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Abstract Looijenga has introduced new compactifications of locally symmetric
varieties that give a complete understanding of the period map from the GIT moduli
space of plane sextics to the Baily-Borel compactification of the moduli space
polarized K3’s of degree 2, and also of the period map of cubic fourfolds. On
the other hand, the period map of the GIT moduli space of quartic surfaces is
significantly more subtle. In our paper (Laza and O’Grady, Birational geometry of
the moduli space of quarticK3 surfaces, 2016. ArXiv:1607.01324)we introduced a
Hassett-Keel–Looijenga program for certain locally symmetric varieties of Type IV.
As a consequence, we gave a complete conjectural decomposition into a product of
elementary birational modifications of the period map for the GIT moduli spaces of
quartic surfaces. The purpose of this note is to provide compelling evidence in favor
of our program. Specifically, we propose a matching between the arithmetic strata
in the period space and suitable strata of the GIT moduli spaces of quartic surfaces.
We then partially verify that the proposed matching actually holds.

1 Introduction

The general context of our paper is the search for a geometrically meaningful
compactification of moduli spaces of polarized K3 surfaces, and similar varieties
(with Hodge structure of K3 type). While there exist well-known geometrically
meaningful compactifications of moduli spaces of smooth curves and of (polarized)
abelian varieties, the situation for K3’s is much murkier. The basic fact about the
moduli space of degree-d polarized K3 surfaces Kd is that, as a consequence of
Torelli and properness of the period map, it is isomorphic to a locally symmetric
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218 R. Laza and K. G. O’Grady

variety Fd = Γd\D , where D is a 19-dimensional Type IV Hermitian symmetric
domain, and Γd is an arithmetic group. As such, Fd has many known compact-
ifications (Baily-Borel, toroidal, etc.), but the question is whether some of these
are modular (by way of comparison, we recall that the second Voronoi toroidal
compactification of Ag is modular, cf. Alexeev [1]). The most natural approach to
this question is to compare birational models ofKd (e.g. those given by GIT moduli
spaces of plane sextic curves, quartic surfaces, complete intersections of a quadric
and a cubic in P4) and the known compactifications of Fd via the period map.
The most basic compactification of Fd is the one introduced by Baily-Borel; we
denote it byF ∗

d . In ground-breakingwork, Looijenga [40, 41] gave a framework for
the comparison of GIT and Baily-Borel compactifications of moduli spaces of low
degreeK3 surfaces and similar examples (e.g. cubic fourfolds). Roughly speaking,
Looijenga proved that, under suitable hypotheses, natural GIT birational models of a
moduli space of polarizedK3 surfaces can be obtained by arithmetic modifications
from the Baily-Borel compactification. In particular, Looijenga and others have
given a complete, and unexpectedly nice, picture of the period map for the GIT
moduli space of plane sextics (which is birational to the moduli space of polarized
K3’s of degree 2), see [10, 39, 50], and for the GIT moduli space of cubic fourfolds
(which is birational to the moduli space of polarized hyper-kähler varieties of Type
K3[2] with a polarization of degree 6 and divisibility 2), see [31, 32, 42]. By contrast,
at first glance, Looijenga’s framework appears not to apply to the GIT moduli space
of quartic surfaces (and their cousins, double EPW sextics): [51] and [47] showed
that the GIT stratification of moduli spaces of quartic surfaces and EPW sextics,
respectively, is much more complicated than the analogous stratification of the GIT
moduli spaces of plane sextics or cubic fourfolds, and there is no decomposition
of the (birational) period map to the Baily-Borel compactification into a product of
elementary modifications as simple as that of the period map of degree 2 K3’s or
cubic fourfolds. In our paper [34], we refined Looijenga’s work and we proved that,
morally speaking, Looijenga’s framework can be successfully applied to the period
map of quartic surfaces and EPW sextics. In fact, we have noted that Looijenga’s
work should be viewed as an instance of the study of variation of (log canonical)
models for moduli spaces (a concept that matured more recently, starting with the
work of Thaddeus [56], and continued, for example, with the so-called Hassett–Keel
program). This led to the introduction, in [34], of a program,which might be dubbed
Hassett–Keel–Looijenga program, whose aim is to study the log-canonical models
of locally symmetric varieties of Type IV equipped with a collection of Heegner
divisors (in that paper we concentrated on a specific series of locally symmetric
varieties and Heegner divisors, but the programmakes sense in complete generality).
In particular, in [34] we made very specific predictions for the decomposition into
products of elementary birational modifications of the period maps for the GIT
moduli spaces of quartic K3 surfaces.

Our predictions are in the spirit of Looijenga [41], i.e. the elementary birational
modifications are dictated by arithmetic. There are two related issues arising here:
First, the various strata in the period space should correspond to geometric strata in
the GIT compactification. Secondly, our work in [34] is only predictive, i.e. there is
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no guarantee that the given list of birational modifications is complete, or even that
all these modifications occur. The purpose of this note is to partially address these
two issues. Namely, we give what we believe to be a complete matching between the
geometric and arithmetic strata, thus addressing the first issue. We view this result
as strong evidence towards the completeness and accuracy of our predictions. While
our previous paper [34] looks at the period map from the point of view of the target
(the Baily-Borel compactification of the period space), the present paper’s vantage
point is that of the GIT moduli spaces of quartic surfaces: we get what appears to
be a snapshot of the predicted decomposition of the period map into a product of
simple birational modifications.

Let us discuss more concretely the content of this note, and its relationship to
[34]. To start with, we recall that in [34] we have introduced, for eachN ≥ 3, anN-
dimensional locally symmetric varietyF (N) associated to theD latticeU2⊕DN−2.
The space F (19) is the period space of degree 4 polarized K3 surfaces, and also
F (18), F (20) are period spaces for natural polarized varieties (see Sect. 2.4 for
details). The main goal of that paper is to predict the behavior of the schemes

F (N,β) = ProjR(F (N),λ(N) + β∆(N)), β ∈ [0, 1] ∩ Q ,

where λ(N) is the Hodge (automorphic) divisor class on F (N), ∆(N) is a
“boundary” divisor, with a clear geometric meaning for N ∈ {18, 19, 20}, and
R(F (N),λ(N) + β∆(N)) is the graded ring associated to the Q -Cartier divisor
class λ(N)+ β∆(N).

For all N , the scheme F (N, 0) is the Baily-Borel compactification F (N)∗. At
the other extreme, for N = 19, 18, the scheme F (N, 1) is isomorphic to a natural
GIT moduli spaceM(N) (and we are confident that the same remains true for N =
20). From now on, we will concentrate our attention on F := F (19) (see [35] for
a complete discussion of the case N = 18). The relevant GIT moduli space is that
of quartic surfaces, i.e.

M := |OP3(4)|//PGL(4).

The period map

p : M !!" F ∗

is birational by Global Torelli. We expect (following Looijenga) that the inverse p−1

decomposes as the product of a Q -factorialization, a series of flips, and, at the last
step, a divisorial contraction.

In order to be more specific, we need to describe the boundary divisor ∆ forF .
First, letHh,Hu ⊂ F be the (prime) divisors parametrizing periods of hyperelliptic
degree 4 polarized K3’s, and unigonal degree 4 polarized K3’s respectively—they
are both Heegner (i.e. Noether-Lefschetz) divisors. The boundary divisor is given by

∆ := (Hh +Hu)/2.
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The birational transformations mentioned above are obtained by considering
F (β) := F (19,β) for β ∈ [0, 1] ∩ Q .

The main result of our previous paper is the prediction of the critical values of β
corresponding to the flips, together with the description of (the candidates for) the
centers of the flips on the F side. In fact in [34] we have defined towers of closed
subsets (see (14))

Z9 ⊂ Z8 ⊂ Z7 ⊂ Z5 ⊂ Z4 ⊂ Z3 ⊂ Z2 ⊂ Z1 = supp∆ ⊂ F , (1)

where k denotes the codimension (Z6 is missing, no typo). Our prediction is that the
critical values of β are

0,
1
9
,
1
7
,
1
6
,
1
5
,
1
4
,
1
3
,
1
2
, 1, (2)

and that the center of the n-th flip (corresponding to the n-th critical value) is
the closure of the strict transform of the n-th term in the relevant tower (the Q -
factorialization corresponds to small β > 0, hence the corresponding 0-th critical β
is 0). The last critical value of β, i.e. β = 1 corresponds to the contraction of the
strict transform of the boundary divisor.

On the GIT moduli space side, Shah [51] has defined a closed locus MIV ⊂M
containing the indeterminacy locus of the period maps (we predict that it coincides
with the indeterminacy locus), which has a natural stratification (see Definition 5)

MIV=(W8({υ})⊃(W7({υ})⊃(W6({υ})⊃(W4({υ})⊃(W3({υ})⊃(W2({υ})⊃(W1({υ})⊃(W0({υ}),

where υ is the point corresponding to the tangent developable of a twisted cubic
curve, and the index denote dimension. As predicted by Looijenga, and refined by
us, we expect that the center in M corresponding to the center Zk is Wk−1 ( {υ}
(N.B. the indices represent the codimension and respectively the dimension of the
corresponding loci. Since Z• and W• are related via flips, there is a shift by 1 for
the indices.). The purpose of this note is to give evidence in favor of the above
matching. We prove that the described matching holds for Z1 and Z2 (equivalently,
for (W1 ( {υ}) and (W0 ( {υ})), and we provide evidence for the matching between
Z9, Z8, Z7 and (W8 ( {υ}), (W7 ( {υ}), (W6 ( {υ}) respectively.

In Sect. 2 we give a very brief overviewof the framework developed by Looijenga
in order to compare the GIT and Baily-Borel compactifications of moduli spaces
of polarized K3 surfaces, or similar varieties, and we will illustrate it by giving a
bird’s-eye-view of the period map for degree-2 K3’s and cubic fourfolds. We then
introduce the point of view developed in [34], and we describe in detail the predicted
decomposition of the inverse of the period map for quartic surfaces as product of
elementary birational maps (i.e. flips or contractions), see (9).

We continue in Sect. 3, by revisiting the work of Shah [51] on the GIT for
quartic surfaces. Usually, in a GIT analysis, by boundary one understands the locus
(in the GIT quotient) parameterizing strictly semistable objects, which then can
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be stratified in terms of stabilizers of the polystable points (see Kirwan [24]). In
his works on periods of quartic surfaces, Shah (see [49, 50]) noted that a more
refined stratification emerges when studying the period map, resulting into four
Types of quartic surfaces, labeled I–IV, with corresponding locally closed subsets
of M denoted MI , . . . ,MIV . A quartic is of Type I–III if it is cohomologically
insignificant (or from a more modern point of view, it is semi-log-canonical), and
thus the period map extends over the open subset of the moduli space parametrizing
such surfaces; moreover the Type determines whether the period point belongs to
the period space (Type I), or it belongs to one of the Type II or Type III boundary
components of the Baily-Borel compactification. The remaining surfaces are of
Type IV, in particular the indeterminacy locus of p : M !!" F (19)∗ is contained in
MIV (we predict that it coincides with MIV ). In the analogous case of the period
map from the GIT moduli space of plane sextics to the period space for polarized
K3’s of degree 2, the Type IV locus consists of a single point (corresponding to
the triple conic). On the other hand, for quartic surfaces the Type IV locus is of
big dimension and it has a complicated structure. In our revision of Shah’s work, we
shed some light on the structure of Type IV (and Type II and III) loci.While arguably
everything that we do here is contained in Shah, we believe that the structure
becomes transparent only after one knows the predicted arithmetic behavior. In some
sense, the main point of Looijenga is to bring order to the world of GIT quotients of
varieties ofK3 type, by relating it to the orderly world of hyperplane arrangements.

In Sect. 4, we define partitions ofMII andMIII into locally closed subsets (our
partitions are slightly finer than partitions which have already been defined by Shah
in [51]), and we define the stratification ofMIV discussed above.

In Sects. 5 and 6 we provide evidence in favor of the predictions of [34] for
p : M !!" F ∗. We start (Sect. 5) by showing that the period map behaves as
predicted in neighborhoods of the points υ,ω ∈ M corresponding to the tangent
developable of a twisted cubic curve and a double (smooth) quadric respectively.
By blowing up those points one “improves” the behavior of the period map; the
exceptional divisor over υ maps regularly to the (closure of the) unigonal divisor
in F ∗, the exceptional divisor over ω maps to the (closure of the) hyperelliptic
divisor Hh in F ∗, and the image of the set of regular points for the map in Hh

is precisely the complement of Z2. This result is essentially present in [51] (and
belongs to “folk” tradition); we take care in specifying the weighted blow up that
one needs to perform around υ in order to make the map regular above υ. In the
language that we introduced previously, the above results match Z1 with W0 ( {υ}.
Next, we match Z2 and W1 ( {υ}. This is the first flip in the chain of birational
modifications transforming the GIT into the Baily-Borel compactification, and it is
more involved than the blow-ups of υ and ω. It suffices here to mention that W1
parametrizes quarticsQ1 +Q2, whereQ1,Q2 are quadrics tangent along a smooth
conic. (Warning: we do not provide full details of some of the proofs.) We note that
while some similar arguments and computations occur previously in the literature
(esp. in work of Shah [50, 51]), to our knowledge, the discussion here is the most
complete and detailed analysis of an explicit (partial) resolution of a period map for
K3 surfaces (esp. the discussion of the flip is mostly new).
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In Sect. 6, we provide evidence in favor of the matching of Z9, Z8, Z7 and
W8 ( {υ},W7 ( {υ},W6 ( {υ}. It is interesting to note that the flips of Z9, Z8, Z7

are associated to the so-called Dolgachev singularities (aka triangle singularities or
exceptional unimodular singularities) E12, E13, and E14 respectively. These are the
simplest non-log canonical singularities, essentially analogous to cusp for curves.
The geometric behavior of variation ofF (β) at the corresponding critical values is
analogous to the behavior of the Hassett-Keel space Mg(α) around α = 9

11 (when
stable curves with an elliptic tail are replaced by curves with cusps, see [19]). While
hints of this behavior exist in the literature (see Hassett [17], Looijenga [37], and
Gallardo [12]), our F (β) example is the first genuine analogue of a Hassett-Keel
behavior for surfaces (the existence of this is well-known speculation among experts
in the field).

In the final section (Sect. 7), we discuss Looijenga’s Q -factorialization of F ∗,
that we denote F̂ , and the matching between the irreducible components of MII

(i.e. the elements of the partition of MII defined in Sect. 4) and the irreducible
components of F II (i.e. the Type II boundary components of F ∗). From our
point of view, Looijenga’s Q -factorialization of F ∗ is nothing else but F (ϵ) for
ϵ > 0 small (the prediction of [34] is that 0 < ϵ < 1/9 will do). We compute
the dimensions of the inverse images in F̂ of the Type II boundary components of
F ∗. Lastly, we match the irreducible components ofMII and the Type II boundary
components of F ∗. This matching deserves a more detailed discussion elsewhere.
On the GIT side, MII has 8 components (of varying dimension), while F ∗ has
9 Type II boundary components (as computed in [48]), each of them is a modular
curve. By adapting arguments of Friedman in [10], we can match each of the 8
components ofMII to one of the 9 Type II boundary components ofF ∗, and hence
exactly one Type II boundary component is left out. The discrepancy of dimensions
between GIT and Baily-Borel strata (for the 8 matching strata) is explained by
Looijenga’s Q -factorialization of the Baily-Borel compactification (one of the main
results of [41]). A mystery, at least for us, was the presence of a “missing” Type II
boundary of F ∗. This has to do with what we call the second order corrections to
Looijenga’s predictions (one of the main discoveries of [34]).

To conclude, we believe that while further work is needed (and small adjustments
might occur), there is very strong evidence that our predictions from [34] are
accurate. In any case, Looijenga’s visionary idea that the natural (or “tautological”)
birational models (such as GIT) of the moduli space of polarizedK3s are controlled
by the arithmetic of the period space is validated in the highly non-trivial case of
quartic surfaces (by contrast, in the previous known examples [2, 32, 39, 42, 43, 50]
only first order phenomena were visible, and thus a bit misleading). As possible
applications of our program, starting from the period domain side, one can bring
structure and order to the (a priori) wild side of GIT. Conversely, starting from GIT
and the work of Kirwan [24, 25], one can follow our factorization of the period map
(and do “wall crossing” computations) and compute, say, the Betti numbers ofF .

Remark 1 In subsequent work [35], we have obtained a complete validation of the
predictions of [34] for the related case of hyperelliptic quarticK3 surfaces (the case
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N = 18 in the notation of loc. cit.). The geometric matching that we obtain in [35]
(e.g. strata Zk

h ⊂Fh = F (18) flipped to strataWh,k−1 ⊂Mh = M(18)) is parallel
to the geometric matching that we discuss in this paper. The main technique of [35]
is VGIT, and the methods there can be regarded as complementary to what we do in
this paper.

Definition 1 AK3 surface is a complex projective surface X with DuVal singular-
ities, trivial dualizing sheaf ωX , and H 1(OX) = 0.

We let U be the hyperbolic plane, and root lattices are always negative definite.
LetΛ be a lattice, and v,w ∈ Λ. We let (v,w) be the value of the bilinear symmetric
form on the couple v,w, and we let q(v) := (v, v). The divisibility of v is the
positive integer div(v) such that (v,Λ) = div(v)Z. Let v be primitive (i.e. v = mw

implies that m = ± 1); if Λ is unimodular, then div(v) = 1, in general it might be
greater than 1.

2 GIT vs. Baily-Borel for Locally Symmetric Varieties
of Type IV

The purpose of this section is to give a very brief account of Looijenga’s framework
and our enhancement from [34] (with a focus on quartic surfaces). We start with the
simplest non-trivial example that fits into Looijenga’s framework—degree-2 K3
surfaces (see [39, 50], [10, §5], and [33, §1] for a concise account). We then briefly
touch on the general case, and we recall how it applies to the moduli space of cubic
fourfolds. Lastly, we describe in detail our (conjectural) decomposition of the period
map for quartic surfaces into a product of elementary birational modifications,
see [34].

Remark 2 To the best of our knowledge, the first instance of Looijenga’s framework
is in Igusa’s celebrated paper [21] on modular forms of genus 2. The paper by Igusa
analyzes the (birational) period map between the compactification of the moduli
space of (smooth) genus 2 curves provided by the GIT quotient of binary sextics
and the Satake compactification ofA2 (notice thatA2 is a locally symmetric variety
of Type IV). Igusa describes explicitly the blow-up of a non-reduced point in the
GIT moduli space needed to resolve the period map. See [18] for a more recent
version of this story.

2.1 Degree-2 K3 Surfaces

Let F2 be the period space of degree-2 polarized K3 surfaces, i.e. F2 = Γ2\D ,
where Γ2 and D are defined as follows. Let Λ := U2 ⊕ E2

8 ⊕ A1. Thus Λ is
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isomorphic to the primitive integral cohomology of a polarized K3 of degree 2.
Then

D := {[σ ] ∈ P(Λ⊗C) | q(σ ) = 0, q(σ+σ ) > 0}+, Γ2 := O+(Λ). (3)

Here the first superscript + means that we choose one connected component (there
are two, interchanged by complex conjugation), the second one means that Γ2 is the
index-2 subgroup of O(Λ) which maps D to itself. Let F2 ⊂ F ∗

2 be the Baily-
Borel compactification. Let M2 := |OP2(6)|//PGL(3) be the GIT moduli space of
plane sextics. We let

p : M2 !!" F ∗
2 , p−1 : F ∗

2 !!" M2

be the (birational) period map and its inverse, respectively. By Shah [50] the period
map p is regular away from the point q ∈M2 parametrizing the PGL(3)-orbit of 3C,
where C ⊂ P2 is a smooth conic (a closed orbit in |OP2(6)|ss). Let MI

2 ⊂ M2 be
the open dense subset of orbits of curves with simple singularities, and letHu ⊂ F2
be the unigonal divisor, i.e. the divisor parametrizing periods of unigonal degree-
2 K3’s. Thus Hu is a Heegner divisor; it is the image in F2 of a hyperplane
v⊥ ∩ D , where v ∈ Λ is such that q(v) = −2 and div(v) = 2 (any two such
elements of Λ are Γ2-equivalent). Then the period map defines an isomorphism
MI

2
∼−→ (F2 \ Hu). Let L ∈ Pic(M2)Q be the class induced by the hyperplane

class on |OP2(6)|, let λ be the Hodge divisor class on F2, and ∆ := Hu/2;
a computation similar (but simpler) to those carried out in Sect. 4 of [34] gives
that

p−1L|F2 = λ+
1
2
Hu = λ+∆ (4)

(the 1
2 factor indicates that Hu is a ramification divisor of the quotient map

D → F2). Arguing as in Sect. 4.2 of [34], one shows that p−1 is regular on all of
F2 (one key point is that F2 is Q -factorial). On the other hand p−1 is not regular
on all ofF ∗

2 . In order to describe p−1 on the boundary ofF2, let F̂2 ⊂ F ∗
2 ×M2

be the graph of p−1, and let Π : F̂2 → F ∗
2 , Φ : F̂2 →M2 be the projections:

(5)

Thus Π is an isomorphism over F2 (because p−1 is regular on F2). On the
other hand, it follows from Shah’s description of semistable orbits in |OP2(6)|,
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that the fibers of Π over two of the four 1-dimensional boundary components
of F ∗

2 are 1-dimensional (namely those labeled by E2
8 ⊕ A1 and D16 ⊕ A1; see

Remark 5.6 of [10] for the notation), and they are 0-dimensional over the remaining
two boundary components. From this it follows thatF ∗

2 is not Q -factorial, because
if it were Q -factorial, the exceptional set of Π would have pure codimension 1.
Moreover, it follows that Π is a Q -factorialization of F ∗

2 . In fact, since F2 is
Q -factorial, with rational Picard group freely generated by λ and Hu, the rational
class group Cl(F ∗

2 )Q is freely generated by λ∗ and H ∗
u (obvious notation). Since

λ∗ is the class of a Q -Cartier divisor, it follows that H ∗
u is not Q -Cartier. Let

Ĥu ⊂ F̂2 be the strict transform of Hu. Then Ĥu is Q -Cartier, because by (4),
there exists m ≫ 0 such that mĤu is the divisor of a section of the line-bundle
Φ∗L2m⊗Π∗(λ∗)−2m. Moreover we can identify F̂2 with Proj(

⊕
n≥0OF ∗

2
(nH ∗

u )),
because Ĥu is Π-ample (clearly aπ∗(λ∗) + bΦ∗L is ample for any a, b ∈ Q+,
using (4) and the triviality of π∗(λ∗) on fibers ofΠ , it follows that Ĥu isΠ-ample).
Thus (as in [39]) we have decomposed p−1 as follows: first we construct the Q -
factorialization of F ∗

2 given by Proj(
⊕

n≥0 OF ∗
2
(nH ∗

u )), then we blow down the
strict transform of H ∗

u , i.e. Ĥu. In this case the Mori chamber decomposition of
the cone {λ + β∆ | β ∈ [0, 1] ∩ Q } is very simple; there are exactly two walls,
corresponding to β = 0 and β = 1.

