Appendix A

Algebra a la carte

A.1 Introduction

In what follows, rings are always commutative with 1. The proofs of the results below are contained in
most Algebra textbooks (e.g. Lang [Lan02]).
A.2 Unique factorization

Theorem A.2.1. Let R be a UFD. Then R[t] is a UFD. Moreover a polynomial p = apt® + a t?! +
...+ aq is prime if and only if

1. p is prime when viewed as element of K|[t], where K is the field of fractions of R,

2. and the greatest common divisor of ag,ay,...,aq is 1.
Corollary A.2.2. The ring K[x1,...,2,] is a unique factorization domain.
Proof. By induction on n. If n = 0, the ring is a field, and hence it is trivially a UFD. The inductive
step follows from Theorem A.2.2, because K[z, ..., 2,] = K[xy,. .., n_1][t]- O
A.3 Noetherian rings

Definition A.3.1. A (commutative unitary) ring R is Noetherian if every ideal of R is finitely gener-
ated.

Ezample A.3.2. A field K is Noetherian, because the only ideals are {0} = (0) and K = (1). The ring
Z is Noetherian, because every ideal has a single generator.

Lemma A.3.3. A (commutative unitary) ring R is Noetherian if and only if every ascending chain
Ipclhhc...cl,c...

of ideals of R (here I, is defiend for all m € N, and I, € Ip41 for all m € N) is stationary, i.e. there
exists mo € N such hat I, = L, for m = my.

Proof. Suppose that R is Noetherian. The union I := |,y Im is an ideal because the {I,,,} form a
chain. By Noetherianity [ is finitely generated, say I = (a1, ..., a,). There exists mg such that a; € I,,,
for j € {1,...,7}, and hence I = I,,. Let m = mg; then I, c I and I < I, hence I = I,,,. Thus
L, = Iy, for m = my.

Now suppose that every ascending chain of ideals of R is stationary. Let I < R be an ideal. Suppose
that I is not finitely generated. Let a; € I. Then (a;) & I because I is not finitely generated; let
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as € (I\(a1)). Then (a1,a2) & I because I is not finitely generated. Iterating, we get a non stationary
chain of ideals (contained in I)

(a1) € (a1,a2) S ... S (a1, ..., am) S
This is a contradiction. O

Ezample A.3.4. The ring Hol(K) of entire functions of one variable is not Noetherian. In fact let

fm € Hol(K) be defined by
0 52
fm(2) := ngn <1n2>, m > 1.

Then (fm) S (fm+1)- Thus (f1) < (f2) € ... < (fm) < ... is a non-stationary ascending chain of ideals,
and hence Hol(K) is not Noetherian by Lemma A.3.3.

Theorem A.3.5. Let R be a Noetherian commutative ring. Then R[t] is Noetherian.

Proof. For a non zero f € R[t], we let £(f) be the leading coefficient of f, i.e. if f = D" c;t" with
¢m * 0, then £(f) = cpp.

Let I < R[t]. We must prove that I is finitely generated. If I = (0) there is nothing to prove and
hence we may assume I # (0). Thus the set

UI) = {L(f) |0 # fel}
is non-empty and it makes sense to define
J={I)cR

as the ideal of R generated by ¢(I). By hypothesis J is finitely generated: J = (¢1,...,¢s). Since J is
generated by £(I) we may assume that each generator is the leading coefficient of a polynomial in I,
i.e. for each 1 < i < s there exists f; € I such that £(f;) = ¢;. Let

d:= 1915, {deg fi}-

Let H := I n{fe R[t]|degf <d}. Then H is a submodule of {f € R[t] |deg f < d} ~ R (as
R-modules). Since R is Noetherian every submodule of R4+ is finitely generated (argue by induction
on d; if d = 0 it holds by definition of Noetherian ring, if d > 0 consider the projection R4*! — R) and
hence

H=(g1,---,9)

