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Chapter 0

Introduction

Motivation

We will describe some problems and results in order to whet your appetite. Some (or most) of the
statements below might leave you puzzled, do not worry, they will become clear later on. In fact one
of the goals of reading the book is to be able to understand what is written in the paragraphs below.

We start from the following well known indefinite integral:
ª

dx
?
1 ´ x2

“ arcsinx.

What if we ask ª
dx

?
1 ´ x3

“?

Note that one gets the first integral by writing out the formula for the length of arcs of a circle. Similarly,
one gets the second integral, or more generally integrals of functions ppxq

´1{2, where p is a polynomial
of degree 3 (or 4), if one sets out to compute the length of arcs of ellipses. There is no way to express
the second integral starting from elementary functions. What Fagnano discovered for similar integrals,
and what Euler amplified, is that, although we cannot express the integral via elementary functions,
there is a rational addition formula, i.e. there exists a rational function F of four variables such that
for fixed l0 and varying a, b we have

ª
a

l0

dx
?
1 ´ x3

`

ª
b

l0

dx
?
1 ´ x3

“

ª
c

l0

dx
?
1 ´ x3

` const,

where
c “ F pa, b,

a
1 ´ a3,

a
1 ´ b3q.

Let us sketch a geometric explanation of the addition formula. First of all it is convenient to allow x, y to
be complex numbers. Since couples px,

?
1 ´ x3q are solutions of the equation x

3
` y

2
“ 1, we consider

the curve C0 Ä A2
pCq whose equation is x3

` y
2

“ 1, where A2
pCq “ C2 is the standard complex a�ne

plane. Now C0 is a complex submanifold of A2
pCq, hence a 1-dimensional complex manifold. Since

it is not compact, we consider its closure C Ä P2
pCq in the projective complex plane. This means

adding a single point “at infinity”, namely r0, 0, 1s (we let rT,X, Y s be homogeneous coordinates, and
x “ X{T , y “ Y {T ). Note that by integrating the 1-form dx{y on C (as we will do) we do not have to
pay attention to which of the two square roots of 1 ´ x

3 we choose. A fundamental observation is that
dx{y is holomorphic on all of C0, including the points pe

2⇡mi{3
, 0q where the denominator vanishes),

and moreover it extends to a holomorphic 1-form on all of C. In order to show that there is an
addition formula we fix a line R0 Ä P2

pCq intersecting C in 3 points p1, p2, p3 and, given another line
R intersecting C in 3 points p1, p2, p3, we let

ª
R

R0

dx

y
–

ª
p1

p1

dx

y
`

ª
p2

p2

dx

y
`

ª
p3

p3

dx

y
.
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0. Introduction

Of course in order to make sense of the right hand side one needs to choose paths starting at p
i

and ending at pi for i P t1, 2, 3u. By Goursat’s Theorem the integrals do not vary if the paths are
homotopically equivalent. Hence if we let R move in a small open subset of P2

pCq
_ we may choose

well defined homotopy classes of such paths and the integral above defines a well defined holomorphic
function on the open set. There is no way to define a holomorphic function

R
�
fiÑ

ª
R

R0

dx

y
.

on all of P2
pCq

_: if we define it locally and then we move around, when we come back the value of the
function will change by an additive constant. Since it changes by an additive constant, the di↵erential
d� is a well defined holomorphic 1-form ! on all of P2

pCq
_ although � is only well defined locally. Since

every holomorphic 1-form on a complex projective space is zero, we get that ! “ 0, i.e. the (locally
defined) function � is constant. Now notice that the given points p1, p2 P C there is a unique line R

containing p1, p2 (if p1 “ p2 we let R be the tangent to C at p1), and that the coordinates of the third
point of intersection of R and C, i.e. p3, are rational functions of the coordinates of the first two points.
This gives the validity of the formula

ª
a

l0

dx
?
1 ´ x3

`

ª
b

l0

dx
?
1 ´ x3

“ ´

ª
c

l0

dx
?
1 ´ x3

` const,

where c is a rational function of pa, b,
?
1 ´ a3,

?
1 ´ b3q. With a little more work one gets from this the

addition formula as formulated above.
Next we ask more in general what can be said about integrals of the form

ª
dxa
Dpxq

, (0.0.1)

where Dpxq is a polynomial. For simplicity we assume that Dpxq has no multiple roots. If Dpxq has
degree 3, then the arguments above apply verbatim to give an addition formula. In general, the first
step is to consider the curve C0 Ä A2

pCq whose equation is y2 “ Dpxq. This is a 1-dimensional complex
submanifold of A2

pCq. Since it is not compact it is convenient to compactify. The closure of C0 in
P2

pCq is compact, but if the degree of Dpxq is greater than 3 then the closure of C0 is not a submanifold
of P2

pCq at its unique “point at infinity”(i.e. r0, 0, 1s). Nonetheless there is 1-dimensional complex
manifold C containing C0 as an open dense subset, in fact CzC0 consists of a single point if Dpxq

has odd degree, and consists of two points if Dpxq has even degree. The qualitative behaviour of the
integral that we set out to study is determined by the topology of C. The C8 manifold underlying C is
connected, compact and orientable surface. By the classification compact surfaces it is homeomorphic
to a connected sum of g tori. In fact one show that

g “

Z
degD ´ 1

2

^
. (0.0.2)

For example, if D has degree 3 then g “ 1, i.e. C is a torus. Suppose that g ° 1. Then there exists
an addition formula, but it involves the addition of vectors in Cg obtained by integrating the g linearly
independent holomorphic 1-forms

dx

y
,
xdx

y
, . . . ,

x
g´1

dx

y
. (0.0.3)

Lastly we discuss how the topological quantity g (the genus of C) controls the arithmetic of C. Suppose
that the polynomial ppxq has integer coe�cients. If p is a prime we let Dpxq P Fprxs be the polynomial
whose coe�cients are the equivalence classes of the coe�cients of D - we say that Dpxq is obtained
from D reducing modulo p. We suppose that Dpxq has the same degree as D (i.e. p does not divide
the leading coe�cient of D), and that Dpxq does not have multiple roots in the algebraic closure of Fp.
We also assume that p �“ 2. For n • 1 let Fpn be the finite field of cardinality p

n, and let CpFpnq be

4



the set of solutions in Fpnof the equation y
2

“ Dpxq. We view the points at infinity (there is one if
degD is odd and two if degD is even) as solutions “in Fpn”. A convenient generating function for the
cardinalities |CpFpnq| is given by Weil’s zeta function

ZpC, T q – exp

˜ 8ÿ

n“1

|CpFpnq|

n
T

n

¸
. (0.0.4)

A famous theorem of Weil states that

ZpC, T q “

±2g
i“1p1 ´ aiT q

p1 ´ T qp1 ´ pT q
, (0.0.5)

where each ai is an algebraic integer of modulus p
1{2 (the last statement is an analogue of Riemann’s

hypothesis). This shows that the topological genus g can be extracted from the number of solutions
px, yq P A2

pFpnq of the equation y
2

“ Dpxq. We also see that there is an explicit formula giving
the cardinality |CpFpnq| for all n once we know the cardinalities |CpFpq|, |CpFp2q|, . . . , |CpFp2g q|. The
function of s obtained by making the substitution T “ p

´s, i.e. ZpC, p
´s

q, is a precise analogue of
Riemann’s zeta function ⇣psq, and the statement that each ai has modulus p1{2 is the analogue of the
Riemann Hypothesis. It is very compelling evidence in favour of the validity of the Riemann Hypothesis.
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Chapter 1

Quasi projective varieties

Throughout the book K is an algebraically closed field, e.g. K “ C or Q, the algebraic closure of the
rational field Q, or Fp, the algebraic closure of the finite field Fp where p is a prime. We are interested
in understanding the set of solutions pz1, . . . , znq P Kn of a family of polynomial equations

f1pz1, . . . , znq “ 0, . . . , frpz1, . . . , znq “ 0.