2.2 A Quick Overview of Looijenga’s Framework

Let M0 be a moduli space of (polarized) varieties which are smooth or “almost”
smooth (e.g. surfaces with ADE singularities), with Hodge structure of K3 type.
In particular the corresponding period space is F = Γ \D , where D is a
Type IV domain or a complex ball, and Γ is an arithmetic group. An example
of M0 is provided by the moduli space of degree-d polarized K3 surfaces,
embedded by a suitable multiple of the polarization (one also has to specify the
linearized ample line-bundle on the relevant Hilbert scheme), and F = Fd—
in particular the example discussed in Sect. 2.1. We let M0 ⊂ M be a GIT
compactification, and we let F ⊂ F ∗ be the Baily-Borel compactification.
Let

p : M !!" F ∗

be the period map, and assume that it is birational. Looijenga [40, 41] tackled
the problem of resolving p. First, he observed that in many instances p(M0) =
F \ supp∆, where ∆ is an effective linear combination of Heegner divisors—
in the example of Sect. 2.1, one chooses ∆ = Hu/2. It is reasonable to expect
that

M ∼= ProjR(F ,λ +∆), (6)
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where λ is the Hodge (automorphic) Q -line bundle on F (of course here the
choice of coefficients for ∆ is crucial), and for a Q -line bundle L on F we
let R(F ,L ) be the graded ring of sections associated to L . In the example
of Sect. 2.1, Eq. (6) holds by (4). On the other hand, Baily-Borel’s compactification
is characterized as

F ∗ = ProjR(F ,λ).

Thus, in order to analyze the period map, we must examine ProjR(F ,λ + β∆) for
β ∈ (0, 1) ∩ Q (we assume throughout that R(F ,λ + β∆) is finitely generated).
Let us first consider the two extreme cases: β close to 0 or to 1, that we denote
β = ϵ and β = (1− ϵ), respectively. The space

F̂ := ProjR(F ,λ + ϵ∆)

constructed by Looijenga [41] as a semi-toric compactification, has the effect of
making ∆ Q -Cartier (notice that the period space F is Q -factorial, the problems
occur only at the Baily-Borel boundary). The map F̂ → F ∗ is a small map—in the
example of Sect. 2.1 this is the mapΠ : F̂2 → F ∗

2 . At the other extreme, we expect
that M̃ := ProjR(F ,λ + (1 − ϵ)∆) is a Kirwan type blow-up of the GIT quotient
M with exceptional divisor the strict transform of ∆—in the example of Sect. 2.1
this is the map Φ : F̂2 →M2.

In between, we expect a series of flips, dictated by the structure of the preimage
of ∆ under the quotient map π : D → F . More precisely, let H := π−1(supp∆);
then H is a union of hyperplane sections of D , and hence is stratified by closed
subsets, where a stratum is determined by the number of independent sheets
(“independent sheets” means that their defining equations have linearly independent
differentials) ofH containing the general point of the stratum. The stratification of
H induces a stratification of supp∆, where the strata of supp∆ are indexed by
the “number of sheets” (in D , not in F = Γ \D). Roughly speaking, Looijenga
predicts that a stratum of supp∆ corresponding to k (at least) sheets meeting (in D)
is flipped to a dimension k − 1 locus on the GIT side. In the example of Sect. 2.1,
the divisor H := π−1Hu is smooth, and this is the reason why no flips appear in
the resolution of p given by (5). In Sect. 2.3 we give an example in which one flip
occurs.

Summarizing, Looijenga predicts that in order to resolve the inverse of the period
map p one has to follow the steps below:

1. Q -factorialize∆.
2. Flip the strata of ∆ defined above, starting from the lower dimensional strata,
3. Contract the strict transform of ∆.

All these operations have arithmetic origin, and thus, when applicable, give a
meaningful stratification of the GIT moduli space.
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2.3 Cubic Fourfolds

The period space is similar to that of degree-2 polarized K3 surfaces (see (3)).
Specifically, Λ is replaced by Λ′ := U2 ⊕ E2

8 ⊕ A2, and the arithmetic group is
Õ+(Λ′) := Õ(Λ′) ∩ O+(Λ′), where Õ(Λ′) is the stable orthogonal group. The
divisor∆ is Hu/2, where this time Hu is the image inF of v⊥ ∩D for v ∈ Λ such
that q(v) = −6 and div(v) = 3. In this case at most two sheets of H := π−1Hu

meet, and correspondingly there is exactly one flip f , fitting into the diagram

Here, Φ is the blow-up of the polystable point corresponding to the secant variety
of a Veronese surface. The map f is the flip of the codimension 2 locus where
two sheets of H := π−1Hu meet, and the corresponding locus in M is the curve
parametrizing cubic fourfolds singular along a rational normal curve. For a detailed
treatment, see [31, 32, 42].

2.4 Periods of Polarized K3’s of Degree 4 According to [34]

We start by recalling notation and constructions from [34]. For N ≥ 3, let ΛN :=
U2⊕DN−2. In [34] we defined a group Õ+(ΛN) < ΓN < O+(ΛN) which is equal
to O+(ΛN) if N ̸≡ 6 (mod 8), and is of index 3 in O+(ΛN) if N ≡ 6 (mod 8),
see Proposition 1.2.3 of [34]. Next, we let

DN := {[σ ] ∈ P(ΛN ⊗ C) | q(σ ) = 0, q(σ + σ ) > 0}+, (7)

F (N) := ΓN\DN . (8)

(The meaning of the superscript + is as in (3).) Then F := F (19) is the period
space for polarized K3’s of degree 4—we will explain the relevance of the other
F (N) at the end of the present subsection. Let (X,L) be a polarizedK3 surface of
degree 4; we let and p(X,L) ∈ F be its period point.

The hyperelliptic divisorHh ⊂ F is the image of v⊥∩D19 for v ∈ Λ19 such that
q(v) = −4, and div(v) = 2 (any two such v’s areO+(Λ19)-equivalent). Let (X,L)

be a polarized K3 surface of degree 4; then p(X,L) ∈ Hh if and only if (X,L) is
hyperelliptic, i.e. ϕL : X !!" |L|∨ is a regular map of degree 2 onto a quadric—this
explains our terminology.
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The unigonal divisors Hu ⊂ F , is the image of v⊥ ∩ D19 for v ∈ Λ such that
q(v) = −4, and div(v) = 4 (any two such v’s are O+(Λ19)-equivalent). If (X,L)

is a polarized K3 surface of degree 4, then p(X,L) ∈ Hu if and only if (X,L) is
unigonal, i.e. L ∼= OX(A + 3B), where B is an elliptic curve and A is a section of
the elliptic fibration |B|.

We let ∆ := (Hh + Hu)/2. For k ≥ 1, let ∆(k) ⊂ supp∆ be the k-th stratum
of the stratification defined in Sect. 2.2, i.e. the closure of the image of the locus
in H := π−1(supp∆) where k (at least) independent sheets of H meet. One has
∆(19) ̸= ∅, and there is a strictly increasing ladder ∆(19) " ∆(18) " . . . " ∆(1) =
(Hh ( Hu). This is in stark contrast with the cases discussed above: in fact (with
analogous notation) in the case of degree 2K3 surfaces one has∆(k) = ∅ for k ≥ 2,
and in the case of cubic fourfolds one has ∆(k) = ∅ for k ≥ 3. In fact, since for
quartic surfaces there are 0-dimensional strata of ∆, strictly speaking Looijenga’s
theory does not apply (see Lemma 8.1 in [41]). Our refinement in [34] takes care
of this issue and, at least to first order, Looijenga’s framework still applies, as we
proceed to explain. For the rest of the paper, the GIT moduli space M is that of
quartic surfaces:

M := |OP3(4)|//PGL(4).

Of course, we do not “see” hyperelliptic polarized K3’s of degree 4 among quartic
surfaces, nor do we see unigonal polarized K3’s of degree 4—and that is where
all the action takes place. Let λ be the Hodge Q -Cartier divisor class on F . The
period map p : M !!" F ∗ (denoted p19 in [34]) is birational by Global Torelli, and
it defines an isomorphism

M ∼= ProjR(F ,λ +∆)

by Proposition 4.1.2 of [34]. On the other hand, the Baily-Borel compactification
F ∗ is identified with ProjR(F ,λ). For β ∈ [0, 1] ∩ Q , we let

F (β) = ProjR(F ,λ + β∆).

(9)

The predictions of [34] are as follows. First, we expect thatR(F ,λ+β∆) is finitely
generated for all β ∈ [0, 1] ∩ Q , and that the critical values of β ∈ [0, 1] ∩ Q are

ogrady@mat.uniroma1.it



GIT Versus Baily-Borel Compactification for Quartic K3 Surfaces 229

given by

β ∈
{
0,

1
9
,
1
7
,
1
6
,
1
5
,
1
4
,
1
3
,
1
2
, 1

}
. (10)

(Note: β = 1/8 is missing, no typo.) This means that for βi < β ≤ β ′ < βi+1,
where βi ,βi+1 are consecutive critical values, the birational mapF (β) !!" F (β ′)
is an isomorphism. We let

F (βi ,βi+1) := F (β), β ∈ (βi ,βi+1) ∩ Q . (11)

As we have already mentioned, F (ϵ) is expected to be the Q -factorialization of
F ∗. On the other hand, F (1 − ϵ) is the blow-up of M with center a scheme
supported on the two points representing the tangent developable of a twisted cubic
curve, and a double (smooth) quadric. For later reference we denote by υ and ω the
corresponding points ofM; explicitly

υ := [V (4(x1x3 − x22 )(x0x2 − x21)− (x1x2 − x0x3)
2)], (12)

ω := [V ((x20 + x21 + x22 + x23)
2)]. (13)

We predict that one goes from F (ϵ) to F (1 − ϵ) via a stratified flip, summarized
in (9). More precisely, in [34] we have defined a tower of closed subsets

Z9 ⊂ Z8 ⊂ Z7 ⊂ Z5 ⊂ Z4 ⊂ Z3 ⊂ Z2 ⊂ Z1 = Hu ∪Hh ⊂ F , (14)

where k denotes the codimension (Z6 is missing, no typo). In fact, with the notation
of [34],

1. for k ≤ 5, Zk = ∆(k),
2. Z7 = Im(f13,19 ◦ q13 : F (II2,10 ⊕ A2) ↪→ F ),
3. Z8 = Im(f12,19 ◦m12 : F (II2,10 ⊕ A1) ↪→ F ), and
4. Z9 = Im(f11,19 ◦ l11 : F (II2,10) ↪→ F ) (Z9 is one of the two components of
∆(9)).

Let m ∈ {2, 3, . . . , 7, 9}; we predict that the birational map

F (a(m),
1
m
) !!" F (

1
m
,

1
m− 1

)

(here a(m) = 1
m+1 if m ̸= 7, 9, a(7) = 1/9, and a(9) = 0) is a flip with center

the strict transform of (the closure) of Zk, where k = m, except for m = 7, 6,
in which case k = m + 1. Thus we expect that Zk is replaced by a closed
Wk−1 ⊂ M of dimension k − 1. Correspondingly, we should have a stratification
of the indeterminacy locus Ind(p) of the period map. Now, according to Shah, the
indeterminacy locus Ind(p) is contained in the locusMIV parametrizing polystable
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quadrics of Type IV (i.e. those which do not have slc singularities, see Sect. 3.3)—
and it is natural to expect that Ind(p) = MIV . The first evidence in favor of our
predictions is that, as we will show,MIV has a natural stratification

MIV=(W8({υ})⊃(W7({υ})⊃(W6({υ})⊃(W4({υ})⊃(W3({υ})⊃(W2({υ})⊃(W1({υ})⊃(W0({υ}),
(15)

where W0 = {ω}, and each Wi is (closed) irreducible of dimension i. It is well
known that the period map “improves” on the blow-up M̃ of a certain subscheme of
M supported on {υ,ω}. More precisely, it is regular on the exceptional divisor over
υ, with image the closure of the unigonal divisorHu, it is regular on the dense open
subset of the exceptional divisor over ω parametrizing double covers of P1 × P1

ramified over a curve with ADE singularities (the exceptional divisor over ω is the
GIT quotient of |OP1×P1(4, 4)|modulo Aut(P1×P1)), mapping it toHh\∆(2). This
is discussed with much more detail than previously available in the literature (e.g.
[51]) in Sects. 5.1 and 5.2 respectively. In Sect. 5.3 we identify M̃withF (1−ϵ), for
small ϵ > 0. Section 5.4 is devoted to a proof (without full details) that the blow up
of a suitable scheme supported on the strict transform ofW1 in M̃ can be contracted
to produce F (1/2). Lastly, in Sect. 6, we give evidence that Wk−1 is related to
Zk as predicted, for k ∈ {7, 8, 9}. Namely, Z9, Z8, Z7 correspond precisely to
T2,3,7, T2,4,5, T3,3,4 markedK3 surfaces respectively, whileW6,W7,W8 correspond
to the equisingular loci of quartics with E14, E13, E12 singularities respectively (on
the GIT side). The flips replacingWk−1 with Zk (in this range) are analogous to the
semi-stable replacement that occurs for curves in the Hassett–Keel program (e.g.
curves with cusps are replaced by stable curves with elliptic tails).

We end the subsection by going back to F (N) for arbitrary N ≥ 3. First,
there are other values of N for which F (N) is the period space for geometrically
meaningful varieties ofK3 type. In fact,F (18) is the period space for hyperelliptic
polarized K3’s of degree 4, and F (20) is the period space for double EPW
sextics [46] (modulo the duality involution), and of EPW cubes [22]. Secondly, there
is a “hyperelliptic divisor” on F (N) for arbitrary N (and a “unigonal” divisor on
F (N) for N ≡ 3 (mod 8)). More precisely, if N ̸≡ 6 (mod 8) the hyperelliptic
divisor Hh(N) ⊂ F (N) is the image of v⊥ ∩ D for v ∈ ΛN such that q(v) = −4,
and div(v) = 2, if N ≡ 6 (mod 8) the definition of the hyperelliptic divisor is
subtler (there is a link with the fact that [O+(ΛN) : ΓN ] = 3). The key aspect of
our analysis in [34] is that we have a tower of locally symmetric spaces

. . . ↪→ F (18)
f19
↪→ F (19)

f20
↪→ F (20) ↪→ . . . ↪→ F (N − 1)

fN
↪→ F (N) ↪→ . . .

(16)

where F (N − 1) is embedded into F (N) as the hyperelliptic divisor Hh(N). Our
paper [34] contains analogous predictions for the behavior of ProjR(F (N),λ(N)+
∆(N)), where λ(N) is the Hodge Q -Cartier divisor class, and ∆(N) is a Q -Cartier
boundary divisor class (equal to ∆ for N = 19), which are compatible with the
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tower (16). Thus the period map and birational geometry of F = F (19) sits
between F (18), i.e. the period space of hyperelliptic quartic surfaces, and F (20),
i.e. the period space of double EPW sextics (modulo the duality involution), or
equivalently that of EPW cubes.

3 GIT and Hodge-Theoretic Stratifications ofM

3.1 Summary

The analysis of GIT (semi)stability for quartic surfaces was carried out by Shah
in [51]. In this section we will review some of his results. In particular we will go
over the GIT stratification (N.B. as usual, a stratification of a topological space X
is a partition of X into locally closed subsets such that the closure of a stratum is
a union of strata) determined by the stabilizer groups of polystable quartics. After
that, we will review Shah’s Hodge-theoretic stratification [49, 51]

M = MI (MII (MIII (MIV (17)

from a modern perspective (due to Steenbrink [55], Kollár, Shepherd-Barron and
others [26, 29, 52]). The period map p : M !!" F ∗ extends regularly away from
MIV , and it maps MI , MII and MIII to the interior F , to the union of the Type
II boundary components, and to the Type III locus (a single point) respectively.

A large part of this paper is concerned with the behavior of the period map for
quartic surfaces alongMIV .

Remark 3 Shah also defined a refinement of the stratification in (17), see Theo-
rem 2.4 of [51] (and Sect. 4 below). We will follow the notation of Theorem 2.4 of
[51], with an S prefix, and with the symbol IV replacing “Surfaces with significant
limit singularities”. Thus the strata will be denoted by S-I, S-II(A,i), S-II(A,ii) S-
III(B,ii), S-IV(A,i), etc. We recall that the roman numerals I, II, III, IV refer to the
stratum of (17) to which a stratum belongs, and the letter A (B) indicates whether the
stratum is contained in the stable locus or in the properly semistable locus. We will
refer to Shah’s stratification before discussing the stratification in (17); this is not an
issue, because the strata are defined explicitly by Shah in terms of singularities, see
Theorem 2.4 of [51].

3.2 The GIT (or Kirwan) Stratification for Quartic Surfaces

Shah [51] essentially established a relation between GIT (semi)stability of a
quartic surface and the nature of its singularities. In particular he proved that a
quartic with ADE singularities is stable, and hence there is an open dense subset
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MI ⊂ M parametrizing isomorphism classes of polarized K3 surfaces (X,L)

such that L is very ample, i.e. (X,L) is neither hyperelliptic, nor unigonal—
see Theorem 1. In the present subsection the focus is on stabilizers (in SL(4)) of
strictly semistable polystable quartics (a quartic is strictly semistable if it semistable
and not stable, it polystable if its PGL(4)-orbit is closed in the semistable locus
|OP3(4)|ss), and the associated stratification of M. The point of view is essentially
due to Kirwan [24, 25]. Let Ms ⊂ M be the open dense subset parametrizing
isomorphism classes of GIT stable quartics. Points of the GIT boundary M \ Ms

parametrize isomorphism classes of semistable polystable quartics. The stabilizer
of such an orbit is a positive dimensional reductive subgroup. The classification
of 1-dimensional stabilizers leads to the decomposition of the GIT boundary into
irreducible components.

Lemma 1 Let X = V (f ) be a strictly semistable polystable quartic. Then f is
stabilized by one of the following four 1-PS’s of SL(4) (up to conjugation):

λ1 = (3, 1,−1,−3), λ2 = (1, 0, 0,−1), λ3 = (1, 1,−1,−1), λ4 = (3,−1,−1,−1).
(18)

For i = 1, . . . , 4, let σi ⊂ M be the closed subset parametrizing polystable points
stabilized by λi . Then the following hold:

1. σ1, . . . , σ4 are the irreducible components of the GIT boundaryM \Ms .
2. The σi’s are related to Shah’s stratification as follows:

a. σ1 is the closure of the Ẽ8 component (see B, Type II, (i) in Theorem 2.4
in [51]) of S-II(B,i).

b. σ2 is the closure of the Ẽ7 component (see B, Type II, (i) in Theorem 2.4
in [51]) of S-II(B,i).

c. σ3 = S-II(B,ii).
d. σ4 = S-II(B,iii).

3. dim σ1 = 2, dim σ2 = 4, dim σ3 = 2, and dim σ4 = 1.

Proof This follows from Proposition 2.2 of [51] (see also Kirwan [25, §4] for a
discussion focused on stabilizers). Specifically, the first 3 cases correspond to 1-
PS subgroups of type (n,m,−m,−n) (i.e. Case (1) in loc. cit.). Thus λ1,λ2,λ3
correspond to (1.1), (1.2), and (1.3) respectively in Shah’s analysis. The last case,
λ4 corresponds to the cases (2.1) or (4.1) of Shah (N.B. the two cases are dual,
so they result in a single case in our lemma; the previous case (1) is self-dual). It
is easy to see that the other cases in Shah’s analysis can be excluded (i.e. either
they lead to unstable points, or to cases that are already covered by one of
λ1, . . . ,λ4—it is possible to have a polystable orbit stabilized by another 1-PS λ,
but then the stabilizer contains a higher dimensional torus, which in turn contains
a conjugate of one of λ1, . . . ,λ4). In conclusion, the GIT boundary consists of
the 4 boundary components σi as stated (they intersect, but none is included in
another).
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Item (B) of Theorem 2.4 of Shah [51] describes the strictly polystable locus in
the GIT compactification. It is clear (from the geometric description and proofs)
that the strictly semistable locus inM is the closure of the Type II strata, i.e.

