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Chapter 0

Introduction

Motivation

We will describe some problems and results in order to whet your appetite. Some (or most) of the

statements below might leave you puzzled, do not worry, they will become clear later on. In fact one

of the goals of reading the book is to be able to understand what is written in the paragraphs below.
We start from the following well known indefinite integral:

J dx .
——— = arcsinz.
V1—2?
What if we ask

f dv ”

V=23

Note that one gets the first integral by writing out the formula for the length of arcs of a circle. Similarly,
one gets the second integral, or more generally integrals of functions p(:r)*l/ 2 where p is a polynomial
of degree 3 (or 4), if one sets out to compute the length of arcs of ellipses. There is no way to express
the second integral starting from elementary functions. What Fagnano discovered for similar integrals,
and what Euler amplified, is that, although we cannot express the integral via elementary functions,
there is a rational addition formula, i.e. there exists a rational function F' of four variables such that
for fixed Iy and varying a,b we have

+ const,

Ja do | Jb dv f dx
o V1—2a3 o V1— a3 lo V1— a3
¢ = F(a,b,\/1—a3,+/1—0b3).

Let us sketch a geometric explanation of the addition formula. First of all it is convenient to allow z, y to
be complex numbers. Since couples (z,4/1 — x3) are solutions of the equation 23 + y? = 1, we consider
the curve Cy = A%(C) whose equation is 22 + y? = 1, where A%(C) = C? is the standard complex affine
plane. Now Cj is a complex submanifold of A?(C), hence a 1-dimensional complex manifold. Since
it is not compact, we consider its closure C' = P?(C) in the projective complex plane. This means
adding a single point “at infinity”, namely [0, 0, 1] (we let [T, X,Y] be homogeneous coordinates, and
x=X/T,y=Y/T). Note that by integrating the 1-form dz/y on C (as we will do) we do not have to
pay attention to which of the two square roots of 1 — 2% we choose. A fundamental observation is that
dx/y is holomorphic on all of Cp, including the points (e>7™¥/3 0) where the denominator vanishes),
and moreover it extends to a holomorphic 1-form on all of C. In order to show that there is an
addition formula we fix a line Ry = P?(C) intersecting C' in 3 points Py, Dy, P3 and, given another line
R intersecting C' in 3 points p1, p2, p3, we let

fR dx fpl dx Jp dx JPS dx
— = —+| —+| —
Ro Y P ) Pa Y P3 Y

where



0. INTRODUCTION

Of course in order to make sense of the right hand side one needs to choose paths starting at p;
and ending at p; for ¢ € {1,2,3}. By Goursat’s Theorem the integrals do not vary if the paths are
homotopically equivalent. Hence if we let R move in a small open subset of P2(C)¥ we may choose
well defined homotopy classes of such paths and the integral above defines a well defined holomorphic
function on the open set. There is no way to define a holomorphic function
pa (" dr
Ry Y

on all of P?(C)": if we define it locally and then we move around, when we come back the value of the
function will change by an additive constant. Since it changes by an additive constant, the differential
d® is a well defined holomorphic 1-form w on all of P?(C)"¥ although @ is only well defined locally. Since
every holomorphic 1-form on a complex projective space is zero, we get that w = 0, i.e. the (locally
defined) function @ is constant. Now notice that the given points p1,ps € C there is a unique line R
containing p1, p2 (if p1 = p2 we let R be the tangent to C at p1), and that the coordinates of the third
point of intersection of R and C, i.e. p3, are rational functions of the coordinates of the first two points.
This gives the validity of the formula

Ja dx . Jb dx f dx . .
— —_— = ————— + const,
o V1—a3 o V1— a3 o V1— a3

where c is a rational function of (a, b, v1 — a3,4/1 — b3). With a little more work one gets from this the
addition formula as formulated above.
Next we ask more in general what can be said about integrals of the form

dx
V/D(x)’

where D(z) is a polynomial. For simplicity we assume that D(z) has no multiple roots. If D(z) has
degree 3, then the arguments above apply verbatim to give an addition formula. In general, the first
step is to consider the curve Cy = A?(C) whose equation is 4> = D(x). This is a 1-dimensional complex
submanifold of A%(C). Since it is not compact it is convenient to compactify. The closure of Cy in
P2(C) is compact, but if the degree of D(x) is greater than 3 then the closure of Cj is not a submanifold
of P?(C) at its unique “point at infinity”(i.e. [0,0,1]). Nonetheless there is 1-dimensional complex
manifold C containing Cy as an open dense subset, in fact C\Cy consists of a single point if D(x)
has odd degree, and consists of two points if D(x) has even degree. The qualitative behaviour of the
integral that we set out to study is determined by the topology of C. The C'*® manifold underlying C' is
connected, compact and orientable surface. By the classification compact surfaces it is homeomorphic
to a connected sum of g tori. In fact one show that

| degD -1
9=—5 |

(0.0.1)

(0.0.2)

For example, if D has degree 3 then g = 1, i.e. C' is a torus. Suppose that g > 1. Then there exists
an addition formula, but it involves the addition of vectors in CY obtained by integrating the g linearly

independent holomorphic 1-forms .
dv wdr i dr (0.0.3)
y oy Y
Lastly we discuss how the topological quantity g (the genus of C') controls the arithmetic of C'. Suppose
that the polynomial p(z) has integer coefficients. If p is a prime we let D(z) € F,[x] be the polynomial
whose coefficients are the equivalence classes of the coefficients of D - we say that D(z) is obtained
from D reducing modulo p. We suppose that D(z) has the same degree as D (i.e. p does not divide
the leading coefficient of D), and that D(z) does not have multiple roots in the algebraic closure of F,,.
We also assume that p & 2. For n > 1 let F,» be the finite field of cardinality p™, and let C(IF,n) be
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the set of solutions in Fnof the equation y> = D(x). We view the points at infinity (there is one if
deg D is odd and two if deg D is even) as solutions “in F,»”. A convenient generating function for the
cardinalities |C(Fpn)| is given by Weil’s zeta function

Z(C,T) = exp (Z @

T”) . (0.0.4)
A famous theorem of Weil states that

29 —a;
Z(C,T) = (11_[—_1T()1(1—29TT)) (0.0.5)

where each a; is an algebraic integer of modulus p'/2 (the last statement is an analogue of Riemann’s
hypothesis). This shows that the topological genus g can be extracted from the number of solutions
(z,y) € A*(Fpn) of the equation y?> = D(z). We also see that there is an explicit formula giving
the cardinality |C(F,»)| for all n once we know the cardinalities |C(IF,)|,|C(Fp2)l, ..., |C(Fp2s)|. The
function of s obtained by making the substitution T = p~*%, i.e. Z(C,p~*%), is a precise analogue of
Riemann’s zeta function ((s), and the statement that each a; has modulus p'/2 is the analogue of the
Riemann Hypothesis. It is very compelling evidence in favour of the validity of the Riemann Hypothesis.






Chapter 1

Quasi projective varieties

Throughout the book K is an algebraically closed field, e.g. K = C or Q, the algebraic closure of the
rational field Q, or F,, the algebraic closure of the finite field F, where p is a prime. We are interested
in understanding the set of solutions (z1,...,2,) € K™ of a family of polynomial equations

filzi, ooy zn) =0, fr(z1,...,20) = 0.

“Polynomial equations” means each f; is an element of the polynomial ring K[z1, ..., z,].

