Appendix A

Algebra a la carte

A.1 Introduction

In what follows, rings are always commutative with 1. The proofs of the results below are contained in
most Algebra textbooks (e.g. Lang [?]).
A.2 Unique factorization

Theorem A.2.1. Let R be a UFD. Then R[t] is a UFD. Moreover a polynomial p = apt® + a t?! +
...+ aq is prime if and only if

1. p is prime when viewed as element of K|[t], where K is the field of fractions of R,

2. and the greatest common divisor of ag,ay,...,aq is 1.
Corollary A.2.2. The ring K[x1,...,2,] is a unique factorization domain.
Proof. By induction on n. If n = 0, the ring is a field, and hence it is trivially a UFD. The inductive
step follows from Theorem A.2.2, because K[z, ..., 2,] = K[xy,. .., n_1][t]- O
A.3 Noetherian rings

Definition A.3.1. A (commutative unitary) ring R is Noetherian if every ideal of R is finitely gener-
ated.

Ezample A.3.2. A field K is Noetherian, because the only ideals are {0} = (0) and K = (1). The ring
Z is Noetherian, because every ideal has a single generator.

Lemma A.3.3. A (commutative unitary) ring R is Noetherian if and only if every ascending chain
Ipclhhc...cl,c...

of ideals of R (here I, is defiend for all m € N, and I, € Ip41 for all m € N) is stationary, i.e. there
exists mo € N such hat I, = L, for m = my.

Proof. Suppose that R is Noetherian. The union I := |,y Im is an ideal because the {I,,,} form a
chain. By Noetherianity [ is finitely generated, say I = (a1, ..., a,). There exists mg such that a; € I,,,
for j € {1,...,7}, and hence I = I,,. Let m = mg; then I, c I and I < I, hence I = I,,,. Thus
L, = Iy, for m = my.

Now suppose that every ascending chain of ideals of R is stationary. Let I < R be an ideal. Suppose
that I is not finitely generated. Let a; € I. Then (a;) & I because I is not finitely generated; let
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as € (I\(a1)). Then (a1,a2) & I because I is not finitely generated. Iterating, we get a non stationary
chain of ideals (contained in I)

(a1) € (a1,a2) S ... S (a1, ..., am) S
This is a contradiction. O

Ezample A.3.4. The ring Hol(K) of entire functions of one variable is not Noetherian. In fact let

fm € Hol(K) be defined by
0 52
fm(2) := ngn <1n2>, m > 1.

Then (fm) S (fm+1)- Thus (f1) < (f2) € ... < (fm) < ... is a non-stationary ascending chain of ideals,
and hence Hol(K) is not Noetherian by Lemma A.3.3.

Theorem A.3.5. Let R be a Noetherian commutative ring. Then R[t] is Noetherian.

Proof. For a non zero f € R[t], we let £(f) be the leading coefficient of f, i.e. if f = D" c;t" with
¢m * 0, then £(f) = cpp.

Let I < R[t]. We must prove that I is finitely generated. If I = (0) there is nothing to prove and
hence we may assume I # (0). Thus the set

UI) = {L(f) |0 # fel}
is non-empty and it makes sense to define
J={I)cR

as the ideal of R generated by ¢(I). By hypothesis J is finitely generated: J = (¢1,...,¢s). Since J is
generated by £(I) we may assume that each generator is the leading coefficient of a polynomial in I,
i.e. for each 1 < i < s there exists f; € I such that £(f;) = ¢;. Let

d:= 1915, {deg fi}-

Let H := I n{fe R[t]|degf <d}. Then H is a submodule of {f € R[t] |deg f < d} ~ R (as
R-modules). Since R is Noetherian every submodule of R4+ is finitely generated (argue by induction
on d; if d = 0 it holds by definition of Noetherian ring, if d > 0 consider the projection R4*! — R) and
hence

H=(g1,---,9)