Let us prove that
I= (fla"'vfsagla"'agt)~

In fact let f e I. If deg f < d then f € H and hence f € (g1,...,9¢) < (f1,--+, fs:915---,9¢). Now
suppose that deg f > d. Then £(f) = >.7_, a;c;. Let

S
h:=f- Z a;tdesf—desfi g,
i=1

Then degh < deg f. Since >);_, a;tdee/=deefif, e (f1, ... fs,q1,...,g:) it suffices to prove that h € I.
If deg h < d we are done, otherwise we iterate until we get down to a polynomial of degree less or equal
to d. O

Theorem A.3.6 (Hilbert’s basis Theorem). Every ideal of K[x1,...,2,] is finitely generated.

Proof. By induction on n. If n = 0, the ring is a field, and hence is Noetherian. The inductive step
follows from Theorem A.3.5, because K[z1,...,z,] = K[z1,...,2,—1][t]. O
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A.4 Rings of fractions and localization

Let R be a commutative ring with unit.

Definition A.4.1. A subset S ¢ R is a multiplicative subset if the following hold.
1. 1€ 8.
2. Ifa,be S thenabe S.
3.0¢5.

Ezample A.4.2. Let p c R be a prime ideal. Then R\p is a multiplicative subset.

Let S = R be a multiplicative subset. Then one constructs a ring S~! - R (the ring of fractions of
R with respect to S) and a homomorphism ¢: R — S~! - R such that the following universal property
(which characterizes S™! - R and ¢ uniquely) holds.

Proposition A.4.3. Let f: R — T be a homomorphism of (commutative unitary) rings such that f(s)
is invertible for every s € S. Then there exists a unique homomorphism f: S~'. R — T such that

f="Ffop.

Explicitly: the elements of S=! - R are equivalence classes of couples a/s where a € R and s € S,
where the equivalence relation is defined by

b
L i if there exists u € S such that u - (ta — sb) = 0. (A.4.1)
s

Addition and multiplication on S~! - R are defined by

a b ta + sb a b ab
27 2222 A.4.2
S + t st s t st ( )
The homomorphism ¢: R — S~! - R is defined by
a
o(a) = T (A.4.3)

Remark A.4.4. Usually one does not require that 0 ¢ S in the definition of multiplicative subset. If
0 € S then S~1- R = {0} and hence it is not interesting, and for us it is not a ring (recall that we require
0 = 1). This is the reason that we require that 0 ¢ S.

Remark A.4.5. Let R be a Noetherian ring and let S — R be a multiplicative subset. Then S~!- R
is a Noetherian ring. In fact let I = S=! - R be an ideal. Then ¢~ *(I) = R is an ideal. Since R is
Noetherian there exist a finite set ay,. .., a, of generators of ¢ ~(I). Then p(ay),...,¢(a,) generate I.

Definition A.4.6. Let p ¢ R be a prime ideal. The localization of R at p is the ring of fractions of R
with respect to the multiplicative subset R\p (see Example A.4.2). It is denoted by R,,.

Note that if R is an integral domain then (0) is a prime ideal and R is the field of fractions of R.

Proposition A.4.7. Let p < R be a prime ideal. Then Ry is a local ring with mazimal ideal generated
by o(p) (which is denoted by pRy). If R is Noetherian so is R.

Proof. Since p R is an ideal, pR, consists of fractions a/s where a € p. It is clear that pR, is an ideal.
Suppose that a/s ¢ pR,. Then a ¢ p and hence s/a ¢ pR,. Thus a/s is invertible. It follows that pR,
contains every ideal of Ry, i.e. it is the unique maximal ideal of R,. The last statement follows from
Remark A.4.5. O

Remark A.4.8. Let Frac(R/p) be the fraction field of the integral domain R/p, and let f: R — Frac(R/p)
be the natural (surjective)homomorphism. Since f(a) is invertible for each a ¢ p there is a unique
homomorphism f: R, — Frac(R/p) such that fop = f. Then the kernel of f is necessarily the unique
maximal ideal pR,. In particular the residue field of R, is isomorphic to Frac(R/p).
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A.5 Extensions of fields

