Appendix A

Algebra a la carte

A.1 Introduction

In what follows, rings are always commutative with 1. The proofs of the results below are contained in
most Algebra textbooks (e.g. Lang [Lan02]).
A.2 Unique factorization

Theorem A.2.1. Let R be a UFD. Then R[t] is a UFD. Moreover a polynomial p = agt® 4+ a ¢3! +
...+ aq is prime if and only if

1. p is prime when viewed as element of K[t], where K is the field of fractions of R,

2. and the greatest common divisor of ag, a1, ...,aq is 1.
Corollary A.2.2. The ring K[z1,...,x,] i a unique factorization domain.
Proof. By induction on n. If n = 0, the ring is a field, and hence it is trivially a UFD. The inductive
step follows from Theorem A.2.2, because K[z1,...,2,] = K[z1,...,20—1][¢]- O
A.3 Noetherian rings

Definition A.3.1. A (commutative unitary) ring R is Noetherian if every ideal of R is finitely gener-
ated.

Ezample A.3.2. A field K is Noetherian, because the only ideals are {0} = (0) and K = (1). The ring
7Z is Noetherian, because every ideal has a single generator.

Lemma A.3.3. A (commutative unitary) ring R is Noetherian if and only if every ascending chain
Iycljc...cl,,c...

of ideals of R (here I, is defiend for all m € N, and I, < I,,+1 for all m € N) is stationary, i.e. there
exists mo € N such hat I, = Ip,, for m = mg.

Proof. Suppose that R is Noetherian. The union I := |,y Im is an ideal because the {I,,} form a
chain. By Noetherianity [ is finitely generated, say I = (a1, ..., a,). There exists mg such that a; € I,
for j € {1,...,r}, and hence I = I,,. Let m = mo; then I,, I and I < I, hence I = I,,,. Thus
Iy = Iy, for m = myg.

Now suppose that every ascending chain of ideals of R is stationary. Let I < R be an ideal. Suppose
that I is not finitely generated. Let a; € I. Then (a1) & I because I is not finitely generated; let
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ag € (I\(a1)). Then (a1,a2) < I because I is not finitely generated. Iterating, we get a non stationary
chain of ideals (contained in I)

(a1) S (a1,a2) S ... S (a1, am) &
This is a contradiction. O

Ezample A.3.4. The ring Hol(K) of entire functions of one variable is not Noetherian. In fact let

fm € Hol(K) be defined by
0 2
fm(2) =[] <17%>, m=1.

n=m

Then (fim) & (fm+1). Thus (f1) < (f2) = ... < (fm) < ... is a non-stationary ascending chain of ideals,
and hence Hol(K) is not Noetherian by Lemma A.3.3.

Theorem A.3.5. Let R be a Noetherian commutative ring. Then R[t] is Noetherian.

Proof. For a non zero f € R[t], we let {(f) be the leading coefficient of f, ie. if f = " cit' with
¢m £ 0, then £(f) = ¢

Let I ¢ R[t]. We must prove that I is finitely generated. If I = (0) there is nothing to prove and
hence we may assume I # (0). Thus the set

(1) :={(f)|0# fel}
is non-empty and it makes sense to define
J=UI))cR

as the ideal of R generated by ¢(I). By hypothesis J is finitely generated: J = (c1,...,¢s). Since J is
generated by £(I) we may assume that each generator is the leading coefficient of a polynomial in I,
i.e. for each 1 < i < s there exists f; € I such that £(f;) = ¢;. Let

= o e S}
Let H := I n{fe R[t]|degf <d}. Then H is a submodule of {f e R[t] | deg f <d} ~ R™! (as
R-modules). Since R is Noetherian every submodule of R4*! is finitely generated (argue by induction
on d; if d = 0 it holds by definition of Noetherian ring, if d > 0 consider the projection R**! — R) and
hence