In order to understand the geometry of a set of solutions of polynomial equations, it is convenient
to replace affine space A™(K) by projective space P*(K), and consider the set of points in P*(K) which
are solutions of homogeneous polynomial equations in the homogeneous coordinates. As motivation for
this step we recall that results in projective geometry are usually cleaner than in affine geometry - for
example two distinct lines in a projective plane have exactly one point of intersection, while two distinct
lines in an affine line may intersect in one point or be disjoint. If K = C we may guess that passing to
projective space makes life simpler because P*(C) with the classical topology is compact, while A™(C)
is not (unless n = 0).

Whenever there is no possibility of a misunderstanding we omit K from the notation for affine and
projective space, i.e. A” is A”(K) and P" is P"(K).

1.1 Zariski’s topology on affine space

If f1,..., fr €eKlz1,...,2n], we let

V(fi,-- s fr)={z€A" | fi(z) =0 Vie{l,...,r}}. (1.1.1)

More generally, if I < K[z1,. .., 2,] is an ideal (note: the inclusion sign < does not mean strict inclusion,
and similarly for o) we let

VI)={z€A" | f(z) =0 V fel}. (1.1.2)

Unless n = 0 or I = 0 an ideal I of K[z1,...,2,] has an infinite number of elements so that V(1) is

the set of solutions of an infinite set of polynomial equations. However I has a finite set of generators
f1,---, fr by Hilbert’s basis Theorem A.3.6, and it follows that V(I) = V(f,..., fr). In fact it is clear
that V(I) < V(f1,..., fr). For the reverse inclusion notice that if f € I then f = »_, g; f; for suitable
g1,---,9r € K[z1,...,2,], and hence f(z) =0 for every z € V(f1,..., fr).

An elementary observation is that passing from ideals to their zero sets reverses inclusion, i.e. if
I,J < K|z,...,2,] are ideals then

I c J implies that V(I) > V(J). (1.1.3)

Proposition 1.1.1. The collection of subsets V(I) = A™, where I runs through the collection of ideals
of K[z1, ..., 2], satisfies the axioms for the closed subsets of a topological space.

7



1. QUASI PROJECTIVE VARIETIES

Proof. We have & = V((1)), A™ = V((0)).

Let I,J < K[z, ..., 2,] be ideals. We claim that V(I) u V/(J) = V(I n J). We have V(I),V(J) c
V(I nJ), because I,J > I nJ. Thus V(I) v V(J) € V(I nJ). Hence it suffices to show that if
zeV(InJ)and z ¢ V(I), then z € V(J). Since x ¢ V(I), there exists f € I such that f(z) & 0. If
ge J,then f-geIn J, and thus (f - ¢g)(z) = 0 because z € V(I n J). Since f(z) £ 0, it follows that
g(z) = 0. This proves that z € V(J).

Lastly, let {I;};er be a family of ideals of K[z1,...,2,]. Then

(V) = V({T}er)),

teT

where ({I;}ie7) is the ideal generated by the collection of the I;’s. O

Definition 1.1.2. The Zariski topology of A™ is the topology whose closed sets are the sets V' (I), where
I runs through the collection of ideals of K[z1, ..., 2,]. The Zariski topology of a subset A < A™ is the
topology induced by the Zariski topology of A™.

Remark 1.1.3. If K = C, the Zariski topology is weaker than the classical topology of A™. In fact,
unless n = 0, the Zariski is much weaker than the classical topology, in particular it is not Hausdorff.

Ezample 1.1.4. A subset X < A™ is a hypersurface if it is equal to V(f), where f is a non constant
homogeneous polynomial.

A picture of a hypersurface in A? is in Figure 1.1. Notice that (z,y) are the affine coordinates -
in general, whenever we consider affine or projective space of small dimension, we will denore affine or
homogeneous coordinates by letters x,¥, z,... and X,Y, Z, ... respectively.

What is the field K? The picture shows points with real coordinates. We can view the picture as a
“slice” of the corresponding hypersurface over C, or as the closure (either in the Zariski or the classical
topology) of the corresponding hypersurface over the algebriac closure of the rationals Q.

sl T T T ]

D

Figure 1.1: (22 + 2y — 1)(32% +y®> — 1) + 135 = 0

Given a subset A c A™ let
I(A) == {feK[z1,...,2a] | f(z) =0 for all z€ A}. (1.1.4)
Clearly I(A) is an ideal of K[z1, ..., 2,], and V(I(A)) is the closure of A in the Zariski topology.
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1.2. Zariski’s topology on projective space

Remark 1.1.5. If A is a finite dimensional affine space over K, the Zariski topology on A may be defined
by analogy with the case of A™, because the K algebra of polynomial functions on A is defined (and
is ismorphic to K|z1,...,2,] if n is the dimension of A). Another way of putting it is that an affine
transformation of A™ is a homemorphism for the Zariski topology.

1.2 Zariski’s topology on projective space

Let F € K[Zy,...,Z,]a be homogeneous of degree d (to be correct we should say that F' belongs to
the homogeneous summand of degree d, because the degree of 0 is —0). Let © = [Z] € P". Then
F(Z) = 0 if and only if F(AZ) = 0 for every A € K*, because F'(A\Z) = A?F(Z). Hence, although F(x)
is not defined, it makes to state that F(z) = 0 or F(z) £ 0. Thus if Fy,..., F,. € K[Zy,...,Z,] are
homogeneous (of possibly different degrees) it makes sense to let

V(Fy,...,F.) = {zeP" | Fi(z) = ... = F.(z) = 0}. (1.2.1)

As in the case of affine space, it is convenient to consider the zero locus of ideals, but we need to consider
homogeneous ideals. An ideal I ¢ K[Z, ..., Z,] is homogeneous if

o8]
I=@1nK[Z,...,20]a (1.2.2)
d=0

i.e. if it is generated by homogeneous elements. Let I < K[Zy,. .., Z,] be a homogeneous ideal; we let
V(I):={xeP"| F(x) =0 Yhomogeneous F € I}.

By Hilbert’s basis Theorem A.3.6 I is generated by a finite set of homogeneous polynomials Fi, ..., F,
and hence V(I) = V(Fy,..., F.). Notice that if I < K[Z,...,Z,] is a homogeneous ideal we have
two different meanings for V (I), namely the subset of P"* defined above and the subset of A"™! defined
in (1.1.2). The context will indicate which of the two we mean.

Proceeding as in the proof of Proposition 1.1.1 one gets the following result.

Proposition 1.2.1. The collection of subsets V(I) < P, where I runs through the collection of homo-
geneous ideals of K[ Zy, ..., Zy], satisfies the axioms for the closed subsets of a topological space.

Definition 1.2.2. The Zariski topology of P™ is the topology whose closed sets are the sets V(1) c P,
where I runs through the collection of homogeneous ideals of K[Z, ..., Z,]. The Zariski topology of a
subset A < P™ is the topology induced by the Zariski topology of P".

Remark 1.2.3. Let 7: (K"*1\{0}) — P" be the map defined by m(Z) = [Z], so that P" is identified as
the quotient of K"*1\{0} for the action by homotheties. The Zariski topology of P" is the quotient of
the Zariski topology on K"1\{0}.

Remark 1.2.4. From now on we identify A™ with the open subset (P™\V(Zy)) < P™ by mapping z to
[1,z]. The Zariski topology of A™ induced by the Zariski topology on P" is the same as the Zariski
topology of Definition 1.1.2. In fact let X < A™. Suppose first that X is closed for the topology induced
from the Zariski topology of P, i.e. X = (P"\V(Zy))nV (F4, ..., F,), where each F; € K[Zy, Z1, ..., Z,]
is homogeneous. Then X = V(f1,..., f), where

filzr, oo zn) i=F(1,21,..., 2n).