An extension of fields F' < E is algebraic if every « € E is the root of a non zero polynomial ¢ € F[z].
If this is the case, the set of polynomials vanishing on « is a non zero ideal F[z], and hence it is
generated by a unique monic poylnomial ¢, which is the minimal polynomial of o over F. Of course
@ is irreducible, hence prime. The subfield of F' generated by F' and « is isomorphic to the quotient
Fl=)/().

An extension is an algebraic closure of F, if it is algebraic over F, and every polynomial in F[z] has
a root in F.

Theorem A.5.1 (Chapter VII in [Lan02]). An algebraic closure exists, and is unique up to isomorph-
ism, i.e. if E1, Ey are two algebriac closures, there exists an isomorphism Ei, — Eo which is the
identity on F.

One denotes “the” algebraic closure of F' by F®, or by F. Notice that a non costant polynomial in
F[z] decomposes in F as a product of polynomials of degree 1 (it has a root, hence it is divisible by a
linear term, if the quotient is not constant it has a root hence it is divisible...)

Let [E : F] be the dimension of E as vector space over F' - the degree of E over F. Notice that
if [E : F] is finite, then E is an algebraic extension of F. Suppose that E is algebraic over F. One
defines another degree of E over F' as follows. Let o: F' < L be an embedding into a field which is an
algebraic closure of o(F). An extension of o to E is an embedding ¢: £/ < L such that 5| = 0. The
number of such extensions is independent of the embedding o: F' — L, and is the separable degree of
E over F - one denotes it by [E : F];.

Ezample A.5.2. Let F be a field, and let ¢ € F[z] be an irreducible monic polynomial. Let F =
F[z]/(¢). Thus E o F is an algebraic extension. Let o € E be the class of z: by construction the
minimal polynomial of « is equal to .

Let 0: F — L be an embedding into a field which is an algebraic closure of o(F). An extension
of o to E is determined by its value on «, and moreover such value can be chosen to be any root of
¢ in L. Hence the separable degree of E over F' is the number of roots of ¢ in F (not counted with
multiplicity). .

©

If the formal derivative 52 is not the zero polynomial, then since its degree is strictly smaller than

deg , and ¢ is prime, the ideal (¢, ‘é—f) is equal to F[z], and thus ¢, ‘;—f have no common roots. It
follows that all the roots of ¢ have multiplicity 1, and the separable degree of E over F is equal to
deg ¢, which is also the degree of FE over F. Hence in this case [E : F| = [E : F|s.

The formal derivative ‘fi—f is the zero polynomial only if char F = p > 0, and ¢ = ¢ (2?), where
¢ € F[z], i.e. all monomials appearing in f have exponent a multiple of p. Iterating, we may write
© = p(zP"), where p € F[z] is such that % is not the zero polynomial. Hence the numer of roots of ¢
is equal to the degree of hp, and thus [E : F]; = deg p.

Since [E : F] =degy =p"-degp = [E : F|,, we see (at least in this case) that the separable degree
divides the degree. Moreover, let § = o?". Then E* := F [A] is a separable extension of F' such that
[E®: F|=[E:F]s, and the extension F > E* is obtained by adjoining p-th roots, and iterating.

The result below states that the example given above is typical.

Theorem A.5.3 (Chapter VII in [Lan02]). Let E > F be a finite extension of fields, i.e. [E : F] is
finite. There exists a maxzimal separable extension E* D F, containing all subfields of E over F' which
are separable. The separable degree [E : F|; is equal to the degree of the extension E* > F. The
extension E° D F has a primitive element, i.e. there exists B € E° generating E° over F. Suppose that
E’ + E; then char F = p > 0, and if o € E, the minimal polynomial of o over E® is equal to z¥" —~
for some r =0, and v € E°.