“Polynomial equations” means each fi is an element of the polynomial ring Krz1, . . . , zns.
In order to understand the geometry of a set of solutions of polynomial equations, it is convenient

to replace a�ne space An
pKq by projective space Pn

pKq, and consider the set of points in Pn
pKq which

are solutions of homogeneous polynomial equations in the homogeneous coordinates. As motivation for
this step we recall that results in projective geometry are usually cleaner than in a�ne geometry - for
example two distinct lines in a projective plane have exactly one point of intersection, while two distinct
lines in an a�ne line may intersect in one point or be disjoint. If K “ C we may guess that passing to
projective space makes life simpler because Pn

pCq with the classical topology is compact, while An
pCq

is not (unless n “ 0).
Whenever there is no possibility of a misunderstanding we omit K from the notation for a�ne and

projective space, i.e. An is An
pKq and Pn is Pn

pKq.

1.1 Zariski’s topology on a�ne space

If f1, . . . , fr P Krz1, . . . , zns, we let

V pf1, . . . , frq – tz P An
| fipzq “ 0 @ i P t1, . . . , ruu. (1.1.1)

More generally, if I Ä Krz1, . . . , zns is an ideal (note: the inclusion sign Ä does not mean strict inclusion,
and similarly for Å) we let

V pIq – tz P An
| fpzq “ 0 @ f P Iu. (1.1.2)

Unless n “ 0 or I “ 0 an ideal I of Krz1, . . . , zns has an infinite number of elements so that V pIq is
the set of solutions of an infinite set of polynomial equations. However I has a finite set of generators
f1, . . . , fr by Hilbert’s basis Theorem A.3.6, and it follows that V pIq “ V pf1, . . . , frq. In fact it is clear
that V pIq Ä V pf1, . . . , frq. For the reverse inclusion notice that if f P I then f “

∞
r

i“1 gifi for suitable
g1, . . . , gr P Krz1, . . . , zns, and hence fpzq “ 0 for every z P V pf1, . . . , frq.

An elementary observation is that passing from ideals to their zero sets reverses inclusion, i.e. if
I, J Ä Krz1, . . . , zns are ideals then

I Ä J implies that V pIq Å V pJq. (1.1.3)

Proposition 1.1.1. The collection of subsets V pIq Ä An, where I runs through the collection of ideals
of Krz1, . . . , zns, satisfies the axioms for the closed subsets of a topological space.
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1. Quasi projective varieties

Proof. We have H “ V pp1qq, An
“ V pp0qq.

Let I, J Ä Krz1, . . . , zns be ideals. We claim that V pIq Y V pJq “ V pI X Jq. We have V pIq, V pJq Ä

V pI X Jq, because I, J Å I X J . Thus V pIq Y V pJq Ä V pI X Jq. Hence it su�ces to show that if
z P V pI X Jq and z R V pIq, then z P V pJq. Since x R V pIq, there exists f P I such that fpzq �“ 0. If
g P J , then f ¨ g P I X J , and thus pf ¨ gqpzq “ 0 because z P V pI X Jq. Since fpzq �“ 0, it follows that
gpzq “ 0. This proves that z P V pJq.

Lastly, let tItutPT be a family of ideals of Krz1, . . . , zns. Then

£

tPT
V pItq “ V pxtItutPT yq,

where xtItutPT y is the ideal generated by the collection of the It’s.

Definition 1.1.2. The Zariski topology of An is the topology whose closed sets are the sets V pIq, where
I runs through the collection of ideals of Krz1, . . . , zns. The Zariski topology of a subset A Ä An is the
topology induced by the Zariski topology of An.

Remark 1.1.3. If K “ C, the Zariski topology is weaker than the classical topology of An. In fact,
unless n “ 0, the Zariski is much weaker than the classical topology, in particular it is not Hausdor↵.

Example 1.1.4. A subset X Ä An is a hypersurface if it is equal to V pfq, where f is a non constant
homogeneous polynomial.

A picture of a hypersurface in A2 is in Figure 1.1. Notice that px, yq are the a�ne coordinates -
in general, whenever we consider a�ne or projective space of small dimension, we will denore a�ne or
homogeneous coordinates by letters x, y, z, . . . and X,Y, Z, . . . respectively.

What is the field K? The picture shows points with real coordinates. We can view the picture as a
“slice” of the corresponding hypersurface over C, or as the closure (either in the Zariski or the classical
topology) of the corresponding hypersurface over the algebriac closure of the rationals Q.

Figure 1.1: px
2

` 2y2 ´ 1qp3x2
` y

2
´ 1q `

3
100 “ 0

Given a subset A Ä An, let

IpAq :“ tf P Krz1, . . . , zns | fpzq “ 0 for all z P Au. (1.1.4)

Clearly IpAq is an ideal of Krz1, . . . , zns, and V pIpAqq is the closure of A in the Zariski topology.
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1.2. Zariski’s topology on projective space

Remark 1.1.5. If A is a finite dimensional a�ne space over K, the Zariski topology on A may be defined
by analogy with the case of An, because the K algebra of polynomial functions on A is defined (and
is ismorphic to Krz1, . . . , zns if n is the dimension of A). Another way of putting it is that an a�ne
transformation of An is a homemorphism for the Zariski topology.

1.2 Zariski’s topology on projective space

Let F P KrZ0, . . . , Znsd be homogeneous of degree d (to be correct we should say that F belongs to
the homogeneous summand of degree d, because the degree of 0 is ´8). Let x “ rZs P Pn. Then
F pZq “ 0 if and only if F p�Zq “ 0 for every � P K˚, because F p�Zq “ �

d
F pZq. Hence, although F pxq

is not defined, it makes to state that F pxq “ 0 or F pxq �“ 0. Thus if F1, . . . , Fr P KrZ0, . . . , Zns are
homogeneous (of possibly di↵erent degrees) it makes sense to let

V pF1, . . . , Frq :“ tx P Pn
| F1pxq “ . . . “ Frpxq “ 0u. (1.2.1)

As in the case of a�ne space, it is convenient to consider the zero locus of ideals, but we need to consider
homogeneous ideals. An ideal I Ä KrZ0, . . . , Zns is homogeneous if

I “

8à

d“0

I X KrZ0, . . . , Znsd, (1.2.2)

i.e. if it is generated by homogeneous elements. Let I Ä KrZ0, . . . , Zns be a homogeneous ideal; we let

V pIq :“ tx P Pn
| F pxq “ 0 @homogeneous F P Iu.