Next suppose that X is closed for the Zariski topology of Definition 1.1.2, i.e. X = V(f1,..., f,) where
fi,..o, freK[z1,...,2,]. We may assume that all f; are non zero because A" is clearly closed for the
induced topology, and hence each f; has a well defined degree d; . For j e {1,...,r} let

Zl Zn

. gl [ 21 “n
Fi(Zo,.... Zy) : Z0f<ZO,...,ZO>.



1. QUASI PROJECTIVE VARIETIES

Then F; is a homogegenous polynomial of degree d; and hence V(Fi,...,F,) < P™ is a closed subset.
Since

V(fi, . fr) = P\V(Zy)) nV(Fy,..., F.),
we get that V(fi,..., fr) is closed for the induced topology.

Ezample 1.2.5. A subset X < P™ is a hypersurface if it is equal to V(F'), where F is a non constant
homogeneous polynomial. Notice that V (F) n A" is a hypersurface unless F' = ¢Z§ for some c € K*.

Given a subset A < P, let
I(A) :=(FeK[Zy,...,Z,] | F is homogeneous and F(p) = 0 for all p € A), (1.2.3)

where (,) means “the ideal generated by”. Clearly I(A) is a homogeneous ideal of K[Z, ..., Z,], and
V(I(A)) is the closure of A in the Zariski topology.

Definition 1.2.6. A quasi-projective variety is a Zariski locally closed subset of a projective space,
i.e. X c P" such that X = U nY, where U,Y < P™ are Zariski open and Zariski closed respectively.

Ezample 1.2.7. By Remark 1.2.4; every closed subset of A" is a quasi projective variety.

Remark 1.2.8. If V is a finite dimensional complex vector space, the Zariski topology on P(V') is defined
by imitating what was done for P™: one associates to a homogeneous ideal I € Sym V'V the set of zeroes
V(I), etc. Everything that we do in the present chapter applies to this situation, but for the sake of
concreteness we formulate it for P".

1.3 Decomposition into irreducibles

A proper closed subset X < P! (or X < A!) is a finite set of points. In general, a quasi projective
variety is a finite union of closed subsets which are irreducible, i.e. are not the union of proper closed
subsets. In order to formulate the relevant result, we give a few definitions.

Definition 1.3.1. Let X be a topological space. We say that X is reducible if either X = ¢J or there
exist proper closed subsets Y, W < X such that X =Y u W. We say that X is irreducible if it is not
reducible.

Ezample 1.3.2. A subset A — R™ with the euclidean (classical) topology is irreducible if and only if it
is a singleton.

Ezample 1.3.3. Projective space P" with the Zariski topology is irreducible. In fact suppose that
P* = X uY with X and Y proper closed subsets. Then there exist homogeneous F' € I(X) and
G € I(Y) such that F(y) + 0 for one (at least) y € Y and G(z) # 0 for one (at least) z € X. In
particular both F' and G are non zero, and hence F'G # 0 because K[Z, ..., Z,] is an integral domain.
On the other hand F'G = 0 because P =Y u W. This is a contradiction, and hence P™ is irreducible.

Remark 1.3.4. Since the field K is algebraically closed it is infinite, and hence there is no distinction
between the polynomial ring K[z1,..., z,,] and the ring of polynomial functions in z1,..., z,. That is
implicit in the argument given in Example 1.3.3, and it will appear repeatedly.

Definition 1.3.5. Let X be a topological space. An irreducible decomposition of X consists of a
decomposition (possibly empty)
X=Xiv---uX, (1.3.1)

where each X; is a closed irreducible subset of X (irreducible with respect to the induced topology)
and moreover X; ¢ X; for all i # j.

We will prove the following result.

Theorem 1.3.6. Let A < P™ with the (induced) Zariski topology. Then A admits an irreducible
decomposition, and such a decomposition is unique up to reordering of components.

10



1.3. Decomposition into irreducibles

The key step in the proof of Theorem 1.3.6 is the following remarkable consequence of Hilbert’s
basis Theorem A.3.6.

Proposition 1.3.7. Let A < P", and let A > Xg D X1 D ... D X, O ... be a descending chain of
Zariski closed subsets of A, i.e X, D Xppy1 for all m € N. Then the chain is stationary, i.e. there
exists mo € N such that X, = X, for m = my.

Proof. Let X; be the closure of X; in P*. Then X; = A n X, because X, is closed in A. Hence we
may replace X; by X, or equivalently we may suppose that the X; are closed in P™. Let I, = I(X,3,).

Then In c I c ... c I, © ... is an ascending chain of (homogeneous) ideals of K[Z, ..., Z,]. By
Hilbert’s basis Theorem and Lemma A.3.3 the ascending chain of ideals is stationary, i.e. there exists
mo € N such that I,,,, = I, for m = mg. Thus X,,, = V(Ip,) = V(1) = X, for m = mg. O

Proof of Theorem 1.3.6. If A is empty, then it is the empty union (of irreducibles). . Next, suppose
that A is not empty and that it does not admit an irreducible decomposition; we will arrive at a
contradiction. First A in reducible, i.e. A = Xy u Wy with X, Wy < A proper closed subsets. If both
Xo and Wy have an irreducible decomposition, then A is the union of the irreducible components of X
and Wy, contradicting the assumption that A does not admit an irreducible decomposition. Hence one
of Xy, Wy, say Xg, does not have an irreducible decomposition. In particular X is reducible. Thus
Xo = X7 u Wy with X;, W; < X proper closed subsets, and arguing as above, one of X7, W7, say Xi,
does not admit a decomposition into irredicbles. Iterating, we get a strictly descending chain of closed
subsets
A2X02X12 - 2Xn2Xpa 2

This contradicts Proposition 1.3.7. This proves that X has a decomposition into irreducibles X =
Xiu...uX,.

By discarding X;’s which are contained in X; with ¢ + j, we may assume that if ¢ & j, then X; is
not contained in Xj.

Lastly, let us prove that such a decomposition is unique up to reordering, by induction on r. The
case r = 1 is trivially true. Let » > 2. Suppose that X =Y; u ... U Y, where each Y} is Zariski closed
irreducible, and Y; ¢ Y}, if j + k. Since Y is irreducible, there exists ¢ such that Yy < X;. We may
assume that i = r. By the same argument, there exists j such that X, c Y;. Thus Y, ¢ X, c Y. It
follows that j = s, and hence Y; = X,.. It follows that X; u... U X,_1 =Y; U... U Y, 1, and hence
the decomposition is unique up to reordering by the inductive hypothesis. O

Definition 1.3.8. Let X be a quasi projective variety, and let
X=Xju...uX,

be an irreducible decomposition of X. The X;’s are the irreducible components of X (this makes sense
because, by Theorem 1.3.6, the collection of the X;’s is uniquely determined by X).

We notice the following consequence of Proposition 1.3.7.

Corollary 1.3.9. A quasi projective variety X (with the Zariski topology) is quasi compact, i.e. every
open covering of X has a finite subcover.

The following result makes a connection between irreducibility and algebra.
Proposition 1.3.10. A subset X < P" is irreducible if and only if 1(X) is a prime ideal.