Ezample A.54. Let E = Fp(w, z), and let F = Fy(wP, 2P). Then E® = F (in this case one says that
FE o F is a purely inseparable extension, and there is no primitive element of E over F.

Example A.5.5. Let E o F be the algebraic extension in Example A.5.2. Then E o F is separable if

and only if the formal derivative Z—f is not the zero polynomial.
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A.5. Extensions of fields

Remark A.5.6. Let E > K o F a composition of extensions. Then [E : F] = [E : K] -[K : F] and
[E:Fls=[F:K]s [K:Fls.

Next we discuss transcendence bases of extensions of fields. Elements a1, ..., a, € E are algebraically
dependent over F is there exists a non zero polynomial ® € F[z1,...,z,] such that ®(ay,...,a,) =0
(strictly speaking, we should say that the set {a1,...,a,} is algebraically dependent over F). A
collection {a;}ier of elements of E is algebraically independent over F if there does not exist a non
empty finite {i1,...,4,} < I such that «y,,...,a; are algebraically dependent (with the usual abuse of
language, we also say that the a;’s are algebraically independent). A transcendence basis of E over F is
a maximal set of algebraically independent elements of E over F'. There always exists a transcendence
basis, by Zorn’s Lemma. One proves that any two transcendence bases have the same cardinality, which
is the transcendence degree of E over F'; we denote it by Tr.degr(F). An extension is algebraic if and
only if its transcendence degree is zero.

Every finitely generated extension £ © F' can be obtained as a composition of extensions

ESKoF, (A5.1)

where K O F'is a purely transcendental extension, i.e. there exists a transcendence basis {aq,...,a,}
of K over F such that K = F(ay,...,a,) (thus F(ay,...,q,) is isomorphic to the field of rational
functions in n indeterminates with coefficients in F'), and E o> K is a finitely generated algebraic
extension.

Definition A.5.7. Let E O F be an extension of fields. A transcendence basis {1, ..., a,} of E over
F is separating if E is a separable extension of the subfield F(«1,...,a,). The extension E o F' is
separably generated if there exists a separating transcendence basis of E over F.

Theorem A.5.8 (Thm 26.2 in [Mat89]). If K is a perfect field, any finitely generated extension E > K
is separably generated.

Proof. Let ay,...,a, be a transcendence basis of E over K. Hence the field F' := K(ai,...,q,) is
isomorphic to the field of rational functions in n indeterminates, and E © F is a finite extension. Let
B1,- .-, 0, be elements of E algebraic over F', which generate E over F. If all such §;’s are separable
over I (i.e. the subfield of F generated by F and §; is separable over F'), then E is separable over F
(see Chapter VII in [Lan02]).

Suppose that one of the (;’s is not separable over F. Then char F = char K = p > 0. We may
reorder the (3;’s so that each of (1,...,08s is separable over F', and each of the Bsi1,...,08, is not
separable over F'. We find suitable replacements of the «;’s so that E is a separable extension of
the subfield generated by the new transcendence basis. Since (441 is algebraic over F', there exists a
polynomial ® € K[z1,...,2,+1] such that

(I)(a17 e O‘nvﬁs-‘rl) =0.

We may, and will, assume that ® is irreducible. We claim that there exists i € {1,...,n} such that
% #+ 0. In fact, suppose the contrary. Then all partial derivatives of ® are zero, because 541 is not
separable over F' (see Example A.5.5). Write