By Hilbert’s basis Theorem A.3.6 I is generated by a finite set of homogeneous polynomials F1, . . . , Fr,
and hence V pIq “ V pF1, . . . , Frq. Notice that if I Ä KrZ0, . . . , Zns is a homogeneous ideal we have
two di↵erent meanings for V pIq, namely the subset of Pn defined above and the subset of An`1 defined
in (1.1.2). The context will indicate which of the two we mean.

Proceeding as in the proof of Proposition 1.1.1 one gets the following result.

Proposition 1.2.1. The collection of subsets V pIq Ä Pn, where I runs through the collection of homo-
geneous ideals of KrZ0, . . . , Zns, satisfies the axioms for the closed subsets of a topological space.

Definition 1.2.2. The Zariski topology of Pn is the topology whose closed sets are the sets V pIq Ä Pn,
where I runs through the collection of homogeneous ideals of KrZ0, . . . , Zns. The Zariski topology of a
subset A Ä Pn is the topology induced by the Zariski topology of Pn.

Remark 1.2.3. Let ⇡ : pKn`1
zt0uq ›Ñ Pn be the map defined by ⇡pZq “ rZs, so that Pn is identified as

the quotient of Kn`1
zt0u for the action by homotheties. The Zariski topology of Pn is the quotient of

the Zariski topology on Kn`1
zt0u.

Remark 1.2.4. From now on we identify An with the open subset pPn
zV pZ0qq Ä Pn by mapping z to

r1, zs. The Zariski topology of An induced by the Zariski topology on Pn is the same as the Zariski
topology of Definition 1.1.2. In fact let X Ä An. Suppose first that X is closed for the topology induced
from the Zariski topology of Pn, i.e.X “ pPn

zV pZ0qqXV pF1, . . . , Frq, where each Fj P KrZ0, Z1, . . . , Zns

is homogeneous. Then X “ V pf1, . . . , frq, where

fjpz1, . . . , znq :“ F p1, z1, . . . , znq.

Next suppose that X is closed for the Zariski topology of Definition 1.1.2, i.e. X “ V pf1, . . . , frq where
f1, . . . , fr P Krz1, . . . , xns. We may assume that all fj are non zero because An is clearly closed for the
induced topology, and hence each fj has a well defined degree dj . For j P t1, . . . , ru let

FjpZ0, . . . , Znq :“ Z
dj

0 f

ˆ
Z1

Z0
, . . . ,

Zn

Z0

˙
.
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1. Quasi projective varieties

Then Fj is a homogegenous polynomial of degree dj and hence V pF1, . . . , Frq Ä Pn is a closed subset.
Since

V pf1, . . . , frq “ pPn
zV pZ0qq X V pF1, . . . , Frq,

we get that V pf1, . . . , frq is closed for the induced topology.

Example 1.2.5. A subset X Ä Pn is a hypersurface if it is equal to V pF q, where F is a non constant
homogeneous polynomial. Notice that V pF q X An is a hypersurface unless F “ cZ

d

0 for some c P K˚.

Given a subset A Ä Pn, let

IpAq :“ xF P KrZ0, . . . , Zns | F is homogeneous and F ppq “ 0 for all p P Ay, (1.2.3)

where x, y means “the ideal generated by”. Clearly IpAq is a homogeneous ideal of KrZ0, . . . , Zns, and
V pIpAqq is the closure of A in the Zariski topology.

Definition 1.2.6. A quasi-projective variety is a Zariski locally closed subset of a projective space,
i.e. X Ä Pn such that X “ U X Y , where U, Y Ä Pn are Zariski open and Zariski closed respectively.

Example 1.2.7. By Remark 1.2.4, every closed subset of An is a quasi projective variety.

Remark 1.2.8. If V is a finite dimensional complex vector space, the Zariski topology on PpV q is defined
by imitating what was done for Pn: one associates to a homogeneous ideal I Ä SymV

_ the set of zeroes
V pIq, etc. Everything that we do in the present chapter applies to this situation, but for the sake of
concreteness we formulate it for Pn.

1.3 Decomposition into irreducibles

A proper closed subset X Ä P1 (or X Ä A1) is a finite set of points. In general, a quasi projective
variety is a finite union of closed subsets which are irreducible, i.e. are not the union of proper closed
subsets. In order to formulate the relevant result, we give a few definitions.

Definition 1.3.1. Let X be a topological space. We say that X is reducible if either X “ H or there
exist proper closed subsets Y,W Ä X such that X “ Y Y W . We say that X is irreducible if it is not
reducible.

Example 1.3.2. A subset A Ä Rn with the euclidean (classical) topology is irreducible if and only if it
is a singleton.

Example 1.3.3. Projective space Pn with the Zariski topology is irreducible. In fact suppose that
Pn

“ X Y Y with X and Y proper closed subsets. Then there exist homogeneous F P IpXq and
G P IpY q such that F pyq �“ 0 for one (at least) y P Y and Gpxq ‰ 0 for one (at least) x P X. In
particular both F and G are non zero, and hence FG �“ 0 because KrZ0, . . . , Zns is an integral domain.
On the other hand FG “ 0 because Pn

“ Y Y W . This is a contradiction, and hence Pn is irreducible.

Remark 1.3.4. Since the field K is algebraically closed it is infinite, and hence there is no distinction
between the polynomial ring Krz1, . . . , zns and the ring of polynomial functions in z1, . . . , zn. That is
implicit in the argument given in Example 1.3.3, and it will appear repeatedly.

Definition 1.3.5. Let X be a topological space. An irreducible decomposition of X consists of a
decomposition (possibly empty)

X “ X1 Y ¨ ¨ ¨ Y Xr (1.3.1)

where each Xi is a closed irreducible subset of X (irreducible with respect to the induced topology)
and moreover Xi Ç Xj for all i ‰ j.

We will prove the following result.

Theorem 1.3.6. Let A Ä Pn with the (induced) Zariski topology. Then A admits an irreducible
decomposition, and such a decomposition is unique up to reordering of components.

10



1.3. Decomposition into irreducibles

The key step in the proof of Theorem 1.3.6 is the following remarkable consequence of Hilbert’s
basis Theorem A.3.6.

Proposition 1.3.7. Let A Ä Pn, and let A Å X0 Å X1 Å . . . Å Xm Å . . . be a descending chain of
Zariski closed subsets of A, i.e Xm Å Xm`1 for all m P N. Then the chain is stationary, i.e. there
exists m0 P N such that Xm “ Xm0 for m • m0.

