of our
predictions is that, as we will show, 9!V has a natural stratification

MY =(WeLi{v}) D(W7L{v}) D(WeLi{v}) D(Wali{u}) D(WsL{v}) D(WaL{u ) D(Wiufuh) D(WoL{v)),
(15)

where Wy = {w}, and each W; is (closed) irreducible of dimension i. It is well
known that the period map “improves” on the blow-up 91 of a certain subscheme of
2N supported on {v, w}. More precisely, it is regular on the exceptional divisor over
v, with image the closure of the unigonal divisor H,,, it is regular on the dense open
subset of the exceptional divisor over @ parametrizing double covers of P! x P!
ramified over a curve with ADE singularities (the exceptional divisor over w is the
GIT quotient of | Op1 ,p1 (4, 4)| modulo Aut(P! xP1)), mapping it to Hj, \ AP This
is discussed with much more detail than previously available in the literature (e.g.
[51]) in Sects. 5.1 and 5.2 respectively. In Sect. 5.3 we identify 9t with .% (1 —¢), for
small € > 0. Section 5.4 is devoted to a proof (without full details) that the blow up
of a suitable scheme supported on the strict transform of Wy in 9 can be contracted
to produce .#(1/2). Lastly, in Sect.6, we give evidence that Wy_; is related to
7k as predicted, for k € {7, 8,9}. Namely, 72,78, 77 correspond precisely to
1237, T2 4.5, T3 3,4 marked K 3 surfaces respectively, while We, W7, Wg correspond
to the equisingular loci of quartics with E14, E13, E12 singularities respectively (on
the GIT side). The flips replacing Wj_1 with Z k (in this range) are analogous to the
semi-stable replacement that occurs for curves in the Hassett—Keel program (e.g.
curves with cusps are replaced by stable curves with elliptic tails).

We end the subsection by going back to .% (N) for arbitrary N > 3. First,
there are other values of N for which .% (N) is the period space for geometrically
meaningful varieties of K3 type. In fact, .% (18) is the period space for hyperelliptic
polarized K3’s of degree 4, and .#(20) is the period space for double EPW
sextics [46] (modulo the duality involution), and of EPW cubes [22]. Secondly, there
is a “hyperelliptic divisor” on .% (N) for arbitrary N (and a “unigonal” divisor on
ZF(N) for N = 3 (mod 8)). More precisely, if N % 6 (mod 8) the hyperelliptic
divisor Hy(N) C .%#(N) is the image of v N 2 forv € Ay such that q(v) = —4,
and div(v) = 2,if N = 6 (mod 8) the definition of the hyperelliptic divisor is
subtler (there is a link with the fact that [OT(Ay) : I'v] = 3). The key aspect of
our analysis in [34] is that we have a tower of locally symmetric spaces

o709 709 B 2000 . aN-1)L TN .
(16)

where .7 (N — 1) is embedded into .% (N) as the hyperelliptic divisor Hy,(N). Our
paper [34] contains analogous predictions for the behavior of ProjR(.# (N), A(N) +
A(N)), where A(N) is the Hodge Q-Cartier divisor class, and A(N) is a Q-Cartier
boundary divisor class (equal to A for N = 19), which are compatible with the
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tower (16). Thus the period map and birational geometry of .# = .%(19) sits
between .7 (18), i.e. the period space of hyperelliptic quartic surfaces, and .7 (20),
i.e. the period space of double EPW sextics (modulo the duality involution), or
equivalently that of EPW cubes.

3 GIT and Hodge-Theoretic Stratifications of )t

3.1 Summary

The analysis of GIT (semi)stability for quartic surfaces was carried out by Shah
in [51]. In this section we will review some of his results. In particular we will go
over the GIT stratification (N.B. as usual, a stratification of a topological space X
is a partition of X into locally closed subsets such that the closure of a stratum is
a union of strata) determined by the stabilizer groups of polystable quartics. After
that, we will review Shah’s Hodge-theoretic stratification [49, 51]

ot =om! uo!! uom! T pom!V (17)

from a modern perspective (due to Steenbrink [55], Kollar, Shepherd-Barron and
others [26, 29, 52]). The period map p: 9 --+» F#* extends regularly away from
o'V, and it maps M’, M’ and M7 to the interior .Z, to the union of the Type
IT boundary components, and to the Type I1I locus (a single point) respectively.

A large part of this paper is concerned with the behavior of the period map for
quartic surfaces along 9V

Remark 3 Shah also defined a refinement of the stratification in (17), see Theo-
rem 2.4 of [51] (and Sect. 4 below). We will follow the notation of Theorem 2.4 of
[51], with an S prefix, and with the symbol IV replacing “Surfaces with significant
limit singularities”. Thus the strata will be denoted by S-I, S-1I(A,i), S-II(A,ii) S-
III(B,ii), S-IV(A,1), etc. We recall that the roman numerals I, II, III, IV refer to the
stratum of (17) to which a stratum belongs, and the letter A (B) indicates whether the
stratum is contained in the stable locus or in the properly semistable locus. We will
refer to Shah’s stratification before discussing the stratification in (17); this is not an

issue, because the strata are defined explicitly by Shah in terms of singularities, see
Theorem 2.4 of [51].

3.2 The GIT (or Kirwan) Stratification for Quartic Surfaces

Shah [51] essentially established a relation between GIT (semi)stability of a
quartic surface and the nature of its singularities. In particular he proved that a
quartic with ADE singularities is stable, and hence there is an open dense subset
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M/ C 9N parametrizing isomorphism classes of polarized K3 surfaces (X, L)
such that L is very ample, i.e. (X, L) is neither hyperelliptic, nor unigonal—
see Theorem 1. In the present subsection the focus is on stabilizers (in SL(4)) of
strictly semistable polystable quartics (a quartic is strictly semistable if it semistable
and not stable, it polystable if its PGL(4)-orbit is closed in the semistable locus
|Op3(4)]°*), and the associated stratification of 91. The point of view is essentially
due to Kirwan [24, 25]. Let 9t° C 9)1 be the open dense subset parametrizing
isomorphism classes of GIT stable quartics. Points of the GIT boundary 9t \ 9*
parametrize isomorphism classes of semistable polystable quartics. The stabilizer
of such an orbit is a positive dimensional reductive subgroup. The classification
of 1-dimensional stabilizers leads to the decomposition of the GIT boundary into
irreducible components.

Lemma 1l Let X = V(f) be a strictly semistable polystable quartic. Then f is
stabilized by one of the following four 1-PS’s of SL(4) (up to conjugation):

A'l :(37 1’_1’ _3)’ )\‘2:(1’070’_1)? )\‘3:(]" 1’_1’_1)7 A‘4':(3’_]"_1’_1)'
(18)

Fori =1,...,4, let o; C 9N be the closed subset parametrizing polystable points
stabilized by A;. Then the following hold:

1. 01, ..., 04 are the irreducible components of the GIT boundary N \ 2.
2. The o;’s are related to Shah’s stratification as follows:

a. o1 is the closure of the Eg component (see B, Type II, (i) in Theorem 2.4
in [51]) of S-1I(B,i). B

b. oy is the closure of the E7 component (see B, Type Il, (i) in Theorem 2.4
in [51]) of S-1I(B,i).

c. o3 = S-1I(B,ii).

d. o4 = S-1I(B,iii).

3. dimo; =2, dimop =4, dimo3 = 2, and dimoyg = 1.

Proof This follows from Proposition 2.2 of [51] (see also Kirwan [25, §4] for a
discussion focused on stabilizers). Specifically, the first 3 cases correspond to 1-
PS subgroups of type (n, m, —m, —n) (i.e. Case (1) in loc. cit.). Thus A1, A2, A3
correspond to (1.1), (1.2), and (1.3) respectively in Shah’s analysis. The last case,
A4 corresponds to the cases (2.1) or (4.1) of Shah (N.B. the two cases are dual,
so they result in a single case in our lemma; the previous case (1) is self-dual). It
is easy to see that the other cases in Shah’s analysis can be excluded (i.e. either
they lead to unstable points, or to cases that are already covered by one of
A1, ..., Ag—Iit 1s possible to have a polystable orbit stabilized by another 1-PS A,
but then the stabilizer contains a higher dimensional torus, which in turn contains
a conjugate of one of A1, ..., A4). In conclusion, the GIT boundary consists of
the 4 boundary components o; as stated (they intersect, but none is included in
another).
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Item (B) of Theorem 2.4 of Shah [51] describes the strictly polystable locus in
the GIT compactification. It is clear (from the geometric description and proofs)
that the strictly semistable locus in )1 is the closure of the Type II strata, i.e.

M\ DM = Uj—1 407 = S-I(B,1) U S-TI(B,ii) U S-TI(B, iii).

Finally, the stratum S-II(B,i) has two components corresponding to quartics with
two Eg singularities and two E7 singularities respectively (see [51, Thm. 2.4 (B,
II(i))] for precise definitions of the two cases).

In order to compute the dimensions, one can write down normal forms for the
quartics stabilized by the 1-PS ;. For instance, it is immediate to see that a quartic
stabilized by A4 = (3, —1, —1, —1) is of the form x¢ f3(x1, x2, x3) (i.e. the union
of the cone over a cubic curve with a transversal hyperplane, or same as S-II(B,ii1)).
Furthermore, we can still act on this equation with the centralizer of A4 in SL(4).
In particular, with SL(3) acting on the variables (x1, x2, x3). It follows that the
dimension in 97 of the locus of polystable points with stabilizer A4 (i.e. 04) is 1. At
the other extreme, we have the case A; = (3, 1, —1, —3). In this case, the centralizer
is the maximal torus in SL(4). There are five degree 4 monomials stabilized by A1,
namely xoxg, xfxg, (x0x3)“(x1x2)b with a + b = 2. It follows that dimo; = 2. The
other cases are similar.

Note that o1, ..., 04 are closed subsets of 0. As a general rule, subsets of 91
denoted by Greek letters are closed.

The intersections of the components of the GIT boundary are determined by
considering stabilizers that are tori of dimension larger than 1. More in general,
special strata inside the o; are determined by other reductive (non-tori) stabilizers.
The stratification of GIT quotients in terms of stabilizer subgroups plays an essential
role in the work of Kirwan [24], and the case of hypersurfaces of low degree was
analyzed in [25]. Given a quartic X, we let Stab(X) < SL(4) be the stabilizer of X,
and we let StabO(X ) < Stab(X) be the connected component of the identity.

We start by noting that we have already defined two points which are GIT strata,
namely v and w, see (12) and (13).

Remark 4 Let X C P be the tangent developable of a twisted cubic curve, thus in
suitable homogeneous coordinates the equation of X is given in the right hand side
of (12). Then X is a properly semistable polystable quartic, and the corresponding
point in 91 is denoted by v. The group Aut’(X) is conjugated to SL(2) embedded
in SL(4) via the Sym? representation.

Remark 5 Let X C P3 be twice a smooth quadric, thus in suitable homogeneous
coordinates the equation of X is given in the right hand side of (13). Then X is a
properly semistable polystable quartic, and the corresponding point in 91 is denoted
by w. The group Aut’(X) is conjugated to SO(4).

The following result is due to Kirwan (and essentially contained also in [51]).
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Proposition 1 (Kirwan [25, §6]) Let X be a properly semistable polystable
quartic. Then Aut(X) is one of the following (up to conjugation):

1.
2.
3.

The trivial group {1} (i.e. X is stable).

One of the 1-PS’s A1, ..., Aq in (18).

The two-dimensional torus diag(s, t, t~1, 571 c SL@, C). Equivalently, X =
Q1 + Q2 where Q1, Q2 are smooth quadrics meeting along 2 pairs of skew
lines (special case of S-11I(B,ii)). Let T C M be the closure of the set of points
representing such quartics. Then t is a curve, and

T=o01MNorNo3

(in fact T is the intersection of any two of the o1, 02, 03).
The maximal torus in SL(4, C). Equivalently, X is a tetrahedron (S-111(B,i)). We
let £ € 0 be the corresponding point. Then

{¢} =01 NorNo3zNoy.

SO@3, C), or equivalently X = Q1 + Q2 where Q1, Q2 are quadrics tangent
along a smooth conic (S-1V(B,ii)). This defines a curve x C oo C M. The only
incidence with the other strata is x Nt = {w}.

SL(2, C) embedded in SL(4) via the Sym3—representation. Then X is the tangent
developable of a twisted cubic curve (special case of S-1V (B,i)), and v is be the
corresponding point in YN. One has v € o1, and v ¢ o; fori € {2,3,4}.

SO4, C). Then X = 2Q, where Q is a smooth quadric (S-1V(B,iii)), and w is the
corresponding point in M. Then w € 1, and thus w € o1 Noz No3 (and w & 04).

Proof (Elements of the Proof.) We refer to Kirwan [25, §6] for the complete proof.
Here we only describe polystable quartics parametrized by 7 and x. First we
consider 7. If X consists of two quadrics meeting in two pairs of skew lines, then
(in suitable homogeneous coordinates) it has equation

(a1x0x3 + bix1x2)(axxox3 + bax1xz) = 0.

Clearly this is a pencil, and we have the following two special cases:

1.
2.

the tetrahedron (case ¢) if any of the a; or b; vanish;
the double quadric (case w) if [a1, b1] = [a2, b2] € P!,

If both a; or b; vanish simultaneously, the associated quartic is unstable and thus the
two cases above are distinct.

Next we consider x. If X consists of two quadrics tangent along a conic, then (in

suitable homogeneous coordinates) it has equation

Ja,p = (g(x0, x1, x2) + ax32)(61(XO, X1, x2) + bx_%) =0,
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for [a, b] € P! (N.B.if a = b = 0, one gets the double quadric cone, which is
unstable; similarly, if @ = oo or b = oo, one gets an unstable quadric). Note that
fa.a = 0 is the equation of the double (smooth) quadric (case w).

3.3 The Stratification by Type

Shah [49], influenced by Mumford, defined the concept of “insignificant limit
singularity”, and used it to study the period map for degree 2 and degree 4 K3
surfaces (see [50, 51]). One defines 9!" as the subset of 9t parametrizing quartics
with significant limit singularities. The main point is that the restriction of the period
map to (M \ M!Y) is regular. Next,

F* = FuFllyFg (19)

where .7 !! is the union of the Type II boundary components, and .% /! is the
(unique) Type III boundary component; this is a stratification of .#*. Then (19)
defines, by pull-back via p, strata O/, M7 and M !! (of course M’ coincides
with the set that we have already defined). (Literally speaking, we will not define
!, ! and M7 this way.)

We will give an updated view of the concept of insignificant limit singularity.
Briefly, Steenbrink [55] noticed that an insignificant limit singularity is du Bois.
On a different track, from the perspective of moduli, Shepherd-Barron [52] and
then Kollar—Shepherd-Barron [29] noticed that the right notion of singularities is
that of semi-log-canonical (slc) singularities. More recently (with [26] as the last
step), it was proved that an slc singularity is du Bois. Lastly, one can check by
direct inspection that Shah’s list of insignificant singularities coincides with the list
of Gorenstein slc surface singularities (which are then du Bois). Of course, in the
situation studied here, this is just a long-winded highbrow reproof of Shah’s results
from 1979, but what is gained is a conceptual understanding of the situation.

We should also point out the connection between slc singularities and GIT. On
one hand, an easy observation [14, 23] shows that a quartic with slc singularities
is GIT semistable. A much deeper result (due to Odaka [44, 45]), which can be
viewed as some sort of converse of this, is giving a close connection between slc
singularities and K -stability. Finally, K-stability should be viewed as a refined
notion of asymptotic stability. We caution however that the precise connection
between asymptotic stability and K-stability/slc for K 3 surfaces is not known. More
precisely, an example of Shepherd-Barron [52, 53] shows that for K 3s of big enough
degree there is no (usual) asymptotic GIT stability. The results of [58] strengthen the
meaning of this failure of asymptotic stability. Nonetheless, it is still possible that
a certain (weaker) asymptotic stabilization exists. We hope that our HKL program
will eventually address this issue.
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3.3.1 ADE Singularities

We recall that 9/ 901 is (by definition) the subset parametrizing isomorphism
classes of quartics with ADE singularities. The following identification of 9t/ (as
a quasi-projective variety) with an open subset of the projective variety .#™* is well
known:

Theorem 1 The period map defines an isomorphism

m' — Z\ (H,U H,).