Let us prove that
I= (fla"'vfsagla"'agt)~

In fact let f e I. If deg f < d then f € H and hence f € (g1,...,9¢) < (f1,--+, fs:915---,9¢). Now
suppose that deg f > d. Then £(f) = >.7_, a;c;. Let

S
h:=f- Z a;tdesf—desfi g,
i=1

Then degh < deg f. Since >);_, a;tdee/=deefif, e (f1, ... fs,q1,...,g:) it suffices to prove that h € I.
If deg h < d we are done, otherwise we iterate until we get down to a polynomial of degree less or equal
to d. O

Theorem A.3.6 (Hilbert’s basis Theorem). Every ideal of K[x1,...,2,] is finitely generated.

Proof. By induction on n. If n = 0, the ring is a field, and hence is Noetherian. The inductive step
follows from Theorem A.3.5, because K[z1,...,z,] = K[z1,...,2,—1][t]. O
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A.4 Extensions of fields

An extension of fields F' ¢ F is algebraic if every o € E is the root of a non zero polynomial ¢ € F[z].
If this is the case, the set of polynomials vanishing on « is a non zero ideal F[z], and hence it is
generated by a unique monic poylnomial ¢, which is the minimal polynomial of o over F. Of course
@ is irreducible, hence prime. The subfield of F' generated by F' and « is isomorphic to the quotient
Fl21/(¢).

An extension is an algebraic closure of F, if it is algebraic over F', and every polynomial in F[z] has
a root in F.

Theorem A.4.1 (Chapter VII in [?]). An algebraic closure exists, and is unique up to isomorphism,
i.e. if B1, Eo are two algebriac closures, there exists an isomorphism B, — Ey which is the identity
on F.

One denotes “the” algebraic closure of F' by F®, or by F. Notice that a non costant polynomial in
F[z] decomposes in F as a product of polynomials of degree 1 (it has a root, hence it is divisible by a
linear term, if the quotient is not constant it has a root hence it is divisible...)

Let [E : F] be the dimension of E as vector space over F' - the degree of E over F. Notice that
if [E : F] is finite, then E is an algebraic extension of F. Suppose that E is algebraic over F. One
defines another degree of E over F' as follows. Let o: F' < L be an embedding into a field which is an
algebraic closure of o(F'). An extension of o to F is an embedding ¢: £ < L such that 5| = 0. The
number of such extensions is independent of the embedding o: F' — L, and is the separable degree of
E over F - one denotes it by [F : F|s.

Ezample A.4.2. Let ¢ € F|[z] be an irreducible monic polynomial, and let E = F[z]/(¢). Let a € E be
the class of z: by construction the minimal polynomial of « is equal to (.

Let o: F — L be an embedding into a field which is an algebraic closure of o(F'). An extension
of o to E is determined by its value on «, and moreover such value can be chosen to be any root of
¢ in L. Hence the separable degree of E over F is the number of roots of ¢ in F (not counted with
multiplicity).

If the formal derivative Z—f is not the zero polynomial, then since its degree is strictly smaller than
deg ¢, and ¢ is prime, the ideal (¢, ‘Cil—f) is equal to F[z], and thus ¢, ‘Cil—f have no common roots. It
follows that all the roots of ¢ have multiplicity 1, and the separable degree of E over F' is equal to
deg ¢, which is also the degree of E over F. Hence in this case [E : F| = [E: F]s.

The formal derivative Z—f is the zero polynomial only if char F = p > 0, and ¢ = (2?), where
1 € F[z], i.e. all monomials appearing in f have exponent a multiple of p. Iterating, we may write
© = p(zP"), where p € F[z] is such that j—g is not the zero polynomial. Hence the numer of roots of ¢
is equal to the degree of hp, and thus [E : F]; = deg p.

Since [E : F| =degp = p"-degp = [E : F]s, we see (at least in this case) that the separable degree
divides the degree. Moreover, let 3 = o . Then E* := F [B] is a separable extension of F' such that
[E?: F] =[FE: FJs, and the extension E > E* is obtained by adjoining p-th roots, and iterating.