Proof. Let Xi be the closure of Xi in Pn. Then Xi “ A X Xi, because Xi is closed in A. Hence we
may replace Xi by Xi, or equivalently we may suppose that the Xi are closed in Pn. Let Im “ IpXmq.
Then I0 Ä I1 Ä . . . Ä Im Ä . . . is an ascending chain of (homogeneous) ideals of KrZ0, . . . , Zns. By
Hilbert’s basis Theorem and Lemma A.3.3 the ascending chain of ideals is stationary, i.e. there exists
m0 P N such that Im0 “ Im for m • m0. Thus Xm0 “ V pIm0q “ V pImq “ Xm for m • m0.

Proof of Theorem 1.3.6. If A is empty, then it is the empty union (of irreducibles). . Next, suppose
that A is not empty and that it does not admit an irreducible decomposition; we will arrive at a
contradiction. First A in reducible, i.e. A “ X0 Y W0 with X0,W0 Ä A proper closed subsets. If both
X0 and W0 have an irreducible decomposition, then A is the union of the irreducible components of X0

and W0, contradicting the assumption that A does not admit an irreducible decomposition. Hence one
of X0, W0, say X0, does not have an irreducible decomposition. In particular X0 is reducible. Thus
X0 “ X1 Y W1 with X1,W1 Ä X0 proper closed subsets, and arguing as above, one of X1,W1, say X1,
does not admit a decomposition into irredicbles. Iterating, we get a strictly descending chain of closed
subsets

A â X0 â X1 â ¨ ¨ ¨ â Xm â Xm`1 â ¨ ¨ ¨

This contradicts Proposition 1.3.7. This proves that X has a decomposition into irreducibles X “

X1 Y . . . Y Xr.
By discarding Xi’s which are contained in Xj with i �“ j, we may assume that if i �“ j, then Xi is

not contained in Xj .
Lastly, let us prove that such a decomposition is unique up to reordering, by induction on r. The

case r “ 1 is trivially true. Let r • 2. Suppose that X “ Y1 Y . . . Y Ys, where each Yj is Zariski closed
irreducible, and Yj Ç Yk if j �“ k. Since Ys is irreducible, there exists i such that Ys Ä Xi. We may
assume that i “ r. By the same argument, there exists j such that Xr Ä Yj . Thus Ys Ä Xr Ä Yj . It
follows that j “ s, and hence Ys “ Xr. It follows that X1 Y . . . Y Xr´1 “ Y1 Y . . . Y Ys´1, and hence
the decomposition is unique up to reordering by the inductive hypothesis.

Definition 1.3.8. Let X be a quasi projective variety, and let

X “ X1 Y . . . Y Xr

be an irreducible decomposition of X. The Xi’s are the irreducible components of X (this makes sense
because, by Theorem 1.3.6, the collection of the Xi’s is uniquely determined by X).

We notice the following consequence of Proposition 1.3.7.

Corollary 1.3.9. A quasi projective variety X (with the Zariski topology) is quasi compact, i.e. every
open covering of X has a finite subcover.

The following result makes a connection between irreducibility and algebra.

Proposition 1.3.10. A subset X Ä Pn is irreducible if and only if IpXq is a prime ideal.

Proof. The proof has essentially been given in Example 1.3.3. Suppose that X is irreducible. In
particular X �“ H (by definition), and hence IpXq is a proper ideal of KrZ0, . . . , Zns. We must prove
that KrZ0, . . . , Zns{IpXq is an integral domain. Suppose the contrary. Then there exist

F,G P KrZ0, . . . , Zns, F R IpXq, G R IpXq, (1.3.2)

11



1. Quasi projective varieties

such that
F ¨ G P IpXq. (1.3.3)

By (1.3.2) both X X V pF q and X X V pGq are proper closed subsets of X, and by (1.3.3) we have
X “ pX X V pF qq Y pX X V pGqq. This is a contradiction, hence IpXq is a prime ideal.

Next, assume that X is reducible; we must prove that IpXq is not prime. If X “ H, then IpXq “

KrZ0, . . . , Zns and hence IpXq is not prime. Thus we may assume that X �“ H, and hence there
exist proper closed subset Y,W Ä X such that X “ Y Y W . Since Y Ç W and W Ç Y , there exist
F P pIpY qzIpW qq and G P pIpW qzIpY qq. It follows that both (1.3.2) and (1.3.3) hold, and hence IpXq

is not prime.

Remark 1.3.11. Let I :“ pZ
2
0 q Ä KrZ0, Z1s. Then V pIq “ tr0, 1su is irreducible although I is not prime.

Of course IpV pIqq is prime, it equals pZ0q.

Remark 1.3.12. Let X Ä An. Let IpXq Ä Krz1, . . . , zns be the ideal of polynomials vanishing on X.
Then X is irreducible if and only if IpXq is a prime ideal. The proof is analogous to the proof of
Proposition 1.3.10. One may also directly relate IpXq with the ideal J Ä KrZ0, . . . , Zns generated by
homogeneous polynomials vanishing on X (as subset of Pn), and argue that IpXq is prime if and only
if J is.

1.4 The Nullstellensatz

Let an ideal I in a ring R. The radical of I, denoted by
?

I, is the set of elements a P R such that
a
m

P I for some m P N. As is easily checked,
?

I is an ideal. It is clear that
?

I Ä IpV pIqq. The
Nullstellensatz states that we have equality.

Theorem 1.4.1 (Hilbert’s Nullstellensatz). Let I Ä Krz1, . . . , zns be an ideal. Then IpV pIqq “

?

I.

Before discussing the proof of the Nullstellensatz, we introduce some notation. For a “ pa1, . . . , anq

an element of An, let

ma :“ pz1 ´ a1, . . . , zn ´ anq “ tf P Krz1, . . . , zns | fpa1, . . . , anq “ 0u . (1.4.1)

Notice that ma is the kernel of the surjective homomorphism

Krz1, . . . , zns
�

›Ñ K
f fiÑ fpa1, . . . , anq,

and hence is a maximal ideal. The Nullstellensatz is a consequence of the following result.

Proposition 1.4.2. An ideal m Ä Krz1, . . . , zns is maximal if and only if there exists pa1, . . . , anq P An

such that m “ ma.

Proof. We have shown that ma is maximal. Now suppose that m Ä Krz1, . . . , zns is a maximal ideal. Let
F – Krz1, . . . , zns{m. Then F is an algebraic extension of K by Corollary A.5.2. Since K is algebraically
closed F “ K, and hence the quotient map is

Krz1, . . . , zns
�

›Ñ Krz1, . . . , zns{m “ K.

For i P t1, . . . , nu let ai – �pziq. Then pzi ´aiq P ker�. Since ma is generated by pz1 ´a1q, . . . , pzn ´anq

it follows that ma Ä m. Since both ma and m are maximal it follows that m “ ma.

Corollary 1.4.3 (Weak Nullstellensatz). Let I Ä Krz1, . . . , zns be an ideal. Then V pIq “ H if and
only if I “ p1q.