H = (g1, 9¢)-

Let us prove that
1= (fla"->fs7gl7"'7gt)‘

In fact let f € I. If degf < d then f € H and hence f € (¢1,.--,9t) < (f1,---» fs,91,---,9¢). Now
suppose that deg f > d. Then ((f) = Y._; a;c;. Let

S
hi=f— 2 a;tdes f—des fi g
i=1

Then degh < deg f. Since Y;_, a;tdeef=defif, e (f1,..., fs,91,...,g:) it suffices to prove that h € I.
If deg h < d we are done, otherwise we iterate until we get down to a polynomial of degree less or equal
to d. O

Theorem A.3.6 (Hilbert’s basis Theorem). FEvery ideal of K[x1,...,x,] is finitely generated.

Proof. By induction on n. If n = 0, the ring is a field, and hence is Noetherian. The inductive step
follows from Theorem A.3.5, because K[z1,...,2,] = K[z1,...,2n—1][t]. O
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A.4 Extensions of fields

An extension of fields F' < E is algebraic if every a € E is the root of a non zero polynomial i) € F[z].
If this is the case, the set of polynomials vanishing on « is a non zero ideal F[z], and hence it is
generated by a unique monic poylnomial ¢, which is the minimal polynomial of a over F. Of course
@ is irreducible, hence prime. The subfield of F' generated by F' and « is isomorphic to the quotient
Flz]/(#).

An extension is an algebraic closure of F, if it is algebraic over F', and every polynomial in F[z] has
a root in E.

Theorem A.4.1 (Chapter VII in [Lan02]). An algebraic closure exists, and is unique up to isomorph-
ism, i.e. if E1, Ey are two algebriac closures, there exists an isomorphism Ei — E, which is the
identity on F'.

One denotes “the” algebraic closure of F' by F®, or by F. Notice that a non costant polynomial in
F[z] decomposes in F as a product of polynomials of degree 1 (it has a root, hence it is divisible by a
linear term, if the quotient is not constant it has a root hence it is divisible...)

Let [E : F] be the dimension of E as vector space over F - the degree of E over F. Notice that
if [E : F] is finite, then E is an algebraic extension of F. Suppose that E is algebraic over F. One
defines another degree of E over F' as follows. Let o: F' < L be an embedding into a field which is an
algebraic closure of o(F'). An extension of ¢ to E is an embedding &: E < L such that &|p = 0. The
number of such extensions is independent of the embedding o: F' < L, and is the separable degree of
E over F - one denotes it by [E : F],.

Ezample A.4.2. Let ¢ € F|[z] be an irreducible monic polynomial, and let E = F[z]/(¢). Let a € E be
the class of z: by construction the minimal polynomial of « is equal to .

Let 0: F — L be an embedding into a field which is an algebraic closure of o(F'). An extension
of o to F is determined by its value on «, and moreover such value can be chosen to be any root of
@ in L. Hence the separable degree of E over F is the number of roots of ¢ in F (not counted with
multiplicity).

If the formal derivative ‘;—f is not the zero polynomial, then since its degree is strictly smaller than
deg ¢, and ¢ is prime, the ideal (¢, ‘;—f) is equal to F[z], and thus ¢, Z—f have no common roots. It
follows that all the roots of ¢ have multiplicity 1, and the separable degree of E over F' is equal to
deg ¢, which is also the degree of E over F. Hence in this case [E : F| = [E : F].

©

The formal derivative ‘:TZ is the zero polynomial only if char F = p > 0, and ¢ = ¥(2P), where

peF [z]7 i.e. all monomials appearing in f have exponent a multiple of p. Iterating, we may write
© = p(zP"), where p € F[z] is such that % is not the zero polynomial. Hence the numer of roots of ¢
is equal to the degree of hp, and thus [E : F|s = degp.

Since [E : F| = degy = p"-degp = [E : I];, we see (at least in this case) that the separable degree
divides the degree. Moreover, let § = o . Then E® := F[f] is a separable extension of F' such that

[E®: F] =[E: F]s, and the extension E S E* is obtained by adjoining p-th roots, and iterating.