M \Ms = ∪i=1,4σi = S-II(B,i) ∪ S-II(B,ii) ∪ S-II(B,iii).

Finally, the stratum S-II(B,i) has two components corresponding to quartics with
two Ẽ8 singularities and two Ẽ7 singularities respectively (see [51, Thm. 2.4 (B,
II(i))] for precise definitions of the two cases).

In order to compute the dimensions, one can write down normal forms for the
quartics stabilized by the 1-PS λi . For instance, it is immediate to see that a quartic
stabilized by λ4 = (3,−1,−1,−1) is of the form x0f3(x1, x2, x3) (i.e. the union
of the cone over a cubic curve with a transversal hyperplane, or same as S-II(B,iii)).
Furthermore, we can still act on this equation with the centralizer of λ4 in SL(4).
In particular, with SL(3) acting on the variables (x1, x2, x3). It follows that the
dimension inM of the locus of polystable points with stabilizer λ4 (i.e. σ4) is 1. At
the other extreme, we have the case λ1 = (3, 1,−1,−3). In this case, the centralizer
is the maximal torus in SL(4). There are five degree 4 monomials stabilized by λ1,
namely x0x32 , x

3
1x3, (x0x3)

a(x1x2)
b with a+ b = 2. It follows that dim σ1 = 2. The

other cases are similar.

Note that σ1, . . . , σ4 are closed subsets of M. As a general rule, subsets of M
denoted by Greek letters are closed.

The intersections of the components of the GIT boundary are determined by
considering stabilizers that are tori of dimension larger than 1. More in general,
special strata inside the σi are determined by other reductive (non-tori) stabilizers.
The stratification of GIT quotients in terms of stabilizer subgroups plays an essential
role in the work of Kirwan [24], and the case of hypersurfaces of low degree was
analyzed in [25]. Given a quartic X, we let Stab(X) < SL(4) be the stabilizer of X,
and we let Stab0(X) < Stab(X) be the connected component of the identity.

We start by noting that we have already defined two points which are GIT strata,
namely υ and ω, see (12) and (13).

Remark 4 Let X ⊂ P3 be the tangent developable of a twisted cubic curve, thus in
suitable homogeneous coordinates the equation of X is given in the right hand side
of (12). Then X is a properly semistable polystable quartic, and the corresponding
point in M is denoted by υ. The group Aut0(X) is conjugated to SL(2) embedded
in SL(4) via the Sym3 representation.

Remark 5 Let X ⊂ P3 be twice a smooth quadric, thus in suitable homogeneous
coordinates the equation of X is given in the right hand side of (13). Then X is a
properly semistable polystable quartic, and the corresponding point inM is denoted
by ω. The group Aut0(X) is conjugated to SO(4).

The following result is due to Kirwan (and essentially contained also in [51]).
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Proposition 1 (Kirwan [25, §6]) Let X be a properly semistable polystable
quartic. Then Aut0(X) is one of the following (up to conjugation):

1. The trivial group {1} (i.e. X is stable).
2. One of the 1-PS’s λ1, . . . ,λ4 in (18).
3. The two-dimensional torus diag(s, t, t−1, s−1) ⊂ SL(4,C). Equivalently, X =

Q1 + Q2 where Q1,Q2 are smooth quadrics meeting along 2 pairs of skew
lines (special case of S-III(B,ii)). Let τ ⊂ M be the closure of the set of points
representing such quartics. Then τ is a curve, and

τ = σ1 ∩ σ2 ∩ σ3

(in fact τ is the intersection of any two of the σ1, σ2, σ3).
4. The maximal torus in SL(4,C). Equivalently, X is a tetrahedron (S-III(B,i)). We

let ζ ∈M be the corresponding point. Then

{ζ } = σ1 ∩ σ2 ∩ σ3 ∩ σ4.

5. SO(3,C), or equivalently X = Q1 + Q2 where Q1,Q2 are quadrics tangent
along a smooth conic (S-IV(B,ii)). This defines a curve χ ⊂ σ2 ⊂ M. The only
incidence with the other strata is χ ∩ τ = {ω}.

6. SL(2,C) embedded in SL(4) via the Sym3-representation. ThenX is the tangent
developable of a twisted cubic curve (special case of S-IV (B,i)), and υ is be the
corresponding point inM. One has υ ∈ σ1, and υ /∈ σi for i ∈ {2, 3, 4}.

7. SO(4,C). ThenX = 2Q, whereQ is a smooth quadric (S-IV(B,iii)), and ω is the
corresponding point inM. Then ω ∈ τ , and thus ω ∈ σ1 ∩ σ2 ∩ σ3 (and ω ̸∈ σ4).

Proof (Elements of the Proof.)We refer to Kirwan [25, §6] for the complete proof.
Here we only describe polystable quartics parametrized by τ and χ . First we
consider τ . If X consists of two quadrics meeting in two pairs of skew lines, then
(in suitable homogeneous coordinates) it has equation

(a1x0x3 + b1x1x2)(a2x0x3 + b2x1x2) = 0.

Clearly this is a pencil, and we have the following two special cases:

1. the tetrahedron (case ζ ) if any of the ai or bi vanish;
2. the double quadric (case ω) if [a1, b1] = [a2, b2] ∈ P1.

If both ai or bi vanish simultaneously, the associated quartic is unstable and thus the
two cases above are distinct.

Next we consider χ . IfX consists of two quadrics tangent along a conic, then (in
suitable homogeneous coordinates) it has equation

fa,b := (q(x0, x1, x2)+ ax23)(q(x0, x1, x2)+ bx23) = 0,
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for [a, b] ∈ P1 (N.B. if a = b = 0, one gets the double quadric cone, which is
unstable; similarly, if a = ∞ or b = ∞, one gets an unstable quadric). Note that
fa,a = 0 is the equation of the double (smooth) quadric (case ω).

3.3 The Stratification by Type

Shah [49], influenced by Mumford, defined the concept of “insignificant limit
singularity”, and used it to study the period map for degree 2 and degree 4 K3
surfaces (see [50, 51]). One definesMIV as the subset ofM parametrizing quartics
with significant limit singularities. The main point is that the restriction of the period
map to (M \MIV ) is regular. Next,

F ∗ = F (F II (F III , (19)

where F II is the union of the Type II boundary components, and F III is the
(unique) Type III boundary component; this is a stratification of F ∗. Then (19)
defines, by pull-back via p, strata MI , MII and MIII (of course MI coincides
with the set that we have already defined). (Literally speaking, we will not define
MI ,MII andMIII this way.)

We will give an updated view of the concept of insignificant limit singularity.
Briefly, Steenbrink [55] noticed that an insignificant limit singularity is du Bois.
On a different track, from the perspective of moduli, Shepherd-Barron [52] and
then Kollár–Shepherd-Barron [29] noticed that the right notion of singularities is
that of semi-log-canonical (slc) singularities. More recently (with [26] as the last
step), it was proved that an slc singularity is du Bois. Lastly, one can check by
direct inspection that Shah’s list of insignificant singularities coincides with the list
of Gorenstein slc surface singularities (which are then du Bois). Of course, in the
situation studied here, this is just a long-winded highbrow reproof of Shah’s results
from 1979, but what is gained is a conceptual understanding of the situation.

We should also point out the connection between slc singularities and GIT. On
one hand, an easy observation [14, 23] shows that a quartic with slc singularities
is GIT semistable. A much deeper result (due to Odaka [44, 45]), which can be
viewed as some sort of converse of this, is giving a close connection between slc
singularities and K-stability. Finally, K-stability should be viewed as a refined
notion of asymptotic stability. We caution however that the precise connection
between asymptotic stability and K-stability/slc forK3 surfaces is not known. More
precisely, an example of Shepherd-Barron [52, 53] shows that forK3s of big enough
degree there is no (usual) asymptotic GIT stability. The results of [58] strengthen the
meaning of this failure of asymptotic stability. Nonetheless, it is still possible that
a certain (weaker) asymptotic stabilization exists. We hope that our HKL program
will eventually address this issue.
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3.3.1 ADE Singularities

We recall that MI ⊂ M is (by definition) the subset parametrizing isomorphism
classes of quartics with ADE singularities. The following identification of MI (as
a quasi-projective variety) with an open subset of the projective variety F ∗ is well
known:

Theorem 1 The period map defines an isomorphism

MI ∼−→ F \ (Hh ∪Hu).

3.3.2 Insignificant Limit Singularities

We recall the following important result about slc singularities.

Theorem 2 (Kollár–Kovács [26], Shah [49] (for Dimension 2)) Let X0 be a
projective reduced variety (not necessarily irreducible) with slc singularities. Then
X has du Bois singularities. In particular, if X /B is a smoothing of X0 over a
pointed smooth curve (B, 0), then the natural map Hn(X0) → Hn

lim induces an
isomorphism

Ip,q(X0) ∼= I
p,q
lim

on the Ip,q components of the MHS with p · q = 0.

The key point (for us) of the above result is that, if the generic fiber of X /B is a
(smooth) K3 surface, then the MHS of the central fiber X0 essentially determines
the limit MHS associated to X ∗/(B \ {0}). This is a result due to Shah [49] in
dimension 2 and Gorenstein singularities (the case relevant for us). Steenbrink [55]
connected this result to the notion of du Bois singularities.

Definition 2 A reduced (not necessarily irreducible) projective surface X0 is a
degeneration of K3 surfaces if it is the central fiber of a flat proper family X /B

over a pointed smooth curve (B, 0) such that ωX /B ≡ 0 and the general fiber Xb is
a smooth K3 surface. We say that X0 has insignificant limit singularities if X0 has
semi-log-canonical singularities.

Remark 6 The list of singularities baptized as insignificant limit singularities by
Shah [49] coincides with the list of Gorenstein slc singularities (see [29, 52]). For a
degeneration of K3 surfaces, the Gorenstein assumption is automatic.

Let X0 be a degeneration of K3 surfaces with insignificant singularities. On
H 2(X0)we have a MHS of weight 2. Denote by hp,q the associated Hodge numbers
(hp,q = dimC Ip,q ). Theorem 2 gives that one, and only one, of the following 3
equalities holds:

1. h2,0(X0) = 1.
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2. h1,0(X0) = 1.
3. h0,0(X0) = 1.

In fact this follows from the isomorphism of the theorem, and the fact that h2,0lim +
h1,0lim + h0,0lim = 1 for a degeneration of K3’s.

Definition 3 Let X0 be a degeneration ofK3s.

1. X0 has Type I if it has insignificant limit singularities, and h2,0(X0) = 1.
2. X0 has Type II if it has insignificant limit singularities, and h1,0(X0) = 1.
3. X0 has Type III if it has insignificant limit singularities, and h0,0(X0) = 1.
4. X0 has Type IV if it has significant limit singularities.

We are interested in the case of Gorenstein slc surfaces. These are classified by
Kollár-Shepherd-Barron [29] and Shepherd-Barron. They are

(a) ADE singularities (canonical case)
(b) simple elliptic singularities (for hypersurfaces the relevant cases are Ẽr with

r = 6, 7, 8), surfaces singular along a curve, generically normal crossings (or
equivalently A∞ singularities) and possibly ordinary pinch points (akaD∞).

(c) cusp and degenerate cusp singularities.

Remark 7 We note that a normal crossing degeneration without triple points is a
Type II degeneration, while a normal crossing degeneration with triple points is a
Type III degeneration (a triple point is a particular degenerate cusp singularity).

By applying results of Shah [49] and Kulikov-Persson-Pinkham’s Theorem (see
also Shepherd-Barron [52]), one obtains the following.

Theorem 3 Let X0 be a degeneration of K3 surfaces with insignificant singulari-
ties. Then the following hold:

i) X0 is of Type I if and only if it has ADE singularities.
ii) IfX0 is of Type II thenX0 has a simple elliptic singularity or it is singular along

a curve which is either smooth elliptic (and has no pinch points), or rational
with 4 pinch points. All other singularities of X0 are rational double points (or
ADE).

iii) If X0 is of Type III then, with the exception of ADE and A∞ singularities, all
singularities ofX0 are either cusp or degenerate cusps, and at least one of these
occurs.

Remark 8 We recall that the Type (I, II, III) of a K3 degeneration is nothing else
than the nilpotency index (1, 2, 3) for the monodromy action N(= log Ts) on a
general fiber of a degeneration X /B. Theorem 2 allows us to read the Type in
terms of the central fiberX0 (as long asX0 has slc singularities). The theorem above
says that furthermore the Type of the degeneration can be determined simply by the
combinatorics of X0. We point out that this fact holds much more generally—for
K-trivial varieties (see esp. [30, Section 2] and [15, Theorem 3.3.3]).
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3.3.3 The Stratification and the Period Map

Proposition 2 LetX0 be a quartic surface with insignificant singularities. ThenX0
is GIT semistable.

Proof This follows from the general fact observed by Hacking and Kim–Lee [23]
(see esp. the proof of Proposition 10.2 in [14]): GIT (semi)stability (via the
numerical criterion) and the log canonical threshold are computed via the same
recipe, with the difference that in the case of GIT (semi)stability one allows only
linear changes of coordinates (vs. analytic in the other case). Thus, the inequality
needed for log canonicity implies the inequality needed for semistability. The result
also follows by inspection from Shah [51] (i.e. an unstable quartic does not have slc
singularities).

Definition 4 We let MI ,MII ,MIII ⊂M be the subsets of points represented by
polystable quartics with insignificant limit singularities of Type I, Type II and Type
III respectively (note that MI is the same subset as the previously defined MI ,
by Theorem 3). We letMIV ⊂M be the subset of points represented by polystable
quartics with significant limit singularities.

Below is the result that was described at the beginning of the present section.

Proposition 3 MI ,MII ,MIII ,MIV define a stratification ofM. The period map
p : M→ F ∗ is regular away fromMIV , and

p(MI ) ⊂ F , p(MII ) ⊂ F II , p(MIII ) ⊂F III .

(Recall thatF II is the union of the Type II boundary components ofF ∗, andF III

is the (unique) Type III boundary component.)

Before proving Proposition 3, we prove a result on the period map p̃ : |OP3(4)| !!"
F ∗. Define subsets |OP3(4)|I , |OP3(4)|II , |OP3(4)|III , |OP3(4)|IV of |OP3(4)| by
mimicking Definition 4.

Lemma 2 The period map p̃ is regular away from |OP3(4)|IV , and

p̃(|OP3(4)|I ) ⊂ F , p̃(|OP3(4)|II ) ⊂ F II , p̃(|OP3(4)|III ) ⊂ F III .

(20)

Proof Let X0 ∈ (|OP3(4)| \ |OP3(4)|IV ) be a quartic surface. Suppose that
f : (B, 0) → (|OP3(4)|,X0) is a map from a smooth pointed curve, and that
f (B \ {0}) is contained in the locus of smooth quartics. Let p0

f : (B \ {0}) → F ∗

be the composition p̃ ◦ (f |B\{0}), and let pf : B → F ∗ be the extension to B. Then
pf (0) is independent of f . In fact, this follows from Theorem 2. In addition, we see
that

1. if X0 ∈ |OP3(4)|I , then pf (0) ∈ F ,
2. if X0 ∈ |OP3(4)|II , then pf (0) ∈ F II ,
3. and if X0 ∈ |OP3(4)|III , then pf (0) ∈ F III .
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Now suppose that X0 ∈ (|OP3(4)| \ |OP3(4)|IV ), and that X0 is in the inde-
terminacy locus of p̃. Then, since |OP3(4)| is smooth (normality would suffice),
there exist smooth pointed curves (Bi, 0i ) for i = 1, 2, and maps fi : (Bi, 0i ) →
(|OP3(4)|,X0) such that f (Bi \ {0i}) is contained in the locus of smooth quartics,
and the points pfi (0i ) (defined as above) are different, contradicting what was just
stated. This proves that p̃ is regular away from |OP3(4)|IV . Equation (20) follows
from Items (1), (2), (3) above.

Proof (of Proposition 3) First we notice that |OP3(4)|I , |OP3(4)|II , |OP3(4)|III ,
|OP3(4)|IV define a stratification of |OP3(4)|, because F ,F II ,F III define a
stratification ofF ∗. Let |OP3(4)|ss ⊂ |OP3(4)| be the open subset of GIT semistable
quartics, and let π : |OP3(4)|ss → M be the quotient map. By definition (and
the remark about |OP3(4)|I , . . . , |OP3(4)|IV defining a stratification of |OP3(4)|)
π−1(M \ MIV ) ⊂ (|OP3(4)| \ |OP3(4)|IV ). Hence p is regular away from MIV

because of Lemma 2. Lastly, MI ,MII ,MIII ,MIV define a stratification of M
becauseF ,F II ,F III define a stratification ofF ∗.

4 Shah’s Explicit Description of the Hodge Theoretic
Stratification ofM

In the present section, we briefly review Shah’s explicit description [51, Theo-
rem 2.4] of the strata in the Hodge theoretic stratification of M defined in the
previous section. Essentially, Shah’s strata are the intersections between the Hodge
theoretic strata and the GIT strata. Then, we will slightly refine Shah’s stratification
ofMIV , so that the refined strata match (in “reverse order”) the strata Zm in (14). In
many instances the refined strata are connected components of one of Shah’s Hodge
theoretic strata.

4.1 Type II Strata for M

The period map extends regularly away from MIV , and maps MII to F II .
The matching of the irreducible components of MII and the Type II boundary
components will be given in the following section (together with an explanation
of the discrepancies in dimensions). For the moment being, we note that Shah
identified 8 irreducible components of MII , and that each polystable quartic X

parametrized by a point of MII has a “j -invariant”. More precisely, either X has
a simple elliptic singularity (of type Ẽ6, Ẽ7, or Ẽ8), or singX contains an elliptic
curve, or a rational curve with 4 pinch points. Hodge theoretically, this corresponds
to the fact that GrW1 H 2(X0) ̸= 0 (N.B.: simple Hodge theoretic considerations
show that if there is more than one source of j -invariant, e.g. two simple elliptic
singularities, then the j -invariants coincide).
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Proposition 4 The Type II GIT boundary MII consists of 8 irreducible boundary
components. We label these components by II(1)–II(8). Let X be a quartic surface
with closed orbit corresponding to the generic point of a Type II component. Then,
X has the following description:

II(1) (cf. S-II(B,i, Ẽ8), also the generic locus in σ1)—Sing(X) consists of two
double points of type Ẽ8.

II(2) (cf. S-II(B,i, Ẽ7), also the generic locus in σ2)—Sing(X) consists of two
double points of type Ẽ7 and some rational double points.

II(3) (cf. S-II(B,ii), also the generic locus in σ3)—Sing(X) consists of two skew
lines, each of which is an ordinary nodal curve with four simple pinch points.

II(4) (cf. S-II(B,iii), also the generic locus in σ4)—X consists of a plane and a cone
over a nonsingular cubic curve in the plane (triple point of type Ẽ6).

II(5) (cf. S-II(A,i))—Sing(X) consists of a double point p of type Ẽ8 and some
rational double points such that no line in X passes through p.

II(6) (cf. S-II(A,ii, deg 2))—Sing(X) consists of a smooth conic C and possibly
some rational double points.C is an ordinary nodal curve with 4 pinch points.

II(7) (cf. S-II(A,ii, deg 3))—Sing(X) consists of a twisted cubic C and possibly
some rational double points.C is an ordinary nodal curve with 4 pinch points.

II(8) (cf. S-II(A,ii, deg 4))—Sing(X) consists of an elliptic normal curve of degree
4 and possibly some rational double points (equivalentlyX is the union of two
quadric surfaces that meet transversally).

Furthermore, the cases II(5)–II(8) correspond to stable quartics, while the
cases II(1)–II(4) to strictly semistable quartics with generic stabilizer the 1-PSs
λ1, . . . ,λ4 respectively (N.B. II (i) = σi cf. Lemma 1).
Proof This is precisely Shah [51, Thm. 2.4]. The corresponding cases in Shah’s
Theorem are labeled by S-II(A/B, Case). Some of Shah’s cases (e.g. Theorem 2.4
II.A.ii) have several geometric sub-cases that are labeled in an obvious way (e.g.
S-II(A,ii, deg 3) corresponding to the case when Sing(X) is a twisted cubic).

Remark 9 (Quartics with Ẽ8 Singularities, cf. Urabe [57]) Let us note that there
are two deformation classes of quartic surfaces with Ẽ8 singularities. The generic
quartic S in each of these two strata has a unique singular point p, of type Ẽ8. The
minimal resolution S̃ → S has the following properties:

i) S̃ is a rational surface (a consequence of iii) below);
ii) the exceptional divisor D of S̃ → S is a smooth elliptic curve of self-

intersection −1 (this is the condition of having Ẽ8 singularities);
iii) (S̃,D) is an anticanonical pair (i.e. D ∈ | − KS̃ |) (this is a consequence of S

being a degeneration ofK3 surfaces);
iv) S̃ comes equipped with a nef and big class h s.t. h2 = 4 and h.D = 0 (i.e. S is

a quartic).
v) Furthermore, we can assume that the linear system associated to h contracts

only D.
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It is not hard to see (e.g. [57, Prop. 1.5]) that S̃ is the blow-up of P2 at 10 points
on a smooth cubic curve C in P2 (and D ⊂ S̃ is the strict transform of C). Thus,
Pic S̃ = ⟨ℓ, e1, . . . , e10⟩, where ℓ is the pull-back of OP2(1) and e1, . . . , e10 are the
10 exceptional divisors. The classification of the possible divisor classes h as above
was done by Urabe [57, Prop. 4.3]. Up to natural symmetries, there are two distinct
possibilities:

(a) h = 9l − 3(e1 + · · · + e8)− 2e9 − e10

(b) h = 7l − 3e1 − 2(e2 + · · · + e10).