12



1.5. Regular maps

Proof. If I “ p1q, then V pIq “ H. Assume that V pIq “ H. Suppose that I ‰ p1q. Then there exists a
maximal ideal m Ä Krz1, . . . , zns containing I. Since I Ä m, V pIq Å V pmq. By Proposition 1.4.2 there
exists a P Kn such that m “ ma and hence V pmq “ V pmaq “ tpa1, . . . , anqu. Thus a P V pIq and hence
V pIq ‰ H. This is a contradiction, and hence I “ p1q.

Proof of Hilbert’s Nullsetellensatz (Rabinowitz’s trick). Let f P IpV pIqq. By Hilbert’s basis theorem
I “ pg1, . . . , gsq for g1, . . . , gs P Krz1, . . . , zns. Let J Ä Krz1, . . . , zn, ws be the ideal

J :“ pg1, . . . , gs, f ¨ w ´ 1q.

Since f P IpV pIqq we have V pJq “ H and hence by the Weak Nullstellensatz J “ p1q. Thus there exist
h1, . . . , hs, h P Krx1, . . . , xn, ys such that

sÿ

i“1

higi ` h pf ¨ w ´ 1q “ 1.

Replacing w by 1{fpzq in the above equality we get

sÿ

i“1

hi

ˆ
z,

1

fpzq

˙
gipzq “ 1. (1.4.2)

Let d °° 0: multiplying both sides of (1.4.2) by f
d we get that

sÿ

i“1

hi pzq gipzq “ f
d
pzq, hi P Krz1, . . . , zns.

Thus f P

?

I.

Example 1.4.4. Let V pF q Ä Pn be a hypersurface, and let F1, . . . , Fr be the distinct prime factors of the
decomposition of F into a products of primes (recall that KrZ0, . . . , Zns is a UFD, by Corollary A.2.2).
The irreducible decomposition of V pF q is

V pF q “ V pF1q Y . . . Y V pFrq.

In fact, each V pFiq is irreducible by Proposition 1.3.10. What is not obvious is that V pFiq Ç V pFjq if
Fi, Fj are non associated primes. This follows from Hilbert’s Nullstellensatz.

1.5 Regular maps

Definition 1.5.1. Let X Ä Pn and Y Ä Pm be quasi projective varieties. A map f : X Ñ Y is regular
at a P X if there exist an open U Ä X containing a and F0, . . . , Fm P KrZ0, . . . , Znsd such that for all
rZs P U pF0pZq, . . . , FmpZqq ‰ p0, . . . , 0q, and

fprZsq “ rF0pZq, . . . , FmpZqs. (1.5.1)

The map f is regular if it is regular at each point of X.

The identity map of a quasi projective variety is regular (choose FjpZq “ Zj). If f : X Ñ Y and
g : Y Ñ W are regular maps of quasi projective varieties, the composition g ˝ f : X Ñ W is regular,
because the composition of polynomial functions is a polynomial function. Thus we have the category
of quasi projective varieties. In particular we have the notion of isomorphism between quasi projective
varieties.

13



1. Quasi projective varieties

Example 1.5.2. Let X Ä An be a locally closed subset (recall that An
“ Pn

Z0
). Then f : X Ñ Pm is

a regular map if and only if, given any a P X, there exist f0, . . . , fm P Krz1, . . . , zns (in general not
homogeneous) such that on an open subset U Ä X containing a we have

fpzq “ rf0pzq, . . . , fmpzqs. (1.5.2)

(This includes the statement that V pf1, . . . , fmq X U “ H.) In fact, if f is regular there exist homo-
geneous F0, . . . , Fm P KrZ0, . . . , Znsd such that fpr1, zsq “ rF0p1, zq, . . . , Fmp1, zqs, and it su�ces to let
fjpzq :“ Fjp1, zq. Conversley, if (1.5.2) holds, then

fprZ0, Z1, . . . , Znsq “ rZ
d

0 , Z
d

0f1

ˆ
Z1

Z0
, . . . ,

Zn

Z0

˙
, . . . , Z

d

0fm

ˆ
Z1

Z0
, . . . ,

Zn

Z0

˙
s, (1.5.3)

and for d is large enough, each of the rational functions appearing in (1.5.3) is actually a homogeneous
polynomial of degree d.

Example 1.5.3. Let X Ä An be a locally closed subset and let f : X Ñ Pm be a map such that fpXq Ä

Pm

T0
(we let rT0, . . . , Tms be homogeneous coordinates on Pm). Then f is regular if and only if locally

there exist f0, . . . , fm P Krz1, . . . , zns (in general not homogeneous) such that, in a�ne coordinates
p
T1
T0
, . . . ,

Tm
T0

q, we have

fpzq “

ˆ
f1pzq

f0pzq
, . . . ,

fmpzq

f0pzq

˙
. (1.5.4)

Example 1.5.4. Let f P Krz1, . . . , zns. Let Y :“ V pfpz1, . . . , znq ¨ zn`1 ´ 1q Ä An`1. The map

An
zV pfq ›Ñ Y

pz1, . . . , znq fiÑ pz1, . . . , zn,
1

fpz1,...,znq q

is an isomorphism.

Example 1.5.5. Let

Cn “

"
r⇠0, . . . , ⇠ns P Pn

| rk

ˆ
⇠0 ⇠1 ¨ ¨ ¨ ⇠n´1

⇠1 ⇠2 ¨ ¨ ¨ ⇠n

˙
§ 1

*
. (1.5.5)

Since a matrix has rank at most 1 if and only if all the determinants of its 2ˆ2 minors vanish it follows
that Cn is closed. We have a regular map

P1 'n
›Ñ Cn

rs, ts fiÑ rs
n
, s

n´1
t, . . . , t

n
s

(1.5.6)

Let us prove that 'n is an isomorphism. Let  n : Cn Ñ P1 be defined as follows:

 n pr⇠0, . . . , ⇠nsq “

#
r⇠0, ⇠1s if r⇠0, . . . , ⇠ns P Cn X Pn

⇠0

r⇠n´1, ⇠ns if r⇠0, . . . , ⇠ns P Cn X Pn

⇠n

Of course one has to check that the two expressions coincide for points in Kn X Pn

⇠0
X Pn

⇠n
: from (1.5.5)

we get that ⇠0 ¨ ⇠n ´ ⇠1⇠n´1 vanishes on Kn and this shows the required compatibility. One checks easily
that  d ˝ 'n “ IdP1 and 'n ˝  n “ IdKn ; thus 'n defines an isomorphism P1 „

›Ñ Kn.
Unless we are in the trivial case n “ 1, it is not possible to define  n globally as

 n pr⇠0, . . . , ⇠nsq “ rP p⇠0, . . . , ⇠nq, Qp⇠0, . . . , ⇠nqs, (1.5.7)

with P,Q P Kr⇠0, . . . , ⇠nse not vanishing simultaneously on Kn. In fact suppose that (1.5.7) holds, and
let

pps, tq :“ P ps
n
, . . . , t

n
q, qps, tq :“ Qps

n
, . . . , t

n
q.