The result below states that the example given above is typical.

Theorem A.4.3 (Chapter VII in [Lan02]). Let E > F be a finite extension of fields, i.e. [E : F] is
finite. There exists a mazimal separable extension E* > F, containing all subfields of E over F which
are separable. The separable degree [E : F)s is equal to the degree of the extension E* > F. The
extension E° D F has a primitive element, i.e. there exists € E° generating E* over F. Suppose that
E’s + E; then char F = p > 0, and if a € E, the minimal polynomial of o over E® is equal to 2P —~
for some r >0, and v € E°.

Ezxample A44. Let E = F,(w, 2), and let F = F,(w?,2?). Then E* = F (in this case one says that
E o F is a purely inseparable extension, and there is no primitive elemnt of E over F.
Elements a4, ...,a, € E are algebraically dependent over F is there exists a non zero polynomial

® e F[z,...,2,] such that ®(ay, ..., a,) = 0 (strictly speaking, we should say that the set {1, ..., a,}
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is algebraically dependent over F'). A collection {«;}es of elements of E is algebraically independent
over F if there does not exist a non empty finite {i1,...,4,} < I such that «;,, ..., «a;, are algebraically
dependent (with the usual abuse of language, we also say that the «;’s are algebraically independent).
A transcendence basis of E over F is a maximal set of algebraically independent elements of E over F.
There always exists a transcendence basis, by Zorn’s Lemma. One proves that any two transcendence
bases have the same cardinality, which is the transcendence degree of E over F; we denote it by
Tr.degr(E). An extension is algebraic if and only if its transcendence degree is zero.

Every finitely generated extension £ © F' can be obtained as a composition of extensions F' < K
and K < E, where F' < K is a purely transcendental extension, i.e. there exists a transcendence basis
{aq,...,an} of K over F such that K = F(aq,...,ay) (thus F(aq,...,a,) is isomorphic to the field
of rational functions in n indeterminates with coefficients in F), and F < K is a finitely generated
algebraic extension.

Definition A.4.5. Let E © F be an extension of fields. A transcendence basis {1, ..., a,} of F over
F is separating if E is a separable extension of the subfield F(a,...,a,). The extension E D F is
separably generated if there exists a separating transcendence basis of E over F.

Theorem A.4.6 (Thm 26.2 in [Mat89]). If K is an algebrically closed field, any finitely generated
extension ¥ o K is separably generated.

Proof. Let aq,...,a, be a transcendence basis of E over K. Hence the field F := K(aq,...,qy) is
isomorphic to the field of rational functions in n indeterminates, and F O F' is a finite extension. Let
B1, ..., 0B be elements of E algebraic over F', which generate E over F. If all such ;s are separable
over F' (i.e. the subfield of FE generated by F and (; is separable over F'), then E is separable over F'
(see Chapter VII in [Lan02]).

Suppose that one of the 3;’s is not separable over F. Then char F' = char K = p > 0. We may reorder
the f;’s so that each of Bi,..., s is separable over F', and each of the (s4y1,..., 8, is not separable
over F. We find suitable replacements of the a;’s so that E is a separable extension of the subfield
generated by the new transcendence basis. Since (5.1 is algebraic over F', there exists a polynomial
® e K|z1,...,2n41] such that

(I)(O(17 c -aaruﬁs«kl) =0.