The result below states that the example given above is typical.

Theorem A.4.3 (Chapter VII in [?]). Let E O F be a finite extension of fields, i.e. [E : F] is finite.
There exists a maximal separable extension E° D F, containing all subfields of E over F which are
separable. The separable degree [E : F|s is equal to the degree of the extension E° > F. The extension
E® o F has a primitive element, i.e. there exists B € E® generating E® over F'. Suppose that E° + E;
then char F = p > 0, and if a € E, the minimal polynomial of o over E® is equal to zP" — ~ for some
r>=0, and v € E°.

Example A.44. Let E = F,(w,2), and let F' = F,(w?, 2P). Then E® = F (in this case one says that
E o F is a purely inseparable extension, and there is no primitive elemnt of E over F.

Elements ag,...,a, € E are algebraically dependent over F' is there exists a non zero polynomial
® € Flz1,..., 2] such that ®(aq,...,a,) = 0 (strictly speaking, we should say that the set {aq,...,a,}
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is algebraically dependent over F'). A collection {c;};es of elements of E is algebraically independent
over F'if there does not exist a non empty finite {41, ...,4,} < I such that «;,, ..., «a;, are algebraically
dependent (with the usual abuse of language, we also say that the «;’s are algebraically independent).
A transcendence basis of F over F is a maximal set of algebraically independent elements of E over F'.
There always exists a transcendence basis, by Zorn’s Lemma. One proves that any two transcendence
bases have the same cardinality, which is the transcendence degree of E over F; we denote it by
Tr.degp(FE). An extension is algebraic if and only if its transcendence degree is zero.

Every finitely generated extension £ D F can be obtained as a composition of extensions F < K
and K c E, where F' c K is a purely transcendental extension, i.e. there exists a transcendence basis
{a,...,an} of K over F such that K = F(aq,...,ay) (thus F(ag,...,q,) is isomorphic to the field
of rational functions in n indeterminates with coefficients in F'), and F < K is a finitely generated
algebraic extension.

Definition A.4.5. Let E O F be an extension of fields. A transcendence basis {1, ..., a,} of E over
F is separating if F is a separable extension of the subfield F(a,...,ay,). The extension E S F is
separably generated if there exists a separating transcendence basis of E over F.

Theorem A.4.6 (Thm 26.2 in [?]). IfK is an algebrically closed field, any finitely generated extension
FE o> K is separably generated.

Proof. Let aq,...,a, be a transcendence basis of E over K. Hence the field F := K(ay,...,qy) is
isomorphic to the field of rational functions in n indeterminates, and ¥ o F' is a finite extension. Let
b1, ..., 0, be elements of E algebraic over F', which generate E over F. If all such ;s are separable
over I (i.e. the subfield of F generated by F' and §; is separable over F'), then E is separable over F
(see Chapter VII in [?]).

Suppose that one of the 5;’s is not separable over F'. Then char F' = char K = p > 0. We may reorder
the B;’s so that each of (,..., 0, is separable over F, and each of the Ss11,...,0, is not separable
over F.. We find suitable replacements of the a;’s so that F is a separable extension of the subfield
generated by the new transcendence basis. Since [¢41 is algebraic over F', there exists a polynomial
® e K[z1,...,2n+1] such that

(I)(ala sy a7L7/88+1) = O
We may, and will, assume that ® is irreducible. We claim that there exists ¢ € {1,...,n} such that

gi £ 0. In fact, suppose the contrary. Then all partial derivatives of ® are zero, because 5541 is not
separable over F' (see Example A.4.2). Write

P = Z arz!,

Iey

where . is a set of multiindices, and we assume that a; + 0 for every I € .#. Since % £ 0

for all i € {1,...,n + 1}, it follows that each I € .# is equal to pJ, for a multiindex J. On the
other hand there exists a (unique) p-th root of ay, because K is algebraically closed. It follows that
® = WP, This is a contradiction because @ is irreducible, and hence we have proved that there exists ¢ €