P = 2 arz!,

Iey

where .# is a set of multiindices, and we assume that a; + 0 for every I € .#. Since < T = 0 for all
i€{l,...,n+1}, it follows that each I € .# is equal to p.J, for a multiindex .J. On the other hand there
exists a (umque) p-th root of ay, because K is perfect. It follows that ® = WP, This is a contradiction
because @ is irreducible, and hence we have proved that there exists i € {1,...,n} such that g—z £ 0.
Then «; is algebraic and separable over F' := K(aq,..., Q... ,0n, Bs+1). Thus aq, ..., Q. .., an, Bst1
is a new transcendence basis of E over K, and F is generated over F' by B1,...,Bs, @i, Bsi2,.- ., Br.
Moreover, each of (1, ..., s, a; is separable over F’. Iterating, we get the Theorem. O
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Corollary A.5.9. Let E D K be a finitely generated extension of fields, and suppose that K is per-
fect. Let m be the transcendence degree of E over K. Then there exists a prime polynomial P €
K(z1,...,2m)[2m+1] such that E (as extension of K ) is isomorphic to the field K (21, ..., 2m)[zm+1]/(P).

A.6 Zariski’s Lemma

We prove the key result needed for Hilbert’s Nullstellensatz. Note: in the present section fields are not
necessarily algebraically closed.

Theorem A.6.1 (Zariski’s Lemma [Zard7], [All05]). Let K © F be an extension of fields, and assume
that K is a finitely generated F-algebra. Then K is an algebraic extension of F.

Proof (by D. Allcock and O. Zariski). We must prove that if K > F is not an algebraic extension, then
it is not finitely generated as an F-algebra. First assume that K has transcendence degree 1 over F
(this is the key case). Let « € K be transcendental over F. Thus the subfield of K generated by x (over
F) is isomorphic to F'(x), the field of rational functions in = with coefficients in F. Since K is a finitely

generated F-algebra it is also a finitely generated vector space over F'(z). Let {{1,...,&.} be a basis of
K as vector space over F(z). Let 21,...,24 € K be generators of K as F-algebra. We may (and will)
assume that z; = 1. For i € {1,...,d} we have
o fii(@)
j; gij(x) ™’
where f;;(x), gi;(x) € F[x] are polynomials (of course g;;(x) & 0). For s,t € {1,...,r} we have
" lst (x)
£ &= s (A6.2)
' j; Mmij(z)

where l5;(2), gstj(z) € F[z] are polynomials. Let a € K. Since K is a finitely generated F-algebra,
we have a = P(z1,...,2q), where P is a polynomial with coefficients in F'. Applying the formulae
in (A.6.1) and in (A.6.2) we get that a is a linear combination of &, ...,&,. with coefficients rational
functions whose denominators are products of the polynomials g;;(z)’s and mg;(z)’s (this is the key
point). Now let h(x) € F[z] be a prime polynomial which is not among the (finite) prime factors of the
gij(z)’s and the mgj(x)’s. Then a = h(z)~'¢; is an element of K which is not equal to such a linear
combination. This is a contradiction, and hence K o F' is an algebraic extension.

Now assume that K has transcendence degree greater than 1 over F'. There exists an intermediate
subfield K > F’ o F such that K has transcendence degree greater 1 over F’. We have just proved
that K is not finitely generated as F’ algebra, and hence K is not finitely generated as F algebra. [

Corollary A.6.2. Let F be a field, and let m < F|[zq,...,z,] be a mazimal ideal. Then F|z1,...,2z,]/m
1$ a finite algebraic extension of F.

Proof. Let K = F[z1,...,2,]/m. Then K is a field because m is a maximal ideal, and it is generated
as F' algebra by the equivalence classes Z1, . ..,Z,. By Theorem A.6.1 it follows that K is an algebraic
extension of F' (obviously finitely generated). O

A.7 Descent

Let F < K be an inclusion of fields, and let Aut(K/F) be the group of automorphisms of K which are
the identity on F. If V is an F' vector space, then Aut(K/F) acts on the K vector space