We may, and will, assume that ® is irreducible. We claim that there exists ¢ € {1,...,n} such that
g—z £ 0. In fact, suppose the contrary. Then all partial derivatives of ® are zero, because ;41 is not
separable over I’ (see Example A.4.2). Write

P = Z arz!,

ley

where .# is a set of multiindices, and we assume that a; =+ 0 for every I € .#. Since & + 0

for all ¢ € {1,...,n + 1}, it follows that each I € .# is equal to pJ, for a multiindex J. On the
other hand there exists a (unique) p-th root of aj, because K is algebraically closed. It follows that

® = UP. This is a contradiction because ® is irreducible, and hence we have proved that there exists ¢ €

{1,...,n} such that gg #+ 0. Then «; is algebraic and separable over F’ := K(aq,..., Q4 ..., Qn, Bsi1)-
Thus aq,...,Q;,...,a,, Bs+1 18 a new transcendence basis of E over K, and FE is generated over F' by
Biy..., By, Bsya, ..., Br. Moreover, each of 3,...,Bs,; is separable over F’. Iterating, we get the
Theorem. O

Corollary A.4.7. Let E o K be a finitely generated extension of fields, and suppose that K is algebra-
ically closed. Let m be the transcendence degree of E over K. Then there ezists a prime polynomial P €
K(21,. ., 2m)[2Zm+1] such that E (as extension of K) is isomorphic to the field K(z1, ..., zm)[zm+1]/(P)-
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A.5 The key to the Nullstellensatz

We prove the key result needed for Hilbert’s Nullstellensatz. Note: in the present section fields are not
necessarily algebraically closed.

Theorem A.5.1 (Zariski’s Lemma [Zard7], [All05]). Let K © F be an extension of fields, and assume
that K is a finitely generated F-algebra. Then K is an algebraic extension of F.

Proof (by D. Allcock and O. Zariski). We must prove that if K © F is not an algebraic extension, then
it is not finitely generated as an F-algebra. First assume that K has transcendence degree 1 over F'
(this is the key case). Let x € K be transcendental over F. Thus the subfield of K generated by = (over
F) is isomorphic to F(x), the field of rational functions in x with coefficients in F. Since K is a finitely

generated F-algebra it is also a finitely generated vector space over F(z). Let {£1,...,&.} be a basis of
K as vector space over F(x). Let z1,...,24 € K be generators of K as F-algebra. We may (and will)
assume that z; = 1. For i € {1,...,d} we have
T
fij ()
Zi = 6‘, (A51)
JZZI gij ()™’

where fi;(x), gij(z) € F[x] are polynomials (of course g;;(x) & 0). For s,t e {1,...,7} we have

o Lt (@)

€& ]; @) (A.5.2)
where ls(2), gst;(x) € Fz] are polynomials. Let a € K. Since K is a finitely generated F-algebra,
we have a = P(21,...,2q4), where P is a polynomial with coefficients in F. Applying the formulae
in (A.5.1) and in (A.5.2) we get that a is a linear combination of &;,...,&, with coefficients rational
functions whose denominators are products of the polynomials g;;(z)’s and mg;(z)’s (this is the key
point). Now let h(z) € F[z] be a prime polynomial which is not among the (finite) prime factors of the
gi;(x)’s and the mgj(x)’s. Then a = h(x)~1& is an element of K which is not equal to such a linear
combination. This is a contradiction, and hence K o F' is an algebraic extension.

Now assume that K has transcendence degree greater than 1 over F. There exists an intermediate
subfield K o F’ o F such that K has transcendence degree greater 1 over F’. We have just proved
that K is not finitely generated as F” algebra, and hence K is not finitely generated as F' algebra. [

Corollary A.5.2. Let F be a field, and let m < Fz1,...,2,] be a mazimal ideal. Then Fzq,...,z,]/m
s a finite algebraic extension of F.

Proof. Let K = F[z1,...,2,]/m. Then K is a field because m is a maximal ideal, and it is generated
as F algebra by the equivalence classes Z1,...,Z,. By Theorem A.5.1 it follows that K is an algebraic
extension of F' (obviously finitely generated). O

A.6 Descent

Let F < K be an inclusion of fields, and let Aut(K/F') be the group of automorphisms of K which are
the identity on F. If V is an F vector space, then Aut(K/F) acts on the K vector space

W e K@V (A.6.3)

via its action on K. Explicitly: if v e W is given by v = ¢; ® v1 + ... + ¢, ® v, € V where ¢; € K and
v; € V, then 0 € Aut(K/F) acts as

o) =o(c1)®@vi + ...+ 0(cn) @ vy.
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Example A.6.1. Let F =R c C = K and V = R"™. Then we may identify W = C®QR"™ with C" in such
a way that the generator o of the Galois group Gal(C/R) = Z/(2) acts as 0(z1,...,2n) = (Z1,...,2n).