Proof. The proof has essentially been given in Example 1.3.3. Suppose that X is irreducible. In
particular X £ ¢J (by definition), and hence I(X) is a proper ideal of K[Zy, ..., Z,]. We must prove
that K[Zo, ..., Z,]/I(X) is an integral domain. Suppose the contrary. Then there exist

F,GeK[Z,...,Z,), Fé¢I(X), G¢IX), (1.3.2)

11



1. QUASI PROJECTIVE VARIETIES

such that
F-GelI(X). (1.3.3)
By (1.3.2) both X n V(F) and X n V(G) are proper closed subsets of X, and by (1.3.3) we have
X =(XnV(F))u (X nV(Q)). This is a contradiction, hence I(X) is a prime ideal.
Next, assume that X is reducible; we must prove that I(X) is not prime. If X = ¢, then I(X) =
K[Zo,...,Z,] and hence I(X) is not prime. Thus we may assume that X + (¥, and hence there
exist proper closed subset Y, W < X such that X =Y o W. Since Y ¢ W and W ¢ Y, there exist

Fe(I(Y)\I(W)) and Ge (I(W)\I(Y)). It follows that both (1.3.2) and (1.3.3) hold, and hence I(X)
is not prime. O

Remark 1.3.11. Let I := (Z2) <« K[Zo, Z1]. Then V(I) = {[0, 1]} is irreducible although I is not prime.
Of course I(V (I)) is prime, it equals (Zp).

Remark 1.3.12. Let X < A". Let I(X) < K[z1,...,2,] be the ideal of polynomials vanishing on X.
Then X is irreducible if and only if I(X) is a prime ideal. The proof is analogous to the proof of
Proposition 1.3.10. One may also directly relate I(X) with the ideal J < K[Zy,..., Z,] generated by
homogeneous polynomials vanishing on X (as subset of P"), and argue that I(X) is prime if and only
if J is.

1.4 The Nullstellensatz

Let an ideal I in a ring R. The radical of I, denoted by /I, is the set of elements a € R such that
a™ € I for some m € N. As is easily checked, v/T is an ideal. Tt is clear that v/I < I(V(I)). The
Nullstellensatz states that we have equality.

Theorem 1.4.1 (Hilbert’s Nullstellensatz). Let I < K[z1,...,2,] be an ideal. Then I(V(I)) = +/I.

Before discussing the proof of the Nullstellensatz, we introduce some notation. For a = (aq,...,a,)
an element of A", let

My = (21 —a1,...,2n —apn) = {f €K[z1,..., 2] | f(a1,...,an) =0}. (1.4.1)

Notice that m, is the kernel of the surjective homomorphism

Klz1, .-, 2n] 2, K
f e f(alv"'7an)7

and hence is a maximal ideal. The Nullstellensatz is a consequence of the following result.

Proposition 1.4.2. An ideal m < K[z1,..., z,] is mazimal if and only if there exists (ay,...,a,) € A"
such that m = m,.

Proof. We have shown that m, is maximal. Now suppose that m < K[zy,..., z,] is a maximal ideal. Let
F :=KJz1,...,2,]/m. Then F is an algebraic extension of K by Corollary A.5.2. Since K is algebraically
closed F' = K, and hence the quotient map is

K[z, ..., 20] =2 K21, .. ., 20]/m = K.

Forie {1,...,n}let a; == ¢(z;). Then (z; —a;) € ker ¢. Since m, is generated by (z1 —a1), ..., (zn —an)
it follows that m, < m. Since both m, and m are maximal it follows that m = m,. O

Corollary 1.4.3 (Weak Nullstellensatz). Let I < K[z1,...,2,] be an ideal. Then V(I) = & if and
only if I = (1).

12



1.5. Regular maps

Proof. f I = (1), then V(I) = . Assume that V(I) = &J. Suppose that I # (1). Then there exists a

maximal ideal m < K][z1, ..., z,] containing I. Since I < m, V(I) > V(m). By Proposition 1.4.2 there
exists @ € K™ such that m = m, and hence V(m) = V(m,) = {(a1,...,a,)}. Thus a € V(I) and hence
V(I) # . This is a contradiction, and hence I = (1). O

Proof of Hilbert’s Nullsetellensatz (Rabinowitz’s trick). Let f € I(V(I)). By Hilbert’s basis theorem
I=(q1,...,95) for g1,...,9: € K[z1,...,2,]. Let J © K[z1,...,2,, w] be the ideal

Ji=(g1,.-,9s, [ -w—1).
Since f € I(V(I)) we have V(J) = ¢ and hence by the Weak Nullstellensatz J = (1). Thus there exist
hi,...,hs,h € K[z1,..., Ty, y] such that

Dlhigi+h(f-w—1)=1.

i=1

Replacing w by 1/f(2) in the above equality we get

Zlh (2 f(lz)> gi(2) = 1. (1.4.2)

Let d >> 0: multiplying both sides of (1.4.2) by f? we get that
Zﬁi (Z)gz(Z) :fd(z)7 EiEK[zlw--yzn]-
i=1

Thus f € V1. O

Ezample 1.4.4. Let V(F) < P™ be a hypersurface, and let Fy, ..., F,. be the distinct prime factors of the
decomposition of F' into a products of primes (recall that K[Z, ..., Z,] is a UFD, by Corollary A.2.2).
The irreducible decomposition of V(F') is

V(F)=V(F1)u...uV(F).
In fact, each V(F}) is irreducible by Proposition 1.3.10. What is not obvious is that V(F;) ¢ V(Fj) if
F;, F; are non associated primes. This follows from Hilbert’s Nullstellensatz.
1.5 Regular maps

Definition 1.5.1. Let X ¢ P and Y < P™ be quasi projective varieties. A map f: X — Y is regular
at a € X if there exist an open U < X containing a and Fy, ..., Fy, € K[Zy,..., Z,]q4 such that for all
[Z] eU (FO(Z)77FM(Z)) # (03"'a0)7 and

(2] = [Fo(2),..., Fn(2)]. (1.5.1)

The map f is regular if it is regular at each point of X.
The identity map of a quasi projective variety is regular (choose F;(Z) = Z;). If f: X — Y and
g: Y — W are regular maps of quasi projective varieties, the composition go f: X — W is regular,
because the composition of polynomial functions is a polynomial function. Thus we have the category

of quasi projective varieties. In particular we have the notion of isomorphism between quasi projective
varieties.
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1. QUASI PROJECTIVE VARIETIES

Ezample 1.5.2. Let X < A" be a locally closed subset (recall that A" = P% ). Then f: X — P™ is

a regular map if and only if, given any a € X, there exist fo,..., fm € K[z1,...,2,] (in general not
homogeneous) such that on an open subset U < X containing a we have

(This includes the statement that V(f1,..., fm) n U = &.) In fact, if f is regular there exist homo-
geneous Fy, ..., F, € K[Zy,...,Zy]q such that f([1,z2]) = [Fo(1,2),...,Fn(l,2)], and it suffices to let
[j(z) := Fj(1, z). Conversley, if (1.5.2) holds, then

VA4 Z A4 Z,
Zo, Z1y. o Zn)) = (28, 231 (22, 22 ) . 28 (S5, 20 1.5.
.f([ 05 41, ) n]) [07 Ofl <Z0’ ’Z0>7 ) ()fm Z07 7ZO ]7 ( 53)

and for d is large enough, each of the rational functions appearing in (1.5.3) is actually a homogeneous
polynomial of degree d.

Ezample 1.5.3. Let X < A™ be a locally closed subset and let f: X — P™ be a map such that f(X) c

P (we let [To, ..., ] be homogeneous coordinates on P™). Then f is regular if and only if locally
there exist fo,..., fm € K[z1,...,2,] (in general not homogeneous) such that, in affine coordinates
(%, el %’:), we have

_(hH(?) fm(2)
f(z) = (fo(z)""’ fo(z)>' (1.5.4)

Example 1.5.4. Let f € K[z1,...,2,]. Let Y := V(f(21,...,20) - 2ns1 — 1) = A"*1. The map

AMV()  — y
(21,0 oy 2n) +— (zl,...,zn,m)
is an isomorphism.
FEzample 1.5.5. Let
C, = {[go,...,gn] e P" | rk (fo G 5"1) < 1}. (1.5.5)
& & o

Since a matrix has rank at most 1 if and only if all the determinants of its 2 x 2 minors vanish it follows
that C,, is closed. We have a regular map

Pt 2 Cn

1.5.6
[s,t] — [s",s"7 ... t"] ( )

Let us prove that ¢, is an isomorphism. Let 1,,: C,, — P! be defined as follows:

[goagl] if [§0a-~-a§n] ecn (\P?O
[Sn—la ﬁn] lf [607 s agn] € Cn N ]P)?n

Of course one has to check that the two expressions coincide for points in K, n P nP¢ : from (1.5.5)
we get that &g - &, — £1&,—1 vanishes on K, and this shows the required compatibility. One checks easily
that ¥4 0 ¢, = Idp1 and ¢, o, = Idk,; thus ¢, defines an isomorphism P! 5 K,,.