In other words, if S̃ is the blow-up of P2 at 10 (general) points on a cubic curve
with a divisor class h as above, then S = φ|h|(S̃) is a quartic in P3 with one Ẽ8
singularity p. The two cases are distinguished geometrically by the fact that case
(a), S contains a line passing through p (with class e10), while in case (b) there is
no such line. By construction, it is easy to see that S depends on 10 moduli in each
of the cases (a) and (b)—in particular, neither of the case is a specialization of the
other one. Finally, Shah’s analysis [50, Theorem 2.4] shows that the generic surface
of type (a) is strictly semistable with associated minimal orbit of Type II(1) (cf. the
proposition above). In case (b), the surface S is stable (Type II(5) above).

Remark 10 (Arithmetic of Quartics with Ẽ8 Singularities) Let us note that the two
cases of the Remark 9 are distinguished also from an arithmetic perspective. The
arguments here are standard and are contained (with full details) in Urabe [57].
First note that since S̃ is the blow-up of P2 at 10 points,

(
H 2(S̃), ⟨, ⟩) is isometric as

lattice to I1,10. SinceK2 = −1, it follows that the latticeK⊥
H 2(S̃)

(notationΓ in [57])
is an even unimodular lattice of signature (1, 9) (and thus isometric to E8⊕U ). The
polarization class h has norm 4 and belongs to K⊥ ∼= E8 ⊕ U . It is not hard to see
that there are exactly (up to isometries) two choices for h that are distinguished by
the isometry class of the negative definite lattice h⊥

K⊥ (notationΛ in [57]) . Namely,
h⊥
K⊥ is either E8 ⊕ D1 (recall D1 = ⟨−4⟩) or D9. The case (a) corresponds to

E8 ⊕D1, while the case (b) corresponds to D9 (e.g. see [57, p. 1231]).

4.2 Type III Strata for M

For completeness, we list Shah’s strata contained in MIII . By Scattone [48], there
is unique Type III boundary point inF ∗, hence the period map sends all these strata
to the same point ofF ∗.

Proposition 5 A polystable quartic X corresponds to a point of MIII if and only
if one of the following holds:

III(1) (cf. S-III(B,iii), also case ζ )—X consists of four planes with normal crossings
(the tetrahedron). This is a single point ζ ∈M (cf. 1 (i)).
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III(2) (cf. S-III(B,ii, 4 lines), also generic locus in τ )—X consists of two, nonsingu-
lar, quadric surfaces which intersect in a reduced curve C which consists of
four lines, and whose singular locus consist of 4 double points. This gives a
curve τ ◦ ⊂M (cf. 1 (ii)), where τ ◦ = τ \ {ω, ζ }.

III(3) (cf. S-III(B,ii, 2 conics))—X consists of two, nonsingular, quadric surfaces
which intersect in a reduced curve, C, of arithmetic genus 1. C consists of
two conics such and its singular locus consists of 2 double points; the dual
graph of C is homeomorphic to a circle. This case is a specialization of the
case II(8) above. Stabilizer λ4 = (1, 0, 0,−1).

III(4) (cf. S-III(B,i, deg 3))—Sing(X) consists of a nonsingular, rational curve of
degree 3, and some rational double points. C is a strictly quasi-ordinary,
nodal curve and its set of pinch points consists of two double pinch points.
Each double pinch point lies on a line in X. Stabilizer λ3 = (3, 1,−1,−3).
Also a specialization of the case II(7).

III(5) (cf. S-III(B,i, deg 2))—Sing(X) consists of a nonsingular, rational curve of
degree 2, and some rational double points. C is a strictly quasi-ordinary,
nodal curve and the set of its pinch points consists of two double pinch points.
Each double pinch point lies on a line in X. Stabilized by λ4 = (1, 0, 0,−1).
Specialization of the case II(6).

III(6) (cf. S-III(A,ii))—Sing(X) consists of a strictly quasi-ordinary nodal curve,
C, and some rational double points such that no line in X passes through
a double pinch point. C is a nonsingular, rational curve of degree 2. X has
either two double pinch points onC or one double pinch point and two simple
pinch points on C. Specialization of the case II(6).

III(7) (cf. S-III(A,i))—Sing(X) consists of a double point, p, of type T2,3,r and some
rational double points such that no line inX passes through p. Specialization
of the case II(5).

If III(1)–III(5) holds, then X is strictly semistable, if III(6) or III(7) holds, thenX is
stable.

4.3 Type IV Strata for M

The period map is regular away fromMIV , hence in order to decompose p : M !!"
F ∗ into a composition of simple birational maps, we must study MIV . The
following is a slight refinement of Shah [51, Theorem 2.4]:

Proposition 6 The Type IV locusMIV decomposes in the following strata:

IV(0a) (cf. S-IV(B,iii))—X consists of a non-singular quadric surface with mul-
tiplicity 2. (Case 1(iii)). The point ω ∈ M corresponding to (generic)
hyperelliptic quartics.

IV(0b) (cf. S-IV(B,i, deg 3))—Sing(X) consists of a nonsingular, rational curve,
C, of degree 3; C is a simple cuspidal curve. The normalization of
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X is nonsingular. This is the tangent developable to the twisted cubic
(Case 1(iv)). The corresponding point υ ∈M corresponds to unigonalK3s.

IV(1) (cf. S-IV(B,ii))—X consists of two quadric surfaces, V1, V2 tangent along a
nonsingular conic C such that V1 ∩ V2 = 2C. (Case 1(iii)). It corresponds
to a curve insideM.

IV(2) (cf. S-IV(B,i, deg 2))—Sing(X) consists of a nonsingular, rational curve,
C, of degree 2; C is a simple cuspidal curve. The normalization of X has
exactly two rational double points. Stabilized by λ4 = (1, 0, 0,−1)

IV(3) Sing(X) consists of a nodal curve, C, and rational double points such that
no line in X passes through a non-simple pinch point. C is a nonsingular,
rational curve of degree 2. Every point of X on C is a double point and the
set of pinch points consists of a point of type J4,∞.

IV(4) Sing(X) consists of a nodal curve, C, and rational double points such that
no line in X passes through a non-simple pinch point. C is a nonsingular,
rational curve of degree 2. Every point of X on C is a double point and the
set of pinch points consists of either a point of type J3,∞ and a simple pinch
point or a point of type J4,∞.

IV(5) Sing(X) consists of a double point, p, of type J3,r and some RDPs such that
no line in X passes through p. This case is a specialization of Case III(7)
(and then II(8)).

IV(6) (cf. S-IV(A,i, E14))—Sing(X) consists of a double point of type E14.
IV(7) (cf. S-IV(A,i, E13))—Sing(X) consists of a double point of type E13.
IV(8) (cf. S-IV(A,i, E12))—Sing(X) consists of a double point of type E12.

Remark 11 There are natural inclusions IV(k) ⊂ IV(k + 1) with the exception k =
4 (N.B. IV(4) ⊂ IV(6)). For instance, we have the following adjacencies for the
exceptional unimodal singularities (aka Dolgachev singularities):E14 −→ E13 −→
E12 (see [4, p. 159]).

Definition 5 We define

Wk = IV(k),

with the following two exceptions:W0 = IV(0a), and we skip the case k = 5.

Remark 12 For quartics singular along a twisted cubic, we have the inclusions

IV (0b) ⊂ III (4) ⊂ II (7).

Remark 13 Clearly, II(1), III(1), and IV(1) form a single stratum. The degeneracy
condition is that there is a line passing through p, cf. [51, Cor. 2.3 (i)]: an isolated,
non rational, double point of Type 1 through which passes a line contained in X.

Remark 14 Cases II(5) and its specializations III(7) and IV(6–8) were studied by
Urabe [57].
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Table 1 The geometry of the variation of models F (β)

Codim (i) Critical β (Compn’t of) corresponding Zi ⊂ F (Compn’t of) corresponding
Wi−1 ⊂M

1 1 Hh IV(0a): double quadric
1 1 Hu IV(0b): tangent developable

2 1
2 ∆(2) IV(1): 2 quadrics tangent

along a conic

3 1
3 ∆(3) IV(2): double conic,

cuspidal type

4 1
4 ∆(4) IV(3): J4,∞-locus

5 1
5 ∆(5) IV(4): J3,0

6 1
5 ∆(6) IV(5): J3,∞ and J3,r

7 1
6 Unigonal in ∆(6) (T3,3,4-polarized K3) IV(6): E14-locus

8 1
7 Unigonal in ∆(7) (T2,4,5-polarized K3) IV(7): E13-locus

9 1
9 Unigonal in ∆(8) (T2,3,7-polarized K3) IV(8): E12-locus

Our predictions regarding the matching of strata in M and strata in F is
summarized in the Table 1 below.

Remark 15 The points IV(0a) and IV(0b)correspond to Hh and Hu respectively;
this is discussed in Sections 4 and 3 of [51]. We revisit the proof in Sects. 5.2 and 5.1
respectively. The matching for β = 1

2 is discussed in Sect. 5.4. Finally, in Sect. 6 we

give some evidence for the matching corresponding to the case β ∈
{
1
6 ,

1
7 ,

1
9

}
. We

don’t say much about the remaining cases.

Remark 16 We recall that the locus Z9 ⊂ F (described as the unigonal divisor
inside ∆(8) ∼= F (11)) is one of the two components of ∆(9). With this description,
the jump from 1

7 to 1
9 is less surprising: the critical β = 1

9 comes from having 9
independent sheets of ∆ meeting along the Z9 locus.

Remark 17 While the entire framework of the paper is similar to the Hassett-Keel
program for curves, the geometric analogy with Hassett-Keel is particularly striking
in the case of flips occurring for β ∈

{
1
6 ,

1
7 ,

1
9

}
. Namely, to pass from the El (l =

12, 13, 14) locus on the GIT side to the periods side, one needs to perform a KSBA
semistable replacement. This is completely analogous to the stable reduction for
cuspidal curves, which leads to the elliptic tail replacement (or globally to the first
birational modification: Mg → Mps

g
∼= Mg(

9
11 )). This part is closely related to

the work of Hassett [17] (stable replacement for curves). This is expanded on in
Sect. 6.
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5 The Critical Values β = 1 and β = 1/2

The point of view of this paper is somewhat dual to that of [34]. Namely, while
in [34] we have given a (conjectural) decomposition of the inverse of the period
map p−1 : F ∗ !!" M based on arithmetic considerations, here we start from
the other end and attempt to resolve the period map p : M !!" F ∗. As is
familiar to those who have studied the analogous period maps with domains the
GIT moduli spaces of plane sextics [50] and cubic fourfolds [31, 32, 42], the first
step towards resolving the period map p is to blow-up the most singular points,
i.e. those parametrizing polystable quartics with the largest (non virtually abelian)
stabilizers (see Proposition 1). There are two such points, namely υ corresponding
to the tangent developable of a twisted cubic curve and ω corresponding to a
smooth quadric with multiplicity 2. In Sects. 5.1 and 5.2 we discuss a suitable
blow-up M̃ −→M with center a subscheme whose support is {υ,ω}. Theorems 4
and 5 give the main results regarding p̃, the pull-back of the period map to M̃.
In short, the component of the exceptional divisor mapping to υ is identified with
Mu, a projective GIT compactification of the moduli space of unigonal K3 surface
(see (26)), and the component of the exceptional divisor mapping to ω is identified
with Mh, the GIT moduli space of (4, 4) curves on P1 × P1. Moreover, the lifted
period map p̃ is regular in a neighborhood of the exceptional divisor Mu, but it
is definitely not regular at all points of the exceptional divisor Mh, in fact the
restriction to Mh is almost as complex as p is, there is an analogous tower of
closed subsets of the relevant period space, only it has 7 terms instead of 8. It is
worth remarking that the image of the restriction of p̃ to the regular locus is the
complement of ∆(2), while the image of the restriction of p to the regular locus is
the complement of Hh ∪ Hu. In this sense, in going from p to p̃ we have improved
the behavior of the period map, and moreover p̃ is an isomorphism in codimension
1, while p is not. Lastly, we have an identification M̃ ∼= F (1− ϵ) (see Corollary 2).

We continue in Sect. 5.4 with the analysis of the “first flip” that occurs when
one tries to resolve the birational map p̃ : M̃ !!" F ∗ Briefly, we show that a
blow-up of the curve W1 (case IV(1) in Proposition 6) followed by a contraction,
accounts for double covers of the quadric cone (stratum Z2 ⊂ F ∗ in our notation).
In other words, we essentially verify1 the predicted behavior of the variation of
modelsF (β) for β ∈ (1/2− ϵ, 1] ∩ Q .

5.1 Blow Up of the Point υ

The point υ (see IV(0b) in Proposition 6) is an isolated point of the indeterminacy
locus of the period map p. The behavior of p in a neighborhood of υ is analogous
to that of the period map of the moduli space of plane sextics in a neighborhood of

1Some technical issues regarding the global construction of the flip still remain, but our analysis is
fairly complete.
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the orbit of 3C (see [39, 50], [33, Thm. 1.9]), where C ⊂ P2 is a smooth conic,
and is treated in Section 3 of Shah [51]. Shah’s results imply that by blowing up a
subscheme ofM supported at υ, one resolves the indeterminacy of p in υ; the main
result is stated in Sect. 5.1.5.

5.1.1 The Germ ofM at υ in the Analytic Topology

We will apply Luna’s étale slice Theorem in order to describe an analytic neigh-
borhood of υ in the GIT quotient M. Let T ⊂ P3 be the twisted cubic
{[λ3,λ2µ,λµ2, µ3] | [λ, µ] ∈ P1}, and let X be the tangent developable of T ,
i.e. the union of lines tangent to T . A generator of the homogeneous ideal of X is
given by

f := 4(x1x3 − x22)(x0x2 − x21 )− (x1x2 − x0x3)
2. (21)

ThusX is a polystable quartic representing the point υ. The group PGL(2) acts on T
and hence onX; it is clear that PGL(2) = Aut(X). In order to describe an étale slice
for the orbit PGL(4)X at X we must decompose H 0(P3,OP3(4)) into irreducible
SL2-submodules. For d ∈ N, let V (d) be the irreducible SL2-representation with
highest weight d i.e. Symd V (1) where V (1) is the standard 2-dimensional SL2-
representation. A straightforward computation gives the decomposition

H 0(OP3(4)) ∼= V (0)⊕ V (4)⊕ V (6)⊕ V (8)⊕ V (12). (22)

The trivial summand V (0) is spanned by f , and the projective tangent space at V (f )

to the orbit PGL(4)V (f ) ⊂ |OP3(4)| is equal to P(V (0)⊕ V (4)⊕ V (6)). We have
a natural map

V (8)⊕ V (12)//SL(2) −→ M,

[g] :→ [V (f + g)] (23)

mapping [0] to υ. By Luna’s étale slice Theorem, the map is étale at [0]. In particular
we have an isomorphism of analytic germs

(V (8)⊕ V (12)//SL(2), [0]) ∼−→ (M,υ). (24)

5.1.2 Moduli and Periods of Unigonal K3 Surfaces

Let

Ω := S•(V (8)∨ ⊕ V (12)∨), (25)
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and define a grading ofΩ as follows: non zero elements of V (8)∨ have degree 2, non
zero elements of V (12)∨ have degree 3. Then SL(2) acts on ProjΩ , and OProjΩ(1)
is naturally linearized; let

Mu := ProjΩ//SL(2). (26)

Shah (see Theorem 4.3 in [50]) proved that Mu is a compactification of the moduli
space for unigonalK3 surfaces, i.e. there is an open dense subsetMI

u ⊂Mu which
is the moduli space for such K3’s. Moreover, the period map is regular

Mu
pu−→ FII2,18(O

+(II2,18))∗, (27)

and it defines an isomorphismMI
u

∼−→ FII2,18(O
+(II2,18)). We recall that we have

a natural regular map

FII2,18(O
+(II2,18))∗ −→ F ∗, (28)

whose restriction toFII2,18(O
+(II2,18)) is an isomorphism onto the unigonal divisor

Hu, see Subsection 1.5 of [34].

5.1.3 Weighted Blow-Up

We recall the construction of the weighted blow up in the case where the base is
smooth. We refer to [3, 27] for details. Let (x1, . . . , xn) be the standard coordinates
on An. Let (a1, . . . , an) ∈ Nn

+, and let σ be the weight given by σ (xi) = ai .
The weighted blow-up Blσ (An) with weight σ is a toric variety defined as follows.
Let {e1, . . . , en} be the standard basis of Rn, and C ⊂ Rn be the convex cone
spanned by e1, . . . , en, i.e. the cone of (x1, . . . , xn) with non-negative entries. Let
v := (a1, . . . , an) ∈ Rn, and for i ∈ {1, . . . , n} let Ci ⊂ C be the convex cone
spanned by e1, . . . , ei−1, ei+1, . . . , en and v. TheCi ’s generate a fan inRn; Blσ (An)

is the associated toric variety. Since the Ci ’s define a cone decomposition of C, we
have a natural regular map πσ : Blσ (An) → An, which is an isomorphism over
An \ {0}. Let Eσ ⊂ Blσ (An) be the exceptional set of πσ ; then Eσ is isomorphic
to the weighted projective space P(a1, . . . , an). We denote by [x1, . . . , xn] (with
(x1, . . . , xn) ̸= (0, . . . , 0)) a (closed) point of P(a1, . . . , an); thus [x1, . . . , xn] =
[y1, . . . , yn] if and only if there exists t ∈ C∗ such that xi = tai yi for i ∈ {1, . . . , n}.
The composition

Blσ (An)
πσ−→ An !!" P(a1, . . . , an)

p :→ πσ (p) = (x1, . . . , xn) :→ [x1, . . . , xn]
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is regular; this follows from the formulae for πσ that follow Definition 2.1 in [3].
Thus we have a regular map

Blσ (An) −→ An × P(a1, . . . , an). (29)

Let µσ : Eσ → P(a1, . . . , an) be the restriction to Eσ of the map in (29), followed
by projection to the second factor. Then µσ is an isomorphism; we will identify Eσ
with P(a1, . . . , an) via µσ . The formulae for πσ that follow Definition 2.1 in [3]
give the following result.

Proposition 7 Keep notation as above, and let ∆ ⊂ C be a disc centered at 0. Let
α : ∆ → Blσ (An) be a holomorphic map such that α−1(Eσ ) = {0}. There exists
k > 0 such that

πσ ◦ α(t) = (tka1 · ϕ1, . . . , tkan · ϕn) (30)

where ϕi : ∆→ C is a holomorphic function, and moreover

α(0) = [ϕ1(0), . . . ,ϕn(0)]. (31)

(In particular (ϕ1(0), . . . ,ϕn(0)) ̸= (0, . . . , 0).)

Corollary 1 Let Z be a projective variety, and p : Blσ (An) !!" Z be a rational
map, regular away from Eσ . Suppose that the following holds. Given a disc ∆ ⊂ C
centered at 0, and a holomorphic map α : ∆→ Blσ (An) such that α−1(Eσ ) = {0},
the extension at 0 of the map p◦α|(∆\{0}) depends only on α(0) = [ϕ1(0), . . . ,ϕn(0)]
(notation as in (31)). Then p is regular everywhere.

Proof Follows from Proposition 7 and normality of Blσ (An).

5.1.4 Blow-Up of the étale Slice and the Period Map

It will be convenient to denote by Z the affine scheme V (8) ⊕ V (12), i.e. Z :=
Spec S•(V (8)∨⊕V (12)∨). Let (x1, . . . , x22) be coordinates on V (8)⊕V (12) such
that V (8) has equations 0 = x10 = . . . = x22, and V (12) has equations 0 = x1 =
. . . = x9. Let σ be the weight defined by

σ (xi) :=
{
4 if i ∈ {1, . . . , 9},
6 if i ∈ {10, . . . , 22}.

(32)

Let Z̃ := Blσ (Z) be the corresponding weighted blow up, and let E be the
exceptional set of Z̃ → Z; thus E is the weighted projective space P(49, 613). The
action of SL2 on Z lifts to an action on Z̃ (and on the ample line-bundle OZ̃(−E)).
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Thus there is an associated GIT quotient Z̃//SL2. The map Z̃→ Z induces a map

µ̃ : Z̃//SL2 −→ Z//SL2. (33)

Moreover the set-theoretic inverse image µ̃−1([0])red is isomorphic to
ProjΩ//SL2 = Mu. Since the natural map Z//SL2 → M is dominant, it makes
sense to compose it with the (rational) period map p : M !!" F (19)∗. Composing
with µ̃, we get a rational map

p̃ : Z̃//SL2 !!" F (19)∗. (34)

Theorem 4 With notation as above, the map p̃ is regular in a neighborhood of
µ̃−1([0])red = Mu, and its restriction to µ̃−1([0])red is equal to the period map pu
in (28).