Example A.6.2. Let paprimeand ¢ = p", wherer e Ny. Let F =F, € Fgm = K, and let F': Fgm — Fgm
be the Frobenius automorphism defined by F(a) = a?. Thus F is a generator of the Galois group
Gal(Fgm /Fy). Let V = TF,. Then we may identify W = Fgn ® Fy with Fy,. in such a way that F' acts
as F(z1,...,2n) = (27,...,29).

Suppose that Vp < V is an F sub vector space. Then Wy = K ®p Vj is mapped to itself by
Aut(K/F). If the fixed field of Aut(K/F) is F then the converse is true.

Proposition A.6.3. Keep notation as above, and assume that the fized field of Aut(K/F) is F'. Suppose
that Wo ¢ W = K ®Qp V is a K subvector space which is mapped to itself by Aut(K/F). Then there
exists an F' sub vector space Vo < V' such that Wy = K Qp Vo

Before proving Proposition A.6.3 we go through a special case. To simplify notation let G =
Aut(K/F). Assume that the fixed field K of G = Aut(K/F) is F. Then

WY ={weW |o(w)=wVYoeAut(K/F)} =V, (A.6.4)

where V stands for F®p V < W. It follows that if Wy < W is a K vector space then WOG =(WonV).
Hence the following is a special case of Proposition A.6.3: if W, is mapped to itself by G and W§ = {0},
then Wy = {0}. The Lemma below proves the validity of the latter statement.

Lemma A.6.4. Keep notation as above, and assume that K¢ = F. Suppose that Wy < W is a K
subvector space which is mapped to itself by G and such that W = {0}. Then Wy = {0}.

Proof. We prove that if Wy # {0} then W + {0}. Since Wy # {0} there exists a minimal n > 1 for
which there exist n linearly independent vectors vy, ...,v, € V and non zero ¢y, ...,¢, € K (meaning
that ¢; + 0 for all 4 € {1,...,n}) such that w = 3| ¢; ®v; is an element of Wy. Multiplying w by ¢;*
we may (and will) assume that ¢; = 1. Let 0 € G. Then (o(w) — w) € Wy because Wy is mapped to
itself by G. Since o(c1) = (1) = 1 = ¢; we get that for all o € G we have

n
(o(w) —w) = Y (o(c:) — ci) ®vi € Wo. (A.6.5)

i=2
By minimality of n it follows that o(c¢;) = ¢; for all ¢ € {1,...,n} and hence ¢; € F for all i because
K% = F. Thus w is a non zero vector in W§. O

Proof of Proposition A.6.3. Let Vo =V n Wy = qu Let U :=V/Vj and let
W=KrV -5 K®rU (A.6.6)

be the quotient map of K vector spaces. Of course the action of G on K induces an action of K on
K ®p U. The kernel of 7 is K ® V which is contained in Wy. It suffices to prove that w(Wy) = {0}.
Now 7(Wo)¢ = 1(Wy) nU = n1(Wo n V) = n(Vp) = {0}.

O

A.7 Derivations

Let R be a ring (commutative with unit), and let M be an R-module.

Definition A.7.1. A derivation from R to M is a map D: R — M such that additivity and Leibinitz’
rule hold, i.e. for all a,b € R,

D(a+b) = D(a) + D(b), D(ab) =bD(a)+ aD(b).