3.3.2 Insignificant Limit Singularities

We recall the following important result about slc singularities.

Theorem 2 (Kollar—-Kovacs [26], Shah [49] (for Dimension 2)) Let Xo be a
projective reduced variety (not necessarily irreducible) with slc singularities. Then
X has du Bois singularities. In particular, if 2 /B is a smoothing of Xo over a
pointed smooth curve (B, 0), then the natural map H"(Xg9) — leilm induces an
isomorphism

179(Xo) = 111

lim
on the 179 components of the MHS with p - g = O.

The key point (for us) of the above result is that, if the generic fiber of 2" /B is a
(smooth) K3 surface, then the MHS of the central fiber X essentially determines
the limit MHS associated to 2™*/(B \ {0}). This is a result due to Shah [49] in
dimension 2 and Gorenstein singularities (the case relevant for us). Steenbrink [55]
connected this result to the notion of du Bois singularities.

Definition 2 A reduced (not necessarily irreducible) projective surface X is a
degeneration of K3 surfaces if it is the central fiber of a flat proper family 2 /B
over a pointed smooth curve (B, 0) such that w 9-/p = 0 and the general fiber X, is
a smooth K3 surface. We say that X has insignificant limit singularities if X has
semi-log-canonical singularities.

Remark 6 The list of singularities baptized as insignificant limit singularities by
Shah [49] coincides with the list of Gorenstein slc singularities (see [29, 52]). For a
degeneration of K 3 surfaces, the Gorenstein assumption is automatic.

Let Xo be a degeneration of K3 surfaces with insignificant singularities. On
H?(Xo) we have a MHS of weight 2. Denote by 174 the associated Hodge numbers
(hP9 = dimc 17-9). Theorem 2 gives that one, and only one, of the following 3
equalities holds:

1. h29(Xy) = 1.
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2. h0(Xo) = 1.
3. h%9(Xo) = 1.
In fact this follows from the isomorphism of the theorem, and the fact that hlzi}g +

hllng + h?i’rg = 1 for a degeneration of K 3’s.

Definition 3 Let X( be a degeneration of K 3s.

X has Type I if it has insignificant limit singularities, and h>°(Xg) = 1.
Xo has Type II if it has insignificant limit singularities, and h9(Xo) = 1.
X has Type III if it has insignificant limit singularities, and hO’O(Xo) =1.
X0 has Type IV if it has significant limit singularities.

Bob =

We are interested in the case of Gorenstein slc surfaces. These are classified by
Kollar-Shepherd-Barron [29] and Shepherd-Barron. They are

(a) ADE singularities (canonical case)

(b) simple elliptic singularities (for hypersurfaces the relevant cases are E, with
r = 6,7, 8), surfaces singular along a curve, generically normal crossings (or
equivalently Ao, singularities) and possibly ordinary pinch points (aka D).

(c) cusp and degenerate cusp singularities.

Remark 7 We note that a normal crossing degeneration without triple points is a
Type II degeneration, while a normal crossing degeneration with triple points is a
Type III degeneration (a triple point is a particular degenerate cusp singularity).

By applying results of Shah [49] and Kulikov-Persson-Pinkham’s Theorem (see
also Shepherd-Barron [52]), one obtains the following.

Theorem 3 Let X be a degeneration of K3 surfaces with insignificant singulari-
ties. Then the following hold:

i) Xo is of Type I if and only if it has ADE singularities.

ii) If Xo is of Type Il then X has a simple elliptic singularity or it is singular along
a curve which is either smooth elliptic (and has no pinch points), or rational
with 4 pinch points. All other singularities of Xo are rational double points (or
ADE).

iii) If Xo is of Type Ill then, with the exception of ADE and A~ singularities, all
singularities of X are either cusp or degenerate cusps, and at least one of these
OCCUTrS.

Remark 8 We recall that the Type (I, 11, III) of a K3 degeneration is nothing else
than the nilpotency index (1, 2, 3) for the monodromy action N(= log7y) on a
general fiber of a degeneration 2" /B. Theorem 2 allows us to read the Type in
terms of the central fiber X¢ (as long as X has slc singularities). The theorem above
says that furthermore the Type of the degeneration can be determined simply by the
combinatorics of Xo. We point out that this fact holds much more generally—for
K -trivial varieties (see esp. [30, Section 2] and [15, Theorem 3.3.3]).

ogrady@mat.uniroma.it



238 R. Laza and K. G. O’Grady

3.3.3 The Stratification and the Period Map

Proposition 2 Let X be a quartic surface with insignificant singularities. Then X
is GIT semistable.

Proof This follows from the general fact observed by Hacking and Kim-Lee [23]
(see esp. the proof of Proposition 10.2 in [14]): GIT (semi)stability (via the
numerical criterion) and the log canonical threshold are computed via the same
recipe, with the difference that in the case of GIT (semi)stability one allows only
linear changes of coordinates (vs. analytic in the other case). Thus, the inequality
needed for log canonicity implies the inequality needed for semistability. The result
also follows by inspection from Shah [51] (i.e. an unstable quartic does not have slc
singularities).

Definition 4 We let 7, M7 9/ < O be the subsets of points represented by
polystable quartics with insignificant limit singularities of Type I, Type II and Type
III respectively (note that 9t/ is the same subset as the previously defined 9/,
by Theorem 3). We let 9t/Y C 90 be the subset of points represented by polystable
quartics with significant limit singularities.

Below is the result that was described at the beginning of the present section.

Proposition 3 9/, ML 9! MV define a stratification of M. The period map
p: M — F* is regular away from MY, and

pmhy c.z,  pe!hcF, pom!!ly c F1

(Recall that F!! is the union of the Type Il boundary components of F*, and F'!!
is the (unique) Type Ill boundary component.)

Before proving Proposition 3, we prove a result on the period map p: |Op3(4)| --»
F*. Define subsets |Ops ()|, |Ops (M|, |Ops (D), |Ops (DY of |Ops(4)] by
mimicking Definition 4.

Lemma 2 The period map ¥ is regular away from |Ops ()Y, and

PO cF, POos@ITh c F b0 c FI.
(20)

Proof Let Xo € (|Op3(4)] \ |Op3 @|'V) be a quartic surface. Suppose that
f:(B,0) — (|0p3(4)], Xo) is a map from a smooth pointed curve, and that
f(B \ {0}) is contained in the locus of smooth quartics. Let p 7o (B {0}) — F*
be the composition p o (f|p\(0}), and let ps: B — Z* be the extension to B. Then
p(0) is independent of f. In fact this follows from Theorem 2. In addition, we see
that

1. if Xo € |Ops (@), then pr(0) € Z,
2. if Xo € |Ops (4|1, then pr(0) € F11,
3. and if X € |Ops(@)|'!], then p((0) € F1I1.
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Now suppose that Xo € (|Ops(4)] \ |Op3(@)|'Y), and that X is in the inde-
terminacy locus of p. Then, since |Op3(4)| is smooth (normality would suffice),
there exist smooth pointed curves (B;, 0;) fori = 1,2, and maps f;: (B;,0;) —
(|0p3(4)], Xo) such that f(B; \ {0;}) is contained in the locus of smooth quartics,
and the points py, (0;) (defined as above) are different, contradicting what was just
stated. This proves that  is regular away from |Ops(4)|’". Equation (20) follows
from Items (1), (2), (3) above.

Proof (of Proposition 3) First we notice that |Ops (4)|!, |Ops (D), |Ops (4|11,
|Op3 (4)|1V define a stratification of |Op3(4)], because .7, F!1, FZ111 define a
stratification of .#*. Let | Op3 (4)|** C |Ops (4)| be the open subset of GIT semistable
quartics, and let w: |Op3(4)]** — 90 be the quotient map. By definition (and
the remark about |Ops(4)|7, ..., |Ops(4)|!V defining a stratification of |Op3 (4)])
a~teom\ m")y ¢ (1Ops(4)| \ |ﬁP3(4)|1v). Hence p is regular away from 9t/V
because of Lemma 2. Lastly, !, oL oI 9!V define a stratification of 90t
because %, F!!1 Z!1I (efine a stratification of .Z*.

4 Shah’s Explicit Description of the Hodge Theoretic
Stratification of )t

In the present section, we briefly review Shah’s explicit description [51, Theo-
rem 2.4] of the strata in the Hodge theoretic stratification of 91 defined in the
previous section. Essentially, Shah’s strata are the intersections between the Hodge
theoretic strata and the GIT strata. Then, we will slightly refine Shah’s stratification
of MV, so that the refined strata match (in “reverse order”) the strata Z” in (14). In
many instances the refined strata are connected components of one of Shah’s Hodge
theoretic strata.

4.1 Type II Strata for N

The period map extends regularly away from 9t'V, and maps !/ to F!!.
The matching of the irreducible components of 9!/ and the Type II boundary
components will be given in the following section (together with an explanation
of the discrepancies in dimensions). For the moment being, we note that Shah
identified 8 irreducible components of 9!/, and that each polystable quartic X
parametrized by a point of 9t/ has a *j-invariant”. More precisely, either X has
a simple elliptic singularity (of type Eg, E7, or Eg), or sing X contains an elliptic
curve, or a rational curve with 4 pinch points. Hodge theoretically, this corresponds
to the fact that GrYV H?(Xo) # 0 (N.B.: simple Hodge theoretic considerations
show that if there is more than one source of j-invariant, e.g. two simple elliptic
singularities, then the j-invariants coincide).
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Proposition 4 The Type Il GIT boundary ! consists of 8 irreducible boundary
components. We label these components by II(1)-11(8). Let X be a quartic surface
with closed orbit corresponding to the generic point of a Type Il component. Then,
X has the following description:

1I(1) (cf. S-1I(B,i, Es ), also the generic locus in o1)—Sing(X) consists of two
double points of type Es.

11(2) (cf. S-1I(B,i, E7 ), also the generic locus in 02)—Sing(X) consists of two
double points of type E7 and some rational double points.

11(3) (cf. S-1I(B,ii), also the generic locus in 03)—Sing(X) consists of two skew
lines, each of which is an ordinary nodal curve with four simple pinch points.

11(4) (cf. S-1I(B,iii), also the generic locus in o4)—X consists of a plane and a cone
over a nonsingular cubic curve in the plane (triple point of type Es ).

11(5) (cf. S-1I(A,i))—Sing(X) consists of a double point p of type Eg and some
rational double points such that no line in X passes through p.

11(6) (cf. S-1I(A,ii, deg 2))—Sing(X) consists of a smooth conic C and possibly
some rational double points. C is an ordinary nodal curve with 4 pinch points.

1I(7) (cf. S-1I(A,ii, deg 3))—Sing(X) consists of a twisted cubic C and possibly
some rational double points. C is an ordinary nodal curve with 4 pinch points.

11(8) (cf. S-1I(A,ii, deg 4))—Sing(X) consists of an elliptic normal curve of degree
4 and possibly some rational double points (equivalently X is the union of two
quadric surfaces that meet transversally).

Furthermore, the cases I11(5)-1I(8) correspond to stable quartics, while the
cases 1I(1)-11(4) to strictly semistable quartics with generic stabilizer the 1-PSs
Al, ..., Aq respectively (N.B. I1(i) = o; cf. Lemma I).

Proof This is precisely Shah [51, Thm. 2.4]. The corresponding cases in Shah’s
Theorem are labeled by S-II(A/B, Case). Some of Shah’s cases (e.g. Theorem 2.4
II.A.ii) have several geometric sub-cases that are labeled in an obvious way (e.g.
S-II(A,ii, deg 3) corresponding to the case when Sing(X) is a twisted cubic).

Remark 9 (Quartics with Eg Singularities, cf. Urabe [57]) Let us note that there
are two deformation classes of quartic surfaces with Eg singularities. The generic
quartic S in each of these two strata has a unique singular point p, of type Eg. The
minimal resolution S — S has the following properties:

1) S is a rational surface (a consequence of 1ii) below);
i1) the exceptional divisor D of S — S is a smooth elliptic curve of self-
intersection —1 (this is the condition of having Eg singularities);
1ii) (§, D) is an anticanonical pair (i.e. D € | — K5J) (this is a consequence of S
being a degeneration of K 3 surfaces);
iv) S comes equipped with a nef and big class 4 s.t. k> = 4 and h.D = 0 (i.e. S is
a quartic).
v) Furthermore, we can assume that the linear system associated to & contracts
only D.
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It is not hard to see (e.g. [57, Prop. 1.5]) that , S is the blow-up of P? at 10 points
on a smooth cubic curve C in P? (and D C S is the strict transform of C ). Thus,
Pic § = (¢, e, ...,e10), where ¢ is the pull-back of Op2(1) and ey, . .., eqo are the
10 exceptional divisors. The classification of the possible divisor classes & as above
was done by Urabe [57, Prop. 4.3]. Up to natural symmetries, there are two distinct
possibilities:

(a) h=9l—3(e; +---+eg) —2e9 — eqp
(b) h =Tl —3e; —2(ex +--- + e10).

In other words, if § is the blow- -up of P? at 10 (general) points on a cubic curve
with a divisor class & as above, then § = ¢|h|(S) is a quartic in P> with one Eg
singularity p. The two cases are distinguished geometrically by the fact that case
(a), S contains a line passing through p (with class ejp), while in case (b) there is
no such line. By construction, it is easy to see that § depends on 10 moduli in each
of the cases (a) and (b)—in particular, neither of the case is a specialization of the
other one. Finally, Shah’s analysis [50, Theorem 2.4] shows that the generic surface
of type (a) is strictly semistable with associated minimal orbit of Type II(1) (cf. the
proposition above). In case (b), the surface S is stable (Type II(5) above).

Remark 10 (Arithmetic of Quartics with Eg Singularities) Let us note that the two
cases of the Remark 9 are distinguished also from an arithmetic perspective. The
arguments here are standard and are contained (with full details) in Urabe [57].
First note that since S is the blow-up of P2 at 10 points, (H 2(§), (, )) 18 isometric as
lattice to /7 ,19. Since K 2 — —1, it follows that the lattice K ;2 & (notation I" in [57])
is an even unimodular lattice of signature (1, 9) (and thus isometric to Eg @ U). The
polarization class 4 has norm 4 and belongs to K+ = Eg @ U. It is not hard to see
that there are exactly (up to isometries) two choices for % that are distinguished by
the isometry class of the negative definite lattice hk | (notation A in [57]) . Namely,

hk | 1is either Eg @ D (recall D1 = (—4)) or Dy. The case (a) corresponds to
Eg & D1, while the case (b) corresponds to Dg (e.g. see [57, p. 1231]).

4.2 Type III Strata for DN

For completeness, we list Shah’s strata contained in 911 . By Scattone [48], there
is unique Type III boundary point in .%*, hence the period map sends all these strata
to the same point of .%

Proposition 5 A polystable quartic X corresponds to a point of W1 if and only
if one of the following holds:

1II(1) (cf. S-1lI(B,iii), also case ¢ )—X consists of four planes with normal crossings
(the tetrahedron). This is a single point { € 9N (cf. 1 (i)).
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111(2) (cf. S-1II(B,ii, 4 lines), also generic locus in T )—X consists of two, nonsingu-
lar, quadric surfaces which intersect in a reduced curve C which consists of
four lines, and whose singular locus consist of 4 double points. This gives a
curve T° C M (cf. 1 (ii)), where t° = 7 \ {w, ¢ }.

111(3) (cf. S-1(B,ii, 2 conics))—X consists of two, nonsingular, quadric surfaces
which intersect in a reduced curve, C, of arithmetic genus 1. C consists of
two conics such and its singular locus consists of 2 double points; the dual
graph of C is homeomorphic to a circle. This case is a specialization of the
case II(8) above. Stabilizer A4 = (1,0,0, —1).