The polynomials pps, tq, qps, tq are homogeneous of degree de, they do not vanish simultaneously on a
non zero ps0, t0q, and forall rs, ts P P1 we have rpps, tq, qps, tqs “ rs, ts. It follows that pps, tq “ s ¨ rps, tq

and qps, tq “ t ¨ rps, tq, where rps, tq has no non trivial zeroes, i.e. rps, tq is constant. In particular
de “ deg p “ deg q “ 1, and hence d “ 1.
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1.5. Regular maps

Example 1.5.6. We recall the formula

dimKrZ0, . . . , Znsd “

ˆ
d ` n

n

˙
. (1.5.8)

(See Exercise 1.8.9 for a proof.) Let Npn; dq :“
`
d`n

n

˘
´ 1. Let

Pn
⌫
n
d

›Ñ PNpn;dq

rZs fiÑ rZ
d

0 , Z
d´1
0 Z1, . . . , Z

d

n
s

(1.5.9)

be defined by all homogeneous monomials of degree d - this is a Veronese map. Clearly ⌫n
d
is regular.

The homogeneous coordinates on PNpn;dq appearing in (1.5.9) are indiced by length n`1 multiindices
I “ pi0, . . . , inq such that deg I :“ i0 ` . . . ` in “ d; we denote them by r. . . , ⇠I , . . .s. Let V

n

d
Ä PNpn;dq

be the closed subset defined by

V
n

d
:“ V p. . . , ⇠I ¨ ⇠J ´ ⇠K ¨ ⇠L, . . .q,

where I, J, L,K run through all multiindices such that I ` J “ K ` L. Clearly ⌫n
d

pPn
q Ä V

n

d
. Let us

show that ⌫n
d
is an isomorphism onto V

n

d
.

Given a length n ` 1 multiindex H of degree d ´ 1, we let Hs :“ H ` es, where, for e0, . . . , en is
the standard basis of Zn, i.e. es has alla entries equal to 0, except for the entry at place s ` 1, which is
equal to 1. For s P t0, . . . , nu, let

V
n

d
zV p⇠H0 , . . . , ⇠Hnq

'
n
d pHq
›Ñ Pn

r. . . , ⇠I , . . .s fiÑ r⇠H0 , . . . , ⇠Hns

Let H,H
1 be length n ` 1 multiindices of degree d ´ 1. It follows from the equations defining V

n

d
that

'
n

d
pHqprzsq “ '

n

d
pH

1
qprzsq for all rZs which is in the domain of 'n

d
pHq and 'n

d
pH

1
q. Thus the 'n

d
pHq’s

define a regular map 'n

d
: V

n

d
Ñ Pn. We claim that

'
n

d
˝ ⌫

n

d
“ IdPn (1.5.10)

⌫
n

d
˝ '

n

d
“ IdPNpn;dq . (1.5.11)

The first equality is easily checked. In order to check the second equality, one may proceed as follows.
Let r⇠s “ r. . . , ⇠I , . . .s P V

n

d
be a point such that ⇠des �“ 0 for some s P t0, . . . , nu. Then it is not di�cult

to show that there exists rZs P Pn such that r⇠s “ ⌫
n

d
przsq. By (1.5.10), it follows that ⌫n

d
˝'

n

d
pr⇠sq “ r⇠s.

Hence it su�ces to prove that if r⇠s P V
n

d
, then there exists s P t0, . . . , nu such that ⇠des �“ 0. Thus, we

must show that if . . . , ⇠I , . . . are such that ⇠I ¨ ⇠J “ ⇠K ¨ ⇠L whenever I ` J “ K ` L, and ⇠des “ 0 for
all s P t0, . . . , nu, then ⇠I “ 0 for all multiindices I. This is easily proved by “descending induction” on
the maximum of i0, . . . , in, by using a suitable relation ⇠2

I
“ ⇠K ¨ ⇠L (if the maximum is d, then ⇠I “ 0

by hypothesis).

Example 1.5.7. Assume that charK “ p ° 0. Let X “ V pG1, . . . , Grq Ä Pn be a closed subset defined
by homogeneous G1, . . . , Gr P FprZ0, . . . , Zns (we require that the coe�cients of the Gi’s belong to the
prime field Fp). Then we may define the Frobenius map : X Ñ X by setting

X
F

›Ñ X

rZs fiÑ rZ
p

0 , . . . , Z
p

i
, . . . , Z

p

n
s.

In fact, if Gi “
∞

I
aJZ

J , then

GipZ
p

0 , . . . , Z
p

i
, . . . , Z

p

n
q “

ÿ

I

aJpZ
J

q
p

“

ÿ

I

a
p

J
pZ

J
q
p

“ GipZ0, . . . , Zi, . . . , Znq
p

“ 0.

More generally, if all the coe�cients of the Gi’s are contained in Fpr (e.g. if K is the algebraic closure
of Fp), then we may define F : X Ñ X replacing the exponent p by p

r. Notice that F is bijective, but
it is not an isomorphism.
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1. Quasi projective varieties

Proposition 1.5.8. A regular map of quasi projective varieties is Zariski continuous.

Proof. Let X Ä Pn and Y Ä Pm be Zariski locally closed, and let f : X Ñ Y be a regular map. We must
prove that if C Ä Y is Zariski closed, then f

´1
C is Zariski closed in X. Let U Ä W be an open subset

such that (1.5.1) holds. Let us show that �´1
C X U is closed in U . Since C is closed C “ V pIq X Y

where I Ä KrT0, . . . , Tms is a homogeneous ideal. Thus

�
´1

C X U “ trZs P U | P pF0pZq, . . . , FmpZqq “ 0 @P P Iu.

Since each P pF0pZq, . . . , FmpZqq is a homogeneous polynomial, we get that �´1
C X U is closed in U .

By definition of regular map X can be covered by Zariski open sets U↵ such that (1.5.1) holds with
U replaced by U↵. We have proved that C↵ :“ �

´1
C X U↵ is closed in U↵ for all ↵. It follows that

�
´1

C is closed. In fact let C↵ Ä X be the closure of C↵ and D↵ :“ XzU↵. Since C↵ is closed in U↵ we
have

C↵ X U↵ “ C↵ “ �
´1

C X U↵. (1.5.12)

Moreover D↵ is closed in X because U↵ is open. By (1.5.12) we have

�
´1

C “

£

↵

`
C↵ Y D↵

˘
.

Thus �´1
C is an intersection of closed sets and hence is closed.

The following lemma will be useful later on. The easy proof is left to the reader.

Lemma 1.5.9. Let f : X Ñ Y be a map between quasi projective varieties. Suppose that Y “
î

iPI Ui

is an open cover, that f´1
Ui is open in X for each i P I and that the restriction

f
´1

Ui ›Ñ Ui

x fiÑ fpxq

is regular for each i P I. Then f is regular.