W Kop v (A7.3)
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via its action on K. Explicitly: if ve W is given by v = ¢ ® v1 + ... + ¢, ® v, € V where ¢; € K and
v; € V, then o € Aut(K/F) acts as

o) =0c(c1)®v1+ ...+ 0(cn) @y,

Example A.7.1. Let F =R c C= K and V = R". Then we may identify W = C®R" with C" in such
a way that the generator o of the Galois group Gal(C/R) =~ Z/(2) acts as o(21,-..,2n) = (Z1,---,2n)-

FEzample A.7.2. Let paprime and ¢ = p", wherer e Ny. Let F = F, c Fym = K, and let F': Fgm — Fgm
be the Frobenius automorphism defined by F(a) := a?. Thus F is a generator of the Galois group
Gal(Fym /Fy). Let V =F,. Then we may identify W = F,m» ® Fy with F... in such a way that F' acts
as F(z1,...,2n) = (27,...,22).

rn

Suppose that V5 < V is an F sub vector space. Then Wy = K ®p Vy is mapped to itself by
Aut(K/F). If the fixed field of Aut(K/F) is F then the converse is true.

Proposition A.7.3. Keep notation as above, and assume that the fized field of Aut(K/F) is F'. Suppose
that Wo ¢ W = K ®r V is a K subvector space which is mapped to itself by Aut(K/F). Then there
exrists an F' sub vector space Vo < V' such that Wy = K ®p Vo

Before proving Proposition A.7.3 we go through a special case. To simplify notation let G =
Aut(K/F). Assume that the fixed field K¢ of G = Aut(K/F) is F. Then

WY ={weW|o(w) =w VYo e Aut(K/F)} =V, (A.7.4)

where V stands for F®p V < W. It follows that if Wy = W is a K vector space then W = (W, n V).
Hence the following is a special case of Proposition A.7.3: if Wy is mapped to itself by G and W§ = {0},
then Wy = {0}. The Lemma below proves the validity of the latter statement.

Lemma A.7.4. Keep notation as above, and assume that K€ = F. Suppose that Wo < W is a K
subvector space which is mapped to itself by G and such that W& = {0}. Then Wy = {0}.

Proof. We prove that if Wy + {0} then W§ #+ {0}. Since Wy #+ {0} there exists a minimal n > 1 for
which there exist n linearly independent vectors vy, ...,v, € V and non zero ci,...,¢, € K (meaning
that ¢; 0 for all i € {1,...,n}) such that w = 3;_| ¢; ®v; is an element of Wy. Multiplying w by ¢;!
we may (and will) assume that ¢; = 1. Let o € G. Then (o(w) — w) € Wy because Wy is mapped to
itself by G. Since o(c¢1) = (1) =1 = ¢; we get that for all 0 € G we have

n

(oc(w) —w) = Z(a(ci) —¢) ®u; € W. (A.7.5)

i=2
By minimality of n it follows that o(¢;) = ¢; for all i € {1,...,n} and hence ¢; € F for all i because
K% = F. Thus w is a non zero vector in W§. O

Proof of Proposition A.7.3. Let Vi =V n Wy = W0G, Let U := V/Vj and let
W=KQrV-">K®rU (A.7.6)
be the quotient map of K vector spaces. Of course the action of G on K induces an action of K on
K ®p U. The kernel of 7 is K ® Vp which is contained in Wy. It suffices to prove that w(Wy) = {0}.
Now 71(Wp)¥ = 7(Wo) nU = 1(Wo n V) = (Vo) = {0}.
O
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A.8 Derivations

Let R be a ring (commutative with unit), and let M be an R-module.

Definition A.8.1. A derivation from R to M is a map D: R — M such that additivity and Leibinitz’
rule hold, i.e. for all a,b € R,

D(a+b) = D(a) + D(b), D(ab) = bD(a) + aD(b).

If k is a field and R is a k-algebra a k-derivation (or derivation over k) D: R — M is a derivation such
that D(¢) = 0 for all c € k. We let Der(R, M) be the set of derivations from R to M. If R is a k-algebra
we let Derg (R, M) < Der(R, M) be the subset of k-derivations.