111(4) (cf. S-1II(B,i, deg 3))—Sing(X) consists of a nonsingular, rational curve of
degree 3, and some rational double points. C is a strictly quasi-ordinary,
nodal curve and its set of pinch points consists of two double pinch points.
Each double pinch point lies on a line in X. Stabilizer A3 = (3,1, —1, —3).
Also a specialization of the case I1(7).

1I(5) (cf. S-1II(B,i, deg 2))—Sing(X) consists of a nonsingular, rational curve of
degree 2, and some rational double points. C is a strictly quasi-ordinary,
nodal curve and the set of its pinch points consists of two double pinch points.
Each double pinch point lies on a line in X. Stabilized by A4 = (1,0,0, —1).
Specialization of the case 11(6).

111(6) (cf. S-1lI(A,ii))—Sing(X) consists of a strictly quasi-ordinary nodal curve,
C, and some rational double points such that no line in X passes through
a double pinch point. C is a nonsingular, rational curve of degree 2. X has
either two double pinch points on C or one double pinch point and two simple
pinch points on C. Specialization of the case 11(6).

II(7) (cf. S-11I(A,i))—Sing(X) consists of a double point, p, of type T> 3 , and some
rational double points such that no line in X passes through p. Specialization
of the case I1(5).

If III(1)-111(5) holds, then X is strictly semistable, if Il1I(6) or II1(7) holds, then X is
stable.

4.3 Type IV Strata for I

The period map is regular away from 9t/V hence in order to decompose p: 9 --»
Z* into a composition of simple birational maps, we must study 9/V. The
following is a slight refinement of Shah [51, Theorem 2.4]:

Proposition 6 The Type IV locus MY decomposes in the following strata:

IV(0a) (cf. S-1V(B,iii))—X consists of a non-singular quadric surface with mul-
tiplicity 2. (Case 1(iii)). The point w € M corresponding to (generic)
hyperelliptic quartics.

IV(0b) (cf. S-1V(B,i, deg 3))—Sing(X) consists of a nonsingular, rational curve,
C, of degree 3; C is a simple cuspidal curve. The normalization of
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V(1)

1V(2)

V(3)

1V(4)

1V(5)

1v(6)
IV(7)
1V(8)

X is nonsingular. This is the tangent developable to the twisted cubic
(Case 1(iv)). The corresponding point v € N corresponds to unigonal K 3s.
(cf. S-1V(B,ii))—X consists of two quadric surfaces, V1, V> tangent along a
nonsingular conic C such that Vi N Vo, = 2C. (Case 1(iii)). It corresponds
to a curve inside ).

(cf.- S-1V(B,i, deg 2))—Sing(X) consists of a nonsingular, rational curve,
C, of degree 2; C is a simple cuspidal curve. The normalization of X has
exactly two rational double points. Stabilized by A4 = (1,0,0, —1)
Sing(X) consists of a nodal curve, C, and rational double points such that
no line in X passes through a non-simple pinch point. C is a nonsingular,
rational curve of degree 2. Every point of X on C is a double point and the
set of pinch points consists of a point of type J4, 0.

Sing(X) consists of a nodal curve, C, and rational double points such that
no line in X passes through a non-simple pinch point. C is a nonsingular,
rational curve of degree 2. Every point of X on C is a double point and the
set of pinch points consists of either a point of type J3 oo and a simple pinch
point or a point of type J4, .

Sing(X) consists of a double point, p, of type J3 , and some RDPs such that
no line in X passes through p. This case is a specialization of Case III(7)
(and then I1(8)).

(cf. S-1V(A,i, E14))—Sing(X) consists of a double point of type E14.

(cf- S-1V(A,i, E13))—Sing(X) consists of a double point of type E13.

(cf. S-1V(A,i, E12))—Sing(X) consists of a double point of type E1>.

Remark 11 There are natural inclusions IV (k) C IV (k + 1) with the exception k =
4 (N.B. IV(4) c IV(6)). For instance, we have the following adjacencies for the
exceptional unimodal singularities (aka Dolgachev singularities): E14 — E13 —>
E1> (see [4, p. 159])).

Definition 5 We define

Wi =1V (k),

with the following two exceptions: Wy = IV (0a), and we skip the case k = 5.

Remark 12 For quartics singular along a twisted cubic, we have the inclusions

IVOb) C111(4) C11(7).

Remark 13 Clearly, II(1), III(1), and IV(1) form a single stratum. The degeneracy
condition is that there is a line passing through p, cf. [51, Cor. 2.3 (1)]: an isolated,
non rational, double point of Type I through which passes a line contained in X.

Remark 14 Cases I1(5) and its specializations III(7) and IV(6-8) were studied by
Urabe [57].
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Table 1 The geometry of the variation of models .# (8)

Codim (i) | Critical 8 | (Compn’t of) corresponding Z'  .# | (Compn’t of) corresponding

Wi_i N

1 1 Hj, IV(0a): double quadric

1 1 H, IV(Ob): tangent developable

2 % A® IV(1): 2 quadrics tangent
along a conic

3 % A®) IV(2): double conic,
cuspidal type

4 % AW IV(3): J4,00-loCus

5 ! A® IV@): J30

6 ! A© IV(5): J3.00 and J3,

7 é Unigonal in A© (13,3 4-polarized K3) | IV(6): Eq4-locus

8 % Unigonal in AD (1,4, 5-polarized K3) | IV(7): Eq3-locus

9 é Unigonal in A® (1,3 7-polarized K3) | IV(8): Ejz-locus

Our predictions regarding the matching of strata in 9 and strata in % is
summarized in the Table 1 below.

Remark 15 The points IV(0a) and IV(0Ob)correspond to H;, and H, respectively;
this is discussed in Sections 4 and 3 of [51]. We revisit the proof in Sects. 5.2 and 5.1

respectively. The matching for 8 = % is discussed in Sect. 5.4. Finally, in Sect. 6 we

. . . . 1 1 1
give some evidence for the matching corresponding to the case 8 € [5, 759 } We

don’t say much about the remaining cases.

Remark 16 We recall that the locus Z° C .% (described as the unigonal divisor
inside A® = . (11)) is one of the two components of A®. With this description,
the jump from % to % is less surprising: the critical 8 = % comes from having 9
independent sheets of A meeting along the Z° locus.

Remark 17 While the entire framework of the paper is similar to the Hassett-Keel

program for curves, the geometric analogy with Hassett-Keel is particularly striking

in the case of flips occurring for g € {%, %, é} Namely, to pass from the E; (I =

12, 13, 14) locus on the GIT side to the periods side, one needs to perform a KSBA
semistable replacement. This is completely analogous to the stable reduction for
cuspidal curves, which leads to the elliptic tail replacement (or globally to the first
birational modification: 0, — zmgs = Sﬁg(%)). This part is closely related to
the work of Hassett [17] (stable replacement for curves). This is expanded on in
Sect. 6.
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5 The Critical Values § =1and g =1/2

The point of view of this paper is somewhat dual to that of [34]. Namely, while
in [34] we have given a (conjectural) decomposition of the inverse of the period
map p~! : .F* --» 9 based on arithmetic considerations, here we start from
the other end and attempt to resolve the period map p : IM --» F* As is
familiar to those who have studied the analogous period maps with domains the
GIT moduli spaces of plane sextics [50] and cubic fourfolds [31, 32, 42], the first
step towards resolving the period map p is to blow-up the most singular points,
i.e. those parametrizing polystable quartics with the largest (non virtually abelian)
stabilizers (see Proposition 1). There are two such points, namely v corresponding
to the tangent developable of a twisted cubic curve and w corresponding to a
smooth quadric with multiplicity 2. In Sects.5.1 and 5.2 we discuss a suitable
blow-up 9t —> 1 with center a subscheme whose support is {v, w}. Theorems 4
and 5 give the main results regarding P, the pull-back of the period map to 9.
In short, the component of the exceptional divisor mapping to v is identified with
M, a projective GIT compactification of the moduli space of unigonal K3 surface
(see (26)), and the component of the exceptional divisor mapping to w is identified
with 91y, the GIT moduli space of (4, 4) curves on P! x P!. Moreover, the lifted
period map P is regular in a neighborhood of the exceptional divisor 91, but it
is definitely not regular at all points of the exceptional divisor 91, in fact the
restriction to 9, is almost as complex as p is, there is an analogous tower of
closed subsets of the relevant period space, only it has 7 terms instead of 8. It is
worth remarking that the image of the restriction of p to the regular locus is the
complement of A®, while the image of the restriction of p to the regular locus is
the complement of Hj, U H,,. In this sense, in going from p to p we have improved
the behavior of the period map, and moreover p is an isomorphism in codimension
1, while p is not. Lastly, we have an identification 9 = .% (1 — €) (see Corollary 2).

We continue in Sect. 5.4 with the analysis of the “first flip” that occurs when
one tries to resolve the birational map p : 9 --» .Z* Briefly, we show that a
blow-up of the curve W (case IV(1) in Proposition 6) followed by a contraction,
accounts for double covers of the quadric cone (stratum Z? C .Z* in our notation).
In other words, we essentially verify! the predicted behavior of the variation of
models .7 (B) for g € (1/2 —€,1]1N Q.

5.1 Blow Up of the Point v

The point v (see IV(0b) in Proposition 6) is an isolated point of the indeterminacy
locus of the period map p. The behavior of p in a neighborhood of v is analogous
to that of the period map of the moduli space of plane sextics in a neighborhood of

ISome technical issues regarding the global construction of the flip still remain, but our analysis is
fairly complete.
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the orbit of 3C (see [39, 50], [33, Thm. 1.9]), where C C P2 is a smooth conic,
and is treated in Section 3 of Shah [51]. Shah’s results imply that by blowing up a
subscheme of 91 supported at v, one resolves the indeterminacy of p in v; the main
result is stated in Sect. 5.1.5.

5.1.1 The Germ of 9t at v in the Analytic Topology

We will apply Luna’s étale slice Theorem in order to describe an analytic neigh-
borhood of v in the GIT quotient 9t. Let T C P? be the twisted cubic
(A3, A%, a2, 1131 | [A, ] € P}, and let X be the tangent developable of 7T,
i.e. the union of lines tangent to 7. A generator of the homogeneous ideal of X is
given by

f = 4(x1x3 — x3)(xox2 — x7) — (x1x2 — xox3)°. (21)
Thus X is a polystable quartic representing the point v. The group PGL(2) actson T
and hence on X it is clear that PGL(2) = Aut(X). In order to describe an étale slice
for the orbit PGL(4)X at X we must decompose H O(P3, Op3(4)) into irreducible
SL,-submodules. For d € N, let V(d) be the irreducible SL,-representation with

highest weight d i.e. Symd V(1) where V(1) is the standard 2-dimensional SL,-
representation. A straightforward computation gives the decomposition

HY(Op@)ZV0) @ VE) @ V(6) @ V() @ V(12). (22)
The trivial summand V (0) is spanned by f, and the projective tangent space at V ( f)
to the orbit PGL(4)V (f) C |Op3(4)] is equal to P(V (0) & V (4) @ V (6)). We have

a natural map

V@) e Vd2)/SL2) — m,

23
(g1 > [V +9)] (23)

mapping [0] to v. By Luna’s étale slice Theorem, the map is étale at [0]. In particular
we have an isomorphism of analytic germs

(V(8) ® V(12)/SL(2), [0]) —> (9N, v). (24)
5.1.2 Moduli and Periods of Unigonal K3 Surfaces

Let

2 :=S*(VE®)' d V(12)Y), (25)
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and define a grading of £2 as follows: non zero elements of V (8)" have degree 2, non
zero elements of V (12)" have degree 3. Then SL(2) acts on Proj £2, and Oprojn2 (1)
is naturally linearized; let

M, := Proj 2 /SL(2). (26)

Shah (see Theorem 4.3 in [50]) proved that ), is a compactification of the moduli
space for unigonal K 3 surfaces, i.e. there is an open dense subset 9)?5 C 9N, which
is the moduli space for such K3’s. Moreover, the period map is regular

M, > Fir, 5 (0F (1, 19)), 27)

and it defines an isomorphism Qﬁft AN 3?112’,8 (0+(Hz, 18)). We recall that we have
a natural regular map

ﬁllg’lg(O—i_(IIZ,lS))* e L@*’ (28)

whose restriction to 1%12’ 8 (0T (I2,18)) is an isomorphism onto the unigonal divisor
H,, see Subsection 1.5 of [34].

5.1.3 Weighted Blow-Up

We recall the construction of the weighted blow up in the case where the base is
smooth. We refer to [3, 27] for details. Let (xq, ..., x;) be the standard coordinates
on A". Let (aj,...,a,) € N%, and let o be the weight given by o(x;) = q;.
The weighted blow-up Bl (A") with weight o is a toric variety defined as follows.
Let {eq,...,e,} be the standard basis of R”, and C C R" be the convex cone
spanned by ey, ..., e,, i.e. the cone of (x1, ..., x,) with non-negative entries. Let
v := (a1,...,ay) € R", and fori € {1,...,n} let C; C C be the convex cone
spannedby ey, ..., ei—1,€i+1, ..., e, and v. The C;’s generate a fan in R"; Bl, (A")
is the associated toric variety. Since the C;’s define a cone decomposition of C, we
have a natural regular map 7, : Bls(A") — A", which is an isomorphism over
A"\ {0}. Let E, C Bl,(A") be the exceptional set of 7,; then E, is isomorphic

to the weighted projective space P(ay, ..., a,). We denote by [x1, ..., x,] (with
(X1,--.,xn) # (0,...,0)) a (closed) point of P(ay, ..., a,); thus [x1,...,x,] =
[v1, ..., yn]if and only if there exists r € C* such that x; = t% y; fori € {1, ..., n}.

The composition

Bl, (A") 2% A" s Pay, ..., a,)
p = me(p)=(X1,...,x0) > [x1,...,x]
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is regular; this follows from the formulae for 7, that follow Definition 2.1 in [3].
Thus we have a regular map

Bly (A") — A" x P(ay, ..., ay). (29)

Let uo: Ex — P(ay, ..., a,) be the restriction to E, of the map in (29), followed
by projection to the second factor. Then u, is an isomorphism; we will identify E,
with P(ay, ..., a,) via uys. The formulae for 7, that follow Definition 2.1 in [3]
give the following result.

Proposition 7 Keep notation as above, and let A C C be a disc centered at 0. Let
o: A — Bl,(A") be a holomorphic map such that « ' (Ey) = {0). There exists
k > 0 such that

Ty oa(t) = (t*N - @p, ..., 5 - gp) (30)

where ¢; : A — C is a holomorphic function, and moreover
a(0) = [¢1(0), ..., ¢ (0)]. (31)

(In particular (¢1(0), ..., ¢,(0)) # (0,...,0).)

Corollary 1 Let Z be a projective variety, and p: Bly(A") --» Z be a rational
map, regular away from E.. Suppose that the following holds. Given a disc A C C
centered at 0, and a holomorphic map o: A — Bl (A") such that o~ (E,) = {0},
the extension at 0 of the map poa|a\jo}) depends only on a(0) = [¢1(0), ..., ¢, (0)]
(notation as in (31)). Then p is regular everywhere.

Proof Follows from Proposition 7 and normality of Bl, (A").

5.1.4 Blow-Up of the étale Slice and the Period Map

It will be convenient to denote by Z the affine scheme V(8) & V(12), i.e. Z :=
Spec S*(V(8)V @ V(12)Y). Let (x1, ..., x22) be coordinates on V (8) & V (12) such
that V(8) has equations 0 = x19 = ... = x22, and V(12) has equations 0 = x; =
... = x9. Let o be the weight defined by

4 ifiefl,...
6 ifie{10,...,22}.