{1,...,n} such that g—i #+ 0. Then «; is algebraic and separable over F’ := K(aq,...,Q;, ..., @, Bs+1)-
Thus ay,...,0;,...,0,, Bs11 1S a new transcendence basis of E over K, and F is generated over F' by
Bi,...,Bs, i, Bssa, ..., Br. Moreover, each of B1,..., B, «; is separable over F’. Iterating, we get the
Theorem. O

Corollary A.4.7. Let E o K be a finitely generated extension of fields, and suppose that K is algebra-
ically closed. Let m be the transcendence degree of E over K. Then there exists a prime polynomial P €
K(2z1, .-y 2m)[2m+1] such that E (as extension of K) is isomorphic to the field K(z1, ..., zm)[2m+1]/(P).
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A.5 The key to the Nullstellensatz

We prove the key result needed for Hilbert’s Nullstellensatz. Note: in the present section fields are not
necessarily algebraically closed.

Theorem A.5.1. Let K D F be an extension of fields, and assume that K is a finitely generated
F-algebra. Then K is an algebraic extension of F.

Proof (by D. Allcock and O. Zariski). We must prove that if K > F is not an algebraic extension, then
it is not finitely generated as an F-algebra. First assume that K has transcendence degree 1 over F
(this is the key case). Let « € K be transcendental over F. Thus the subfield of K generated by x (over
F)) is isomorphic to F'(x), the field of rational functions in = with coefficients in F'. Since K is a finitely

generated F-algebra it is also a finitely generated vector space over F(z). Let {{1,...,&,.} be a basis of
K as vector space over F(z). Let z1,...,24 € K be generators of K as F-algebra. We may (and will)
assume that z; = 1. For i € {1,...,d} we have
o fij ()
200"
where f;;(z), gi;(x) € F[z] are polynomials (of course g;;(z) & 0). For s,t € {1,...,r} we have
ot = ) eul) g (A52)

> t - y . .

° j=1 mStj (.’E) /
where l5j(2), gstj(x) € F[x] are polynomials. Let a € K. Since K is a finitely generated F-algebra,
we have a = P(z1,...,24), where P is a polynomial with coefficients in F'. Applying the formulae
in (A.5.1) and in (A.5.2) we get that a is a linear combination of &, ...,§, with coefficients rational

functions whose denominators are products of the polynomials g;;(x)’s and mg;(z)’s (this is the key
point). Now let h(x) € F[z] be a prime polynomial which is not among the (finite) prime factors of the
gij(z)’s and the mg;(z)’s. Then a = h(z)~'& is an element of K which is not equal to such a linear
combination. This is a contradiction, and hence K o F is an algebraic extension.

Now assume that K has transcendence degree greater than 1 over F'. There exists an intermediate
subfield K > F’ o F such that K has transcendence degree greater 1 over F’'. We have just proved
that K is not finitely generated as F’ algebra, and hence K is not finitely generated as F algebra. O

Corollary A.5.2. Let F be a field, and let m < F[z1,...,z,] be a mazimal ideal. Then Fz1,...,z,]/m
is a finite algebraic extension of F.

Proof. Let K = F[z1,...,2,]/m. Then K is a field because m is a maximal ideal, and it is generated
as F' algebra by the equivalence classes Z1,...,%Z,. By Theorem A.5.1 it follows that K is an algebraic
extension of F' (obviously finitely generated). O

A.6 Derivations

Let R be a ring (commutative with unit), and let M be an R-module.

Definition A.6.1. A derivation from R to M is a map D: R — M such that additivity and Leibinitz’
rule hold, i.e. for all a,b € R,

D(a+b) = D(a) + D(b), D(ab) = bD(a) + aD(b).