Ezample A.8.2. Let k be a field, and let f = Y., asz! be a polynomial in k[z1,...,2,], where the
summation is over multiindices I, a;y € K for every I, and a; is almost always zero. The formal
derivative of f with respect to z,, is defined by the familar formula

0 , s , i .
% = Z ihar2it oz gl T gl (A.8.7)
m I s.t. 4y >0
The map
fal
I{/’[Zl,...,Zn] az—m> k[Zl,...,Zn] (A88)
f = aaf
is a k-derivation of the k algebra to istelf. We claim that Dery(k[z1,...,2n], k[21,...,2,]) is freely
generated (as k[z1,...,2,] module) by %, . %n In fact there is no relation between a—il, . afn
because ;ZZ] = 0jm, and moreover, given a k derivation
D: kl[z1,...,20]) — k[21,- .., 2n]
we have D = " _, am%, where ayy, 1= D(zp).
Example A.8.3. Let D: R — M be a derivation.
1. By Leibniz we have D(1) = D(1-1) = D(1) + D(1) and hence D(1) = 0.
2. Suppose that g € R is invertible. Then
0=D(1)=D(g-g7") =g 'Dg+ fD(g™") (A.8.9)

and hence D(¢g~!) = —¢g~2D(f).

3. Suppose that f,g € R and that g is invertible. By Item (2) we get that the following familiar
formula holds:

D(f-g7") =g *(D(f)- g~ f- D(g))- (A.8.10)
Let D, D’ € Der(R, M) and z € R we let

D+D'’
R = M (A.8.11)
a — D)+ Da)
and 5
B = M (A.8.12)
a +— zD(a)

Both D + D’ and zD are derivations and with these operations Der(R, M) is an R-module. If R is a
k-algebra then Dery (R, M) is an R-submodule of Der(R, M).

Next we suppose that £ > F' is an extension of fields, and we consider Derp(E, E). Notice that
Derr(E, E) is a vector space over F.
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Proposition A.8.4. Suppose that E o F is a finitely and separably generated extension of fields. Let

ag, ..., be a separating transcendence basis of E over F. Then the map of E-vector spaces
Derp(E,E) —> E™
’ A8.13
D > (D(e),...,D(an)) (A.8.13)

is an isomorphism.

Proof. Let K := F(ay,...,a,) € E. Since a1,. .., q, is a separating transcendence basis of F over F,
and F is finitely generated (over F'), there exists an element 8 € E primitive over K. Let P € K[z] be
the minimal polynomial of 5. In particular

dP

P(B)=0, ——(B) +0. (A.8.14)

(The inequality holds because F is a separable extension of K.)
Since K is a purely transcendental extension of F' we have an isomorphism of E-vector spaces

Derp(K,E) —> E"
D —  (D(a),...,D(a)).

Equivalently every D € Derp(K, E) is given by
9
oo’

i

aieE7

D)= Y e

and the ¢;’s may be chosen arbitrarily. Thus we must show that the restriction map

Derp(E,E) —> Derp(K,E)

D _ Dix (A.8.15)

defines an isomorphism of E-vector spaces.

Let us prove that the restriction map is injective. Let P = Z?:o a;z%"% where ag = 1 (recall that
P is the minimal polynomila of 8 over K). Suppose that D € Derp(FE, E); by the equality in (A.8.14)
we get that

i

d

d—1 d
0=D(P(B)) = . D(a;)3*" + Y D(B)ai(d —i)B*""" = > D(a;) 3" + D(B)
i=0 =0

=0

dP

=0

By the inequality in (A.8.14), we can divide and we get

i=1 dz

D(B) = - (ZL D(ai),ﬁmi> : d—P(ﬂ)*l. (A.8.16)

This proves that the map in (A.8.15) is injective.
In order to prove surjectivity, we extend a derivation D € Derp (K, E) to a derivation in Derp(F, E)
by defining its value on § via (A.8.16). O

Corollary A.8.5. Keep hypotheses and notation as above. Then Trdeg, K = dimg Derg (K, K).