Let Z = Bl, (Z) be the corresponding weighted blow up, and let E be the
exceptional set of Z — Z; thus E is the weighted projective space P(4°, 6!3). The
action of SL; on Z lifts to an action on Z (and on the ample line-bundle &7 (—E)).
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Thus there is an associated GIT quotient Z /SL2. The map Z — Z induces a map
Ii:Z/SL, — Z/SLa. (33)

Moreover the set-theoretic inverse image ,21_1 ([0]D)yeq 1s isomorphic to
Proj 2 /SL, = 9),. Since the natural map Z/SL, — 991 is dominant, it makes
sense to compose it with the (rational) period map p: 91 --» F(19)*. Composing
with [, we get a rational map

P: Z/SLy --» .Z(19)*. (34)

Theorem 4 With notation as above, the map p is regular in a neighborhood of
T ([0 rea = My, and its restriction to 1~ ([0]),eq is equal to the period map p,
in (28).

Proof This follows from the results of Shah in [51]. More precisely, let (F, G) €
V(8) @ V (12) be non-zero and such that [(F, G)] € Proj £2 is SL;-semistable. Let
A C C be a disc centered at 0, and

AL V) ®V(12) 35)
t = (*"F@),1"G(1))

where m > 0, F(t), G(t) are holomorphic, and F(0) = F, G(0) = G. (This is
the family on the second-to-last displayed equation of p. 293, with the difference
that our (0,0) € Z corresponds to Shah’s Fj.) We assume also that for ¢t # 0,
the point [¢(?)] is not in the indeterminacy locus of the period map Z/SL; --»
F(19)*. Let py,: A — F(19)* be the holomorphic extension of the composition
(A\ {0}) = Z/SLy --» #(19)*. Then by Theorem 3.17 of [51], the value p,(0)
is equal to the period point p, ([(F, G)]). By Corollary 1 it follows that p is regular
in a neighborhood of 7! ([0]),c¢ = 9., and that the restriction of the period map
to ;'Z_l ([0])eq 1s equal to the period map p,, in (28).

5.1.5 Blow-Up of Dt at v

A weighted blow up Bl, (A") — A" is equal to the blow up of a suitable scheme
supported at 0, see Remark 2.5 of [3]. It follows that also the map in (33) is the
blow up of an ideal _# supported on [0]. Since the map in (24) is an isomorphism
of analytic germs, the ideal sheaf ¢ defines an ideal sheaf in Ogy, cosupported
at v, that we will denote by .#. Let 91, := Bl #9, and let E, C 9, be the
(reduced) exceptional divisor of Bl » 91 — 9. Thus E, = 9M,, and E, is Q-
Cartier. Let ¢,,: 91, — 91 be the natural map. By Theorem 4, the period map
M, --» Z(19)* is regular in a neighborhood of E,,. Moreover, letting .Z be the
ample Q-line bundle on 2 descended from the ample generator of Picard group of
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the parameter space P34 = |Op3(4)], the line-bundle ¢;;.Z (—e E (v)) is ample for €
positive and sufficiently small.

5.2 Blow Up of the Point »

5.2.1 The GIT Moduli Space for K 3’s Which Are Double Covers
of P! x P!

The GIT moduli space that we will consider is
My, 1= |Op1 (4) K Op1 (4)] JAut(P' x P, (36)

Given D € |Op1(4) X Op1(4)|, we let m: Xp — P! x P! be the double cover
ramified over D, and Lp := 7*0p1(1) X Op1(1). If D has ADE singularities, then
(Xp, Lp) 1s a hyperelliptic quartic K3. We recall that if (X, L) is a hyperelliptic
quartic K3 surface, the map ¢, associated to the complete linear system |L| = P3
is regular, and it is the double cover of an irreducible quadric Q, branched over a
divisor B € |0p(4)| with ADE singularities. Vice versa, the double cover of an
irreducible quadric surface, Q C P3, branched over a divisor B € |Op(4)| with
ADE singularities is a hyperelliptic quartic K3 surface. The period space for 91, is
Fn; we let

P My —-» ﬁ; (37)

be the extension of the period map to the Baily-Borel compactification.
Theorem 5

1. A divisor in |Op1(4) X Op1(4)| with ADE singularities is Aut(P! x PlY stable,
hence there exists an open dense subset 9)?}[1 C My, parametrizing isomorphism
classes of hyperelliptic quartic K3 surfaces such that ¢ (X) is a smooth quadric.

2. The period map py, defines an isomorphism between 9)7}11 and the complement of
the “hyperelliptic” divisor Hy, (%) in F), (the divisor H,(18) C % (18) in the
notation of [34]).

Proof Item (1) is a result of Shah, in fact it is contained in Theorem 4.8 of [51].
Item (2) follows from the discussion above. In fact let y € .%;,. Then there exists a
hyperelliptic quartic K3 surface (X, L) (unique up to isomorphism) whose period
point is y, and the quadric Q := ¢ (X) is smooth if and only if y ¢ H,(%p).

5.2.2 The Germ of )t at @ in the Analytic Topology

Letg e H O3, Op3(2)) be a non degenerate quadratic form, and let Q C P3 be the
smooth quadric with equation ¢ = 0. Let O(gq) be the associated orthogonal group;

ogrady@mat.uniroma.it



GIT Versus Baily-Borel Compactification for Quartic K3 Surfaces 251

then PO(qg) = AutQ is the stabilizer of [qz] € |Op3(4)|. We have a decomposition
of HO(P3, Op3(4)) into O (q)-modules

HY(P3, Ops(4)) = q - HO(P?, Op3(2)) ® H(Q, Op(2)).

Note that the first submodule is reducible (it contains a trivial summand, spanned
by ¢2), while the second one is irreducible. We identify Q with P! x P!, PO(q)
with Aut(P! x P), and H°(Q, 0 (2)) with HO(P! x P!, Op1(4) K Opi1 (4)). The
projectivization of g - HO(P3, Op3(2)) is equal to the projective (embedded) tangent
space at [qz] of the orbit PGL(4) [qz]. Thus, by Luna’s étale slice Theorem, we have
natural étale map

HY(0Q, 6p(2)))0(q) — M,

mapping [0] to w. In particular we have an isomorphism of analytic germs

(H°(Q, 00(2))/0(q), [0)) — (O, »). (38)

5.2.3 Partial Extension of the Period Map on the Blow Up of ®

The map ¢, : M, — 9N is an isomorphism over I \ {v}; abusing notation, we
denote by the same symbol w the unique point in 9, lying over @ € M. Let
bo: M —> M, be the blow- -up of the reduced point w, and let E,, C M be the
exceptional divisor. We let ¢ := ¢, o ¢, and p = p o ¢. Thus we have

Proposition 8 Keeping notation as above, E, is naturally identified with the
hyperelliptic GIT moduli space 9y, and the restriction of y to E,, is equal to the
period map pp, of (37).

Proof Let ¥,: M, — I be the blow-up of the reduced point w, and let
Po: M, — F* be the composition p o ¥,. Since w and v are disjoint subschemes
of 9N, the exceptional divisor of ¥, is identified yith E,, and it suffices to prove
that the statement of the proposition holds with 9t and p replaced by 9, and p,,
respectively. Let D C |Op3(4)| be the closed subset of double quadrics, i.e. the
closure of the orbit PGL(4)(2Q), where Q C P3 is a smooth quadric. Let 7: P —
|Op3(4)| be the blow up of (the reduced) D, and let Ep C P be the exceptional
divisor of . Then PGL(4) acts on P (because D is PGL(4)-invariant), and the
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action lifts to an action on the line bundle &p (Ep). Let £ be the hyperplane line
bundle on |Op3(4)], and let 1 € Q4 be such that f*.Z(—tEp) is an ample Q-line
bundle on P. Then PGL(4) acts on the ring of global sections R(P, 7*.Z(—tEp)),
and hence we may consider the GIT moduli space

M(1) := Proj (R(P, n*z(—zED))PGL“)) .

By Kirwan [24], there ex1sts 19 > 0 such that the blow downmap 7 : P — |ﬁ]p3 4]
1nduces aregular map w(t) Dﬁ(t) — Mforall 0 < t < 1y, and moreover im(t) and
w(t) are identified with 91, and ¥, respectively. But now the identification of E,,
with the hyperelliptic GIT moduli space 91, follows at once from the isomorphism
of germs in (38). The assertion on the period map follows from the description of
the germ (91, w) and a standard semistable replacement argument.

5.3 Identification of .7 (1 — €) and Mm

Let 2 be the Q line bundle on 97 induced by the hyperplane line bundle on
|Op3(4)|, and let & = ¢* L. Let E .= E, + E,. Then

G~ H*(E)l# = Hy + H, = 2A. (39)

In fact we have the set-theoretic equalities p(E,) N.% = H,, and p(E,, \ Ind(p)) N
F = Hp\ H}Ez), thus in order to finish the proof of (39) one only needs to

compute multiplicities; they are equal to 1 because p~! has degree 1. By (39) and
Equation (4.1.2) of [34], we get

CERN (Z(— €EENz =071+ (1 —2€)A).
Thus p~! induces a homomorphism
RON, £(—€E)) — R(F, L+ (1 —2€)A). (40)

Proposition 9 The homomorphism in (40) is an isomorphism of rings.

Proof This is because p~! is an isomorphism between .# \ H (2), which has
complement of codimension 2 in %, and an open subset of 91 which again has
complement of dimension 2 in 9.

Corollary 2 The restriction of p~' to .F defines an isomorphism
Proj(Z#, A+ (1 —e)A) = M

for small enough € > 0.
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Proof 1If € > 0 is small enough, then 2 (—€E) is ample on M, and hence
ProjR(M, L(—€E)) =M

Thus the corollary follows from Proposition 9.

5.4 The First Flip of the GIT Quotient (f = 1/2)

We recall that the curve W C 90t contains the point  and does not contain v. We let
W1 C 91 be the strict transform of W;. We will perform a surgery of 91 along Wi in
order to obtain our candidate for .% (1/3, 1/2), Eotatiog as in (11). More precisely,
we will start by constructing a birational map 9)t — 9J1, which is an isomorphism
away from 17171, and over Wl i§\ a Weighted blow along normal slices to Vf[71 Let E;
be the exceptional divisor of 91 — I1; then E; = Wy x 9N, where M, is a GIT
compactification of the moduli space of degree-4 polarized K 3 surfaces which are
double covers of a quadric cone with branch divisor not containing the vertex of the
cone. Let p M --+ .F be the period map and E)ﬁreg cMm be the subset of regular
points of p; we will show that, if p € Wi, then the intersection Sﬁregﬂ{ p} <M. (here
{p} x M. C Eq) coincides with the set of regular points of the period map M, --»
7, and that the restriction of P is equal to the period map 9. --» .Z. It follows
that'ﬁ is constant on the slices {p} x M, C Ej, and the image of the restriction
of P to the set of regular points of E is the complement of A®) = Im( f16,19) in
the codimension-2 locus A® = Im( f17.19) (notation as in [34]). Now, M can be
contracted along E; — 9., let Ny, be the contraction; the results mentioned
above strongly suggest that 91 > is isomorphic to .7 (1/3, 1/2).

5.4.1 The Action on Quartics of the Automorphism Group of polystable
Surfaces in Wy

Letqg := x% + xl2 + x%, and let

faw = (q + ax?)(q + bx3), (41)

where (a,b) # (0,0). Then V(f, ) is a polystable quartic, and its equivalence
class belongs to Wj. Conversely, if V (f) is a polystable quartic whose equivalence
class belongs to Wy, then up to projectivities and rescaling, f = f,, for some
(a, b) # (0, 0). The points in 9 representing V ( f,.») and V (f. 4) are equal if and
only if [a, b] = [c, d], or [a, b] = [d, c]. Lastly, V(f, ») represents w if and only if
a=h.
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Suppose that a # b. Then every element of AutV (f, ;) fixes V(x3) and the
point [0, 0, 0, 1]. It follows that AutV ( f, ;) is equal to the image of the natural map
O(g) — PGL(4). In particular SO(g) is an index 2 subgroup of AutV (f, ), and
hence the double cover of SO(g), i.e. SL2, acts on V (f,.). The decomposition into
irreducible representations of the action of SL, on C[xg, ..., x3]4 is as follows:

Clxg,...,x21a @ Clxog,...,x213-x3 & Clxo,..., )62]2-)632 @ Clxo,..., xz]1~x§ ® (C-x;1
V@)aV 4oV (0) V(6)oV(2) V4oV (0) V(2) V(0)

(42)

Now let us determine the sub-representation U, , containing [ f; 5] and such that
Hom([ f4 »1, Ua,b/l fa.p]) 1s the tangent space at V (f, ) to the orbit PGL(4)V ( f4.»)
(we only assume that (a, b) # (0, 0)). Let ¢; € Clxg,...,x3]; fori € {0,...,3};

we will write out the term multiplying ¢ in the expansion of f, »(xo +t£o, ..., x3+
t¢3) as element of C[xo, ..., x3]4[¢] for various choices of ¢;’s. For ¢; = u;x3,
we get
2 2
4q (Z uixi) x3+2(a+b)usqxi +2(a+b) (Z u,-xi) x3+dabusxi.  (43)
i=0 i=0

Letting ¢; € C[xo, x1, x2]1, we get

2

2
4q (Z ﬁ,-x,-) + 2(a + b)qlzx3 + 2(a + b) <Z E,-x,-) x% + 4ab£3x§. (44)

i=0 i=0

It follows that

(45)
Ve VR e V(0)?2 ifa=hb.

N {V(4) ®VQR12®V0)? ifa#b,
The difference between the two cases is due to the different behaviour of the
V (2)-representations appearing in (43), (44) and contained in the direct sum
Clxg, ..., x213 - x3 @ Clxo, ..., x2]1 - xg’. If a # b, the representations in (43)
and (44) are distinct, if a = b they are equal.

54.2 The Germ of Mt at Points of W \ E,,

The map ¢: M — 9 is an 1s0morphlsm away from {w, v}. Since W; does not
contain v, the germ of M at a point X € (W, \ E,) is identified by ¢ with the germ
of 9 at x := ¢(X). Let us examine the germ of 9t at a point x € (W \ {w}).
There exists (a, b) € C2, with a # b, such that a polystable quartic representing x
is V(fa.p), where f; p is as in (41). Keeping notation as in Sect. 5.4.1, SL; acts on
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V(fap)- Let Ny p C Clxo, ..., x3]4 be the sub SLy-representation
Nap =V ®V(6) ® R - x3® (2gx% + (a + b)x3), (46)
where R C C[xg, x1, x2]2 is the summand isomorphic to V (4), and let

Nap :={V(fap +8) | & € Nap}. 47)

Proposition 10 Keeping notation as above, N, p is an AutV (fy p)-invariant nor-
mal slice to the orbit PGL(4)V (fu.p)-

Proof Let U, , C Clxo, ..., x3]s4 be as in Sect. 5.4.1; thus P(U, ) is the projective
tangent space at V (f;.») to the orbit PGL(4)V (f,.5). Then U, p is the sum of the
two SLp-representations in (43) and (44) (and, as representation, it is given by
the first case in (45)), and it follows that the SL,-invariant affine space in (47)
is transversal to P(U, p) at V (f,.p). Lastly, N4 p is AutV (f, p)-invariant because
AutV ( f4.p) 1s generated by the image of SL, and the reflection in the plane x3 = 0.

The natural map
¥ Nap/AutV (fap) — M (48)

is étale at V(f;p) by Luna’s étale slice Theorem. For later use, we make the
following observation.

Claim Keep notation and assumptions as above, in particulara # b.Letn: N, , —
M be the composition of the quotient map N, , — Ny p/AutV (f, ») and the map
Y in (48). Then

NV (fup +1(2qx3 + (a + b)x3)) | t € CH) C Wy. (49)

Moreover, let ZZ C N, 5 be an AutV ( f, »)-invariant open (in the classical topology)
neighborhood of f,, such that the restriction of ¢ to % JAutV(f, ) is an
isomorphism onto (% JAutV (f,»)); then x € % is mapped to W; by n and
has closed SLy-orbit if and only if x = V(f,p + ¢ (2qx§ + (a + b)xg1 )) for some
t e C.