Definition 1.5.10. A quasi projective variety is

‚ an a�ne variety if it is isomorphic to a closed subset of an a�ne space (as usual we view An as
the open subset Pn

Z0
Ä Pn),

‚ a projective variety if it is isomorphic to a closed subset of a projective space.

We will give some remarkable examples of locally closed subsets of a projective space which are
a�ne varieties. First a definition.

Definition 1.5.11. Let X Ä Pn be a closed subset. A principal open subset of X is an open U Ä X

which is equal to
XF :“ XzV pF q,

where F P KrZ0, . . . , Zns is a homogeneous polynomial of strictly positive degree.

Claim 1.5.12. Let X Ä Pn be closed. A principal open subset of X is an a�ne variety.

Proof. First we prove the claim for X “ Pn. Let F P KrZ0, . . . , Zns be a homogeneous polynomial of
strictly positive degree d. In order to prove that Pn

F
is a�ne we consider the Veronese map ⌫n

d
: Pn

›Ñ

PNpn,dq, see (1.5.9). Let V
n

d
:“ Im ⌫

n

d
be the corresponding Veronese variety. As shown in Example 1.5.6

the map Pn
Ñ V

n

d
defined by ⌫

n

d
is an isomorphism. It follows that the restriction of ⌫n

d
to Pn

F

defines an isomorphism between Pn

F
and V

n

d
zH, where H Ä PNpn,dq is a suitable hyperplane section (if

F “
∞

I
aIZ

I then H “ V p
∞

I
aI⇠I). Equivalently, Pn

F
is isomorphic to the intersection of the a�ne

space PNpn,dq
zH and the closed set V

n

d
, and hence is an a�ne variety.

In general, let X Ä Pn be closed, and let F be as above. Since ⌫n
d

is an isomorphism ⌫
n

d
pXF q is

closed in the a�ne variety V
n

d
zH, and hence is itself a�ne. Moreover, the restriction of ⌫n

d
to XF

defines an isomorphism between XF and the a�ne variety ⌫n
d

pXF q.

16



1.6. Regular functions on a�ne varieties

The result below is a remarkable consequence of Claim 1.5.12.

Proposition 1.5.13. The open a�ne subsets of a quasi projective variety form a basis of the Zariski
topology.

Proof. Since a quasi-projective variety is an open subset of a projective variety, it su�ces to prove the
result for projective varieties. Let X Ä Pn be closed. Let U Ä X be open. If U is the emptyset, it is
clearly a�ne, hence we may assume that U “ XzW , where W à X is closed. Let W “ V pIq, where
I Ä KrZ0, . . . , Zns is a homogeneous ideal, not the zero ideal because W �“ X. Let J Ä KrZ0, . . . , Zns

be the homogeneous ideal generated by all products F ¨ Zi, where F P I, and i P t0, . . . , nu. Then
V pJq “ V pIq “ W , and J is generated by a non empty finite set of non costant homogeneous polynomials
F1, . . . , Fr. Then

U “ XzV pF1, . . . , Frq “ XF1 Y XF2 Y . . . Y XFr .

1.6 Regular functions on a�ne varieties

Definition 1.6.1. A regular function on a quasi projective variety X is a regular map X Ñ K.

Let X be a non empty quasi projective variety. The set of regular functions on X with pointwise
addition and multiplication is a K-algebra, named the ring of regular functions of X. We denote it by
KrXs.

If X is a projective variety, then it has few regular functions. In fact we will prove (see Corol-
lary 2.4.6) that every regular function on X is locally constant. On the other hand, a�ne varieties have
plenty of functions. In fact if X Ä An is closed we have an inclusion

Krz1, . . . , zns{IpXq ãÑ KrXs. (1.6.1)

Theorem 1.6.2. Let X Ä An be closed. Then (1.6.1) is an equality, i.e. every regular function on X

is the restriction of a polynomial function on An.

Before proving Theorem 1.6.2, we notice that, ifX Ä An is closed, the Nullstellensatz forKrz1, . . . , zns

implies a Nullstellensatz forKrz1, . . . , zns{IpXq. First a definition: given an ideal J Ä pKrz1, . . . , zns{IpXqq

we let
V pJq :“ ta P X | fpaq “ 0 @f P Ju .

The following result follows at once from the Nullstellensatz.

Proposition 1.6.3 (Nullstellensatz for a closed subset of An). Let X Ä An be closed, and let J Ä

pKrz1, . . . , zns{IpXqq be an ideal. Then

 
f P pKrz1, . . . , zns{IpXqq | f|V pJq “ 0

(
“

?

J.

(The radical
?

J is taken inside Krz1, . . . , zns{IpXq.) In particular V pJq “ H if and only if J “ p1q.

The following example makes it clear that Proposition 1.6.3 must play a rôle in the proof of The-
orem 1.6.2. Let X Ä An be closed. Suppose that g P Krz1, . . . , zns and that gpaq ‰ 0 for all a P Z. Then
1{g P KrXs and hence Theorem 1.6.2 predicts the existence of f P Krz1, . . . , zns such that g

´1
“ f|X .

By Proposition 1.6.3, pgq “ p1q in Krz1, . . . , zns{IpXq, because V pgq “ H, where g :“ g|X . hence there

exists f P Krz1, . . . , zns such that f ¨ g “ 1, where f :“ f|X , i.e. g´1
“ f|X

Proof of Theorem 1.6.2. Let ' P KrXs. We claim that there exist fi, gi P Krz1, . . . , zns for 1 § i § d

such that

1. X “
î

1§i§d
Xgi , i.e. V pg1, . . . , gdq X X “ H,

17



1. Quasi projective varieties

2. for all a P Xgi we have 'paq “
fipaq
gipaq ,

3. for 1 § i § j we have pgjfi ´ gifjq|X “ 0.

(Notice: the last item implies that on Xgi X Xgj we have fi{gi “ fj{gj .) For i “ 1, . . . , d let g
i
:“ gi|X

and f
i
:“ fi|X . Then

g
i
' “ f

i
. (1.6.2)

In fact by Item (1) it su�ces to check that (1.6.2) holds on Xfj for j “ 1, . . . , d. For j “ i it holds by
Item (2), for j �“ i it holds by Item (3). (Notice: if we do not assume that Item (3) holds we only know
that (1.6.2) holds on Uj X Ui.) By Proposition 1.6.3 we have that pg1, . . . , gdq “ p1q, i.e. there exist
h1, . . . , hd P Krz1, . . . , zns such that

1 “ h1g1 ` ¨ ¨ ¨ ` hdgd.

where hi :“ hi|X . Multiplying by ' both sides of the above equality and remembering (1.6.2) we get
that

' “ h1g1'` ¨ ¨ ¨ ` hdgd' “ h1f1 ` . . . ` h1fd
“ ph1f1 ` ¨ ¨ ¨ ` hdfdq|X . (1.6.3)