Unless we are in the trivial case n = 1, it is not possible to define v, globally as

Un ([507 cee ufn]) = [P(§07 cee 7§n)7 Q(§07 cee a§n)]7 (157)

with P,Q € K[&,...,&,]. not vanishing simultaneously on K,,. In fact suppose that (1.5.7) holds, and
let

Un ([5077571]) = {

p(s,t) :=P(s",...,t"), q(s,t):=Q(s",...,t").
The polynomials p(s,t),q(s,t) are homogeneous of degree de, they do not vanish simultaneously on a
non zero (sg,tg), and forall [s,t] € P! we have [p(s,t),q(s,t)] = [s,t]. It follows that p(s,t) = s-r(s,t)
and ¢(s,t) = t-r(s,t), where r(s,t) has no non trivial zeroes, i.e. r(s,t) is constant. In particular
de = degp = degq =1, and hence d = 1.
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1.5. Regular maps

FEzxzample 1.5.6. We recall the formula

AmK[Zo, ..., Znld = <d+”>. (1.5.8)

n

(See Exercise 1.8.9 for a proof.) Let N(n;d) := (dzn) — 1. Let
P~ V_:il> ]P)N(n;d)
(2] — [28,28712,,...,29

n

(1.5.9)

be defined by all homogeneous monomials of degree d - this is a Veronese map. Clearly v} is regular.

The homogeneous coordinates on PN (%4) appearing in (1.5.9) are indiced by length n+ 1 multiindices
I = (ig,...,i,) such that deg I := iy + ...+ i, = d; we denote them by [...,&;,...]. Let ¥J* < PN (d)
be the closed subset defined by

Vi =V(. &8 =8k 8L, );

where I, J, L, K run through all multiindices such that I + J = K + L. Clearly v}(P") < #]*. Let us
show that v} is an isomorphism onto 7.

Given a length n + 1 multiindex H of degree d — 1, we let Hy := H + e,, where, for eg,...,e, is
the standard basis of Z", i.e. es has alla entries equal to 0, except for the entry at place s + 1, which is
equal to 1. For s € {0,...,n}, let

VNV Ettgs - r,) TR P
[oosErve ] > [ En,]

Let H, H' be length n + 1 multiindices of degree d — 1. It follows from the equations defining ¥;* that
O (H)([2]) = @3 (H')([#]) for all [Z] which is in the domain of ¢} (H) and ¢} (H'). Thus the ¢} (H)’s
define a regular map 7 : ¥ — P". We claim that

pgovg = ldpn (1.5.10)
I/:il @) (pz = Id]PJN(n;d) . (1511)

The first equality is easily checked. In order to check the second equality, one may proceed as follows.
Let [¢] = [...,&1,...] € ¥ be a point such that 4., & 0 for some s € {0,...,n}. Then it is not difficult
to show that there exists [Z] € P" such that [¢] = v/ ([2]). By (1.5.10), it follows that v o7 ([£]) = [£].
Hence it suffices to prove that if [¢] € #7*, then there exists s € {0,...,n} such that {4, + 0. Thus, we
must show that if ..., &, ... are such that & - £; = €k - £, whenever [ +J = K + L, and &4, = 0 for
all s € {0,...,n}, then & = 0 for all multiindices I. This is easily proved by “descending induction” on
the maximum of i, ..., i,, by using a suitable relation &% = £k - &, (if the maximum is d, then &, = 0
by hypothesis).

Ezample 1.5.7. Assume that charK = p > 0. Let X = V(G1,...,G,) < P™ be a closed subset defined
by homogeneous G1,...,G, € Fy[Zo, ..., Z,] (we require that the coefficients of the G;’s belong to the
prime field F,,). Then we may define the Frobenius map : X — X by setting

x £ X

(2] — [Z8,....7P,..., 7P

3 n

In fact, if G; = >, a;Z7, then

3

Gi(Z,.... 20, Z8) = > a, (27 = >, ay(Z7) = Gi(Zo, ..., Ziy ... Zn)" = 0.
I

More generally, if all the coefficients of the G;’s are contained in F,- (e.g. if K is the algebraic closure
of Fp), then we may define F': X — X replacing the exponent p by p”. Notice that F' is bijective, but
it is not an isomorphism.
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1. QUASI PROJECTIVE VARIETIES

Proposition 1.5.8. A regular map of quasi projective varieties is Zariski continuous.

Proof. Let X < P™ and Y < P™ be Zariski locally closed, and let f: X — Y be a regular map. We must
prove that if C' < Y is Zariski closed, then f~'C is Zariski closed in X. Let U — W be an open subset
such that (1.5.1) holds. Let us show that $~*C n U is closed in U. Since C is closed C = V(I) nY
where T < K[Ty, ..., ] is a homogeneous ideal. Thus

6 'CnU={[Z]eU| P(Fy(2),...,Fn(Z)) =0YPel}.

Since each P(Fy(Z),...,F,(Z)) is a homogeneous polynomial, we get that ¢~1C n U is closed in U.
By definition of regular map X can be covered by Zariski open sets U, such that (1.5.1) holds with
U replaced by U,. We have proved that C, := ¢~ 'C n U, is closed in U, for all a. It follows that
¢~ 1C is closed. In fact let C, © X be the closure of C, and D, := X\U,. Since C,, is closed in U, we
have
ConUy=Co=9¢'CnU,. (1.5.12)

Moreover D,, is closed in X because U, is open. By (1.5.12) we have

¢'C =()(Ca v Da).

Thus ¢~1C is an intersection of closed sets and hence is closed. O
The following lemma will be useful later on. The easy proof is left to the reader.

Lemma 1.5.9. Let f: X — Y be a map between quasi projective varieties. Suppose that Y = |J,.; Us
is an open cover, that f~'U; is open in X for each i € I and that the restriction

v, — U
T = f(x)

1s reqular for each i € I. Then f is reqular.
Definition 1.5.10. A quasi projective variety is

e an affine variety if it is isomorphic to a closed subset of an affine space (as usual we view A" as
the open subset P, < P"),

e a projective variety if it is isomorphic to a closed subset of a projective space.

We will give some remarkable examples of locally closed subsets of a projective space which are
affine varieties. First a definition.

Definition 1.5.11. Let X < P" be a closed subset. A principal open subset of X is an open U < X
which is equal to
Xp = X\V(F),

where F € K[Zy, ..., Z,] is a homogeneous polynomial of strictly positive degree.

Claim 1.5.12. Let X < P™ be closed. A principal open subset of X is an affine variety.

Proof. First we prove the claim for X = P". Let F € K[Z,...,Z,] be a homogeneous polynomial of
strictly positive degree d. In order to prove that P% is affine we consider the Veronese map v} : P* —
PN(d) | see (1.5.9). Let ¥ := Im v} be the corresponding Veronese variety. As shown in Example 1.5.6
the map P* — 7 defined by v} is an isomorphism. It follows that the restriction of v} to P&
defines an isomorphism between P% and ¥;"\H, where H c PN (md) i5 a suitable hyperplane section (if
F=73%; arZ* then H = V(> arér). Equivalently, P% is isomorphic to the intersection of the affine
space PV ("vd)\H and the closed set 7, and hence is an affine variety.