Proof The first statement follows from a direct computation. In fact, an easy
argument shows that there exist holomorphic functions ¢, ¥ of the complex variable
t vanishing at t = 0, such that

(@ + @+ o@)x3) - (q+ b+ Y@))x3) = fap +1(2qx3 + (@ + b)x3).

The second statement holds because W, is an irreducible curve, and so is the left-
hand side of (49).
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5.4.3 The Germ of 9t at the Unique Point in Wl NnE,

Let 2, — 90 be the blow-up of (the reduced) w. We may work on 91,,, since W
does not contain v. Let P — |0p3(4)| be the blow-up with center the closed subset
D parametrizing double quadrics, and let Ep be the exceptional divisor. By Kirwan
[24] the blow-up 901, is identified with the quotient of P by the natural action of
PGL(4) (with a polarization close to the pull-back of the hyperplane line-bundle
on |Up3(4)|)—see the proof of Proposition 8). We will describe an SL-invariant
normal slice in P to the PGL(4)-orbit of a point representing the unique point in
VT’l N E,. First, recall that we have an identification E,, = 9)1;, where 9, is the
GIT hyperelliptic moduli space in (36), see Proposition 8. The unique point in Win
E,, is represented by a point in Ep mapping to a smooth quadric 0 C P3, and
corresponding to ¢t e P(H 0(ﬁQ (4))) (recall that the fiber of the exceptional divisor
over Q is identified with ]P)(Ho(ﬁQ(4)))), where 0 £ £ € HO(ﬁQ(l)) is a section
with smooth zero-locus (a smooth conic); moreover the points we have described
have closed orbit in the locus of PGL(4)-semistable points.

Remark 18 We represent the unique point in WINE, by the point with closed orbit
(Vg + ax32), xg) € Ep (notation as above), where ¢ is as in Sect. 5.4.1 and a # 0.
In order to simplify notation, we let Q, := V(g + ax%), and p := (Qq, x§) € Ep.

Now let S C Clxo, ..., x3]4 be the sub SL;-representation
S:=VE®SVEO) DR xi& (x3), (50)

where R C Clxg, x1, x2]» is the summand isomorphic to V(4). (Notice the
similarity with (46).) Let

Sa :={V(faat+8 18€S} 3D

Claim Keeping notation as above, the double quadric V (f, ,) is an isolated and
reduced point of the scheme-theoretic intersection between the affine space S, and
the closed D C |Op3(4)| parametrizing double quadrics.

Proof Of course V(f,.4) € D, because f,, = (¢ + ax%)z. Let Ty (¢, ,)Sa and
Tv(f, D be the tangent spaces to S, and D at V ( f,,4) respectively; we must show
that their intersection (as subspaces of Ty, ,)|Op3(4)]) is trivial. We have

TV(fa,a)Sa = Hom(<fa,a>’ (S, fa,a)/(fa,a))’ TV(fa,a)D = HOIn((fa,a)’ Ua,a/(fa,a)),

where U, , 1s as in Sect. 5.4.1. As is easily checked,
SNU;q = {0}. (52)

Thus (S, fu.a) N Us.a = (fa.a), and the claim follows.
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By Claim 5.4.3 the scheme-theoretic intersection D N S, is the disjoint union of
the reduced singleton {V (f,.4)} and a subscheme Y,. Let U, := S, \ Y,; then U,
is an open neighborhood of V(f4,4) In S,, and it is invariant under the action of
AutV (f,.4). Let U, C P be the strict transform of U, (recall that P — |Op3(4)] is
the blow-up with center D), and let ¢ : ﬁa — U, be the restriction of the contraction
P — |Op3(4)|. By Claim 5.4.3 ¢ is the blow-up of the (reduced) point V (f,.4).

Remark 19 Since fa,a,xgl € S,, the point p = (Qa,xg‘) € Ep (see Remark 18)

belongs to ﬁa. Moreover the stabilizer (in PGL(4)) of p is equal to O(q) i.e. to
AutV (f,.p) fora # b (see Sect. 5.4.1), and it preserves U,.

Proposition 11 Keeping notation as above, ﬁa is a Stab(p)-invariant normal slice
to the orbit PGL(4) p in P.

Proof Let Y := PGL(4)p. We must prove that the tangent space to ﬁa at p is
transversal to the tangent space to ¥ at p. First notice thatdim ¥ = 12 and dim U, =
22, hence dimY + dim U, = dim P. Thus it suffices to prove that

T,Y N T,U, = {0}. (53)
Letmw: P — |Op3(4)| be the blow up of D. By Claim 5.4.3,

drw(p)(T,Uq) = Hom((fa.a), (fa.ar X3)/{fua)

On the other hand, dn(p)(T,Y) = Ty)D, and hence dm(p)(T) INJa) N
dn(p)(TpY) = {0}. It follows that the intersection on the left hand side of (53) is
contained in the kernel of the restriction of dm(p) to T Ua, ie. Ty (U N Exzp)),
where Ey(p) is the fiber of Ep — D over w(p) = V(fa,a) Hence it suffices to
prove that

T,Y N Tp(Uy N Ex(py) = (0). (54)

The fiber E(p) is naturally identified with PH O(ﬁQu (4)). With this identification,
we have

TpyY N TpEx(p) = Hom(<x§‘> C[xo, x3l - x5/ (x5)),

Here we are abusing notation: C[xo, ..., x3]; - xg and S stand for their images in
H O(ﬁQa (4)). Since the kernel of the restriction map H O(ﬁps 4) > H O(ﬁ’Qa 4))
is equal to U, 4, Eq. (54) follows from the equalities

(Clxo, - .., x311 - x3, S) N Ua,q = {0},
(Clxo, - .-, x311 - x3) N S = (x3)
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The natural map
v: Uy /Stab(p) —> M (55)

is étale at p by Luna’s étale slice Theorem. The result below is the analogue
of Claim 5.4.2.

Claim Keep notation and assumptions as above. Let ¢ : U — 9N be the composi-
tion of the quotient map U, — U, /Stab(p) and the map i in (55). Let C C U,
be the strict transform of the line {V(f,., + txg‘) | t € C}. Then ¢(C) C Wj.

Moreover, let Z C fja be a Stab(p)-invariant open (in the classical topology)
neighborhood of p such that the restriction of ¥ to % J/StabV (p) is an isomorphism
onto V(7 JStab(p)); then x € %/ is mapped to W} by ¢ and has closed SL,-orbit
ifandonly if x = V(f,.4 + txgl) for some ¢t € C.

Proof First (g + (a + u)x32)(q + (a — u)x%) = fa,a— u2x§ shows that ¢(C) C Wj.
For the remaining statement see the proof of Claim 5.4.2.
5.4.4 Moduli of K3 Surfaces Which Are Generic Double Cones
Let A be the graded C-algebra
A=S'VA @ V(©O) ®V(®)Y), (56)

where V (2d)" has degree d. Then PSL(2) acts on Proj A, and Oproj2 (1) is naturally
linearized. The involution

Proj A — Proj A
[f’g7h] = [f7 _87]1]

commutes with the action of PSL(2), and hence there is a (faithful) action of
G.:=PSL(Q2) xZ/(2) (57)
on Proj A. We let
M. :=ProjA) G, (58)
be the GIT quotient. We will show that 91, is naturally a compactification of
the moduli space of hyperelliptic quartic K3 surfaces which are double covers of
a quadric cone with branch divisor not containing the vertex of the cone. First,

we think of SL, as the double cover of SO(g), where ¢ = xg + xl2 + x% is as
in Sect. 5.4.2, and correspondingly V (2d) is a subrepresentation of C[xq, x1, x2]4.
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We associate to & := (f, g, h) € V(4) @ V(6) & V(8), the quartic
Bt := V(x3 + fx3 + gx3 + h). (59)

Thus V(4) @ V(6) @ V(8) is identified with the set of such quartics. Both G, and
the multiplicative group C* act on the set of such quartics (the second group acts
by rescaling x3). The quotient of (V(4) & V(6) & V(8)) \ {0} by the C* action is
Proj A, hence 901, is identified with the quotient (V(4) & V(6) & V(8)) \ {0} by
the full G, x C*-action. Given [£] € Proj A, we let X¢ be the double cover of the
cone V(q) C ]P’(?’C ramified over the restriction of Bg to V(g), and L¢ be the degree-4
polarization of X¢ pulled back from &ps3 (1).

Proposition 12 Let [§] € Proj A be such that X¢ has rational singularities. Then
(€] is G.-stable. The open dense subset of M. parametrizing isomorphism classes
of such [&] is the moduli space of polarized quartics which are double covers of a
quadric cone with branch divisor not containing the vertex of the cone.

Proof Let [§] = [f, g, h] € Proj A be a non-stable point. Then by the Hilbert-
Mumford Criterion there exist a point a € P! (where P! is identified with the conic
V(q, x3) via the Veronese embedding) such that

mult, (f) > 2, mult,(g) > 3, mult, (h) > 4. (60)

The pointa € P! is identified with a point p € V(q, x3) (as recalled above), which
belongs to the quartic Bg. The inequalities in (60) give that the multiplicity at p
of the divisor Bg|y () is at least 4, and hence the corresponding double cover of
V(q) (i.e. X¢) does not have rational singularities. This proves the first statement.
The rest of the proof is analogous to Shah’s proof (see Theorem 4.3 in [50]) that
M, (see (26)) is a compactification of the moduli space for unigonal K3 surfaces.
The key point is that any quartic not containing the vertex [0, 0, 0, 1] has such an
equation after a suitable projectivity ¢ (a Tschirnhaus transformation) of the form
©*xi = xi, p*x3 = x3+£(x0, X1, X2) where £(xo, x1, x2) is homogeneous of degree
1.

Let [§] € Proj A be generic; then (Xg, L¢) is a polarized quartic K3 surface whose
period point belongs to H. (2), which (see [34]) is identified with .%# (17) via the
embedding f17,19: #(17) — .%. Thus we have a rational period map

pe: Me -—» FAND* C F*. (61)
A generic polarized quartic K3 surface is a double cover of the quadric cone
unramified over the vertex, and hence is isomorphic to (Xg, Lg) for a certain

[§] € Proj A. By the global Torelli Theorem for K3 surfaces, it follows that the
period map p. is birational.
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5.4.5 Partial Extension of the Period Map on a Weighted Blow-Up:
The Case of a Point in Wy \ E,

Let (a,b) € C2, with a # b. Let N, j, be the SL, representation in (46), and let
M, » be the sub-representation

Map:=V@ ®V(6) DR x3. (62)

Let Ny, be the normal slice of V (f, ) defined in Sect.5.4.2, and let M, ,, C Ny p
be the subspace

Moy ={V(fap+8) |8 € Myp}

Notice that

dimM, , = 21.
Let (z1, ..., z5) be coordinates on V (4), let (z¢, ..., z12) be coordinates on V (6),
and let (z13, ..., z21) be coordinates on V(8); thus (z1, ..., z21) are coordinates

on M, ;, (with a slight abuse of notation) centered at V (f, ). Let o be the weight
defined by

2 ifiefl,..., 5},
o(zi): =133 ifief6,...,12}, (63)
4 ifie{l13,...,21}.

Let IVIa,b = Bl, (MQ,Q be the corresponding weighted blow up, and let E, ; be
the exceptional set of M, , — M, . Thus E, ; is the weighted projective space
P(2°,37,4%) = Proj A, where A is the graded ring in (56) (with grading defined
right after (56)). The action of Aut(Vy, ,) = G, (here G, is as in (57)) on M ;, lifts

to an action on ﬂ\/[a,b. Thus there is an associated GIT quotient li\/la, b/ Gc. The map
M, » — M, induces a map

0: Myp)Ge — Mup/)Ge. (64)

Moreover, we have the set-theoretic equality
07 (V(fap)rea = Proj A | Ge = M. (65)
Since the natural map M, ,/ G, — 901 is dominant, it makes sense to compose it
with the (rational) period map p: 9t --» .#*. Composing with the birational map

in (64), we get a rational map

Pab: Mup)Ge - F*. (66)
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Proposition 13 With notation as above, the restriction of'ﬁa, b to 9! (V(fa.b))rea =
M. is equal to the composition of the automorphism

Pa,b
mtc —> mc

,~ L (67)
[f’g7h] e [f’_Z(a_b)g’_Z(a_b) h]

and the period map in (61). Moreover P, p is regular at all points ofé\_1 (V(fa.b))red
where p. is regular.

Proof Let [§] = [f,g,h] € ProjA = E,;, be a G.-semistable point with
corresponding point [§] € M., and let [n] = gaa,b([é_]). Suppose that the period
map p. is regular at [n]. We will prove that if A C C is a disc centered at 0, and
A — M, p is an analytic map mapping O to [£] and no other point to the exceptional
divisor E, p, then the period map is defined on a neighborhood of 0 € A, and its
value at 0 is equal to the period point of (X;;, L;)). This will prove the Proposition,
by Corollary 1. By Proposition 7 the statement that we just gave boils down to the
following computation. First, we identify V (2d) with the corresponding SO(g )-sub-
representation of C[xg, x1, x2]4; thus f, g, h € Cl[xg, x1, x2] are homogeneous of
degrees 2, 3 and 4 respectively. Now let 2~ C P? x A be the hypersurface given by
the equation

0= (q4ax3)(q+bx3) +1>x3(f +tF) +Px3(g +1tG) +t*(h +tH)  (68)

where F € Clxo, x1, x2]2[[t]], G € Clxo, x1, x2]3[[]],and H € C[xo, x1, x2]a[[?]].
Now consider the I1-parameter subgroup of GL4(C) defined by A(r) :=
diag(1, 1, 1,7). We let # C P3 x A be the closure of

{(Ix1.,y 1t #0, A@®[x]e 2}
Then Y; = X; fort # 0, and % has equation
0=q° + 1 (a+b)xiq +*abxi +x3f +x3g +h) +1°(...) (69)

Let v: % — % be the normalization of % Dividing (69) by t4xl4 , we get that the
ring of regular functions of the affine set v~ (@ ﬂIP)f’Ci) is generated over C[% ﬂIP)ii]
by the rational function &; := ¢/ (xiztz), which satisfies the equation

2
0=¢"+(a+b) (x—3> E + (abxy + X3 f +x3g +h)/x} +1(..)

1

It follows that for + — 0 the quartics X; approach the double cover of V(gq)
branched over the intersection with the quartic

0= ((a+ b)x%)2 — 4(abx§' + x32f +x3g+h) =(a— b)zxg' — 4x32f —4x3g —4h.
(70)
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5.4.6 Partial Extension of the Period Map on a Weighted Blow-Up:
The Unique Point in Wy N E,,

Leta # 0, and

Va = ﬁa N Ep.
(We recall that Ep is the exceptional divisor of the blow-up P — |Ops(4)| with
center the closed subset D parametrizing double quadrics.) Thus, letting S be as
in (50), we have

V.=P©S)=P(VE®) ®VO)®R-xI® (x3), dimV, =21 (71)

Let p := (Qu, xg‘) € {76,, see Remark 18. Then ?a is mapped to itself by Stab(p),
and by restriction of the map 1 in (55) we get a map

V. /Stab(p) —> M.

We define a weighted blow up of V., with center p as follows. First, by (71) we have
the following description of an affine neighborhood 7" of p € V,:

VRO VEOe)®R x5 — T

o — [xg + o]
Let (z1, ..., z5) be coordinates on R - x32 = V@), let (z¢, ..., z12) be coordinates
on V(6), and let (z13,...,2z21) be coordinates on V(8); thus (z1,...,z21) are

coordinates on 7' (with a slight abuse of notation) centered at the point p. Let o
be the weight defined by

2 ifie{l,...,5},
o(zi):=13 ifiel6,...,12}, (72)
4 ifie{13,...,21}.