If k is a field and R is a k-algebra a k-derivation (or derivation over k) D: R — M is a derivation such
that D(c) = 0 for all ¢ € k. We let Der(R, M) be the set of derivations from R to M. If R is a k-algebra
we let Derg (R, M) < Der(R, M) be the subset of k-derivations.
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Ezample A.6.2. Let k be a field, and let f = >, arz! be a polynomial in k[z1,...,2,], where the
summation is over multiindices I, ay € K for every I, and a; is almost always zero. The formal
derivative of f with respect to z,, is defined by the familar formula

0 ) ) , ) ,
p f_ 2 Ih@rzyt -z 2T, (A.6.3)
Mo p st i, >0
The map
k:[zl,...,zn] Pz—m> k[Zl,...7Zn:| (A64)
of
f = 02Zm

is a k-derivation of the k algebra to istelf. We claim that Dery(k[z1,...,2n], k[21,...,2,]) is freely
2

] . .
enerated (as k[z1,...,2,| module) b 9 .. -2 In fact there is no relation between =2 .. ..
’ ’ y 0z1? ' 0z 0z ) 0z
n n

0z . . .
because 6’;-7 = 0jm, and moreover, given a k derivation
m

D: k[z1,...,2n] = E[21,. -, 2n]

we have D = 3" | 52—, where ai, i= D(zp,).

Ezxample A.6.3. Let D: R — M be a derivation.
1. By Leibniz we have D(1) = D(1-1) = D(1) + D(1) and hence D(1) = 0.
2. Suppose that g € R is invertible. Then
0=D(1)=D(g-g7") =g 'Dg+ fD(g") (A.6.5)
and hence D(¢g~!) = —¢g~2D(f).

3. Suppose that f,g € R and that g is invertible. By Item (2) we get that the following familiar
formula holds:

D(f-g7") =g *(D(f) g~ [ D(9)) (A.6.6)

Let D, D’ € Der(R, M) and z € R we let

R 2E M
A6.7
a +—  D(a)+ D'(a) ( )
and
R M (A.6.8)
a +— zD(a)

Both D + D’ and zD are derivations and with these operations Der(R, M) is an R-module. If R is a
k-algebra then Dery (R, M) is an R-submodule of Der(R, M).

Next we suppose that E S F is an extension of fields, and we consider Derp(FE, E). Notice that
Derp(E, E) is a vector space over F.

Proposition A.6.4. Suppose that E © F is a finitely and separably generated extension of fields. Let

ai, ..., Qn be a separating transcendence basis of E over F'. Then the map of E-vector spaces
Derp(E,E) — E™
’ A.6.9
D o (D(@)....D(an) (A.6.9)

s an isomorphism.
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A.7. Nakayama’s Lemma

Proof. Let K := F(ay,...,a,) € E. Since a1, ..., q, is a separating transcendence basis of F over F,
and F is finitely generated (over F'), there exists an element 8 € E primitive over K. Let P € K[z] be
the minimal polynomial of 5. In particular

E(8) +o. (A.6.10)

(The inequality holds because F is a separable extension of K.)
Since K is a purely transcendental extension of F' we have an isomorphism of E-vector spaces

Derp(K,E) —> En
D —  (D(ay),...,Dlan)).

Equivalently every D € Derp (K, E) is given by

n
0
= Z ciaiy QG € E7
iz Y%
and the ¢;’s may be chosen arbitrarily. Thus we must show that the restriction map

Derp(E,E) — Derp(K,E)

D - Dix (A.6.11)

defines an isomorphism of E-vector spaces.

Let us prove that the restriction map is injective. Let P = Zj:o a;2%7%, where ag = 1 (recall that
P is the minimal polynomila of 8 over K). Suppose that D € Derp(E, E); by the equality in (A.6.10)
we get that

d W d—1 0 de dpP
0= ; (ai) 8" ;)Dw)ax —i)B ”—ZD B! + D(B)—(8)-

By the inequality in (A.6.10), we can divide and we get

D(B) = — (Z D(ai)ﬁm_i> : Z—JZD(/B)—P (A.6.12)

This proves that the map in (A.6.11) is injective.
In order to prove surjectivity, we extend a derivation D € Derp (K, E) to a derivation in Derg(FE, F)
by defining its value on § via (A.6.12). O

Corollary A.6.5. Keep hypotheses and notation as above. Then Trdeg, K = dimg Dery (K, K).