Proof This follows from the results of Shah in [51]. More precisely, let (F,G) ∈
V (8)⊕ V (12) be non-zero and such that [(F,G)] ∈ ProjΩ is SL2-semistable. Let
∆ ⊂ C be a disc centered at 0, and

∆
ϕ−→ V (8)⊕ V (12)

t :→ (t4mF(t), t6mG(t))
(35)

where m > 0, F(t), G(t) are holomorphic, and F(0) = F , G(0) = G. (This is
the family on the second-to-last displayed equation of p. 293, with the difference
that our (0, 0) ∈ Z corresponds to Shah’s F0.) We assume also that for t ̸= 0,
the point [ϕ(t)] is not in the indeterminacy locus of the period map Z//SL2 !!"
F (19)∗. Let pϕ : ∆ → F (19)∗ be the holomorphic extension of the composition
(∆ \ {0})→ Z//SL2 !!" F (19)∗. Then by Theorem 3.17 of [51], the value pϕ(0)
is equal to the period point pu([(F,G)]). By Corollary 1 it follows that p is regular
in a neighborhood of µ̃−1([0])red = Mu, and that the restriction of the period map
to µ̃−1([0])red is equal to the period map pu in (28).

5.1.5 Blow-Up ofM at υ

A weighted blow up Blσ (An) → An is equal to the blow up of a suitable scheme
supported at 0, see Remark 2.5 of [3]. It follows that also the map in (33) is the
blow up of an ideal J supported on [0]. Since the map in (24) is an isomorphism
of analytic germs, the ideal sheaf J defines an ideal sheaf in OM, cosupported
at υ, that we will denote by I . Let Mυ := BlI M, and let Eυ ⊂ Mυ be the
(reduced) exceptional divisor of BlI M → M. Thus Eυ ∼= Mu, and Eυ is Q -
Cartier. Let φυ : Mυ → M be the natural map. By Theorem 4, the period map
Mυ !!" F (19)∗ is regular in a neighborhood of Eυ . Moreover, letting L be the
ample Q -line bundle onM descended from the ample generator of Picard group of
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the parameter space P34 ∼= |OP3(4)|, the line-bundle φ∗υL (−ϵE(υ)) is ample for ϵ
positive and sufficiently small.

5.2 Blow Up of the Point ω

5.2.1 The GIT Moduli Space for K3’s Which Are Double Covers
of P1 × P1

The GIT moduli space that we will consider is

Mh := |OP1(4) # OP1(4)|//Aut(P1 × P1). (36)

Given D ∈ |OP1(4) # OP1(4)|, we let π : XD → P1 × P1 be the double cover
ramified overD, and LD := π∗OP1(1) # OP1(1). If D has ADE singularities, then
(XD,LD) is a hyperelliptic quartic K3. We recall that if (X,L) is a hyperelliptic
quartic K3 surface, the map ϕL associated to the complete linear system |L| ∼= P3

is regular, and it is the double cover of an irreducible quadric Q, branched over a
divisor B ∈ |OQ(4)| with ADE singularities. Vice versa, the double cover of an
irreducible quadric surface, Q ⊂ P3, branched over a divisor B ∈ |OQ(4)| with
ADE singularities is a hyperelliptic quartic K3 surface. The period space forMh is
Fh; we let

ph : Mh !!" F ∗
h (37)

be the extension of the period map to the Baily-Borel compactification.

Theorem 5

1. A divisor in |OP1(4) # OP1(4)| with ADE singularities is Aut(P1 × P1) stable,
hence there exists an open dense subset MI

h ⊂ Mh parametrizing isomorphism
classes of hyperelliptic quarticK3 surfaces such that ϕL(X) is a smooth quadric.

2. The period map ph defines an isomorphism between MI
h and the complement of

the “hyperelliptic” divisor Hh(Fh) in Fh (the divisor Hh(18) ⊂ F (18) in the
notation of [34]).

Proof Item (1) is a result of Shah, in fact it is contained in Theorem 4.8 of [51].
Item (2) follows from the discussion above. In fact let y ∈ Fh. Then there exists a
hyperelliptic quartic K3 surface (X,L) (unique up to isomorphism) whose period
point is y, and the quadricQ := ϕL(X) is smooth if and only if y /∈ Hh(Fh).

5.2.2 The Germ ofM at ω in the Analytic Topology

Let q ∈ H 0(P3,OP3(2)) be a non degenerate quadratic form, and letQ ⊂ P3 be the
smooth quadric with equation q = 0. Let O(q) be the associated orthogonal group;
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then PO(q) = AutQ is the stabilizer of [q2] ∈ |OP3(4)|. We have a decomposition
of H 0(P3,OP3(4)) into O(q)-modules

H 0(P3,OP3(4)) = q ·H 0(P3,OP3(2))⊕H 0(Q,OQ(2)).

Note that the first submodule is reducible (it contains a trivial summand, spanned
by q2), while the second one is irreducible. We identify Q with P1 × P1, PO(q)
with Aut(P1 × P1), and H 0(Q,OQ(2)) with H 0(P1 × P1,OP1(4) # OP1(4)). The
projectivization of q ·H 0(P3,OP3(2)) is equal to the projective (embedded) tangent
space at [q2] of the orbit PGL(4)[q2]. Thus, by Luna’s étale slice Theorem, we have
natural étale map

H 0(Q,OQ(2))//O(q) −→M,

mapping [0] to ω. In particular we have an isomorphism of analytic germs

(H 0(Q,OQ(2))//O(q), [0]) ∼−→ (M,ω). (38)

5.2.3 Partial Extension of the Period Map on the Blow Up of ω

The map φυ : Mυ → M is an isomorphism over M \ {υ}; abusing notation, we
denote by the same symbol ω the unique point in Mυ lying over ω ∈ M. Let
φω : M̃ −→ Mυ be the blow-up of the reduced point ω, and let Eω ⊂ M̃ be the
exceptional divisor. We let φ := φυ ◦ φω, and p̃ = p ◦ φ. Thus we have

Proposition 8 Keeping notation as above, Eω is naturally identified with the
hyperelliptic GIT moduli space Mh, and the restriction of p̃ to Eω is equal to the
period map ph of (37).

Proof Let ψω : Mω → M be the blow-up of the reduced point ω, and let
pω : Mω → F ∗ be the composition p ◦ ψω. Since ω and υ are disjoint subschemes
of M, the exceptional divisor of ψω is identified with Eω, and it suffices to prove
that the statement of the proposition holds with M̃ and p̃ replaced by Mω and pω
respectively. Let D ⊂ |OP3(4)| be the closed subset of double quadrics, i.e. the
closure of the orbit PGL(4)(2Q), whereQ ⊂ P3 is a smooth quadric. Let π : P →
|OP3(4)| be the blow up of (the reduced) D, and let ED ⊂ P be the exceptional
divisor of π . Then PGL(4) acts on P (because D is PGL(4)-invariant), and the
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action lifts to an action on the line bundle OP (ED). Let L be the hyperplane line
bundle on |OP3(4)|, and let t ∈ Q+ be such that f ∗L (−tED) is an ample Q -line
bundle on P . Then PGL(4) acts on the ring of global sections R(P,π∗L (−tED)),
and hence we may consider the GIT moduli space

M̂(t) := Proj
(
R(P,π∗L (−tED))

PGL(4)
)
.

By Kirwan [24], there exists t0 > 0 such that the blow down map π : P → |OP3(4)|
induces a regular map ψ̂(t) : M̂(t)→M for all 0 < t < t0, and moreover M̂(t) and
ψ̂(t) are identified with Mω and ψω respectively. But now the identification of Eω
with the hyperelliptic GIT moduli space Mh follows at once from the isomorphism
of germs in (38). The assertion on the period map follows from the description of
the germ (M,ω) and a standard semistable replacement argument.

5.3 Identification ofF (1 − ϵ) and M̃

Let L be the Q line bundle on M induced by the hyperplane line bundle on
|OP3(4)|, and let L̃ := φ∗L . Let E := Eυ + Eω. Then

(̃p−1)∗(E)|F = Hh +Hu = 2∆. (39)

In fact we have the set-theoretic equalities p̃(Eυ) ∩F = Hu, and p̃(Eω \ Ind(̃p)) ∩
F = Hh \ H

(2)
h , thus in order to finish the proof of (39) one only needs to

compute multiplicities; they are equal to 1 because p̃−1 has degree 1. By (39) and
Equation (4.1.2) of [34], we get

(̃p−1)∗(L̃ (−ϵE))|F ∼= OF (λ+ (1− 2ϵ)∆).

Thus p̃−1 induces a homomorphism

R(M, L̃ (−ϵE)) −→ R(F ,λ + (1− 2ϵ)∆). (40)

Proposition 9 The homomorphism in (40) is an isomorphism of rings.

Proof This is because p̃−1 is an isomorphism between F \ H
(2)
h , which has

complement of codimension 2 in F , and an open subset of M̃ which again has
complement of dimension 2 in M̃.

Corollary 2 The restriction of p̃−1 toF defines an isomorphism

Proj(F ,λ + (1− ϵ)∆) ∼= M̃

for small enough ϵ > 0.
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Proof If ϵ > 0 is small enough, then L̃ (−ϵE) is ample on M̃, and hence

ProjR(M, L̃ (−ϵE)) ∼= M̃.

Thus the corollary follows from Proposition 9.

5.4 The First Flip of the GIT Quotient (β = 1/2)

We recall that the curveW1 ⊂M contains the pointω and does not contain υ. We let
W̃1 ⊂ M̃ be the strict transform ofW1. We will perform a surgery of M̃ along W̃1 in
order to obtain our candidate for F (1/3, 1/2), notation as in (11). More precisely,
we will start by constructing a birational map M̂ → M̃, which is an isomorphism
away from W̃1, and over W̃1 is a weighted blow along normal slices to W̃1. Let E1
be the exceptional divisor of M̂ → M̃; then E1 ∼= W̃1 ×Mc, where Mc is a GIT
compactification of the moduli space of degree-4 polarized K3 surfaces which are
double covers of a quadric cone with branch divisor not containing the vertex of the
cone. Let p̂ : M̂ !!" F be the period map and M̂reg ⊂ M̂ be the subset of regular
points of p̂; we will show that, if p ∈ W̃1, then the intersection M̂reg∩{p}×Mc (here
{p}×Mc ⊂ E1) coincides with the set of regular points of the period mapMc !!"
F , and that the restriction of p̂ is equal to the period map Mc !!" F . It follows
that p̂ is constant on the slices {p} ×Mc ⊂ E1, and the image of the restriction
of p̂ to the set of regular points of E1 is the complement of ∆(3) = Im(f16,19) in
the codimension-2 locus ∆(2) = Im(f17,19) (notation as in [34]). Now, M̂ can be
contracted along E1 → Mc, let M1/2 be the contraction; the results mentioned
above strongly suggest thatM1/2 is isomorphic toF (1/3, 1/2).

5.4.1 The Action on Quartics of the Automorphism Group of polystable
Surfaces in W1

Let q := x20 + x21 + x22 , and let

fa,b := (q + ax23)(q + bx23), (41)

where (a, b) ̸= (0, 0). Then V (fa,b) is a polystable quartic, and its equivalence
class belongs to W1. Conversely, if V (f ) is a polystable quartic whose equivalence
class belongs to W1, then up to projectivities and rescaling, f = fa,b for some
(a, b) ̸= (0, 0). The points in M representing V (fa,b) and V (fc,d ) are equal if and
only if [a, b] = [c, d], or [a, b] = [d, c]. Lastly, V (fa,b) represents ω if and only if
a = b.
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Suppose that a ̸= b. Then every element of AutV (fa,b) fixes V (x3) and the
point [0, 0, 0, 1]. It follows that AutV (fa,b) is equal to the image of the natural map
O(q) → PGL(4). In particular SO(q) is an index 2 subgroup of AutV (fa,b), and
hence the double cover of SO(q), i.e. SL2, acts on V (fa,b). The decomposition into
irreducible representations of the action of SL2 on C[x0, . . . , x3]4 is as follows:

C[x0,...,x2]4 ⊕ C[x0,...,x2]3·x3 ⊕ C[x0,...,x2]2·x23 ⊕ C[x0,...,x2]1·x33 ⊕ C·x43
V (8)⊕V (4)⊕V (0) V (6)⊕V (2) V (4)⊕V (0) V (2) V (0)

(42)

Now let us determine the sub-representation Ua,b containing [fa,b] and such that
Hom([fa,b], Ua,b/[fa,b]) is the tangent space at V (fa,b) to the orbit PGL(4)V (fa,b)

(we only assume that (a, b) ̸= (0, 0)). Let ℓi ∈ C[x0, . . . , x3]1 for i ∈ {0, . . . , 3};
we will write out the term multiplying t in the expansion of fa,b(x0+ tℓ0, . . . , x3+
tℓ3) as element of C[x0, . . . , x3]4[t] for various choices of ℓi ’s. For ℓi = µix3,
we get

4q

( 2∑

i=0

µixi

)

x3+2(a+b)µ3qx
2
3 +2(a+b)

( 2∑

i=0

µixi

)

x33 +4abµ3x
4
3 . (43)

Letting ℓi ∈ C[x0, x1, x2]1, we get

4q

( 2∑

i=0

ℓixi

)

+ 2(a + b)qℓ3x3 + 2(a + b)

( 2∑

i=0

ℓixi

)

x23 + 4abℓ3x33 . (44)

It follows that

Ua,b
∼=

{
V (4)⊕ V (2)2 ⊕ V (0)2 if a ̸= b,

V (4)⊕ V (2)⊕ V (0)2 if a = b.
(45)

The difference between the two cases is due to the different behaviour of the
V (2)-representations appearing in (43), (44) and contained in the direct sum
C[x0, . . . , x2]3 · x3 ⊕ C[x0, . . . , x2]1 · x33 . If a ̸= b, the representations in (43)
and (44) are distinct, if a = b they are equal.

5.4.2 The Germ of M̃ at Points of W̃1 \Eω

The map φ : M̃ → M is an isomorphism away from {ω,υ}. Since W1 does not
contain υ, the germ of M̃ at a point x̃ ∈ (W̃1 \ Eω) is identified by φ with the germ
of M at x := φ (̃x). Let us examine the germ of M at a point x ∈ (W1 \ {ω}).
There exists (a, b) ∈ C2, with a ̸= b, such that a polystable quartic representing x

is V (fa,b), where fa,b is as in (41). Keeping notation as in Sect. 5.4.1, SL2 acts on
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V (fa,b). Let Na,b ⊂ C[x0, . . . , x3]4 be the sub SL2-representation

Na,b := V (8)⊕ V (6)⊕ R · x23 ⊕ ⟨2qx23 + (a + b)x43⟩, (46)

where R ⊂ C[x0, x1, x2]2 is the summand isomorphic to V (4), and let

Na,b := {V (fa,b + g) | g ∈ Na,b}. (47)

Proposition 10 Keeping notation as above, Na,b is an AutV (fa,b)-invariant nor-
mal slice to the orbit PGL(4)V (fa,b).

Proof Let Ua,b ⊂ C[x0, . . . , x3]4 be as in Sect. 5.4.1; thus P(Ua,b) is the projective
tangent space at V (fa,b) to the orbit PGL(4)V (fa,b). Then Ua,b is the sum of the
two SL2-representations in (43) and (44) (and, as representation, it is given by
the first case in (45)), and it follows that the SL2-invariant affine space in (47)
is transversal to P(Ua,b) at V (fa,b). Lastly, Na,b is AutV (fa,b)-invariant because
AutV (fa,b) is generated by the image of SL2 and the reflection in the plane x3 = 0.

The natural map

ψ : Na,b//AutV (fa,b) −→M (48)

is étale at V (fa,b) by Luna’s étale slice Theorem. For later use, we make the
following observation.

Claim Keep notation and assumptions as above, in particular a ̸= b. Let η : Na,b →
M be the composition of the quotient map Na,b → Na,b//AutV (fa,b) and the map
ψ in (48). Then

η({V (fa,b + t (2qx23 + (a + b)x43)) | t ∈ C}) ⊂ W1. (49)

Moreover, letU ⊂ Na,b be an AutV (fa,b)-invariant open (in the classical topology)
neighborhood of fa,b such that the restriction of ψ to U //AutV (fa,b) is an
isomorphism onto ψ(U //AutV (fa,b)); then x ∈ U is mapped to W1 by η and
has closed SL2-orbit if and only if x = V (fa,b + t (2qx23 + (a + b)x43)) for some
t ∈ C.

Proof The first statement follows from a direct computation. In fact, an easy
argument shows that there exist holomorphic functions ϕ,ψ of the complex variable
t vanishing at t = 0, such that

(q + (a + ϕ(t))x23) · (q + (b + ψ(t))x23 ) = fa,b + t (2qx23 + (a + b)x43).

The second statement holds because W1 is an irreducible curve, and so is the left-
hand side of (49).
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5.4.3 The Germ of M̃ at the Unique Point in W̃1 ∩ Eω

Let Mω →M be the blow-up of (the reduced) ω. We may work on Mω, since W1
does not contain υ. Let P → |OP3(4)| be the blow-up with center the closed subset
D parametrizing double quadrics, and let ED be the exceptional divisor. By Kirwan
[24] the blow-up Mω is identified with the quotient of P by the natural action of
PGL(4) (with a polarization close to the pull-back of the hyperplane line-bundle
on |OP3(4)|)—see the proof of Proposition 8). We will describe an SL2-invariant
normal slice in P to the PGL(4)-orbit of a point representing the unique point in
W̃1 ∩ Eω. First, recall that we have an identification Eω = Mh, where Mh is the
GIT hyperelliptic moduli space in (36), see Proposition 8. The unique point in W̃1∩
Eω is represented by a point in ED mapping to a smooth quadric Q ⊂ P3, and
corresponding to ℓ4 ∈ P(H 0(OQ(4))) (recall that the fiber of the exceptional divisor
over Q is identified with P(H 0(OQ(4)))), where 0 ̸= ℓ ∈ H 0(OQ(1)) is a section
with smooth zero-locus (a smooth conic); moreover the points we have described
have closed orbit in the locus of PGL(4)-semistable points.

Remark 18 We represent the unique point in W̃1∩Eω by the point with closed orbit
(V (q + ax23), x

4
3) ∈ ED (notation as above), where q is as in Sect. 5.4.1 and a ̸= 0.

In order to simplify notation, we letQa := V (q + ax23), and p := (Qa, x
4
3) ∈ ED.

Now let S ⊂ C[x0, . . . , x3]4 be the sub SL2-representation

S := V (8)⊕ V (6)⊕ R · x23 ⊕ ⟨x43 ⟩, (50)

where R ⊂ C[x0, x1, x2]2 is the summand isomorphic to V (4). (Notice the
similarity with (46).) Let

Sa := {V (fa,a + g) | g ∈ S} (51)

Claim Keeping notation as above, the double quadric V (fa,a) is an isolated and
reduced point of the scheme-theoretic intersection between the affine space Sa and
the closed D ⊂ |OP3(4)| parametrizing double quadrics.

Proof Of course V (fa,a) ∈ D, because fa,a = (q + ax23)
2. Let TV (fa,a)Sa and

TV (fa,a)D be the tangent spaces to Sa and D at V (fa,a) respectively; we must show
that their intersection (as subspaces of TV (fa,a)|OP3(4)|) is trivial. We have

TV (fa,a )Sa = Hom(⟨fa,a⟩, ⟨S, fa,a⟩/⟨fa,a ⟩), TV (fa,a )D = Hom(⟨fa,a⟩, Ua,a/⟨fa,a⟩),

where Ua,a is as in Sect. 5.4.1. As is easily checked,

S ∩ Ua,a = {0}. (52)

Thus ⟨S, fa,a⟩ ∩ Ua,a = ⟨fa,a⟩, and the claim follows.
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By Claim 5.4.3 the scheme-theoretic intersection D ∩ Sa is the disjoint union of
the reduced singleton {V (fa,a)} and a subscheme Ya . Let Ua := Sa \ Ya; then Ua

is an open neighborhood of V (fa,a) in Sa , and it is invariant under the action of
AutV (fa,a). Let Ũa ⊂ P be the strict transform of Ua (recall that P → |OP3(4)| is
the blow-up with centerD), and let ϕ : Ũa → Ua be the restriction of the contraction
P → |OP3(4)|. By Claim 5.4.3 ϕ is the blow-up of the (reduced) point V (fa,a).

Remark 19 Since fa,a, x
4
3 ∈ Sa , the point p = (Qa, x

4
3) ∈ ED (see Remark 18)

belongs to Ũa . Moreover the stabilizer (in PGL(4)) of p is equal to O(q) i.e. to
AutV (fa,b) for a ̸= b (see Sect. 5.4.1), and it preserves Ũa .

Proposition 11 Keeping notation as above, Ũa is a Stab(p)-invariant normal slice
to the orbit PGL(4)p in P .

Proof Let Y := PGL(4)p. We must prove that the tangent space to Ũa at p is
transversal to the tangent space to Y at p. First notice that dimY = 12 and dim Ũa =
22, hence dimY + dim Ũa = dimP . Thus it suffices to prove that

TpY ∩ TpŨa = {0}. (53)

Let π : P → |OP3(4)| be the blow up of D. By Claim 5.4.3,

dπ(p)(TpŨa) = Hom(⟨fa,a⟩, ⟨fa,a, x43⟩/⟨fa,a⟩).