If k is a field and R is a k-algebra a k-derivation (or derivation over k) D: R — M is a derivation such
that D(c) = 0 for all c € k. We let Der(R, M) be the set of derivations from R to M. If R is a k-algebra
we let Derg (R, M) < Der(R, M) be the subset of k-derivations.
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Ezample A.7.2. Let k be a field, and let f = Y}, as2’ be a polynomial in k[z1,...,2,], where the
summation is over multiindices I, ay € K for every I, and a; is almost always zero. The formal
derivative of f with respect to z,, is defined by the familar formula

5f . i [ p— G —1 im i
P Z Tharzyt ozl 2T (A.7.7)
m Ist. im>0
The map
Il

k[zl, ey Zn] = k)[Zl, R Zn] (A78)

f - d

0zm

is a k-derivation of the k algebra to istelf. We claim that Dery(k[z1,...,2,], k[21,...,24,]) is freely
2

generated (as k[z1, ..., z,] module) by %, e % In fact there is no relation between 621 R

0z . . .
because &i = 0jm, and moreover, given a k derivation
m

D:k[z1,...,2n] = k[21,. -, 2n]

we have D =" _, amazi, where v, := D(2p,).
m

Example A.7.3. Let D: R — M be a derivation.
1. By Leibniz we have D(1) = D(1-1) = D(1) + D(1) and hence D(1) = 0.
2. Suppose that g € R is invertible. Then
0=D(1)=D(g-g"") =g 'Dg+ fD(g™") (A.7.9)
and hence D(g~!) = —g72D(f).

3. Suppose that f,¢g € R and that g is invertible. By Item (2) we get that the following familiar
formula holds:

D(f-g7") =g 2D(f)-g— f-Dl(g)). (A.7.10)

Let D, D’ € Der(R, M) and z € R we let

D+D’
R — M (A.7.11)
a — D(a)+ D'(a)
and
zD
R = M (A.7.12)

a — zD(a)

Both D + D’ and zD are derivations and with these operations Der(R, M) is an R-module. If R is a
k-algebra then Dery (R, M) is an R-submodule of Der(R, M).

Next we suppose that £ O F is an extension of fields, and we consider Derp(FE, E). Notice that
Derp(E, E) is a vector space over F.

Proposition A.7.4. Suppose that E o F is a finitely and separably generated extension of fields. Let

Qai, ..., ap be a separating transcendence basis of E over F. Then the map of E-vector spaces
Derp(E,E) —> E"
’ A.7.13
D > (D(a1),..., D(ay)) (A.7.13)

is an isomorphism.
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Proof. Let K := F(ay,...,a,) C E. Since a, ..., q, is a separating transcendence basis of F over F,
and F is finitely generated (over F'), there exists an element /3 € E primitive over K. Let P € K[z] be
the minimal polynomial of §. In particular

dP

P(B) =0, ——(B) *0. (A.7.14)

(The inequality holds because E is a separable extension of K.)
Since K is a purely transcendental extension of F' we have an isomorphism of E-vector spaces

Derp(K,E) —> Bn
D —  (D(a1),...,D(an)).

Equivalently every D € Derp (K, E) is given by

D(@) = Ci , Q4 € E,
Z.:Zl aOLi

and the ¢;’s may be chosen arbitrarily. Thus we must show that the restriction map

Derp(E,E) —> Derp(K,E)

D - Dix (A.7.15)

defines an isomorphism of F-vector spaces.

Let us prove that the restriction map is injective. Let P = Z?:o a;z%7?, where ag = 1 (recall that
P is the minimal polynomila of 8 over K). Suppose that D € Derp(E, E); by the equality in (A.7.14)
we get that

d

d—1 d
0= D(P(3)) = Y D)™™ + 3. D(B)asld ~ )5~ = 3. D(@)s*™ + D)L (9)
i=0 i=0 i=0
By the inequality in (A.7.14), we can divide and we get
m o dP B
D(B) = - (Zl D(a:)p > B (A.7.16)

This proves that the map in (A.7.15) is injective.
In order to prove surjectivity, we extend a derivation D € Derp (K, E) to a derivation in Derp(FE, E)
by defining its value on (3 via (A.7.16). O

Corollary A.7.5. Keep hypotheses and notation as above. Then Trdeg;, K = dimg Derg (K, K).