In general, let X < P" be closed, and let F' be as above. Since v} is an isomorphism v} (Xr) is
closed in the affine variety #;"\H, and hence is itself affine. Moreover, the restriction of v} to Xp
defines an isomorphism between X and the affine variety v (Xp). O
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1.6. Regular functions on affine varieties

The result below is a remarkable consequence of Claim 1.5.12.

Proposition 1.5.13. The open affine subsets of a quasi projective variety form a basis of the Zariski
topology.

Proof. Since a quasi-projective variety is an open subset of a projective variety, it suffices to prove the
result for projective varieties. Let X < P" be closed. Let U < X be open. If U is the emptyset, it is
clearly affine, hence we may assume that U = X\W, where W < X is closed. Let W = V(I), where
I cK[Zy,...,Z,] is a homogeneous ideal, not the zero ideal because W + X. Let J < K[Zy,..., Z,]
be the homogeneous ideal generated by all products F - Z;, where F € I, and i € {0,...,n}. Then
V(J) =V(I) =W, and J is generated by a non empty finite set of non costant homogeneous polynomials
Fi,...,F.. Then
U = X\V(Fl, .,F,-) = XF1 UXF,_, U... v XFT~

1.6 Regular functions on affine varieties
Definition 1.6.1. A regular function on a quasi projective variety X is a regular map X — K.

Let X be a non empty quasi projective variety. The set of regular functions on X with pointwise
addition and multiplication is a K-algebra, named the ring of regular functions of X. We denote it by
K[X].

If X is a projective variety, then it has few regular functions. In fact we will prove (see Corol-
lary 2.4.6) that every regular function on X is locally constant. On the other hand, affine varieties have
plenty of functions. In fact if X < A" is closed we have an inclusion

Klz1,. .., 2]/ I(X) — K[X]. (1.6.1)

Theorem 1.6.2. Let X < A" be closed. Then (1.6.1) is an equality, i.e. every regular function on X
is the restriction of a polynomial function on A™.

Before proving Theorem 1.6.2, we notice that, if X < A™ is closed, the Nullstellensatz for K[z1, .. ., z,]
implies a Nullstellensatz for K[z, .. ., z,]/I(X). First a definition: given anideal J < (K[zy,..., z,]/I(X))
we let

VIJ):={aeX | fla)=0 VYfelJ}.
The following result follows at once from the Nullstellensatz.

Proposition 1.6.3 (Nullstellensatz for a closed subset of A™). Let X < A™ be closed, and let J
(K[z1,...,2n]/I(X)) be an ideal. Then

{fe K[z, ...,2)/I(X)) | flv(s) =0} = V.

(The radical \/J is taken inside K[z1,. .., 2,]/1(X).) In particular V(J) = & if and only if J = (1).

The following example makes it clear that Proposition 1.6.3 must play a role in the proof of The-
orem 1.6.2. Let X < A" be closed. Suppose that g € K[z1,...,2,] and that g(a) # 0 for all a € Z. Then
1/g € K[X] and hence Theorem 1.6.2 predicts the existence of f € K[z1,...,z,] such that g=* = fx.
By Proposition 1.6.3, (g9) = (1) in K[21,...,2,]/1(X), because V(g) = &, where g := g|x. hence there
exists f € K[z1,...,2,] such that f-g =1, where f := fix,ie. ¢g7' = fix

Proof of Theorem 1.6.2. Let ¢ € K[X]. We claim that there exist f;,g; € K[z1,...,2,] for 1 <i < d
such that

1. X = U1<i<ngw ie. Vigr,...,9a) n X =,
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fi(a)

2. for all a € X5, we have ¢(a) = AOL

3. for 1 < ¢ < j we have (g;f; — gifj)|x = 0.

(Notice: the last item implies that on X,, n X, we have f;/g; = fj/g;.) Fori=1,...,dlet g, := g;x
and f, := Jijx- Then
9,0 = fi (1.6.2)
In fact by Item (1) it suffices to check that (1.6.2) holds on Xy, for j = 1,...,d. For j = i it holds by
Item (2), for j % i it holds by Item (3). (Notice: if we do not assume that It m (3) holds we only know
that (1.6.2) holds on U; n U;.) By Proposition 1.6.3 we have that (g,...,G4) = (1), i.e. there exist
hi,...,hqg € K[z1,...,2,] such that B B
1="higy + - + hagy.

where h; 1= h;jx. Multiplying by ¢ both sides of the above equality and remembering (1.6.2) we get
that

p = Elglcp + -+ Edgd(p = 51?1 + ...+ El?d = (h1f1 + -+ hdfd)\X~ (163)
It remains to prove that there exist f;, g; € K[z1,. .., z,] with the properties stated above. By definition

of regular function there exist an open covering of X, and for each set U of the open cover a couple
a,f € K[z1,...,2,] such that o(z) = a(z)/B(z) for all € U (it is understood that S(z) £ 0 for all

z € U). By Remark 1.6.4 we may cover U by open affine sets X,,,..., X, . Since V(8) < () V(%)
i=1
the Nullstellensatz gives that, for each ¢, there exist N; > 0 and y; € K[z, ..., z,] such that %N f =8
and hence ¢(z) = pi(x)a(z)/yi(x)V for all z € X,,. Since X,, = X N we get that we have covered
X by principal open sets X, such that ¢ = f/'/¢’ for all z € X / where f e K|z,...,2,] (of course
f" depends on ¢'). By Corollary 1.3.9, the open covering has a finite subcovering, corresponding to
1,91, -, fh. 95 Now let
fi=flg  gi=(g)%

Clearly Items (1) and (2) hold. In order to check Item (3) we write

(g:fi — 9ifi)x = (95 figi — (902 Fi95) |x = ((9ig)) (fig) — fi90)x

Since p(z) = fi(2)/9i(2) = f}(2)/g;(z) for all z € Xy N X, . the last term vanishes on Xg N X, on
the other hand it vanishes also on (X\ X, n X, ,-) XA V(glgj) because of the factor (gzgj) O

We end the present section with a couple of consequences of Theorem 1.6.2.
First we give a more explicit version of Proposition 1.5.13 in the case that the quasi projective
variety itself is affine. Given a quasi projective variety X, and f € K[X], let

X; = X\V(f), (1.6.4)

where V(f) := {x € X | f(x) = 0}. The following remark is easily verified.

Remark 1.6.4. Let X < A™ be closed (and hence an affine variety). Let f € K[X], and hence by
Theorem 1.6.2 there exists f € K[z1,...,2n] such that ﬁX = f. Let Y < A™*! be the subset of
solutions of g(z1,...,2,) = 0 for all g € I(X), and the extra equation f(21,...,2,) 2n+1 —1 = 0. Then
the map
Xy — Y
(21, -y 2n) (zl,...,zn,m)

is an isomorphism. In particular X7 is an open affine subset of X. Moreover, the open affine subset
Xy, for f e K[X] form a basis for the Zariski topology of X.

Notice that, by Theorern 1.6.2 and the above isomorphism, every regular function on X is given
by the restriction to Xy of %, where g € K[X] and m € N.

Next, we give a few remarkable consequences of Theorem 1.6.2.
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1.7. Quasi-projective varieties defined over a subfield of K

Proposition 1.6.5. Let R be a finitely generated K algebra without nilpotents. There exists an affine
variety X such that K[X] = R (as K algebras).