On the other hand, dπ(p)(TpY ) = Tπ(p)D, and hence dπ(p)(TpŨa) ∩
dπ(p)(TpY ) = {0}. It follows that the intersection on the left hand side of (53) is
contained in the kernel of the restriction of dπ(p) to TpŨa , i.e. Tp(Ũa ∩ Eπ(p)),
where Eπ(p) is the fiber of ED → D over π(p) = V (fa,a). Hence it suffices to
prove that

TpY ∩ Tp(Ũa ∩ Eπ(p)) = {0}. (54)

The fiber Eπ(p) is naturally identified with PH 0(OQa(4)). With this identification,
we have

TpY ∩ TpEπ(p) = Hom(⟨x43 ⟩,C[x0, . . . , x3]1 · x33/⟨x43 ⟩),
Tp(Ũa ∩ Eπ(p)) = Hom(⟨x43 ⟩, S/⟨x43 ⟩).

Here we are abusing notation: C[x0, . . . , x3]1 · x33 and S stand for their images in
H 0(OQa(4)). Since the kernel of the restriction map H 0(OP3(4)) → H 0(OQa(4))
is equal to Ua,a , Eq. (54) follows from the equalities

⟨C[x0, . . . , x3]1 · x33 , S⟩ ∩ Ua,a = {0},
(C[x0, . . . , x3]1 · x33) ∩ S = ⟨x43 ⟩
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The natural map

ψ : Ũa//Stab(p) −→M (55)

is étale at p by Luna’s étale slice Theorem. The result below is the analogue
of Claim 5.4.2.

Claim Keep notation and assumptions as above. Let ζ : Ũa →M be the composi-
tion of the quotient map Ũa → Ũa//Stab(p) and the map ψ in (55). Let C ⊂ Ũa

be the strict transform of the line {V (fa,a + tx43 ) | t ∈ C}. Then ζ(C) ⊂ W1.
Moreover, let U ⊂ Ũa be a Stab(p)-invariant open (in the classical topology)
neighborhood of p such that the restriction ofψ toU //StabV (p) is an isomorphism
onto ψ(U //Stab(p)); then x ∈ U is mapped to W1 by ζ and has closed SL2-orbit
if and only if x = V (fa,a + tx43 ) for some t ∈ C.

Proof First (q + (a+ u)x23)(q + (a− u)x23) = fa,a − u2x43 shows that ζ(C) ⊂ W1.
For the remaining statement see the proof of Claim 5.4.2.

5.4.4 Moduli of K3 Surfaces Which Are Generic Double Cones

Let Λ be the graded C-algebra

Λ := S•(V (4)∨ ⊕ V (6)∨ ⊕ V (8)∨), (56)

where V (2d)∨ has degree d . Then PSL(2) acts on ProjΛ, andOProjΩ (1) is naturally
linearized. The involution

ProjΛ −→ ProjΛ
[f, g, h] :→ [f,−g, h]

commutes with the action of PSL(2), and hence there is a (faithful) action of

Gc := PSL(2)× Z/(2) (57)

on ProjΛ. We let

Mc := ProjΛ//Gc (58)

be the GIT quotient. We will show that Mc is naturally a compactification of
the moduli space of hyperelliptic quartic K3 surfaces which are double covers of
a quadric cone with branch divisor not containing the vertex of the cone. First,
we think of SL2 as the double cover of SO(q), where q = x20 + x21 + x22 is as
in Sect. 5.4.2, and correspondingly V (2d) is a subrepresentation of C[x0, x1, x2]d .
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We associate to ξ := (f, g, h) ∈ V (4)⊕ V (6)⊕ V (8), the quartic

Bξ := V (x43 + f x23 + gx3 + h). (59)

Thus V (4) ⊕ V (6) ⊕ V (8) is identified with the set of such quartics. Both Gc and
the multiplicative group C∗ act on the set of such quartics (the second group acts
by rescaling x3). The quotient of (V (4) ⊕ V (6) ⊕ V (8)) \ {0} by the C∗ action is
ProjΛ, hence Mc is identified with the quotient (V (4) ⊕ V (6) ⊕ V (8)) \ {0} by
the full Gc × C∗-action. Given [ξ ] ∈ ProjΛ, we let Xξ be the double cover of the
cone V (q) ⊂ P3

C ramified over the restriction of Bξ to V (q), and Lξ be the degree-4
polarization of Xξ pulled back from OP3(1).

Proposition 12 Let [ξ ] ∈ ProjΛ be such that Xξ has rational singularities. Then
[ξ ] is Gc-stable. The open dense subset of Mc parametrizing isomorphism classes
of such [ξ ] is the moduli space of polarized quartics which are double covers of a
quadric cone with branch divisor not containing the vertex of the cone.

Proof Let [ξ ] = [f, g, h] ∈ ProjΛ be a non-stable point. Then by the Hilbert-
Mumford Criterion there exist a point a ∈ P1 (where P1 is identified with the conic
V (q, x3) via the Veronese embedding) such that

multa(f ) ≥ 2, multa(g) ≥ 3, multa(h) ≥ 4. (60)

The point a ∈ P1 is identified with a point p ∈ V (q, x3) (as recalled above), which
belongs to the quartic Bξ . The inequalities in (60) give that the multiplicity at p
of the divisor Bξ |V (q) is at least 4, and hence the corresponding double cover of
V (q) (i.e. Xξ ) does not have rational singularities. This proves the first statement.
The rest of the proof is analogous to Shah’s proof (see Theorem 4.3 in [50]) that
Mu (see (26)) is a compactification of the moduli space for unigonal K3 surfaces.
The key point is that any quartic not containing the vertex [0, 0, 0, 1] has such an
equation after a suitable projectivity ϕ (a Tschirnhaus transformation) of the form
ϕ∗xi = xi , ϕ∗x3 = x3+ℓ(x0, x1, x2) where ℓ(x0, x1, x2) is homogeneous of degree
1.

Let [ξ ] ∈ ProjΛ be generic; then (Xξ , Lξ ) is a polarized quarticK3 surface whose
period point belongs to H

(2)
h , which (see [34]) is identified with F (17) via the

embedding f17,19 : F (17) ↪→ F . Thus we have a rational period map

pc : Mc !!" F (17)∗ ⊂ F ∗. (61)

A generic polarized quartic K3 surface is a double cover of the quadric cone
unramified over the vertex, and hence is isomorphic to (Xξ , Lξ ) for a certain
[ξ ] ∈ ProjΛ. By the global Torelli Theorem for K3 surfaces, it follows that the
period map pc is birational.
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5.4.5 Partial Extension of the Period Map on a Weighted Blow-Up:
The Case of a Point in W̃1 \Eω

Let (a, b) ∈ C2, with a ̸= b. Let Na,b be the SL2 representation in (46), and let
Ma,b be the sub-representation

Ma,b := V (8)⊕ V (6)⊕ R · x23 . (62)

Let Na,b be the normal slice of V (fa,b) defined in Sect. 5.4.2, and let Ma,b ⊂ Na,b

be the subspace

Ma,b := {V (fa,b + g) | g ∈ Ma,b}.

Notice that

dimMa,b = 21.

Let (z1, . . . , z5) be coordinates on V (4), let (z6, . . . , z12) be coordinates on V (6),
and let (z13, . . . , z21) be coordinates on V (8); thus (z1, . . . , z21) are coordinates
on Ma,b (with a slight abuse of notation) centered at V (fa,b). Let σ be the weight
defined by

σ (zi) :=

⎧
⎪⎪⎨

⎪⎪⎩

2 if i ∈ {1, . . . , 5},
3 if i ∈ {6, . . . , 12},
4 if i ∈ {13, . . . , 21}.

(63)

Let M̂a,b := Blσ (Ma,b) be the corresponding weighted blow up, and let Ea,b be
the exceptional set of M̂a,b → Ma,b. Thus Ea,b is the weighted projective space
P(25, 37, 49) ∼= ProjΛ, where Λ is the graded ring in (56) (with grading defined
right after (56)). The action of Aut(Vfa,b ) = Gc (hereGc is as in (57)) onMa,b lifts
to an action on M̂a,b. Thus there is an associated GIT quotient M̂a,b//Gc. The map
M̂a,b → Ma,b induces a map

θ̂ : M̂a,b//Gc −→ Ma,b//Gc. (64)

Moreover, we have the set-theoretic equality

θ̂−1(V (fa,b))red = ProjΛ//Gc = Mc. (65)

Since the natural map Ma,b//Gc → M is dominant, it makes sense to compose it
with the (rational) period map p : M !!" F ∗. Composing with the birational map
in (64), we get a rational map

p̂a,b : M̂a,b//Gc !!" F ∗. (66)
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Proposition 13 With notation as above, the restriction of p̂a,b to θ̂−1(V (fa,b))red =
Mc is equal to the composition of the automorphism

Mc
ϕa,b−→ Mc

[f, g, h] :→ [f,− i
2 (a − b)g,− 1

4 (a − b)2h]
(67)

and the period map in (61). Moreover p̂a,b is regular at all points of θ̂−1(V (fa,b))red
where pc is regular.

Proof Let [ξ ] = [f, g, h] ∈ ProjΛ = Ea,b be a Gc-semistable point with
corresponding point [ξ ] ∈ Mc, and let [η] = ϕa,b([ξ ]). Suppose that the period
map pc is regular at [η]. We will prove that if ∆ ⊂ C is a disc centered at 0, and
∆→ M̂a,b is an analytic map mapping 0 to [ξ ] and no other point to the exceptional
divisor Ea,b, then the period map is defined on a neighborhood of 0 ∈ ∆, and its
value at 0 is equal to the period point of (Xη, Lη). This will prove the Proposition,
by Corollary 1. By Proposition 7 the statement that we just gave boils down to the
following computation. First, we identify V (2d)with the corresponding SO(q)-sub-
representation of C[x0, x1, x2]d ; thus f, g, h ∈ C[x0, x1, x2] are homogeneous of
degrees 2, 3 and 4 respectively. Now letX ⊂ P3×∆ be the hypersurface given by
the equation

0 = (q + ax23)(q + bx23)+ t2x23(f + tF ) + t3x3(g + tG)+ t4(h+ tH ) (68)

whereF ∈ C[x0, x1, x2]2[[t]],G ∈ C[x0, x1, x2]3[[t]], andH ∈ C[x0, x1, x2]4[[t]].
Now consider the 1-parameter subgroup of GL4(C) defined by λ(t) :=
diag(1, 1, 1, t). We let Y ⊂ P3 ×∆ be the closure of

{([x], t) | t ̸= 0, λ(t)[x] ∈ X }.

Then Yt ∼= Xt for t ̸= 0, and Y has equation

0 = q2 + t2(a + b)x23q + t4(abx43 + x23f + x3g + h)+ t5(. . .) (69)

Let ν : Ỹ → Y be the normalization of Y . Dividing (69) by t4x4i , we get that the
ring of regular functions of the affine set ν−1(Y ∩P3

xi
) is generated overC[Y ∩P3

xi
]

by the rational function ξi := q/(x2i t
2), which satisfies the equation

0 = ξ2i + (a + b)

(
x3

xi

)2

ξi + (abx43 + x23f + x3g + h)/x4i + t (. . .)

It follows that for t → 0 the quartics Xt approach the double cover of V (q)

branched over the intersection with the quartic

0 = ((a + b)x23)
2 − 4(abx43 + x23f + x3g+ h) = (a − b)2x43 − 4x23f − 4x3g− 4h.

(70)
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5.4.6 Partial Extension of the Period Map on a Weighted Blow-Up:
The Unique Point in W̃1 ∩ Eω

Let a ̸= 0, and

Ṽa := Ũa ∩ ED.

(We recall that ED is the exceptional divisor of the blow-up P → |OP3(4)| with
center the closed subset D parametrizing double quadrics.) Thus, letting S be as
in (50), we have

Ṽa = P(S) = P(V (8)⊕ V (6)⊕ R · x23 ⊕ ⟨x43 ⟩), dim Ṽa = 21. (71)

Let p := (Qa, x
4
3) ∈ Ṽa , see Remark 18. Then Ṽa is mapped to itself by Stab(p),

and by restriction of the map ψ in (55) we get a map

Ṽa//Stab(p) −→ M̃.

We define a weighted blow up of Ṽa with center p as follows. First, by (71) we have
the following description of an affine neighborhood T of p ∈ Ṽa :

V (8)⊕ V (6)⊕ R · x23 −→ T

α :→ [x43 + α]

Let (z1, . . . , z5) be coordinates on R · x23 = V (4), let (z6, . . . , z12) be coordinates
on V (6), and let (z13, . . . , z21) be coordinates on V (8); thus (z1, . . . , z21) are
coordinates on T (with a slight abuse of notation) centered at the point p. Let σ
be the weight defined by

σ (zi) :=

⎧
⎪⎪⎨

⎪⎪⎩

2 if i ∈ {1, . . . , 5},
3 if i ∈ {6, . . . , 12},
4 if i ∈ {13, . . . , 21}.

(72)

(Note: we are proceeding exactly as in Sect. 5.4.5.) Let V̂a := Blσ (Ṽa) be the
corresponding weighted blow up, and let Ea be the corresponding exceptional
divisor. ThusEa is the weighted projective space P(25, 37, 49) ∼= ProjΛ, whereΛ is
the graded ring in (56) (with grading defined right after (56)). The action of Aut(p)
on Ṽa lifts to an action on V̂a There is an associated GIT quotient V̂a//Stab(p), and
a regular map

η̂ : V̂a//Stab(p) −→ Ṽa//Stab(p).
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We have the set-theoretic equality

η̂−1(p)red = ProjΛ//Gc = Mc. (73)

We have a rational map

p̂a : V̂a//Aut(p) !!" F ∗. (74)

Proposition 14 With notation as above, the restriction of p̂a to η̂−1(p)red = Mc is
equal to the period map in (61). Moreover p̂a is regular at all points of η̃−1(p)red
where pc is regular.

Proof Let [ξ ] = [f, g, h] ∈ ProjΛ = Ea be a Gc-semistable point with
corresponding point η ∈ Mc. Suppose that the period map pc is regular at η. We
will prove that if ∆ ⊂ C is a disc centered at 0, and ∆ → V̂a is an analytic
map mapping 0 to [ξ ] and no other point to the exceptional divisor Ea , then the
period map is defined on a neighborhood of 0 ∈ ∆, and its value at 0 is equal
to the period point of (Xη, Lη). This will prove the Proposition, by Corollary 1.
By Proposition 7, the previous statement boils down to the following computation.
Let f, g, h ∈ C[x0, x1, x2] be homogeneous of degrees 2, 3 and 4 respectively, not
all zero. Let Ct ⊂ V (q + ax23) be the intersection with the quartic

x43 + t2x23 (f + tF )+ t3x3(g + tG)+ t4(h+ tH ) = 0.

whereF ∈ C[x0, x1, x2]2[[t]],G ∈ C[x0, x1, x2]3[[t]], andH ∈ C[x0, x1, x2]4[[t]].
We will show that Ct for t ̸= 0 approaches for t → 0, the curve

q = x43 + x23f + x3g + h = 0.

In fact it suffices to consider the limit for t → 0 of λ(t)Ct , where λ is the 1-PS
λ(t) = (1, 1, 1, t).

5.4.7 A Global Modification of M̃ and Partial Extension of the Period
Map

Let T ⊂ |OP3(4)| be the closure of the set of PGL(4)-translates of V (fa,b), for all
(a, b) ∈ C2. Thus T is a closed, PGL(4)-invariant subset, containing D (the set of
double quadrics), and

dimT = 13. (75)

Let T̃ ⊂ P be the strict transform of T in the blow-up π : P → |OP3(4)| with
center D. The set of semistable points T̃ss ⊂ T̃ (for a polarization π∗L (−ϵED)

close to π∗L , see the proof of Proposition 8) is the union of the set of points of

ogrady@mat.uniroma1.it



264 R. Laza and K. G. O’Grady

T̃ \ ED which are mapped by π to quartics PGL(4)-equivalent to V (fa,b) for some
a ̸= b, and of T̃∩Ess

D . The latter set consists of the PGL(4)-translates of the points
(Qa, x

4
3) defined in Remark 18.

In Sects. 5.4.5 and 5.4.6 we defined a weighted blow up of an explicit normal
slice to T̃ at points x ∈ T̃ss . That construction can be globalized: one obtains a
modification π̂ : P̂ → P which is an isomorphism away from P \ T̃, and replaces
T̃ss by a locally trivial fiber bundle over T̃ss with fiber isomorphic to the weighted
projective space P(25, 37, 49). In fact the weighted blow up is isomorphic to the
usual blow up of a suitable ideal, see Remark 2.5 of [3], hence one may define an
idealI co-supported on T̃ such that P̂ = BlI P .

Let ET̃ be the exceptional divisor of π̂ . Letting LP := π∗L (−ϵED) be a
polarization of P as above, we may consider the GIT quotient of P̂ with PGL(4)-
linearized polarizationLP̂ := π∗LP (−tET̃), call it M̂(t). For 0 < t small enough,
the map π̂ induces a regular map M̂(t)→ M̃. From now on we drop the parameter
t from our notation; thus M̂ denotes M̂(t) for t small.

The image of ET̃ in M̂ is a fiber bundle

ρ : E1 → W̃1,

with fiber Mc over every point. Let p̂ : M̂ !!" F ∗ be the period map. We
claim that the restriction of p̂ to the fiber of E1 → W̃1 over x is regular away
from the indeterminacy locus of pc : Mc !!" F ∗, and it has the same value,
provided we compose with the automorphism of Mc given by (67) if x /∈ Eω and
π̂(x) = [V (fa,b)].

In order to prove the claim it suffices to prove the following. Let∆ ⊂ C be a disc
centered at 0, and let∆→ M̂ be an analytic map mapping 0 to a point x̂ ∈ E1 such
that the period map pc is regular at the point η ∈ Mc = ρ−1(ρ (̂x)) corresponding
to x̂, and suppose that (∆ \ {0}) is mapped to the complement of E1 and into the
locus where the period map is regular; then the value at 0 of the extension of the
period map on∆ \ {0} is equal to the period point of (Xη, Lη). We may assume that
∆→ M̂ lifts to an analytic map τ : ∆→ P̂ mapping 0 to a point of ET̃ with closed
orbit (in the semistable locus) lifting x̂. In Sects. 5.4.5 and 5.4.6 we have checked
that the value at 0 of the extension behaves as required if π̂ ◦τ (∆) is contained in the
normal slice to T̃ at the point π̂◦τ (0) (defined in Sects. 5.4.5 and 5.4.6 respectively).

It remains to prove that it behaves as required also if the latter condition does not
hold. If π̂ ◦ τ (0) /∈ ED, then the argument is similar to that given in Sect. 5.4.5; one
simply replaces a, b ∈ C by holomorphic functions a(t), b(t) where t ∈ ∆.

If π̂ ◦ τ (0) ∈ ED, one needs a separate argument. The relevant computation
goes as follows. Let f, g, h ∈ C[x0, x1, x2] be homogeneous of degrees 2, 3 and
4 respectively, not all zero. Let X ⊂ P3 × ∆ be the hypersurface given by the
equation

(q+x23)
2+ t4kx43 + t4k+6px23(f + tF )+ t4k+9px3(g+ tG)+ t4k+12p(h+ tH ) = 0,

(76)
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where

F ∈ C[x0, x1, x2]2[[t]], G ∈ C[x0, x1, x2]3[[t]], H ∈ C[x0, x1, x2]4[[t]].

Let λ(t) := diag(1, 1, 1, t4), and let Y ⊂ P3 ×∆ be the closure of

{([x], t) | t ̸= 0, λ(t)[x] ∈ X }.

Thus Yt ∼= Xt for t ̸= 0, and Y has equation

q2 + 2t8qx23 + t16x43 + t4k+16x43 + t4k+6p+8x23 (f + tF )+ t4k+9p+4x3(g + tG)+
t4k+12p(h+ tH ) = 0.

(77)

Dividing the above equation by t16 we find that the rational function ξi := q/(x2i t
8)

satisfies the equation

ξ2i + 2
(
x3

xi

)2

ξi + (x43 + t4kx43 + t4k+6p−8x23(f + tF )+ t4k+9p−12x3(g + tG)+

t4k+12p−16(h+ tH ))/x4i = 0.

It follows that the fiber at t = 0 of the normalization of Y is the double cover of
V (q) ramified over the intersection with the limit for t → 0 of the quartic

4x43−4(x43+t4kx43+t4k+6p−8x23(f+tF )+t4k+9p−12x3(g+tG)+t4k+12p−16(h+tH)) = 0.