A.9 Nakayama’s Lemma

Let R be a ring, M be an R-module, and I < R be an ideal. We let IM < M be the submodule of
finite sums ., femi, where fi € I and my, € M for every k € K.
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Lemma A.9.1 (Nakayama’s Lemma). Let R be a ring and M a finitely generated R-module. Let I < R
be an ideal and suppose that M < IM (i.e. M = IM ). Then there exists p € I such that (1 +¢)M =0
i.e. 1+¢)m =0 for allme M.

Proof. Let my,...,m, be generators of M. By hypothesis there exist a;; € I for 1 <4, j < r such that
T
m; = Z aijmj.
j=1
Let A be the r x r-matrix with entries in R given by A := (d;; — a;;), where J;; is the Kronecker
symbol i.e. §;; = 1 if ¢ = j and is 0 otherwise. Let B be the r x 1-matrix with entries my,...,m,.
Then A - B = 0: multiplying by the matrix of cofactors A we get that det A-m; =0 fori=1,...,7.
Expanding det A we get that det A = 1 4+ ¢ where p € I. O

Corollary A.9.2. Let R be a local ring with mazimal ideal m and M a finitely generated R-module.
Suppose that the quotient module M /mM is generated by the classes of my,...,m, € M. Then M is
generated by my, ..., M.

Proof. Let N ¢ M be the submodule generated by m;, ..., m, and P := M /N be the quotient module.
We must prove that P = 0. The module P is finitely generated over R because M is, and moreover
P < mP by hypothesis. By Nakayama’s Lemma there exists ¢ € m such that (1 + )P = 0. Since
(1 + ¢) does not belong to m it is invertible (it generates all of R because m contains all non-trivial
ideals of R) and hence it follows that P = 0. O

A.10 Order of vanishing

The prototype of a Noetherian local ring (R, m) is the ring Ox , of germs of regular functions of a
quasi projective variety X at a point x € X, with maximal ideal m,, see Corollary 4.2.5. The following
result of Krull can be interpreted as stating that a non zero element of &x , can not vanish to arbitrary
high order at z. In other words, elements of Ox , behave like analytic functions (as opposed to C*
functions).

Theorem A.10.1 (Krull). Let (R,m) be a Noetherian local ring. Then
[(m = {0}
i=0

Proof. Since R is Noetherian the ideal m is finitely generated; say m = (ay,...,a,). Let b e mi>0 m’.
Let i > 0; since b € m’ there exists P, € R[Xi,...,X,]; such that Pi(ai,...,a,) = b. Let J <
R[X1,...,Xn] be the ideal generated by the P;’s. Since R is Noetherian so is R[X1,...,X,]. Thus
J is finitely generated and hence there exists N > 0 such that J = (Py,..., Py). Thus there exists
QN+1-i € R[Xl, . ,Xn]N-H—i for i =0,..., N such that Py = Zf\;o QnN+1-iP;. It follows that

N N
b= Pnii(ar,...,an) = Z Qnii-ilal,...,an)Pi(as,... a,) = bE Qny1-i(a1,...,a,). (A.10.17)
i=0 1=0

Now Qni1-i(ai,...,a,) € m for i = 0,..., N and hence € := Zf\io Qni1-i(a,...,a,) € m. Equal-
ity (A.10.17) gives that (1 — ¢)b = 0: since € € m the element (1 — ¢) is invertible and hence b =0. O

Corollary A.10.2. Let (R,m) be a Noetherian local ring, and let 3 < R be an ideal. Then

()3 +m') = {0}

=0

Proof. Let S := R/J. Then S is a Noetherian local ring, with maximal ideal mg := J+m. The corollary
follows by applying Theorem A.10.2 to (S, mg). O
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