(Note: we are proceeding exactly as in Sect.5.4.5.) Let ?a = Bl, (%) be the
corresponding weighted blow up, and let E, be the corresponding exceptional
divisor. Thus E, is the weighted projective space P(2°, 37, 4°) = Proj A, where A is
the graded ring in (56) (wig} grading defined right after (56)). The Ection of Aut(p)
on V, lifts to an action on V, There is an associated GIT quotient V, /Stab(p), and
a regular map

71 Vo /Stab(p) —> V,/Stab(p).
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We have the set-theoretic equality

7 P)rea = Proj A ) Ge = M. (73)
We have a rational map
Pu: VaJAut(p) --» F*. (74)

Proposition 14 With notation as above, the restriction of p, to 'ﬁ_l (P)reda = M. is
equal to the period map in (61). Moreover Py is regular at all points of T~ (D) rea
where p. is regular.

Proof Let [§] = [f,g,h] € ProjA = E, be a G.-semistable point with
corresponding point n € M. Suppose that the period map p. is regular at n. We
will prove that if A C C is a disc centered at 0, and A — V, is an analytic
map mapping 0 to [§] and no other point to the exceptional divisor E,, then the
period map is defined on a neighborhood of 0 € A, and its value at O is equal
to the period point of (X, L;). This will prove the Proposition, by Corollary 1.
By Proposition 7, the previous statement boils down to the following computation.
Let f, g, h € C[xg, x1, x2] be homogeneous of degrees 2, 3 and 4 respectively, not
all zero. Let C; C V(g + ax%) be the intersection with the quartic

X34+ 2x3(f +1F) +x3(¢ +1G) +t*(h +tH) = 0.

where F' € Clxo, x1, x2]2[[2]], G € Clxo, x1, x213[[7]],and H € C[xo, x1, x2]4[[?]].
We will show that C; for ¢t # 0 approaches for t — 0, the curve

q =x§—|—x32f—|—x3g+h:0.
In fact it suffices to consider the limit for t — 0 of A(¢)C;, where A is the 1-PS
A@) =(1,1,1,1).
5.4.7 A Global Modification of 91 and Partial Extension of the Period
Map

Let T C |Op3(4)| be the closure of the set of PGL(4)-translates of V (f,.5), for all
(a,b) € C2. Thus T is a closed, PGL(4)-invariant subset, containing D (the set of
double quadrics), and

dimT = 13. (75)
Let T C P be the strict transform of T in the blow-up 7: P — |Op3 (4)| with

center D. The set of semistable points ™ c T (for a polarization 7*.Z (—€Ep)
close to m*.Z, see the proof of Proposition 8) is the union of the set of points of
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T \ Ep which are mapped by 7 to quartics PGL(4)-equivalent to V(f,5) for some
a # b,andof TN E]S)s. The latter set consists of the PGL(4)-translates of the points
(Qa, 4) defined in Remark 18.

In Sects.5.4.5 and 5.4.6 we defined a weighted blow up of an explicit normal
slice to T at points x € T**. That construction can be globalized: one obtains a
modlﬁcatlon 7: P — P whichis an isomorphism away from P \ T, and replaces
T by a locally trivial fiber bundle over T** with fiber isomorphic to the weighted
projective space P(2>,37,47). In fact the weighted blow up is isomorphic to the
usual blow up of a suitable ideal, see Remark 2.5 of [3], hence one may define an
ideal .# co-supported on T such that P =Bl 7 P.

Let Ef be the exceptional divisor of 7. Letting £p := n*.Z(—€Ep) be a
polarization of P as above, we may consider the GIT quotient of P with PGL4)-
linearized polarization £ := Jr*.,/ifp (—tE5), call it M(z). For 0 < ¢ small enough,
the map 7 induces a regular map 20t(z) — 99t. From now on we drop the parameter
t from our notation; thus ! M denotes ﬁ(r) for ¢t small.

The image of E5 in 9 is a fiber bundle

p: E1 — Wi,

with fiber 9. over every point Let p: M —-» * be the period map. We
claim that the restriction of p to the fiber of E; — W1 over x is regular away
from the indeterminacy locus of p.: 9, --+ Z*, and it has the same value,
provided we compose with the automorphism of 21, given by (67) if x ¢ E, and
700 = [V (fa)].

In order to prove the claim it suffices to prove the following. Let A C C be a disc
centered at 0, and let A — 91 be an analytic map mapping O to a point X € E| such
that the period map p. is regular at the point n € M. = p~ ! (p(¥)) corresponding
to X, and suppose that (A \ {0}) is mapped to the complement of E; and into the
locus where the period map is regular; then the value at O of the extension of the
period map on A\ {0} is equal to the period point of (X, Ly). We may assume that
A — M lifts to an analyticmapt: A — P mapping O to a point of E5 with closed
orbit (in the semistable locus) lifting X. In Sects. 5.4.5 and 5.4.6 we have checked
that the value at O of the extension behaves as required if 7 ot (A) is contained in the
normal slice to T at the point 7 o7 (0) (defined in Sects. 5.4.5 and 5.4.6 respectively).

It remains to prove that it behaves as required also if the latter condition does not
hold. If 7 o 7(0) ¢ Ep, then the argument is similar to that given in Sect. 5.4.5; one
simply replaces a, b € C by holomorphic functions a(t), b(t) where t € A.

If 7 o 7(0) € Ep, one needs a separate argument. The relevant computation
goes as follows. Let f, g, h € Cl[xo, x1, x2] be homogeneous of degrees 2, 3 and
4 respectively, not all zero. Let 2~ C P? x A be the hypersurface given by the
equation

(q+x)>+ ¥ x5+ P2 (f +1F) + 1P x3(g +1G) + ¥ 2P (h +1tH) = 0,
(76)
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where
F € Clxo, x1, x212[l7]l, G € Clxo, x1, x213[[2]], H € Clxo, x1, x2]al[]].
Let A(t) := diag(1, 1, 1, t4), and let % C P3 x A be the closure of
{(xL.y [t #0, r@®[x]le 2.
Thus Y; = X, for t # 0, and % has equation

(2P (p 4 tHY = 0.
(77)

Dividing the above equation by #!°

satisfies the equation

we find that the rational function &§; := ¢/ (xl.ztg)

2
X
£2+2 (—3) £+ (xf + 1% xd PR (f Py 4 1P 205 (g +1G)+

Xi

t4k+12p_16(h 4+ [H))/Xl4 —0.

It follows that the fiber at ¢+ = 0 of the normalization of ¢ is the double cover of
V (q) ramified over the intersection with the limit for + — 0 of the quartic

4y —d (e H o F TP 2 (ot F) 41 HOP 203 (g 41 G) 411210 (i H)) = 0,

Replacing x3 by 13714 x3 we get that the fiber at # = 0 of the normalization of %
is the double cover of V (¢) ramified over the intersection with the quartic

X3+ x3f +x3g+h=0. (78)

Let us explain why the above computation proves the required statement. Let
€: A — |Op3(4)| be the analytic map defined by €(¢) := X;. Then Im(e) C Si,
where S is as in (51) (notice that Xo = f1,1). Let ﬁ] be the blow up of S \ Y71 with
center V(f1.1), see Sect.5.4.3, and let€: A — U, be the lift of (by shrinking A
we may assume that Im(e) N Y, = &). Then €(0) = p = (Q1, xg‘), notation as
in Remark 18.

Now, choose a basis {ag, ..., a1} of the SLy-representation S given by (50)
adapted to the decomposition in (50); more precisely ag = x? ,{ai, ..., as}is abasis
of R - x%, {ae, ..., ain2} is a basis of V(6), and {ao, ..., ap1} is a basis of V(8). Let
{wo, ..., w>1}be the basis dual to {ao, ..., a1 }; then (wog, ..., wy) are coordinates
on an affine neighborhood of V (f, 4) in S,, centered at V (f, 4). Next set yo = wy,
and y; = w;/wo fori € {1,...,22}. Then (yo, ..., y21) are coordinates on an affine
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neighborhood of p € ﬁl, centered at p. Let (z1, ..., z21) be the affine coordinates
introduced in Sect. 5.4.6; we may assume that y,-|§71 =z fori e {1,...,22}.
In the coordinates (yo, ..., y21) we have

EO=(Y 1P (f1+1F1), ..., 1P (f5+1 F5),19P (g5+1Gs5),....1P (g12+1G12),t 2P (13 +t H13), ..ot 2P (h2y +1 Ha1)),

with obvious notation: (fi,..., f5s) are the coordinates of f in the basis
{ai,...,as}, etc. The computation above shows that the extension at 0 of the
period map is equal to the period point of the double cover of V (g) ramified over
the intersection with the quartic defined by (78), and hence the period map is regular
at the point corresponding to [ f, g, ] by Proposition 7 and Corollary 1.

5.4.8 The First Flip and a Contraction of DL

The divisor E; C M is isomorphic to Wl x M.. The normal bundle of E| restricted
to the fibers of the projection E1 — 9. is negative; it follows that (in the analytic
category) there exists a contraction M — 91 /2 of E; along the fibers of E; — M.
We claim that 901; /» must be isomorphic to .%(1/3, 1/2). In fact, let p: M --» F
be the period map (notice: contrary to previous notation, the codomain is .%, not
F*). The generic fiber of E; — 91, is in the regular locus of P, and is mapped to a
constant: it follows that

=P ) - (W1 x {[f, &, 1)) =P*(A) - (W1 x {[f. g, h1}),  [f g h]leM..
(79)

On the other hand, letting p € Wi, and adopting the notation of [34], we have

PP} X M reg) C Im(f17,19). (80)

(Here M. roo is the set of regular points of the period map Pe: M - F;
by Proposition 14 it is equal to the intersection of {p} x M, ., with the set of
regular points of p.) By Proposition 5.3.7 of [34] we have f17 oA+ BA) =

(1 =2B)A(17) + BA(17). Now, A(17) = H,(17)/2, and p({p} x M) avoids the
support of H,(17) = Im fi6,17. Thus

P B pyxom. =91 =28 M) | (pyxom. - (81)

The conclusion is that p*(A 4+ BA) contracts all of E; to a point if 8 > 1/2 (and is
trivial on E; if B = 1/2), while if 8 < 1/2, then the restriction of p*(A + BA) to E;
is the pull-back of an ample line bundle on 9)t.. Thus we expect that for 8 < 1/2
close to 1/2 the (Q) line-bundle p* (A + BA) is the pull-back of an ample (Q) line
bundle on 91y /2, and hence My 7 is identified with 7 (B), because the period map
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would be birational map which is an isomorphism in codimension 2 and pulls back
an ample line bundle to an ample line bundle.

6 Semistable Reduction for Dolgachev Singularities,
and the Last Three Flips

In the present section, we will provide evidence in favour of the predictions that
there are flips corresponding to 8 € {%, %, é} (the critical values of B closest to
B = 0, which corresponds to .% *), with centers birational to the loci of quartics with
E14, E13, and E1 singularities respectively. There is a strong similarity with the first
steps in the Hassett-Keel program. Specifically, in the variation of log canonical
models .#, () = Proj (]g, K]g + aA]g) (for @ € [0, 1]) for the moduli space

of genus g curves ]g, the first critical value is o = % which corresponds to
replacing the curves with elliptic tails by cuspidal curves. Similarly, at the next
critical value o = %, the locus of curves with elliptic bridges is replaced by the
locus of curves with tacnodes (see [19, 20] for details). In the proposed analogy,
the singularities E7, E13, and E14 (the simplest 2 dimensional non-log canonical
singularities) correspond to cusps and tacnodes, while, as we will see, certain lattice
polarized K 3 surfaces correspond to elliptic tails and bridges.

6.1 KSBA (Semi)Stable Replacement

According to the general KSBA philosophy, for varieties of general type there
exists a canonical compactification obtained by allowing degenerations with semi-
log-canonical (slc) singularities and ample canonical bundle. In particular, any 1-
parameter degeneration has a canonical limit with slc singularities. However, when
studying GIT one ends up with compactifications that allow non-slc singularities.
For example, the GIT compactification for quartic curves will allow quartics with
cusp singularities. Thus a natural question is: given a degenerations Z /A of
varieties of general type such that the general fiber is smooth (or mildly singular),
but such that X does not have slc singularities, to find a stable KSBA replacement
X, Of course, X, depends on the original fiber Xo and on the family 2°/A
(i.e. the choice of the curve in the moduli space with limit X¢). Motivated by the
Hassett-Keel program, Hassett [17] studied the influence of certain classes of curve
singularities on the KSBA (semi)stable replacement (in this case, the usual nodal
curve replacement). Hassett’s perspective is to consider a curve Co with a unique
non-slc (i.e. non-nodal) singularity, and to examine %’ /A, a generic smoothing of
Co. The question is what can be said about the semi-stable replacement C|) of Cy.
Of course, one component of C(/) will be the normalization 50 of Cp (assuming
that this normalization is not a rational curve). The remaining components (and the
gluing to Co) of C,, (the “tail part”) will depend on the non-slc singularity of Cp and
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its smoothing; one determines them by a local computation. The classical example
is the semi-stable replacement for curves with an ordinary cusp (see [16, §3.C]), that
we briefly review below.

Example 1 (Semi-Stable Replacement for Cuspidal Curves) Locally (in the ana-
lytic topology) a curve in a neighborhood of an ordinary cusp has equation y?>+x3 =
0, and a generic 1-parameter smoothing will be given by € := V (t+y>4+x3) — A;.
After a base change of order 6, which is necessary to make the local monodromy
action unipotent, one obtains a surface V(o + y2 +x3) c (C3, 0) with a simple
elliptic singularity at the origin. The weighted blow-up of the origin will resolve this
singularity, and the resulting exceptional curve E is an elliptic curve (explicitly it
is V(t® + y? + x3) ¢ WP, 3, 2)). The new family ¢” (obtained by base change
and weighted blow-up) will be a semi-stable family of curves, with the new central
fiber consisting of the union of the normalization of Cy and of the exceptional
curve E (“the elliptic tail”’) glued at a single point. Note that instead of a weighted
blow-up, one can use several regular blow-ups, these will lead first to a semi-stable
curve with additional rational tails, which can be then contracted to give the stable
model (with a single elliptic tail). The two blow-up (and then blow-down) processes
are equivalent; the weighted blow-up has the advantage of being minimal, and it
generalizes well in our situation.

As mentioned above, Hassett [ 17] has generalized this for certain types of planar
curve singularities (essentially weighted homogeneous, and related). In higher
dimension (e.g. surfaces), much less is known—there is a similar computation
(for surfaces with triangle singularities) to the elliptic curve example contained
in an unpublished letter of Shepherd-Barron to Friedman (in connection to [9]—
such examples tend to give degenerations with finite, or even trivial, monodromy).
Similar computations appear in [12], and what is needed for our purposes will be
reviewed below.

Of course, we are concerned with degenerations of K3 surfaces, thus the KSBA
replacement strictly speaking doesn’t make sense (the main issue is non-uniqueness
of the replacement). Nonetheless, given a degeneration .2 */A* with general fiber
a K3, there exists a filling with X{; being a surface with slc singularities (and
trivial dualizing sheaf). This follows from the Kulikov-Person-Pinkham theorem
and Shepherd-Barron [52, 53]. Furthermore, if X( has a unique non-log canonical
singularity, we can ask (mimicking Hassett [17]): What is the KSBA replacement for
a quartic surface Xo with a single E1, singularity? In this case the resolution 5(\0
is rational (this is analogous to the fact that the normalization of a cuspidal cubic
curve is rational), and thus the focus is on the “tail” part.