Replacing x3 by t−3p+4x3 we get that the fiber at t = 0 of the normalization of Y
is the double cover of V (q) ramified over the intersection with the quartic

x43 + x23f + x3g + h = 0. (78)

Let us explain why the above computation proves the required statement. Let
ϵ : ∆ → |OP3(4)| be the analytic map defined by ϵ(t) := Xt . Then Im(ϵ) ⊂ S1,
where S1 is as in (51) (notice thatX0 = f1,1). Let Ũ1 be the blow up of S1 \Y1 with
center V (f1,1), see Sect. 5.4.3, and let ϵ̃ : ∆→ Ũ1 be the lift of ϵ (by shrinking ∆
we may assume that Im(ϵ) ∩ Y1 = ∅). Then ϵ̃(0) = p = (Q1, x

4
3), notation as

in Remark 18.
Now, choose a basis {a0, . . . , a21} of the SL2-representation S given by (50)

adapted to the decomposition in (50); more precisely a0 = x43 , {a1, . . . , a5} is a basis
of R · x23 , {a6, . . . , a12} is a basis of V (6), and {a9, . . . , a21} is a basis of V (8). Let
{w0, . . . , w21} be the basis dual to {a0, . . . , a21}; then (w0, . . . , w21) are coordinates
on an affine neighborhood of V (fa,a) in Sa , centered at V (fa,a). Next set y0 = w0,
and yi = wi/w0 for i ∈ {1, . . . , 22}. Then (y0, . . . , y21) are coordinates on an affine
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neighborhood of p ∈ Ũ1, centered at p. Let (z1, . . . , z21) be the affine coordinates
introduced in Sect. 5.4.6; we may assume that yi |Ṽ1

= zi for i ∈ {1, . . . , 22}.
In the coordinates (y0, . . . , y21) we have

ϵ̃(t)=(t4k ,t6p(f1+tF1),...,t
6p(f5+tF5),t

9p(g5+tG5),...,t
9p(g12+tG12),t

12p(h13+tH13),...,t
12p(h21+tH21)),

with obvious notation: (f1, . . . , f5) are the coordinates of f in the basis
{a1, . . . , a5}, etc. The computation above shows that the extension at 0 of the
period map is equal to the period point of the double cover of V (q) ramified over
the intersection with the quartic defined by (78), and hence the period map is regular
at the point corresponding to [f, g, h] by Proposition 7 and Corollary 1.

5.4.8 The First Flip and a Contraction of M̂

The divisor E1 ⊂ M̂ is isomorphic to W̃1×Mc. The normal bundle of E1 restricted
to the fibers of the projection E1 → Mc is negative; it follows that (in the analytic
category) there exists a contraction M̂→M1/2 ofE1 along the fibers ofE1 →Mc.
We claim that M1/2 must be isomorphic to F (1/3, 1/2). In fact, let p̂ : M̂ !!" F
be the period map (notice: contrary to previous notation, the codomain is F , not
F ∗). The generic fiber of E1 →Mc is in the regular locus of p̂, and is mapped to a
constant: it follows that

0 = p̂∗(λ) · (W̃1 × {[f, g, h]}) = p̂∗(∆) · (W̃1 × {[f, g, h]}), [f, g, h] ∈Mc.

(79)

On the other hand, letting p ∈ W̃1, and adopting the notation of [34], we have

p̂({p}×Mc,reg) ⊂ Im(f17,19). (80)

(Here Mc,reg is the set of regular points of the period map p̂c : Mc !!" F ;
by Proposition 14 it is equal to the intersection of {p} ×Mc,reg with the set of
regular points of p̂.) By Proposition 5.3.7 of [34] we have f ∗17,19(λ + β∆) =
(1 − 2β)λ(17)+ β∆(17). Now, ∆(17) = Hh(17)/2, and p̂({p} ×Mc) avoids the
support of Hh(17) = Im f16,17. Thus

p̂∗(λ+ β∆)|{p}×Mc = p̂∗((1− 2β)λ)|{p}×Mc . (81)

The conclusion is that p̂∗(λ + β∆) contracts all of E1 to a point if β ≥ 1/2 (and is
trivial on E1 if β = 1/2), while if β < 1/2, then the restriction of p̂∗(λ+β∆) to E1
is the pull-back of an ample line bundle on Mc. Thus we expect that for β < 1/2
close to 1/2 the (Q ) line-bundle p̂∗(λ + β∆) is the pull-back of an ample (Q ) line
bundle on M1/2, and hence M1/2 is identified with F (β), because the period map
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would be birational map which is an isomorphism in codimension 2 and pulls back
an ample line bundle to an ample line bundle.

6 Semistable Reduction for Dolgachev Singularities,
and the Last Three Flips

In the present section, we will provide evidence in favour of the predictions that
there are flips corresponding to β ∈ { 16 , 1

7 ,
1
9 } (the critical values of β closest to

β = 0, which corresponds toF ∗), with centers birational to the loci of quartics with
E14,E13, andE12 singularities respectively. There is a strong similarity with the first
steps in the Hassett-Keel program. Specifically, in the variation of log canonical
modelsMg(α) = Proj(M g,KM g

+ α∆M g
) (for α ∈ [0, 1]) for the moduli space

of genus g curves M g , the first critical value is α = 9
11 which corresponds to

replacing the curves with elliptic tails by cuspidal curves. Similarly, at the next
critical value α = 7

10 , the locus of curves with elliptic bridges is replaced by the
locus of curves with tacnodes (see [19, 20] for details). In the proposed analogy,
the singularities E12, E13, and E14 (the simplest 2 dimensional non-log canonical
singularities) correspond to cusps and tacnodes, while, as we will see, certain lattice
polarizedK3 surfaces correspond to elliptic tails and bridges.

6.1 KSBA (Semi)Stable Replacement

According to the general KSBA philosophy, for varieties of general type there
exists a canonical compactification obtained by allowing degenerations with semi-
log-canonical (slc) singularities and ample canonical bundle. In particular, any 1-
parameter degeneration has a canonical limit with slc singularities. However, when
studying GIT one ends up with compactifications that allow non-slc singularities.
For example, the GIT compactification for quartic curves will allow quartics with
cusp singularities. Thus a natural question is: given a degenerations X /∆ of
varieties of general type such that the general fiber is smooth (or mildly singular),
but such that X0 does not have slc singularities, to find a stable KSBA replacement
X′0. Of course, X′0 depends on the original fiber X0 and on the family X /∆

(i.e. the choice of the curve in the moduli space with limit X0). Motivated by the
Hassett-Keel program, Hassett [17] studied the influence of certain classes of curve
singularities on the KSBA (semi)stable replacement (in this case, the usual nodal
curve replacement). Hassett’s perspective is to consider a curve C0 with a unique
non-slc (i.e. non-nodal) singularity, and to examine C /∆, a generic smoothing of
C0. The question is what can be said about the semi-stable replacement C′0 of C0.
Of course, one component of C′0 will be the normalization C̃0 of C0 (assuming
that this normalization is not a rational curve). The remaining components (and the
gluing to C̃0) of C′0 (the “tail part”) will depend on the non-slc singularity of C0 and
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its smoothing; one determines them by a local computation. The classical example
is the semi-stable replacement for curves with an ordinary cusp (see [16, §3.C]), that
we briefly review below.

Example 1 (Semi-Stable Replacement for Cuspidal Curves) Locally (in the ana-
lytic topology) a curve in a neighborhoodof an ordinary cusp has equation y2+x3 =
0, and a generic 1-parameter smoothingwill be given byC := V (t+y2+x3)→ ∆t .
After a base change of order 6, which is necessary to make the local monodromy
action unipotent, one obtains a surface V (t6 + y2 + x3) ⊂ (C3, 0) with a simple
elliptic singularity at the origin. The weighted blow-up of the origin will resolve this
singularity, and the resulting exceptional curve E is an elliptic curve (explicitly it
is V (t6 + y2 + x3) ⊂ WP(1, 3, 2)). The new family C ′ (obtained by base change
and weighted blow-up) will be a semi-stable family of curves, with the new central
fiber consisting of the union of the normalization of C0 and of the exceptional
curve E (“the elliptic tail”) glued at a single point. Note that instead of a weighted
blow-up, one can use several regular blow-ups, these will lead first to a semi-stable
curve with additional rational tails, which can be then contracted to give the stable
model (with a single elliptic tail). The two blow-up (and then blow-down) processes
are equivalent; the weighted blow-up has the advantage of being minimal, and it
generalizes well in our situation.

As mentioned above, Hassett [17] has generalized this for certain types of planar
curve singularities (essentially weighted homogeneous, and related). In higher
dimension (e.g. surfaces), much less is known—there is a similar computation
(for surfaces with triangle singularities) to the elliptic curve example contained
in an unpublished letter of Shepherd-Barron to Friedman (in connection to [9]—
such examples tend to give degenerations with finite, or even trivial, monodromy).
Similar computations appear in [12], and what is needed for our purposes will be
reviewed below.

Of course, we are concerned with degenerations ofK3 surfaces, thus the KSBA
replacement strictly speaking doesn’t make sense (the main issue is non-uniqueness
of the replacement). Nonetheless, given a degenerationX ∗/∆∗ with general fiber
a K3, there exists a filling with X′0 being a surface with slc singularities (and
trivial dualizing sheaf). This follows from the Kulikov-Person-Pinkham theorem
and Shepherd-Barron [52, 53]. Furthermore, if X0 has a unique non-log canonical
singularity, we can ask (mimicking Hassett [17]):What is the KSBA replacement for
a quartic surface X0 with a single E12 singularity? In this case the resolution X̂0
is rational (this is analogous to the fact that the normalization of a cuspidal cubic
curve is rational), and thus the focus is on the “tail” part.

6.2 Dolgachev Singularities

The singularities that interests us are particular cases of Dolgachev singularities
[5] (aka triangle singularities or exceptional unimodal singularities, the latter is the
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terminology used by Arnold et al. [4]). They are arguably the simplest 2 dimensional
non-log canonical singularities, for this reason we view them as analogues of 1
dimensional ordinary cusps. Dolgachev singularities are hypersurface singularities
with the property that they have a (non-minimal) resolution with exceptional divisor
E+E1+E2+E3, whereE2 = −1,E2

1 = −p, E2
2 = −q ,E2

3 = −r , and the curves
Ei only meetE transversely (comb type picture). By contracting the Ei’s, we obtain
a partial resolution with a rational curve E going through 3 quotient singularities of
types 1

p (1, 1),
1
q (1, 1) and

1
r (1, 1). While any (p, q, r) (with 1

p + 1
q + 1

r < 1) gives
a non-log canonical surface singularity, only 14 choices of integers (p, q, r) lead
to hypersurface singularities, these are the Dolgachev singularities. The Dolgachev
numbers of the singularity are p, q, r . The cases relevant to us are E12, E13, and
E14, with Dolgachev numbers (2, 3, 7), (2, 4, 5), and (3, 3, 4) respectively.

Remark 20 Very relevant in this discussion is the so called Tp,q,r graph (for p, q, r
positive integers). This consists of a central node, together with 3 legs of lengths
p− 1, q − 1, and r − 1 respectively. As usual to such a graph, one can associate an
even lattice by giving a generator of norm−2 for each node, and two generators are
orthogonal unless the corresponding nodes are joined by an edge in the graph (in
which case, we define the intersection number to be 1). The cases 1

p + 1
q + 1

r > 1
corresponding precisely to the ADE Dynkin graphs (with ADE associated lattices).
For example (1, p, q) corresponds to Ap+q−1, while (2, 3, 3) corresponds to E6.
Note also 1

p + 1
q + 1

r > 1 is equivalent to the associated lattice being negative

semi-definite. The three cases with 1
p + 1

q + 1
r = 1 correspond to the extended

Dynkin diagrams of type Ẽr (r = 6, 7, 8), and in these cases the associated lattice
is negative semi-definite. Finally, the cases with 1

p + 1
q + 1

r < 1 lead to a hyperbolic
lattice. It is easy to compute that the absolute value of the discriminant will be
pqr

(
1−

(
1
p + 1

q + 1
r

))
.

The lattice of vanishing cycles associated to a Dolgachev singularity is Tp′,q ′,r ′ ⊕
U for some integers (p′, q ′, r ′), which are called the Gabrielov numbers of the
singularity. In particular, we note that p′ + q ′ + r ′ = (p′ + q ′ + r ′ − 2)+ 2 = µ is
the Milnor number of the singularities (i.e. the rank of the lattice of vanishing cycles
is the Milnor number). In other words, associated to a Dolgachev singularity there
are two triples of integers: the Dolgachev numbers (p, q, r) related to the resolution
of the singularity, and the Gabrielov numbers (p′, q ′, r ′) related to the lattice of
vanishing cycles (and the local monodromy associated with the singularity). In
Table 2 below we give these numbers for the cases relevant to us. Arnold observed
that the 14 Dolgachev singularities come in pairs of two with the property that the

Table 2 The relevant
Dolgachev singularities

Singularity Dolgachev no. Gabrielov no.

E12 2, 3, 7 2, 3, 7
E13 2, 4, 5 2, 3, 8
E14 3, 3, 4 2, 3, 9
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Dolgachev and Gabrielov numbers are interchanged. This is part of the so called
strange duality (see [8] for a survey). The key point is that Tp,q,r and Tp′,q ′,r ′ are
mutually orthogonal in E2

8 ⊕ U2 (equivalently, after adding a U to one of them,
they can be interpreted as the Neron-Severi lattice and the transcendental lattice
respectively for certain K3 surfaces, and thus one can view this as an instance of
mirror symmetry forK3 surfaces, see [6]).

6.3 Deformations of Dolgachev Singularities and Periods
of K3’s

Looijenga [37, 38] has studied the deformation space of Dolgachev singularities.
Briefly, they are unimodal, i.e. they have 1-parameter equisingular deformation.
Within the equisingular deformation, there is a distinguished point corresponding
to a singularity with C∗-action (equivalently the equation is quasi-homogeneous).
One can apply to that singularity Pinkham’s theory of deformations of singularities
with C∗-action. In this situation, there will be 1-dimensional positive weight
direction (i.e. there is an induced C∗ action on the tangent space to the mini-versal
deformation, and the weights refer to this action) corresponding to the equisingular
deformations. The remaining (µ − 1) weights are negative and correspond to the
smoothing directions. We denote by S− the germ corresponding to the negative
weights. Because of the C∗-action, S− can be globalized and identified to an affine
space. Thus (S− \ {0})/C∗ is a weighted projective space of dimension µ − 2
(where µ is the Milnor number, e.g. µ − 2 = 10 for E12). The general theory of
Pinkham states that (S− \ {0})/C∗ is to be interpreted as a moduli space of certain 2
dimensional pairs (X,H) (H is to be interpreted as a hyperplane at infinity coming
from a C∗-equivariant compactification of the singularity). Looijenga [37, 38]
observed that, in the case of Dolgachev singularities (with C∗-action), the general
point of (S− \ {0})/C∗ parametrizes a couple (X,H) where X is a (smooth)
K3 surface, and H is a Tp,q,r configuration of rational curves ((p, q, r) are the
Dolgachev numbers of the singularity). In particular, the transcendental lattice of
X is Tp′,q ′,r ′ ⊕ U (identified with the lattice of vanishing cycles for the triangle
singularity), while Tp,q,r is its Neron–Severi lattice. In conclusion, the weighted
projective space (S− \ {0})/C∗ is birational to a locally symmetric variety D/Γ

corresponding to periods of Tp,q,r -markedK3 surfaces (the dimension is 20− (p+
q+ r−2) = 22− (p+q+ r) = p′+q ′+ r ′ −2 = µ−2). Furthermore, Looijenga
[38] showed that the structure of the Baily-Borel compactification (D/Γ )∗ is related
to the adjacency of simple-elliptic and cusp singularities to the given Dolgachev
singularity, and that the indeterminacy of the period map (S−\{0})/C∗ !!" (D/Γ )∗

is related to the triangle singularities adjacent to the given one (e.g. E13 deforms
to E12 and this will lead to indeterminacy, that is resolved by Looijenga’s theory;
while, on the other hand E12 deforms only to simple elliptic, cusp, or ADE
singularities, and thus there is no indeterminacy).
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Example 2 The simplest case is the deformation of E12. The singularity has
equation x2 + y3 + z7 = 0. In this situation, as explained, E12 only deforms
to log canonical singularities giving a regular period map, which in turn gives an
isomorphism:

WP(3, 4, 6, 8, 9, 11, 12, 14, 15, 18, 21)∼= (S− \ {0}) /C∗ ∼= (D/Γ )∗.

The weights above are the negative weights with respect to the C∗-action on the
tangent space to the mini-versal deformation of the singularity, which we recall
can be identified with OC3,0/J , where J := (x, y2, x6) is the Jacobian ideal of
f := x2+y3+ z7. In this example, (D/Γ )∗ is the Baily-Borel compactification for
the moduli space of T2,3,7-markedK3 surfaces (N.B. T2,3,7 ∼= E8⊕U ; also, because
of self-duality in this case, the transcendental lattice is T2,3,7 ⊕ U = E8 ⊕ U2).

6.4 Relating the Loci W6,W7 andW8 to Z6, Z7 and Z9

Recall thatW8,W7 andW6 are the closures inM of the loci parametrizing polystable
quartics with a singularity of type E12, E13 and E14 respectively. The universal
family of quartics gives a versal deformation for the E12 singularity (this follows
from Urabe’s analysis [57] of quartics with this type of singularities, or more
generally from du Plessis–Wall [7] and Shustin–Tyomkin [54]), thus at a quartic
with E12 singularities such that the singularity has C∗-action, the germ of (S−, 0)
can be interpreted as the normal direction toW8. Then, (S− \ {0}) /C∗ is nothing but
the projectivized normal bundle, which is then the replacement via a (weighted) flip
of the W8 locus. On the other hand, as noted in the example above, (S− \ {0}) /C∗
can be interpreted as the moduli of T2,3,7-marked K3s, which is the same as our
Z9 locus in F (the moduli of quartic K3 surfaces). The same considerations apply
to the case of E13 and E14 singularities, but in those cases the identification of
(S− \ {0}) /C∗ with the moduli of T2,4,5 (and T3,3,4 respectively) marked K3s
(which then correspond to Z7 and Z6 respectively) involves one (or respectively
two) flips (corresponding to the fact that E13 deforms to E12, and similarly forE14).
This is exactly as predicted in [34].

The argument above almost establishes our claim that a flip replace the Z9

locus in F by W8 (the E12 locus) in M (and similarly for E13 and E14). In the
following subsection, we strengthen the evidence towards this claim by a one-
parameter computation (which shows that indeed the generic KSBA replacement
for a quartic with E12 singularities (with C∗-action) is a T2,3,7-markedK3).

Example 3 Let [w, x, y, z] be homogeneous coordinates on a 3 dimensional pro-
jective space, and let X be the quartic defined by the equation

x2w2 − 2xz2w2 + y3w + x3z+ z4 = 0.
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Computing partial derivatives, one finds that the singular set of X consists of the
single point p := [1, 0, 0, 0]. In fact X has an E12 singularity at p, with C∗ action.
To see why, we let w = 1, and hence (x, y, z) become affine coordinates. Then p is
the origin, and a local equation of X near p is

(x − z2)2 + y3 + x3z = 0.

Let (s, y, z) be new analytic coordinates, where s = x − z2; the new equation is

s2 + y3 + z7 + s3z+ 3s2z3 + 3sz5 = 0.

One recognizes s2 + z7 + s3z + 3s2z3 + 3sz5 = 0 as an A6 singularity (assign
weight 1/2 to s and weight 1/7 to z; since all other monomials appearing in the
equation have weight strictly larger than 1, it follows that the equation is analytically
equivalent to u2 + v7 = 0), and hence in a neighborhood of p, the quartic X has
analytic equation u2 + y3 + v7 = 0. This is exactly the local equation of an E12
singularity with C∗ action. SinceX has no other singularity, it is stable by Shah, and
[X] belongs to W8.

6.5 The Semistable Replacement for Quartics with an E12, E13
or E14 Quasi-Homogeneous Singularity

We are assuming that we are given a quartic surfaceX0 with a uniqueEk singularity
(for k = 12, 13, 14) and such that the singularity has a C∗-action (the singularity, in
local analytic coordinates, is given by the equation in Table 3). We are considering
a generic smoothing X /∆ and we are asking what is the KSBA replacement
associated to this family. The computation is purely local, similar to that occurring
in Hassett [17]. We will mimic the algorithm described in Example 1. A generic
smoothing is locally given by

V (f (x, y, z)+ t) ⊂ (C4, 0),

where f is the local equation of the singularity as in Table 3. We make a base
change t → tN so that the local monodromy is unipotent. Arnold et al. (see [4,
Table on p. 113]) have computed the spectrum of the singularities for the simplest

Table 3 Equations of the relevant Dolgachev singularities

Singularity Equation (with C∗-action) Order N for base change Weights (t, x, y, z)

E12 x2 + y3 + z7 = 0 42 (1, 21, 14, 6)
E13 x2 + y3 + yz5 = 0 30 (1, 15, 10, 4)
E14 x3 + y2 + yz4 = 0 24 (1, 8, 12, 3)
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type of hypersurface singularities, including ours. The spectrum encodes the log of
the eigenvalues of the local monodromy, thus from Arnold’s list it is immediate to
find the base change giving unipotent monodromy; the relevant order N for the
base change is given in Table 3 below. It turns out that the resulting threefold
X = V (f (x, y, z) + tN ) ⊂ (C4, 0) has a simple K3-singularity (analogue of
simple elliptic) at the origin in the sense of Yonemura [59]. It follows that a suitable
weighted blow-up of X at the origin will resolve this singularity, giving a K3 tail.
The tail T will be one of the weighted K3 surfaces in the sense of M. Reid. What
is specific in the situation analyzed here is that T has 3 singularities of type A lying
on the exceptional divisor of the weighted blow-up (a rational curve). A routine
analysis (see Gallardo [12] for further details) gives the following result.