Proof. Let ay,...,a, be generators (over K) of R, and let ¢: K[z1,...,2,] — R be the surjection of
algebras mapping z; to a;. The kernel of ¢ is an ideal I < K[zy,..., z,], which is radical because R
has no nilpotents. Let X := V(I) € A™. Then K[X] = R by Theorem 1.6.2. O

In order to introduce the next result, consider a regular map f: X — Y of (non empty) quasi
projective varieties. The pull-back f*: K[Y] — K[X] is the homomorphism of K-algebras defined by

f*(@) :==¢o f.
Proposition 1.6.6. Let Y be an affine variety, and let X be a quasi projective variety. The map

{f: X > Y| f regulary — {¢: K[Y] > K[X]]| ¢ homomorphism of K-algebras}
; _ fe (1.6.5)
is a bijection.
Proof. We may assume that ¥ < A" is closed; let ¢: Y < A™ be the inclusion map. Suppose that
f,g: X — Y are regular maps, and that f* = g*. Then f*(:*(z)) = ¢*(¢*(z)) for i € {1,...,n},
and hence f = g. This proves injectivity of the map in (1.6.5). In order to prove surjectivity, let
¢: K[Y] — K[X] be a homomorphism of K algebras. Let f; := ¢(t*(2;)), and let f: X — A" be the
regular map defined by f(z) := (fi(x),..., fu(x)) for x € X. Then f(x) € Y for all z € X. In fact,
since Y is closed, it suffices to show that g(f(x)) = 0 for all g € I(X). Now

9(f1(@), . fu(2)) = g(p(1*(21)), -, (1" (2n)) = (g((21)), - -, 1% (2n)) = 9(0) = 0.

(The second and last equality hold because ¢ is a homomorphism of K-algebras.) Thus f is a regular
map f: X — Y such that f*(t.*(z;)) = o(t*(2;)) for i € {1,...,n}. By Theorem 1.6.2 the K-algebra
K[Y] is generated by ¢*(z1),...,t*(2zy); it follows that f* = . O

Corollary 1.6.7. In Proposition 1.6.5, the affine variety X such that K[X] =~ R is unique up to

isomorphism.

1.7 Quasi-projective varieties defined over a subfield of K

1.8 Exercises
Exercise 1.8.1. Which of the following subsets of A? are locally closed? Which are closed?
(a) X = {(z,y) [ exp (2r/~1z) = 1} = A*(C).
= {(t,1?) | t e K} < A*(K).

{(tm e IR R
(d) V= {(t,tu) | (t,u) € K2} ¢ A2(K).

Exercise 1.8.2. Compute I(Z) for
1. Z=V(2*+1) c A(K),
2. Z =7%c A¥(C),
3. Z =V (2% —y* 2? — zy) c AX(K).
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Exercise 1.8.3. Let Mj2(C) be the complex vector-space of 2 x 2 complex matrices. Let n > 0 and
let U,, © M5 2(C) be the set of matrices T such that 7™ =1 (here 1 € M5 2(C) is the unit matrix).

1. Prove that U, is a closed subset (for the Zariski Topology) of M3 2(C).
2. Describe the irreducible components of U,, and show that there are (";1) of them.

Exercise 1.8.4. Let fi,..., f, € K[z,y] and suppose that

ng{flv"'va} =1
Show that V (f1,..., fr) = A%(K) is finite.

Exercise 1.8.5. Let Z < AZ be a proper closed irreducible subset. Show that Z is either a singleton
or an irreducible hypersurface.

Exercise 1.8.6. Let R be an integral domain, and let (m,n) € (N*\{0}). Let F' € R[X,Y]m and G € R[X,Y]..
The resultant Z(F,G) is the element of R defined as follows. Consider the map of free R-modules

RIX, Yoot ® R[X,Y]mo1 “EF RIX,Y]mins (1.8.1)
(0, 1) - . F4+U.G

and let S(F,G) be the matrix of L(F,G) relative to the basis
(X"71,0), (X"7%Y,0), ..., (Y"710), (0,X™7h, (0,X™7%Y), ..., (0,Y™) (1.8.2)
of the domain and the basis
Xl Xty L, Xy y et (1.8.3)

of the codomain. Then Z(F,G) is defined by

Z(F,G) = det S(F, Q). (1.8.4)
Explicitly: if
F=>aX™Y, G=>bXx"7Y (1.8.5)
i=0 j=0
then
ao 0 e 0 bO 0 e 0
al ago L 0 bl bo ce 0
a0 S b
Z(F,G) =det | am am-1 -+ = bp bpa - | (1.8.6)
0 Am 0 bn,
0 0 0 0

Now let K be a field and K < K be an algebraic closure of K. Let F € K[X,Y]m and G € K[X,Y],.

(a) Prove that Z(F,G) = 0 if and only if there exists H € K[X,Y]q with d > 0 which divides both F and G
(in K[X,Y)).

(b) Prove that Zmn(F,G) = 0 if and only if there exists a common non-trivial root of F' and G in EQ,
i.e. [Xo, Yo] € Py such that F(Xo,Ys) = G(Xo,Ys) = 0.
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(¢) Let f(t,z) € K[t1,...,tm][z] and g(t,z) € K[t1,...,tm][x] (here t = t1,...,¢m) be polynomials of degrees
m and n in x respectively, i.e.

f(tv ZE) =

s

Il
—

ai(t)z™ ", g(t,x) = i bi(t)z™ 7 ai(t),bj(t) € K[t1, ..., tm], ao(t) £ 0 % bo(t).

(3

We let
D(f,9) = {te A™(K) | 3z € K such that f(,z) = g(;z) = 0}.

Using the properties of the resultant proved above show that if f, g are both monic, i.e. ao(t) = bo(t) = 1,
then there exists ¢ € K[t1,...,tm] such that D(f,g) = V().

(d) Give examples of f(t,x) € K[ti1,...,tm][z] and g(t,z) € K[t1,...,tm]|[z] for which there exists no ¢ €
K[t1,...,tm] such that D(f,g) = V(¥).
Exercise 1.8.7. Let V be a K vector space of finite dimension, and let 0 < h < dim V. The Grassmannian
Gr(h,V):={W cV |dimW = h}.

is the set of subvector spaces of V of dimension h. Note that if h € {0,dim V}, then Gr(h,V) is a singleton,
that Gr (1,V) = P(V), and that we have a bijection
P(VY) — Gr(dimV —1,V)
s - ker(f)
The goal of the present exercise is to identify (in a reasonable way) the elements of Gr (h, V') with the points of
a projective variety.

1. Let v1,...,v4 € V be linearly independent, and let o € /\hV. Prove that
vina=0 Vie{l,...,a}

if and only if & = v1 A ... A va A B for a suitable e A" V.
2. For a e /\hV7 let mq be the linear map
Voo ARy
v - VA
Using the result of Item (1) show that if o & 0 then the kernel of m, has dimension at most h, and that

it has dimension equal to h if and only if « is decomposable, i.e. @« = w1 A ... A wy, for suitable linearly
independent w1 A ... Awp € V.

3. The Pliicker map is given by
Gr(h,V) 2 P (/\”V)
w - A'w.
Note that this makes sense because A"W is a 1-dimensional subspace of A"V. Using the result of
Item (2) prove that & is injective, and that Im & is a closed subset of P (/\hV). Thus we have identified
Gr (h, V) with a projective variety.
Note that we have a bijection

Gr(k+1,V) — Gr(k,P(V)):={L cP(V)| L linear subspace, dim L = k}
W — P(W).

Thus we may also identify Gr (k,P(V')) with a projective variety.