6.2 Dolgachev Singularities

The singularities that interests us are particular cases of Dolgachev singularities
[5] (aka triangle singularities or exceptional unimodal singularities, the latter is the
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terminology used by Arnold et al. [4]). They are arguably the simplest 2 dimensional
non-log canonical singularities, for this reason we view them as analogues of 1
dimensional ordinary cusps. Dolgachev singularities are hypersurface singularities
with the property that they have a (non-minimal) resolution with exceptional divisor
E+E{+ Ey+ E3, where E?=—1, E12 = —p, E% = —q, E% = —r, and the curves
E; only meet E transversely (comb type picture). By contracting the E;’s, we obtain
a partial resolution with a rational curve E going through 3 quotient singularities of
types (1, 1), 2(1, 1) and £(1, 1). While any (p, ¢, r) (with £+ + 1 + 1 < 1) gives
a non-log canonical surface singularity, only 14 choices of integers (p, g, r) lead
to hypersurface singularities, these are the Dolgachev singularities. The Dolgachev
numbers of the singularity are p, q,r. The cases relevant to us are E1», E13, and
E14, with Dolgachev numbers (2, 3, 7), (2,4, 5), and (3, 3, 4) respectively.

Remark 20 Very relevant in this discussion is the so called T, , , graph (for p, g, r
positive integers). This consists of a central node, together with 3 legs of lengths
p—1,q —1,and r — 1 respectively. As usual to such a graph, one can associate an
even lattice by giving a generator of norm —2 for each node, and two generators are
orthogonal unless the corresponding nodes are joined by an edge in the graph (in
which case, we define the intersection number to be 1). The cases L é + % > 1
corresponding precisely to the ADE Dynkin graphs (with ADE associated lattices).
For example (1, p, g) corresponds to A,4,-1, while (2, 3, 3) corresponds to Eg.
Note also % + é + % > 1 is equivalent to the associated lattice being negative

semi-definite. The three cases with % + é + % = 1 correspond to the extended

Dynkin diagrams of type E, (r = 6,7, 8), and in these cases the associated lattice
is negative semi-definite. Finally, the cases with Lyl % < 1 lead to a hyperbolic
lattice. It is easy to compute that the absolute value of the discriminant will be
pqr (1 — (% + é + %))

The lattice of vanishing cycles associated to a Dolgachev singularity is T 4/, ©
U for some integers (p’, q’,r’), which are called the Gabrielov numbers of the
singularity. In particular, we note that p’ +¢' +r' = (p' +q' +r' —2) +2 = uis
the Milnor number of the singularities (i.e. the rank of the lattice of vanishing cycles
is the Milnor number). In other words, associated to a Dolgachev singularity there
are two triples of integers: the Dolgachev numbers (p, g, r) related to the resolution
of the singularity, and the Gabrielov numbers (p’, ¢’, r’) related to the lattice of
vanishing cycles (and the local monodromy associated with the singularity). In

Table 2 below we give these numbers for the cases relevant to us. Arnold observed
that the 14 Dolgachev singularities come in pairs of two with the property that the

Table 2 The relevant

: - Singularity | Dolgachev no. | Gabrielov no.
Dolgachev singularities

Eqp 2,3,7 2,3,7
E3 2,4,5 2,3,8
Eq4 3,3,4 2,3,9
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Dolgachev and Gabrielov numbers are interchanged. This is part of the so called
strange duality (see [8] for a survey). The key point is that T, , » and T/, ,» are
mutually orthogonal in E% @® U? (equivalently, after adding a U to one of them,
they can be interpreted as the Neron-Severi lattice and the transcendental lattice
respectively for certain K3 surfaces, and thus one can view this as an instance of
mirror symmetry for K 3 surfaces, see [6]).

6.3 Deformations of Dolgachev Singularities and Periods
of K3’s

Looijenga [37, 38] has studied the deformation space of Dolgachev singularities.
Briefly, they are unimodal, i.e. they have 1-parameter equisingular deformation.
Within the equisingular deformation, there is a distinguished point corresponding
to a singularity with C*-action (equivalently the equation is quasi-homogeneous).
One can apply to that singularity Pinkham’s theory of deformations of singularities
with C*-action. In this situation, there will be 1-dimensional positive weight
direction (i.e. there is an induced C* action on the tangent space to the mini-versal
deformation, and the weights refer to this action) corresponding to the equisingular
deformations. The remaining (i — 1) weights are negative and correspond to the
smoothing directions. We denote by S_ the germ corresponding to the negative
weights. Because of the C*-action, S_ can be globalized and identified to an affine
space. Thus (S— \ {0})/C* is a weighted projective space of dimension yu — 2
(where p is the Milnor number, e.g. @ — 2 = 10 for E17). The general theory of
Pinkham states that (S— \ {0})/C* is to be interpreted as a moduli space of certain 2
dimensional pairs (X, H) (H is to be interpreted as a hyperplane at infinity coming
from a C*-equivariant compactification of the singularity). Looijenga [37, 38]
observed that, in the case of Dolgachev singularities (with C*-action), the general
point of (S— \ {0})/C* parametrizes a couple (X, H) where X is a (smooth)
K3 surface, and H is a T) 4, configuration of rational curves ((p, g, r) are the
Dolgachev numbers of the singularity). In particular, the transcendental lattice of
X is Ty o @ U (identified with the lattice of vanishing cycles for the triangle
singularity), while 7, , , is its Neron—Severi lattice. In conclusion, the weighted
projective space (S— \ {0})/C* is birational to a locally symmetric variety Z/I"
corresponding to periods of T), , --marked K 3 surfaces (the dimension is 20 — (p +
q+r—2)=22—(p+q+r)=p +q +r'—2 = u—2). Furthermore, Looijenga
[38] showed that the structure of the Baily-Borel compactification (Z/1I")* is related
to the adjacency of simple-elliptic and cusp singularities to the given Dolgachev
singularity, and that the indeterminacy of the period map (S—\{0})/C* --» (Z/I')*
is related to the triangle singularities adjacent to the given one (e.g. E13 deforms
to E12 and this will lead to indeterminacy, that is resolved by Looijenga’s theory;
while, on the other hand Ei, deforms only to simple elliptic, cusp, or ADE
singularities, and thus there is no indeterminacy).
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Example 2 The simplest case is the deformation of Ej;. The singularity has
equation x> + y> + z7 = 0. In this situation, as explained, Ej» only deforms
to log canonical singularities giving a regular period map, which in turn gives an
isomorphism:

WP(@3,4,6,8,9,11,12,14,15,18,21) = (S_ \ {0}) /C* = (2/I")*.

The weights above are the negative weights with respect to the C*-action on the
tangent space to the mini-versal deformation of the singularity, which we recall
can be identified with ﬁ@,o /J, where J = (x, y2, x6) is the Jacobian ideal of
f = x>+ y>+z’. In this example, (2/I")* is the Baily-Borel compactification for
the moduli space of 7> 3 7-marked K 3 surfaces (N.B. 72 3 7 = Eg@ U also, because
of self-duality in this case, the transcendental lattice is 7237 @ U = Eg @ U 2).

6.4 Relating the Loci Wg, W7 and Wg to 28, Z7 and Z°

Recall that Wg, W7 and Wg are the closures in 2 of the loci parametrizing polystable
quartics with a singularity of type E12, E13 and E14 respectively. The universal
family of quartics gives a versal deformation for the E; singularity (this follows
from Urabe’s analysis [57] of quartics with this type of singularities, or more
generally from du Plessis—Wall [7] and Shustin—Tyomkin [54]), thus at a quartic
with Ep, singularities such that the singularity has C*-action, the germ of (S_, 0)
can be interpreted as the normal direction to Wg. Then, (S— \ {0}) /C* is nothing but
the projectivized normal bundle, which is then the replacement via a (weighted) flip
of the Wg locus. On the other hand, as noted in the example above, (S— \ {0}) /C*
can be interpreted as the moduli of 77 3 7-marked K3s, which is the same as our
Z° locus in .% (the moduli of quartic K 3 surfaces). The same considerations apply
to the case of Ej3 and E14 singularities, but in those cases the identification of
(S—\ {0}) /C* with the moduli of 7>4 5 (and 7334 respectively) marked K 3s
(which then correspond to Z7 and Z° respectively) involves one (or respectively
two) flips (corresponding to the fact that £13 deforms to E;, and similarly for E14).
This is exactly as predicted in [34].

The argument above almost establishes our claim that a flip replace the Z°
locus in .%# by Wg (the Eq> locus) in 9 (and similarly for E13 and E14). In the
following subsection, we strengthen the evidence towards this claim by a one-
parameter computation (which shows that indeed the generic KSBA replacement
for a quartic with E1 singularities (with C*-action) is a 7 3 7-marked K 3).

Example 3 Let [w, x, y, z] be homogeneous coordinates on a 3 dimensional pro-
jective space, and let X be the quartic defined by the equation

x2w? — 2x2w? + y3w +x3z4+74=0.

ogrady@mat.uniroma.it



272 R. Laza and K. G. O’Grady

Computing partial derivatives, one finds that the singular set of X consists of the
single point p :=[1, 0, 0, 0]. In fact X has an E, singularity at p, with C* action.
To see why, we let w = 1, and hence (x, y, z) become affine coordinates. Then p is
the origin, and a local equation of X near p is

(x — 2%+ y’ +x7z=0.
Let (s, v, z) be new analytic coordinates, where s = x — z2; the new equation is
s? + y3 + 7z + 57243522 + 3522 =0.

One recognizes s> + z' + s3z + 3s%z> 4 3577 = 0 as an Ag singularity (assign
weight 1/2 to s and weight 1/7 to z; since all other monomials appearing in the
equation have weight strictly larger than 1, it follows that the equation is analytically
equivalent to > + v’ = 0), and hence in a neighborhood of p, the quartic X has
analytic equation u”> + y> + v’ = 0. This is exactly the local equation of an E|»
singularity with C* action. Since X has no other singularity, it is stable by Shah, and
[X] belongs to Wg.

6.5 The Semistable Replacement for Quartics with an Eq13, E13
or E14 Quasi-Homogeneous Singularity

We are assuming that we are given a quartic surface Xy with a unique Ej singularity
(for k = 12, 13, 14) and such that the singularity has a C*-action (the singularity, in
local analytic coordinates, is given by the equation in Table 3). We are considering
a generic smoothing 2" /A and we are asking what is the KSBA replacement
associated to this family. The computation is purely local, similar to that occurring
in Hassett [17]. We will mimic the algorithm described in Example 1. A generic
smoothing is locally given by

V(f(x,y,2)+1) C (C*0),

where f is the local equation of the singularity as in Table 3. We make a base
change t+ — ¢V so that the local monodromy is unipotent. Arnold et al. (see [4,
Table on p. 113]) have computed the spectrum of the singularities for the simplest

Table 3 Equations of the relevant Dolgachev singularities

Singularity Equation (with C*-action) Order N for base change Weights (¢, x, y, z)

Ep +y3+77=0 42 (1,21, 14, 6)
Ei3 24+ 4y22=0 30 (1,15, 10, 4)
Es B+ 4yt =0 24 (1,8,12,3)
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type of hypersurface singularities, including ours. The spectrum encodes the log of
the eigenvalues of the local monodromy, thus from Arnold’s list it is immediate to
find the base change giving unipotent monodromy; the relevant order N for the
base change is given in Table 3 below. It turns out that the resulting threefold
2 = V(f(x,y,z) +tY) c (C* 0) has a simple K 3-singularity (analogue of
simple elliptic) at the origin in the sense of Yonemura [59]. It follows that a suitable
weighted blow-up of 2" at the origin will resolve this singularity, giving a K3 tail.
The tail 7 will be one of the weighted K3 surfaces in the sense of M. Reid. What
is specific in the situation analyzed here is that 7" has 3 singularities of type A lying
on the exceptional divisor of the weighted blow-up (a rational curve). A routine
analysis (see Gallardo [12] for further details) gives the following result.

Proposition 15 Let 2" /A be a generic smoothing of a Dolgachev singularity of
type Ey (k = 12,13, 14). Then, after a base change of order N (as given in Table 3),
followed by a weighted blow-up with weights as given in the table, gives a new
central fiber X6 which is the union of the partial resolution 5(\0 of Xo (with quotient
singularities given by the Dolgachev numbers (p, q,r)) and a K3 surface T with
3 singularities of types Ap_1, Ag—1, and A, liying on the (rational) curve C =
TN yo. Thus, the minimal resolution T of TisaTy, g -marked K3 surface, where
(p, g, r) are the Dolgachev numbers of the Ey singularity.

Proof The equation of the tail is simply
V(f(x,y,2) +tV) C WP, wy, wy, w,)

with f, N, and the weights as given in Table 3. Note that this is a weighted degree
N hypersurface in a weighted projective space such that the sum of weights satisfies

I +wy +wy+w;, =N.

This is precisely the K 3 condition.

Remark 21 Computations and arguments of similar nature have been done in the
thesis of P. Gallardo (some of them appearing in [12]), who was advised by the first
author. We have learned about similar computations done by Shepherd-Barron from
an unpublished letter to R. Friedman.

In conclusion we see that the replacement of the quartics with quasi-
homogeneous E12, E13, or E4 singularities are 7237, 12.4,5, 13,34 marked K3
surfaces respectively. These are parametrized by points of Z°, Z8, Z7 respectively,
see [34]. Specifically, we have the following result.

Proposition 16 The loci Z°, Z8, Z7 are naturally identified with the moduli spaces
of 12,37, T2.4,5, T3 3 4-polarized (in the sense of [6]) K 3 surfaces respectively.

Proof As already noted, for %—l— 1 +% < 1, Ty 4,r are hyperbolic lattices of signature
(1, p + g + r — 3). Furthermore, the absolute value of their discriminant is pgr —

pq — pr — qr = pqr (1 — 5" ;) (giving values 1, 2, 3 respectively in our
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situation). It follows, that the three T), 4, lattices considered here are isometric to
Eg® U, E7® U, and E¢ @ U respectively. Each of them has a unique embedding
into the K3 lattice E§ @® U3, and the corresponding orthogonal complements are
Eg & U2, Eg & U?® A, and Eg @ U?® Aj respectively. This coincides with our
definition of the Z?, Z8, Z7 loci from [34].

7 Looijenga’s Q-Factorialization

The predictions of our previous paper [34] are concerned with the birational
transformations that occur in the period domain .# = Z/I'. Our working
assumption is that all the modifications that occur at the boundary of the Baily-
Borel compactification .#™* are explained by Looijenga’s Q-factorialization [41],
together with the modifications occurring in .%. More precisely we predict that,
for 0 < ¢y < 1/9, the birational map .% (eg) --+ .#* is regular, small, and an
isomorphismover.# = Z/I, and that the strict transform of A is a relatively ample
Q-Cartier divisor. In particular, we get a well defined birational model .7 of 7™ by
setting . = F(¢g) for 0 < €9 < 1/9—this is Looijenga’s Q-factorialization.
Our expectation is that, for a critical 8 € [1/9, 1], the center of the birational map
F (B —€) --+ F(B + €) is the proper transform of the appropriate Z/ appearing
in (1) (Z° for B = 1/9, Z8 for B = 1/7, and so on) via the birational map
F (B —€) --+» #. In particular, the above expectation predicts that the numbers of
irreducible components of M and M| and their di,r\nensions, can be determined
once one has a description of the inverse images in .# of Type II, Type III strata,
and their intersections with the strict transforms of the Z/’s. In the present section
we will spell out the predictions regarding 9t//, and we will see that they match the
computations of Sect. 4.

Before we proceed with our computations, we note that there is a glaring
discrepancy that seems to be against our predictions above: there are 8 Type II
components in 91, while there are 9 in .#. In fact there is no contradiction, as
we will see that the missing component is contained in the closure of one of the
7k ¢ .F strata and thus will disappear in the associated flip (and it will be hidden
in the Type IV locus in 91). We note that compared with the case of degree 2 K3
surfaces [39, 50] or cubic fourfolds [32, 42], this is a new phenomenon which points
to the interesting nature of the quartic example.

7.1 Looijenga’s Q-Factorialization and Its Type Il Boundary
Components

The locally symmetric variety .# has at worst finite quotient singularity, and thus it
is Q-factorial. Since the boundary .7 * \ . is of high codimension, any divisor of .%
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extends uniquely as a Weil divisor, but typically not a (Q-Cartier divisor. Looijenga
[41] has constructed a (Q-factorialization associated to any arithmetic hyperplane
arrangement (or equivalently pre-Heegner divisor in the terminology of [34]). Here,
we are interested in the (Q-factorialization of the closure of A = %(Hu + Hp).