Proposition 15 Let X /∆ be a generic smoothing of a Dolgachev singularity of
typeEk (k = 12, 13, 14). Then, after a base change of orderN (as given in Table 3),
followed by a weighted blow-up with weights as given in the table, gives a new
central fiber X′0 which is the union of the partial resolution X̂0 of X0 (with quotient
singularities given by the Dolgachev numbers (p, q, r)) and a K3 surface T with
3 singularities of types Ap−1, Aq−1, and Ar−1 liying on the (rational) curve C =
T ∩ X̂0. Thus, the minimal resolution T̃ of T is a Tp,q,r -marked K3 surface, where
(p, q, r) are the Dolgachev numbers of the Ek singularity.

Proof The equation of the tail is simply

V (f (x, y, z)+ tN ) ⊂ WP(1, wx,wy,wz)

with f , N , and the weights as given in Table 3. Note that this is a weighted degree
N hypersurface in a weighted projective space such that the sum of weights satisfies

1+ wx +wy +wz = N.

This is precisely the K3 condition.

Remark 21 Computations and arguments of similar nature have been done in the
thesis of P. Gallardo (some of them appearing in [12]), who was advised by the first
author. We have learned about similar computations done by Shepherd-Barron from
an unpublished letter to R. Friedman.

In conclusion we see that the replacement of the quartics with quasi-
homogeneous E12, E13, or E14 singularities are T2,3,7, T2,4,5, T3,3,4 marked K3
surfaces respectively. These are parametrized by points of Z9, Z8, Z7 respectively,
see [34]. Specifically, we have the following result.

Proposition 16 The loci Z9, Z8, Z7 are naturally identified with the moduli spaces
of T2,3,7, T2,4,5, T3,3,4-polarized (in the sense of [6]) K3 surfaces respectively.

Proof As already noted, for 1
p+ 1

q+ 1
r < 1, Tp,q,r are hyperbolic lattices of signature

(1, p + q + r − 3). Furthermore, the absolute value of their discriminant is pqr −
pq − pr − qr = pqr

(
1− 1

p − 1
q − 1

r

)
(giving values 1, 2, 3 respectively in our
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situation). It follows, that the three Tp,q,r lattices considered here are isometric to
E8 ⊕ U , E7 ⊕ U , and E6 ⊕ U respectively. Each of them has a unique embedding
into the K3 lattice E2

8 ⊕ U3, and the corresponding orthogonal complements are
E8 ⊕ U2, E8 ⊕ U2 ⊕ A1, and E8 ⊕ U2 ⊕A2 respectively. This coincides with our
definition of the Z9, Z8, Z7 loci from [34].

7 Looijenga’s Q -Factorialization

The predictions of our previous paper [34] are concerned with the birational
transformations that occur in the period domain F = D/Γ . Our working
assumption is that all the modifications that occur at the boundary of the Baily-
Borel compactification F ∗ are explained by Looijenga’s Q -factorialization [41],
together with the modifications occurring in F . More precisely we predict that,
for 0 < ϵ0 < 1/9, the birational map F (ϵ0) !!" F ∗ is regular, small, and an
isomorphism overF = D/Γ , and that the strict transform of∆ is a relatively ample
Q -Cartier divisor. In particular, we get a well defined birational model F̂ ofF ∗ by
setting F̂ := F (ϵ0) for 0 < ϵ0 < 1/9—this is Looijenga’s Q -factorialization.
Our expectation is that, for a critical β ∈ [1/9, 1], the center of the birational map
F (β − ϵ) !!" F (β + ϵ) is the proper transform of the appropriate Zj appearing
in (1) (Z9 for β = 1/9, Z8 for β = 1/7, and so on) via the birational map
F (β − ϵ) !!" F . In particular, the above expectation predicts that the numbers of
irreducible components ofMII andMIII , and their dimensions, can be determined
once one has a description of the inverse images in F̂ of Type II, Type III strata,
and their intersections with the strict transforms of the Zj ’s. In the present section
we will spell out the predictions regardingMII , and we will see that they match the
computations of Sect. 4.

Before we proceed with our computations, we note that there is a glaring
discrepancy that seems to be against our predictions above: there are 8 Type II
components in M, while there are 9 in F̂ . In fact there is no contradiction, as
we will see that the missing component is contained in the closure of one of the
Zk ⊂ F strata and thus will disappear in the associated flip (and it will be hidden
in the Type IV locus in M). We note that compared with the case of degree 2 K3
surfaces [39, 50] or cubic fourfolds [32, 42], this is a new phenomenon which points
to the interesting nature of the quartic example.

7.1 Looijenga’s Q -Factorialization and Its Type II Boundary
Components

The locally symmetric varietyF has at worst finite quotient singularity, and thus it
is Q -factorial. Since the boundaryF ∗ \F is of high codimension, any divisor ofF
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extends uniquely as a Weil divisor, but typically not a Q -Cartier divisor. Looijenga
[41] has constructed a Q -factorialization associated to any arithmetic hyperplane
arrangement (or equivalently pre-Heegner divisor in the terminology of [34]). Here,
we are interested in the Q -factorialization of the closure of ∆ = 1

2 (Hu +Hh).

Definition 6 Let F̂ → F ∗ be the Looijenga Q -factorialization associated to the
hyperplane arrangementH = π−1(Hh ∪Hu) (where π : D → D/Γ is the natural
projection) of hyperelliptic and unigonal pre-Heegner divisors.

From our perspective, it is immediate to see that the Q -factorialization coincides
with one of our models:

Proposition 17 Let 0 < ϵ ≪ 1. Then the composition of birational maps F̂ →
F ∗ andF ∗ !!" F (ϵ) is an isomorphism F̂

∼−→ F (ϵ).

Proof By construction, F̂ has the property that λ+ ϵ∆ extends to a Q -Cartier and
ample divisor class λ̂+ϵ∆̂. (N.B. the relative ampleness of∆ is not explicitly stated
in [41], but this is precisely what Looijenga checks). Hence the ring of sections
R(F̂ , λ̂ + ϵ∆̂) makes sense (and is finitely generated). Since F̂ → F ∗ is a small
map, and F̂ is normal (by construction), the restriction of sections to F ⊂ F̂
defines an isomorphism R(F̂ , λ̂ + ϵ∆̂) ∼= R(F ,λ + ϵ∆).
Remark 22 According to the discussion of [28, Ch. 6], theQ -factorialization of∆ is
unique: it is eitherF (ϵ) orF (−ϵ) (depending on the requested relative ampleness).
The main issue is that the finite generation of the ring of sections definingF (ϵ) is
not a priori guaranteed. Looijenga [41] makes use of the special structure of the
Baily-Borel compactification (e.g. the tube domain structure near the boundary, and
the existence of toroidal compactifications) to obtain that the Q -factorialization is
well defined, and furthermore to get an explicit description of it.

Remark 23 The results of [34] (see esp. Proposition 5.4.5) predict that the above
proposition holds for 0 < ϵ < 1

9 .

The stratificationF ∗ = F I (F II (F III defines by pull-back a stratification
F̂ = F̂ I (F̂ II (F̂ III . The boundary strata of F̂ are the irreducible components
of the above strata. We are interested in the number of the Type II boundary strata
of F̂ and their dimensions.

We start by recalling that the structure of the Baily-Borel compactification for
quartic surfaces was worked out by Scattone [48]: there are 9 Type II boundary
components, and a single Type III boundary component.

Proposition 18 (Scattone [48]) The boundary of the Baily-Borel compactification
F ∗ of the moduli space of quartic surfaces consists of 9 Type II boundary
components, and a single Type III component. The Type II boundary components
are naturally labeled by a rank 17 negative definite lattice as follows:D17,D9⊕E8,
D12⊕D5,D3⊕(E7)

2,A15⊕D2, ,A11⊕E6, (D8)
2⊕D1,D16⊕D1, and (E8)

2⊕D1
respectively.
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Table 4 Dimension of the
boundary strata in F̂

D17 1 D9 ⊕ E8 10 D12 ⊕D5 6
D3 ⊕ (E7)

2 4 A15 ⊕D2 3 A11 ⊕ E6 1
(D8)

2 ⊕D1 2 D16 ⊕D1 6 (E8)
2 ⊕D1 2

Proposition 19 The dimensions of the Type II strata in the compactification F̂ are
given in Table 4.

Proof A type II boundary component is determined by the choice of an isotropic
rank 2 primitive sublattice E ⊂ Λ(∼= E2

8 ⊕ U ⊕ ⟨−4⟩) (up to the action of the
monodromy group). The label associated to a Type II boundary component is the
root sublattice contained in the negative definite rank 17 lattice E⊥Λ/E (with the
convention of including also D1 = ⟨−4⟩ in the root lattice). According to [48],
this is a complete invariant for a Type II boundary component in the case of quartic
surfaces.

The construction of Looijenga [41] (see esp. Section 3 and Proposition 3.3 of loc.
cit.) depends on the linear space

L :=
(
∩H∈H ,E⊂H (H ∩ E⊥)

)
/E ⊂ E⊥/E.

More precisely, letM := E⊥Λ/E. NoteM is a negative definite rank 17 lattice. Then,
we recall that the fiber over a point j in the type II boundary component (recall each
Type II boundary component is a modular curve, here h/SL(2,Z)) associated to E

is simply the quotient of the abelian variety J (Ej )⊗Z M by a finite group (here Ej
denotes the elliptic curve of modulus j , and J (Ej ) its Jacobian). What Looijenga
has observed is that L is the null-space of the restriction to the toroidal boundary (of
Type II) of the linear system determined by the hyperplane arrangement H . And
thus, the fiber for the Q -factorialization (which as discussed above corresponds to
the Proj of the ring of sections of λ+ ϵ∆; also recall (the pull-back of) λ restricts to
trivial on the toroidal boundary) over the point j in the Type II boundary component
associated to E is (up to finite quotient) J (Ej )⊗Z M/L.

Now, we recall that the latticeΛ can be primitively embedded into the Borcherds
lattice II2,26 with orthogonal complementD7 (in a unique way). We fix

Λ ↪→ II2,26

and R = Λ⊥ ∼= D7. With respect to this embedding, a hyperelliptic hyperplane
corresponds to an extension of R to a (primitively embedded) D8 into II2,26,
while a unigonal divisor to a E8. Successive intersections of hyperplanes from
H correspond to extensions of R = (D7) into Dk lattices. Similarly, if E is
rank 2 isotropic (primitively embedded), then we recall that M = E⊥/E can be
embedded into one the 24 Niemeier lattices (i.e. rank 24 negative definite even
unimodular lattices) with orthogonal complement D7. The same considerations
as before apply: a hyperelliptic divisor correspond to an extension to D8 (and
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repeated intersections to D7+k), while a unigonal one corresponds to an extension
to E8. By inspecting the possible embeddings of Dk lattices into Niemeier lattices,
one obtains the dimensions claimed in Table 4. The only exception is the case
D17 (in which case D7 extends to D24) for which L = 0 ⊂ M , and thus the
Heegner divisor is already Q -Cartier (and no modification is necessary; see [41,
Cor. 3.5]).

7.2 Matching Type II Strata

In order to understand the matching of the GIT and Baily-Borel Type II strata, one
needs to consider a generic smoothing X /∆ of a Type II quartic surface X0 and
compute the limit MHS with Z-coefficients. The analogous case of K3 surfaces of
degree 2 was analyzed by Friedman in [10]. Inspired by Friedman’s analysis, we
make the following definition:

Definition 7 Let X0 be a Type II polystable quartic surface. The associated
(isomorphism class of) lattice is the direct sum of the following lattices:

1. One copy of Er for each Ẽr singularity of X.
2. One copy of D4d+4 for each degree d rational curve in the singular set of X.
3. One copy of A4d−1 for each degree d elliptic curve in the singular set of X.
4. The lattice ⟨hX̃,KX̃⟩⊥ ⊂ Pic(X̃) where X̃ is the minimal resolution of the

normalization of X and hX̃ is the polarization class on X̃ (e.g. if X̃ is a degree 2
del Pezzo with the anticanonical polarization, we add E7).

Remark 24 To understand the meaning of the lattice associated to a Type II
degenerationX0, one needs to consider a generic smoothingX /∆ of X0, followed
by a semi-stable (Kulikov type) resolution X̃ /∆. The lattice introduced in the
definition above is essentially (W2/W1)prim from [10, (5.1)]. The main point here
(similar to the discussion of Sect. 6) is that one has quite a good understanding
of the semistable replacement in the Type II case. For instance, the simple elliptic
singularities Ẽr (r = 6, 7, 8) will be replaced by degree 9 − r del Pezzo tails (this
leads to the first item of Definition 7).

Remark 25 By going through our list of Type II components ofM, one checks the
following:

1. Two polystable quartic surfaces belonging to the same Type II component of M
have isomorphic associated lattices.

2. The lattice associated to a polystable quartic surface of Type II has rank 17, is
negative definite, even, and belongs to the list of lattices associated to Type II
boundary components ofF ∗, see Proposition 18.

3. By associating to a Type II component of M the lattice associated to any
polystable quartic in the component (see Item (1)), we get a one to one
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correspondence between the set of Type II components of M and the set of
lattices appearing in Proposition 18, provided we remove the D17 lattice.

The geometric meaning of the lattice associated to a polystable quartic of Type
II is provided by our next result, which is proved by mimicking the arguments of
Friedman in [10] (see esp. [10, Rem. 5.6]).

Proposition 20 Let X be a polystable Type II quartic surface. The period point
p([X]) belongs to the Baily-Borel Type II boundary component labeled by the lattice
associated to X.

So far we have proved that the set of lattices appearing in Proposition 18, once we
remove the D17 lattice, parametrizes both the components of MII , and the Type II
boundary components ofF ∗, with the exclusion of one. The two parameterizations
are compatible with respect to the period map. Of course the same set of lattices
parametrizes Type II boundary components of F̂ , with the exception of one.

Proposition 21 Let L be one of the lattices appearing in Proposition 18, with the
exception of D17. The dimension of the Type II boundary component of F̂ indexed
byL is equal to the dimension of the Type II component ofM indexed by the sameL.

Proof We illustrate the computation of dimensions in the highest dimensional case:
II(5), i.e. quartics that have a single Ẽ8 singularity such that no line passes through
this singularity. Let X0 be a generic surface of this type; thenX0 has a singularity of
type Ẽ8 at some point p and is smooth away from p, see Remark 9. Let X̃0 → X0
be the minimal resolution. By Remark 9, the exceptional divisor D is an elliptic
curve with self-intersection −1, D is an anti-canonical section, and ρ(X̃0) = 11
(i.e. X̃0 is the blow-up of P2 along 10 points on an elliptic curve). Thus, H 2(X̃0) is
nothing else than the lattice I1,10. By the discussion in Remark 10, it follows that
⟨KX̃0

+ hX̃0
⟩⊥
H 2(X̃0)

is isometric to D9. Since X0 has an Ẽ8 singularity, by our rule
(Definition 7), the associated label is D9 ⊕ E8.

From Shah [51], a generic surface X0 of Type II(5) is GIT stable. On the
other hand, the results of [7] and [54] imply in particular (loc. cit. give general
conditions in terms of total Tjurina number) that the universal family of quartic
surfaces versally unfolds the Ẽ8 singularity. From these two results, it follows that
the codimension of the locus with a fixed Ẽ8 singularity is 10 = µ(Ẽ8) (where µ is
the Milnor, and also, in this case, the Tjurina number), but there is an additional 1-
dimensional deformation corresponding to moduli of simple elliptic singularities.
Summing up, the II(5) locus has codimension 9 (i.e. dimension 10) in the GIT
quotientM. (The same dimension count also follows from the geometric description
given in Remark 9.)

The computation of the dimension of the stratum labeled by E8 ⊕D9 in F̂ has
been carried out in Proposition 19. Here we point out that this case corresponds
to the Niemeier lattice containing the root system D16 ⊕ E8. In that situation, the
maximally embeddedDl isD16, which means (using the notation of Proposition 19)
dimM/L = 9 (N.B. 16 = 7+ 9). Thus the fiber of F̂ → F ∗ over a point j in the
Type II component labeled by E8 ⊕ D9 is 9. Then again, by varying j , we obtain
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a 10-dimensional component (this time in F̂ ; thus the dimensions in M and F̂
match).

To get further geometric understanding of the matching of the GIT com-
ponent II(5) and of the component labeled by D9 ⊕ E8 in F̂ , we note that
there exists an extended period map. Specifically, recall that X0 carries a mixed
Hodge structure (MHS), and that there exists also a limit mixed Hodge struc-
ture (LMHS). The Baily-Borel compactification F ∗ encodes the graded pieces
of the LHMS (in this situation, the modulus of the elliptic curve C, and a
discrete part, i.e. the choice of Type II component, or equivalently the label of
the component). As previously discussed, the graded pieces of the LMHS can
be read off from those of the MHS on degeneration X0 (the weight 1 part
follows from Theorem 2, while the discrete weight 2 part is the rule given
by Definition 7). On the other hand, a toroidal compactification F

Σ
(which is

unique over the Type II stratum) encodes the full LMHS (i.e. the graded pieces,
plus the extension data; see Friedman [10] for a full discussion). Finally, the
semitoric compactifications of Looijenga are sitting between the Baily-Borel and
the toroidal compactifications: F

Σ → F̂ → F ∗. Thus, from a Hodge theoretic
perspective, F̂ retains the graded pieces of the LHMS, plus partial extension
data. As explained below, this partial extension data is exactly the extension data
that can be read off from the central fiber X0 (without passing to the Kulikov
model).

Specifically, in the case that we discuss here (Type II(5)), the Kulikov model
is X̃0 ∪E T , where (as above) X̃0 is the resolution of the quartic surface with
an Ẽ8 singularity, T is a “tail” (depending on the direction of the smoothing). In
this situation, T is a degree 1 del Pezzo surface, whose primitive cohomology is
E8. X̃0 is a rational surface with primitive cohomology D9. Finally, the gluing
curve E is an elliptic curve (with self-intersection 1 on T and −1 on X̃0), which
gives the modulus j discussed above. Fixing j , the modulus of these type of
surfaces (up to the monodromy action) is the 17 dimensional abelian variety
(E8 ⊕ D9) ⊗Z J (Ej ) (this is precisely the fiber of the toroidal compactifica-

tion F
Σ → F ∗ over the appropriate Type II Baily-Borel boundary point).

When passing to Looijenga Q -factorialization, the fiber of F̂ → F ∗ becomes
D9 ⊗Z M/L (N.B. M/L = D9 in this case). This fiber can be identified with
the moduli space of X0 (or equivalently (X̃0,D) with fixed j -invariant for D).
More precisely, it is possible to see that the restriction of the extended period
map

M !!" F̂ → F ∗

(which extends over the Type II and III locus) to the locus II(5) is nothing
else but the period map for the anticanonical pair (X̃0,D) (see [13] and [11]
for a general modern discussion of the period map for anticanonical pairs, and
[57, Section 5] for the specific case discussed here; all of this originates with
work of Looijenga [36]). In conclusion, we get a perfect matching between the
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Table 5 Matching of the
Type II strata

GIT stratum BB stratum Dimension

II(1) (E8)
2 ⊕D1 2

II(2) (E7)
2 ⊕ A3 4

II(3) (D8)
2 ⊕D1 2

II(4) E6 ⊕ A11 1
II(5) E8 ⊕D9 10
II(6) D12 ⊕D5 6
II(7) D16 ⊕D1 2
II(8) A15 ⊕ (A1)

2 3

Type II(5) stratum in M and the Type II stratum in F̂ labeled by D9 + E8
(Table 5).2

Remark 26 (Kulikov Models) It is not hard to produce Kulikov models for each of
the Type II degenerations above. For instance, in a semi-stable degeneration, each
of the Ẽr singularities will be replaced by a del Pezzo of degree (9 − r). As an
example, the case II(1) corresponding to a quartic with 2 Ẽ8 singularities will give
2 degree 1 del Pezzo surfaces, glued to an elliptic ruled surface (which is in the fact
the resolution of the singular quartic; the del Pezzo surfaces are “tails” induced by
the smoothing; see Sect. 6.5 above for related computations). The case of quartics
singular along a curve typically are obtained by projection from a rational surface
(frequently del Pezzo). For instance the case II(6) is obtained by projecting a degree
4 del Pezzo from a point in P4. The associated label D12 ⊕ D5 has the following
meaning: D5(= E5) is the primitive cohomology of the associated degree 4 del
Pezzo. On the other hand D12 is coming from the singular locus of the quartic (in
this case a conic) and the rule (Definition 7) given above.

7.3 The Missing GIT Type II Component

The reader might be puzzled by the fact the BB stratum corresponding to D17 does
not occur in the list of Type II components of M. We can explain this as follows.
First of all as noted in Proposition 19, along this stratum the hyperelliptic divisor
is Q -factorial and thus it is not affected by the Q -factorialization. Moreover, this
is precisely the boundary component that is contained in all elements of the D-
tower. (this is the component that survives when we go to low dimensions). As
discussed the entire ∆(k) (when we get to codimension 9) is contracted and then
flipped (i.e. there is no deeper flip). This is indeed compatible with a theorem of

2In fact, while we do not check it here, we expect that the extended period map is an isomorphism
(at the generic points) between the II(5) and II(D9 +E8) strata (and similarly for the other Type II
strata).
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Looijenga which identifies F (10)∗ with a certain weighted projective space and
with the moduli space of T2,3,7(= E8⊕U)markedK3s (see Sect. 6). In conclusion,
the 9th boundary component is flipped all at once together with a big stratum,
and thus will not be visible in MII . It is “hidden” in the E12 stratum (i.e. IV(8))
inMIV .
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