A.8 Nakayama’s Lemma

Let R be a ring, M be an R-module, and I < R be an ideal. We let IM < M be the submodule of
finite sums ., frmy, where fr € I and my € M for every ke K.

Lemma A.8.1 (Nakayama’s Lemma). Let R be a ring and M a finitely generated R-module. Let I — R
be an ideal and suppose that M < IM (i.e. M = IM ). Then there exists ¢ € I such that (1+ )M =0
i.e. (1+¢@)m =0 for allme M.

Proof. Let mq, ..., m, be generators of M. By hypothesis there exist a;; € I for 1 <4, j < r such that

T
m; = Z a,;jmj.
Jj=1
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Let A be the r x r-matrix with entries in R given by A := (d;; — a;5), where ¢;; is the Kronecker
symbol i.e. d;; = 1if i = j and is 0 otherwise. Let B be the r x l-matrix with entries my,...,m,.
Then A - B = 0: multiplying by the matrix of cofactors A° we get that det A-m; =0 fori=1,...,r.
Expanding det A we get that det A = 1 + ¢ where @ € I. O

Corollary A.8.2. Let R be a local ring with maximal ideal m and M a finitely generated R-module.
Suppose that the quotient module M /mM is generated by the classes of my,...,m, € M. Then M is
generated by my,..., M.

Proof. Let N € M be the submodule generated by my,...,m, and P := M /N be the quotient module.
We must prove that P = 0. The module P is finitely generated over R because M is, and moreover
P < mP by hypothesis. By Nakayama’s Lemma there exists ¢ € m such that (1 + ¢)P = 0. Since
(1 + ¢) does not belong to m it is invertible (it generates all of R because m contains all non-trivial
ideals of R) and hence it follows that P = 0. O

A.9 Order of vanishing

The prototype of a Noetherian local ring (R, m) is the ring Ox , of germs of regular functions of a quasi
projective variety X at a point x € X, with maximal ideal m,, see Proposition 4.2.4. The following
result of Krull can be interpreted as stating that a non zero element of &x , can not vanish to arbitrary
high order at . In other words, elements of € , behave like analytic functions (as opposed to C®
functions).

Theorem A.9.1 (Krull). Let (R,m) be a Noetherian local ring. Then
ﬂ m' = {0}.
i>0

Proof. Since R is Noetherian the ideal m is finitely generated; say m = (a1,...,a,). Let b e mi;o m.
Let i > 0; since b € m’ there exists P, € R[Xy,...,X,]; such that Pi(aj,...,a,) = b. Let J <
R[X1,...,X,] be the ideal generated by the P;’s. Since R is Noetherian so is R[X,...,X,]. Thus
J is finitely generated and hence there exists N > 0 such that J = (Fp,..., Py). Thus there exists
QN+1—i € R[Xl, e 7Xn]N+17i for i =0,..., N such that Py, = ZZJ\LO Qni1-iP;. Tt follows that

N N
b= PN+1(CL17 .. .,an) = Z QN+1—i(a17 .. .,an)Pi(al, .. .,an) = bz QN+1—i(a17 .. .,an). (A917)
i=0 1=0

Now Qn+1-i(a1,...,a,) € m for i = 0,..., N and hence € := Zf\io Qn+1-ilal,...,a,) € m. Equal-
ity (A.9.17) gives that (1 — ¢)b = 0: since € € m the element (1 — ¢) is invertible and hence b=0. O

Corollary A.9.2. Let (R,m) be a Noetherian local ring, and let 3 < R be an ideal. Then

()@ +m') = {0}

=0

Proof. Let S := R/J. Then S is a Noetherian local ring, with maximal ideal mg := J+m. The corollary
follows by applying Theorem A.9.2 to (S, mg). O
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