Definition 6 Let .Z — .Z* be the Looijenga Q-factorialization associated to the
hyperplane arrangement .7 = 7~ (H, U H,,) (where 7 : 2 — /T is the natural
projection) of hyperelliptic and unigonal pre-Heegner divisors.

From our perspective, it is immediate to see that the (Q-factorialization coincides
with one of our models:

Proposition 17 Let 0 < € < 1. Then the composition of birational maps F -
F*and F* --+ F (€) is an isomorphism % —> F (¢).

Proof By construction, 7 has the property that A 4+ € A extends to a Q-Cartier and
ample divisor class A+ e€A. (N.B. the relative ampleness of A is not explicitly stated
in [41], but th1s is precisely what Looijenga checks). Hence the ring of sections
R(gZ A+ EA) makes sense (and is finitely generated). Since F — F*isa small
map, and Z is normal (by construction), the restriction of sections to F CcF
defines an isomorphism R(ﬁ A+ eA) R(Z, A +e€A).

Remark 22 According to the discussion of [28, Ch. 6], the (Q-factorialization of A is
unique: it is either .7 (¢€) or .% (—¢) (depending on the requested relative ampleness).
The main issue is that the finite generation of the ring of sections defining .7 (¢) is
not a priori guaranteed. Looijenga [41] makes use of the special structure of the
Baily-Borel compactification (e.g. the tube domain structure near the boundary, and
the existence of toroidal compactifications) to obtain that the (Q-factorialization is
well defined, and furthermore to get an explicit description of it.

Remark 23 The results of [34] (see esp. Proposition 5.4.5) predict that the above
proposition holds for 0 < € < é.

__The stratification #* = . Ly gty gl defines by pull-back a stratification
F = FIuF! U Z!! The boundary strata of Z are the irreducible components
of the above strata. We are interested in the number of the Type II boundary strata
of .Z and their dimensions.

We start by recalling that the structure of the Baily-Borel compactification for
quartic surfaces was worked out by Scattone [48]: there are 9 Type II boundary
components, and a single Type III boundary component.

Proposition 18 (Scattone [48]) The boundary of the Baily-Borel compactification

* of the moduli space of quartic surfaces consists of 9 Type Il boundary
components, and a single Type III component. The Type Il boundary components
are naturally labeled by a rank 17 negative definite lattice as follows: D17, Do ® Eg,
D12®Ds, D3®(E7)?%, A15® Do, , A11® Eg, (Ds)?>® D1, D16® D1, and (Es)*@® D)
respectively.
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g‘able(:1 4 Dimeqsio;of the D17 1 | D@ Eg |10 |Dj2 @ Ds 6
oundary strata in .7 D3 ®(E7)? |4 |Ais®Dy | 3 |AL®Es 1
(Ds)*®Dy |2 |Dig®Dy | 6 |(Eg)’ @Dy |2

-~

Proposition 19 The dimensions of the Type Il strata in the compactification ¥ are
given in Table 4.

Proof A type Il boundary component is determined by the choice of an isotropic
rank 2 primitive sublattice £ C A(= E% @ U & (—4)) (up to the action of the
monodromy group). The label associated to a Type II boundary component is the
root sublattice contained in the negative definite rank 17 lattice E k /E (with the
convention of including also D; = (—4) in the root lattice). According to [48],
this is a complete invariant for a Type II boundary component in the case of quartic
surfaces.

The construction of Looijenga [41] (see esp. Section 3 and Proposition 3.3 of loc.
cit.) depends on the linear space

L= (mHG%,EcH(H N Ei)> JE C E*/E.

More precisely, let M := E k /E.Note M is a negative definite rank 17 lattice. Then,
we recall that the fiber over a point j in the type I boundary component (recall each
Type II boundary component is a modular curve, here /SL(2, Z)) associated to E
is simply the quotient of the abelian variety J (&) ®z M by a finite group (here &
denotes the elliptic curve of modulus j, and J (&) its Jacobian). What Looijenga
has observed is that L is the null-space of the restriction to the toroidal boundary (of
Type II) of the linear system determined by the hyperplane arrangement 7. And
thus, the fiber for the (Q-factorialization (which as discussed above corresponds to
the Proj of the ring of sections of A + € A; also recall (the pull-back of) A restricts to
trivial on the toroidal boundary) over the point j in the Type II boundary component
associated to E is (up to finite quotient) J (&) @z M/L.

Now, we recall that the lattice A can be primitively embedded into the Borcherds
lattice I I 26 with orthogonal complement D7 (in a unique way). We fix

A= I
and R = AL+ = D;. With respect to this embedding, a hyperelliptic hyperplane
corresponds to an extension of R to a (primitively embedded) Dg into 11 26,
while a unigonal divisor to a Eg. Successive intersections of hyperplanes from
J correspond to extensions of R = (D7) into Dy lattices. Similarly, if E is
rank 2 isotropic (primitively embedded), then we recall that M = E-L/E can be
embedded into one the 24 Niemeier lattices (i.e. rank 24 negative definite even
unimodular lattices) with orthogonal complement D;. The same considerations
as before apply: a hyperelliptic divisor correspond to an extension to Dg (and
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repeated intersections to D7), while a unigonal one corresponds to an extension
to Eg. By inspecting the possible embeddings of Dy lattices into Niemeier lattices,
one obtains the dimensions claimed in Table 4. The only exception is the case
D17 (in which case D7 extends to Dy4) for which L = 0 C M, and thus the
Heegner divisor is already (Q-Cartier (and no modification is necessary; see [41,
Cor. 3.5]).

7.2  Matching Type II Strata

In order to understand the matching of the GIT and Baily-Borel Type 11 strata, one
needs to consider a generic smoothing 2 /A of a Type Il quartic surface X and
compute the limit MHS with Z-coefficients. The analogous case of K3 surfaces of
degree 2 was analyzed by Friedman in [10]. Inspired by Friedman’s analysis, we
make the following definition:

Definition 7 Let Xo be a Type II polystable quartic surface. The associated
(isomorphism class of) lattice 1s the direct sum of the following lattices:

1. One copy of E, for each E, singularity of X.

2. One copy of D444 for each degree d rational curve in the singular set of X.

3. One copy of A4y—1 for each degree d elliptic curve in the singular set of X.

4. The lattice (hy, K )~()L C Pic(X) where X is the minimal resolution of the

normalization of X and £ 3 is the polarization class on X (e.g.if X is a degree 2
del Pezzo with the anticanonical polarization, we add E7).

Remark 24 To understand the meaning of the lattice associated to a Type II
degeneration X, one needs to consider a generic smoothing 2 /A of X, followed
by a semi-stable (Kulikov type) resolution .2°/A. The lattice introduced in the
definition above is essentially (W2/W1)prim from [10, (5.1)]. The main point here
(similar to the discussion of Sect.6) is that one has quite a good understanding
of the semistable replacement in the Type II case. For instance, the simple elliptic
singularities E, (r = 6,7,8) will be replaced by degree 9 — r del Pezzo tails (this
leads to the first item of Definition 7).

Remark 25 By going through our list of Type II components of 9J1, one checks the
following:

1. Two polystable quartic surfaces belonging to the same Type II component of 9t
have isomorphic associated lattices.

2. The lattice associated to a polystable quartic surface of Type II has rank 17, is
negative definite, even, and belongs to the list of lattices associated to Type II
boundary components of .%*, see Proposition 18.

3. By associating to a Type II component of 91 the lattice associated to any
polystable quartic in the component (see Item (1)), we get a one to one
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correspondence between the set of Type II components of ) and the set of
lattices appearing in Proposition 18, provided we remove the D7 lattice.

The geometric meaning of the lattice associated to a polystable quartic of Type
Il is provided by our next result, which is proved by mimicking the arguments of
Friedman in [10] (see esp. [10, Rem. 5.6]).

Proposition 20 Let X be a polystable Type Il quartic surface. The period point
p([X]) belongs to the Baily-Borel Type Il boundary component labeled by the lattice
associated to X.

So far we have proved that the set of lattices appearing in Proposition 18, once we
remove the D17 lattice, parametrizes both the components of M and the Type 11
boundary components of . *, with the exclusion of one. The two parameterizations
are compatible with respect to the period map. Of course the same set of lattices
parametrizes Type II boundary components of Z, with the exception of one.

Proposition 21 Let L be one of the lattices appearing in Proposition 18, with the
exception of Dy17. The dimension of the Type Il boundary component of ¥ indexed
by L is equal to the dimension of the Type Il component of 9 indexed by the same L.

Proof We illustrate the computation of dimensions in the highest dimensional case:
II(5), i.e. quartics that have a single Eg singularity such that no line passes through
this singularity. Let X be a generic surface of this type; then X has a singularity of
type Eg at some point p and is smooth away from p, see Remark 9. Let Xo — Xo
be the minimal resolution. By Remark 9, the exceptional divisor D is an elliptic
curve with self-intersection —1, D is an anti-canonical section, and ,0()?0) =11
(i.e. X is the blow-up of P? along 10 points on an elliptic curve). Thus, H 2(5(40) is
nothing else than the lattice /1 19. By the discussion in Remark 10, it follows that
(Kg, +h 5(0);2 Fo) is isometric to Dyg. Since X has an Eg singularity, by our rule
(Definition 7), the associated label is Dg & Eg.

From Shah [51], a generic surface Xy of Type II(5) is GIT stable. On the
other hand, the results of [7] and [54] imply in particular (loc. cit. give general
conditions in terms of total Tjurina number) that the universal family of quartic
surfaces versally unfolds the Eg singularity. From these two results, it follows that
the codimension of the locus with a fixed Eg singularity is 10 = ,u(Eg) (where u is
the Milnor, and also, in this case, the Tjurina number), but there is an additional 1-
dimensional deformation corresponding to moduli of simple elliptic singularities.
Summing up, the II(5) locus has codimension 9 (i.e. dimension 10) in the GIT
quotient 1. (The same dimension count also follows from the geometric description
given in Remark 9.) .

The computation of the dimension of the stratum labeled by Eg @& Do in .% has
been carried out in Proposition 19. Here we point out that this case corresponds
to the Niemeier lattice containing the root system D¢ @ Eg. In that situation, the
maximally embedded Dy is D16, which means (using the notation of Proposition 19)
dimM/L =9 (N.B. 16 = 7 +9). Thus the fiber of .% — .7 ™ over a point j in the
Type II component labeled by Eg @ Dg is 9. Then again, by varying j, we obtain
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a 10-dimensional component (this time in .%# 7; thus the dimensions in 9 and .%
match).

To get further geometric understanding of the matching of the GIT com-
ponent II(5) and of the component labeled by D9 @ Eg in Z, we note that
there exists an extended period map. Specifically, recall that X( carries a mixed
Hodge structure (MHS), and that there exists also a limit mixed Hodge struc-
ture (LMHS). The Baily-Borel compactification .#* encodes the graded pieces
of the LHMS (in this situation, the modulus of the elliptic curve C, and a
discrete part, i.e. the choice of Type II component, or equivalently the label of
the component). As previously discussed, the graded pieces of the LMHS can
be read off from those of the MHS on degeneration X( (the weight 1 part
follows from Theorem 2, while the discrete weight 2 part is the rule given

by Definition 7). On the other hand, a toroidal compactification ?Z (which is
unique over the Type II stratum) encodes the full LMHS (i.e. the graded pieces,
plus the extension data; see Friedman [10] for a full discussion). Finally, the
semitoric compactifications of Looijenga are sitting between the Baily-Borel and

the toroidal compactifications: ?2 — 7 — Z*. Thus, from a Hodge theoretic
perspective, .# retains the graded pieces of the LHMS, plus partial extension
data. As explained below, this partial extension data is exactly the extension data
that can be read off from the central fiber X( (without passing to the Kulikov
model).

Specifically, in the case that we discuss here (Type II(5)), the Kulikov model
is Xo Ug T, where (as above) Xo is the resolution of the quartic surface with
an Eg singularity, 7" is a “tail” (depending on the direction of the smoothing). In
this situation, 7" is a degree 1 del Pezzo surface, whose primitive cohomology is
Eg. X0 is a rational surface with primitive cohomology Dg. Finally, the gluing
curve E is an elliptic curve (with self-intersection 1 on 7 and —1 on }?6), which
gives the modulus j discussed above. Fixing j, the modulus of these type of
surfaces (up to the monodromy action) is the 17 dimensional abelian variety
(Eg ® Dy) ®z J(&) (this is precisely the fiber of the toroidal compactifica-

tion ?E — ™ over the appropriate Type II Baily-Borel boundary point).
When passing to Looijenga Q-factorialization, the fiber of ¥ — %™ becomes
D9 @7 M/L (N.B. M/L = D9 in this case). This fiber can be identified with
the moduli space of Xo (or equivalently (550, D) with fixed j-invariant for D).
More precisely, it is possible to see that the restriction of the extended period
map

M-->.7 - F*

(which extends over the Type II and III locus) to the locus II(5) is nothing
else but the period map for the anticanonical pair ()?0, D) (see [13] and [11]
for a general modern discussion of the period map for anticanonical pairs, and
[57, Section 5] for the specific case discussed here; all of this originates with
work of Looijenga [36]). In conclusion, we get a perfect matching between the

ogrady@mat.uniroma.it



280 R. Laza and K. G. O’Grady

Table 5 Matching of the GIT stratum | BB stratum | Dimension
Type I strata (1) (E))@® Dy | 2

1(2) (E*®A; | 4

1(3) (Ds)? @Dy | 2

11(4) Es ® A 1

1(5) Eg ® Dy 10

11(6) D12 @ Ds 6

11(7) Dis ® D) 2

11(8) Ais @ (A)* | 3

Type II(5) stratum in 91 and the Type II stratum in Z labeled by D9 + Eg
(Table 5).2

Remark 26 (Kulikov Models) 1t is not hard to produce Kulikov models for each of
the Type II degenerations above. For instance, in a semi-stable degeneration, each
of the E, singularities will be replaced by a del Pezzo of degree (9 — r). As an
example, the case II(1) corresponding to a quartic with 2 Eg singularities will give
2 degree 1 del Pezzo surfaces, glued to an elliptic ruled surface (which is in the fact
the resolution of the singular quartic; the del Pezzo surfaces are “tails” induced by
the smoothing; see Sect. 6.5 above for related computations). The case of quartics
singular along a curve typically are obtained by projection from a rational surface
(frequently del Pezzo). For instance the case I1(6) is obtained by projecting a degree
4 del Pezzo from a point in P*. The associated label D1, @ Ds has the following
meaning: D5(= E5) is the primitive cohomology of the associated degree 4 del
Pezzo. On the other hand Dj; is coming from the singular locus of the quartic (in
this case a conic) and the rule (Definition 7) given above.

7.3 The Missing GIT Type II Component

The reader might be puzzled by the fact the BB stratum corresponding to D17 does
not occur in the list of Type II components of 9)i. We can explain this as follows.
First of all as noted in Proposition 19, along this stratum the hyperelliptic divisor
is Q-factorial and thus it is not affected by the Q-factorialization. Moreover, this
is precisely the boundary component that is contained in all elements of the D-
tower. (this is the component that survives when we go to low dimensions). As
discussed the entire AX) (when we get to codimension 9) is contracted and then
flipped (i.e. there is no deeper flip). This is indeed compatible with a theorem of

2In fact, while we do not check it here, we expect that the extended period map is an isomorphism
(at the generic points) between the I1(5) and II(Dg + E3) strata (and similarly for the other Type II
strata).
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Looijenga which identifies .7 (10)* with a certain weighted projective space and
with the moduli space of 7 3 7(= Eg @ U) marked K 3s (see Sect. 6). In conclusion,
the 9th boundary component is flipped all at once together with a big stratum,
and thus will not be visible in 0t/. It is “hidden” in the Ej; stratum (i.e. IV(8))
in MV,
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