A.7 Nakayama’s Lemma

Let R be a ring, M be an R-module, and I < R be an ideal. We let IM < M be the submodule of
finite sums ., ;- frmu, where f, € I and my, € M for every k € K.

Lemma A.7.1 (Nakayama’s Lemma). Let R be a ring and M a finitely generated R-module. Let I < R
be an ideal and suppose that M < IM (i.e. M = IM ). Then there exists p € I such that (1+ )M =0
i.e. 1+¢)m =0 for allme M.

Proof. Let m1,...,m, be generators of M. By hypothesis there exist a;; € I for 1 < < r such that

T
o Z aijmj.
7j=1
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Let A be the r x r-matrix with entries in R given by A := (d;; — a;j), where d;; is the Kronecker
symbol i.e. §;; = 1 if ¢ = j and is 0 otherwise. Let B be the r x l-matrix with entries my,...,m,.
Then A - B = 0: multiplying by the matrix of cofactors A we get that det A-m; =0 fori=1,...,7.
Expanding det A we get that det A = 1 4+ ¢ where p € [. O

Corollary A.7.2. Let R be a local ring with mazimal ideal m and M a finitely generated R-module.
Suppose that the quotient module M /mM is generated by the classes of my,...,m, € M. Then M is
generated by my, ..., M.

Proof. Let N € M be the submodule generated by my,...,m, and P := M /N be the quotient module.
We must prove that P = 0. The module P is finitely generated over R because M is, and moreover
P < mP by hypothesis. By Nakayama’s Lemma there exists ¢ € m such that (1 + )P = 0. Since
(1 + ¢) does not belong to m it is invertible (it generates all of R because m contains all non-trivial
ideals of R) and hence it follows that P = 0. O

A.8 Order of vanishing

The prototype of a Noetherian local ring (R, m) is the ring Ox , of germs of regular functions of a quasi
projective variety X at a point x € X, with maximal ideal m,, see Proposition 4.2.4. The following
result of Krull can be interpreted as stating that a non zero element of Ox . can not vanish to arbitrary
high order at z. In other words, elements of Ox , behave like analytic functions (as opposed to C*
functions).

Theorem A.8.1 (Krull). Let (R, m) be a Noetherian local ring. Then
ﬂ m’ = {0}.
20

Proof. Since R is Noetherian the ideal m is finitely generated; say m = (a1,...,a,). Let b e ﬂizo m’.
Let i > 0; since b € m’ there exists P, € R[X1,...,X,]; such that Pi(ai,...,a,) = b. Let J <
R[X1,...,X,] be the ideal generated by the P;’s. Since R is Noetherian so is R[X7,...,X,]. Thus
J is finitely generated and hence there exists N > 0 such that J = (Fp,..., Py). Thus there exists
Qn+1-i € R[X1,..., Xn]Nnt1-i for i =0,..., N such that Py, = Zi]io Qni1-iP;. Tt follows that

N N

b= PN+1<a17~-'7a’rL) = 2 QN+177J(G/1’"'7an>Pi(a/17" '7a’n) = bE QN+17i(a/la"'7an)' (A813)
i=0 1=0

Now Qni1-i(a1,...,a,) € m for ¢ = 0,..., N and hence € := Zivzo Qni1-i(a,...,a,) € m. Equal-

ity (A.8.13) gives that (1 —€)b = 0: since € € m the element (1 — €) is invertible and hence b =0. O

Corollary A.8.2. Let (R,m) be a Noetherian local ring, and let 3 < R be an ideal. Then

()3 +m') = {0}.

=0

Proof. Let S := R/J. Then S is a Noetherian local ring, with maximal ideal mg := J+m. The corollary
follows by applying Theorem A.8.2 to (S, mg). O
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