Let v1,...,vm be a basis of V. If I = {i1,...,ip} with 1 < 41 < ... < ip < dimV we let v = v;; A
. Awvj,. Then B = {...,vr,...}, for I running through subsets of {1,...,m} of cardinality h, is a basis of
A" V. Associated to Z we have homogeneous coordinates [...,T7,...] on P(A" V). By associating to linearly
independent vectors wi,...,w, € V the matrix with rows the coordinates of the w;’s in the chosen basis, we
get a matrix
a1 - Alm

ah1 e Ahm
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of rank h. The homogeneous coordinates [...,T7,...] of 2({w1,...,wp)) are given by
Ali; 0 Al
Tr = det
Ahiy 0 Ghyip,

Exercise 1.8.8. The goal of the present exercise is to show that the Grassmannian Gr(h, V) (identified with
its image by the Pliicker embedding) has an open covering by pairwise intersecting open subsets isomorphic to
an affine space of dimension h - (dimV' — h), and that it is irreducible.

1. Let m := dimV, and let {v1,...,vmn} be a basis of V. Let [...,T7,...] be the associated homogeneous
coordinates on P(/\" V), where I runs through subsets of {1,...,m} of cardinality h. Thus we have the
open covering

Gr(h,V) = | Gr(h, V)1, (1.8.7)
|I|=h
where Gr(h,V)r < Gr(h,V) is the open subset of points such that 77 # 0. Let I = {1,...,h}. Show that
the map
Mhm-n(K) —  Gr(h, V)1

ai, o0 Q1,m—h
. 1.8.8
= (o +Zj:1h @i jVht s - - -)l<i<h ( )

ah,1 ' Qhym—h

is an isomorphism. Show that for any other multiindex J we have an analogous isomorphisms
AM) > iy (K) = Gr (B, V).

2. Show that for all subsets I,J < {1,...,m} of cardinality h the interesection Gr(h,V); n Gr(h,V); is
non empty.
3. Show that the Grassmannian Gr(h,V) is irreducible.
Exercise 1.8.9. Let K be a field. Given a finite-dimensional K-vector space V define the formal power series

pv € Z[[t]] as

(dimy, Sym* V)¢

18

Py =

d=0

where Sym?V is the symmetric product of V. Thus if V = Klzi,...,2,]1 then S K[zi,...,z.]1) =
K[xh...,xn]d.

1. Prove that if V. = U @ W then Py = Py - Pw.
2. Prove that if dimg V = n then Py = (1 —¢)™" and hence the equality in (1.5.8) holds.

Exercise 1.8.10. The purpose of the present exercise is to give a different proof of the properties of the
Veronese map v, discussed in Example 1.5.6, valid if char K = 0, or more generally char K does not divide d!.
Let

P(K[To,...,Tal1) ~% P(K[To,...,Tn]a) (1.8.9)
(L] — [L7]
and let #;° = Im(uy). The above map can be identified with the Veronese map vj. In fact, writing L €
K[To,...,Tn]1 as L = Z?:o o;T;, we see that [ao,...,an] are coordinates on P(K[To,...,Tx]1), and they give
an identification P* — P(K[Ty,...,Tn]1). Moreover, let

p()1 X P(K[To,. .., Tala),
L&) = Y el

I=(ig,.--yin)
ig+...+in=d

where 77 = Tg° -...- Tin. By Newton’s formula (37 i T3)* = Y #QITI, we see that, modulo the above

isomorphisms, the Veronese map v is identified with p;, and hence 7" is identified with #".
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Now let us show that #," is closed. The key observation is that [F] € #" if and only if ;; . 3371‘; span

a 1-dimensional subspace of K[Zo, ..., Z,]. This may be proved by induction on deg F' and EuleT s identity

; JaZ = (degF) - F, (1.8.10)

valid for F' homogeneous. Now, the condition that ﬁZO . OOZF span a 1-dimensional subspace of K[Zo, ..., Zn]

is equlvalent to the vanishing of determinants of all 2 x 2 minors of the matrix whose entries are the coordinates

of 2L ..., aZ ; thus #" is closed.
0
In order to show that u? is an isomorphism, we notice that if F = L, where L € P(K[T, ... 7T ]1 is non
zero, then for each i € {0,...,n} the partial derivative aZTI; is a multiple of L ( =0),

and that one at least of such (n — 1)-th partial derivative is non zero. Thus, the inverse of uj is the regular
map 05 : # — P(K[To,...,Tx]1) defined by

n—1 . n—1
[S=1] if S=F +0,

ozy~! zh=
O7([Fi=Rceeves aeennn (1.8.11)
n—1 L. oAan—1
(=] if S=F 0.

Exercise 1.8.11. We recall that if ¢: B — A is a homomorphism of rings, and I — A, J < B are ideals, the
contraction I < B and the extension J¢ < A are the ideals defined as follows:

I¢ =971, J° {st Y Xi€A bieJVi=1,. } (1.8.12)

(In other words, J€ is the ideal of A generated by ¢(J).)
Let f: X — Y be a regular map between affine varieties and suppose that f*: K[Y] — K[X] is injective.

1. Let p € X. Prove that mj; = my(,), in particular it is maximal.

2. Let g € Y. Prove that
F @) ={pe X [m, >mi},
and conclude, by the Nulstellensatz, that f~'(g) is not empty if and only if mg # K[X].
Exercise 1.8.12. The left action of GL,(K) on A™ defines a left action of GL,(K) on K[z1,...,2,] as
follows. Let ¢ € K[z1,...,2,] and g € GL,(K). Let z be the column vector with entries z1,...,2z,: we define
g € K[z1,...,2n] by letting
9o(X) == d(g™" - 2).

Now let G < GLj,, (K) be a subgroup. The algebra of G-invariant polynomials is

K[z1,...,20]% i= {¢K[21,...,20] €| g6 = ¢ Vg € G}.

(it is clearly a K-algebra). Now suppose that G is finite. One identifies A" /G with an affine variety proceeding
as follows.
1. Define the Reynolds operator as

Kl[z1,...,2n] —

K[z
¢ e % deG g¢

Prove the Reynolds identity
R(¢$) = 9R($) VoeKla,...,zn]"

2. Let I < K[z1,...,2,] be the ideal generated by homogeneous ¢ € K[z1,...,2,]° of strictly positive

degree (i.e. non-constant). By Hilbert’s basis theorem there exists a finite basis {¢1,...,¢q} of I; we
may assume that each ¢; is homogeneous and G-invariant. Prove that K[z1,.. .,zn]c is generated as
K-algebra by ¢1,...,¢a. Since K[z1,...,2,]% is an integral domain with no nilpotents it follows that

there exist an affine variety X (well-defined up to isomorphism) such that K[X] —> K[z1, ..., 2,]%. One
sets A"/G =: X.
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3. Let ¢v: K[z1,...,20]¢ < K[z1,...,2n] be the inclusion map. By Proposition 1.6.6, there exist a unique
regular map
A" 5 X = A"/G. (1.8.13)

such that . = 7*. Prove that
w(p) =7 (q) if and only if ¢ = gp for some g € G,

and that 7 is surjective. [Hint: Let J < K[z1,...,2,]¢ be an ideal. Show that J® n K[z1,...,2,]¢ = J
where J€ is the extension relative to the inclusion ¢.]

Exercise 1.8.13. Keep notation and hypotheses as in Exercise 1.8.12. Describe explicitly A”/G and the
quotient map 7: A" — A"/G for the following groups G < GL,, (K):

1. n=2,G={+l}.
Wk 0 . e e
2. n=2,G= 0wl where wy, is a primitive k-th rooth of 1.
k

3. G = S,, the group of permutation of n elements viewed in the obvious way as a subgroup of GL,, (K)
(group of permutations of coordinates).
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