It remains to prove that there exist fi, gi P Krz1, . . . , zns with the properties stated above. By definition
of regular function there exist an open covering of X, and for each set U of the open cover a couple
↵,� P Krz1, . . . , zns such that 'pxq “ ↵pxq{�pxq for all x P U (it is understood that �pxq �“ 0 for all

x P U). By Remark 1.6.4 we may cover U by open a�ne sets X�1 , . . . , X�r . Since V p�q Ä

rì
i“1

V p�iq

the Nullstellensatz gives that, for each i, there exist Ni ° 0 and µi P Krz1, . . . , zns such that �Ni
i

“ µi�

and hence 'pxq “ µipxq↵pxq{�ipxq
N for all x P X�i . Since X�i “ X�

N
i

we get that we have covered
X by principal open sets Xg1 such that ' “ f

1
{g

1 for all x P Xg1 , where f
1

P Krz1, . . . , zns (of course
f

1 depends on g
1). By Corollary 1.3.9, the open covering has a finite subcovering, corresponding to

f
1
1, g

1
1, . . . , f

1
d
, g

1
d
. Now let

fi :“ f
1
i
g

1
i
, gi :“ pg

1
i
q
2
.

Clearly Items (1) and (2) hold. In order to check Item (3) we write

pgjfi ´ gifjq|X “ ppg
1
j
q
2
f

1
i
g

1
i

´ pg
1
i
q
2
f

1
j
g

1
j
q|X “ ppg

1
i
g

1
j
qpf

1
i
g

1
j

´ f
1
j
g

1
i
qq|X .

Since 'pzq “ f
1
i
pzq{g

1
i
pzq “ f

1
j
pzq{g

1
j
pzq for all z P Xg

1
i

X Xg
1
j
the last term vanishes on Xg

1
i

X Xg
1
j
, on

the other hand it vanishes also on pXzXg
1
i

X Xg
1
j
q “ X X V pg

1
i
g

1
j
q because of the factor pg

1
i
g

1
j
q.

We end the present section with a couple of consequences of Theorem 1.6.2.
First we give a more explicit version of Proposition 1.5.13 in the case that the quasi projective

variety itself is a�ne. Given a quasi projective variety X, and f P KrXs, let

Xf :“ XzV pfq, (1.6.4)

where V pfq :“ tx P X | fpxq “ 0u. The following remark is easily verified.

Remark 1.6.4. Let X Ä An be closed (and hence an a�ne variety). Let f P KrXs, and hence by

Theorem 1.6.2 there exists rf P Krz1, . . . , zns such that rf|X “ f . Let Y Ä An`1 be the subset of
solutions of gpz1, . . . , znq “ 0 for all g P IpXq, and the extra equation fpz1, . . . , znq ¨ zn`1 ´ 1 “ 0. Then
the map

Xf ›Ñ Y

pz1, . . . , znq fiÑ pz1, . . . , zn,
1

fpz1,...,znq q

is an isomorphism. In particular Xf is an open a�ne subset of X. Moreover, the open a�ne subset
Xf , for f P KrXs form a basis for the Zariski topology of X.

Notice that, by Theorem 1.6.2 and the above isomorphism, every regular function on Xf is given
by the restriction to Xf of g

fm , where g P KrXs and m P N.
Next, we give a few remarkable consequences of Theorem 1.6.2.
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Proposition 1.6.5. Let R be a finitely generated K algebra without nilpotents. There exists an a�ne
variety X such that KrXs – R (as K algebras).

Proof. Let ↵1, . . . ,↵n be generators (over K) of R, and let ' : Krz1, . . . , zns Ñ R be the surjection of
algebras mapping zi to ↵i. The kernel of ' is an ideal I Ä Krz1, . . . , zns, which is radical because R

has no nilpotents. Let X :“ V pIq Ä An. Then KrXs – R by Theorem 1.6.2.

In order to introduce the next result, consider a regular map f : X Ñ Y of (non empty) quasi
projective varieties. The pull-back f

˚ : KrY s Ñ KrXs is the homomorphism of K-algebras defined by
f

˚
p'q :“ ' ˝ f .

Proposition 1.6.6. Let Y be an a�ne variety, and let X be a quasi projective variety. The map

tf : X Ñ Y | f regularu ›Ñ t' : KrY s Ñ KrXs | ' homomorphism of K-algebrasu
f fiÑ f

˚ (1.6.5)

is a bijection.

Proof. We may assume that Y Ä An is closed; let ◆ : Y ãÑ An be the inclusion map. Suppose that
f, g : X Ñ Y are regular maps, and that f

˚
“ g

˚. Then f
˚

p◆
˚

pziqq “ g
˚

p◆
˚

pziqq for i P t1, . . . , nu,
and hence f “ g. This proves injectivity of the map in (1.6.5). In order to prove surjectivity, let
' : KrY s Ñ KrXs be a homomorphism of K algebras. Let fi :“ 'p◆

˚
pziqq, and let f : X Ñ An be the

regular map defined by fpxq :“ pf1pxq, . . . , fnpxqq for x P X. Then fpxq P Y for all x P X. In fact,
since Y is closed, it su�ces to show that gpfpxqq “ 0 for all g P IpXq. Now

gpf1pxq, . . . , fnpxqq “ gp'p◆
˚

pz1qq, . . . ,'p◆
˚

pznqq “ 'pgp◆
˚

pz1qq, . . . , ◆
˚

pznqq “ 'p0q “ 0.

(The second and last equality hold because ' is a homomorphism of K-algebras.) Thus f is a regular
map f : X Ñ Y such that f

˚
p◆

˚
pziqq “ 'p◆

˚
pziqq for i P t1, . . . , nu. By Theorem 1.6.2 the K-algebra

KrY s is generated by ◆˚pz1q, . . . , ◆
˚

pznq; it follows that f˚
“ '.

Corollary 1.6.7. In Proposition 1.6.5, the a�ne variety X such that KrXs – R is unique up to
isomorphism.

1.7 Quasi-projective varieties defined over a subfield of K

1.8 Exercises

Exercise 1.8.1. Which of the following subsets of A2 are locally closed? Which are closed?

(a) X –
 

px, yq | exp
`
2⇡

?
´1x

˘
“ 1

(
Ä A2

pCq.

(b) Y –
 `
t, t

2
˘

| t P K
(

Ä A2
pKq.

(c) W –
"ˆ

2t

t2 ` 1
,
t
2

´ 1

t2 ` 1

˙
| t P Cz

 
˘

?
´1

(*
Ä A2

pCq.

(d) V –
 

pt, tuq | pt, uq P K2
(

Ä A2
pKq.

Exercise 1.8.2. Compute IpZq for

1. Z “ V
`
x
2

` 1
˘

Ä A1
pKq,

2. Z “ Z2
Ä A2

pCq,

3. Z “ V
`
x
2

´ y
2
, x

2
´ xy

˘
Ä A2

pKq.
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1. Quasi projective varieties

Exercise 1.8.3. Let M2,2pCq be the complex vector-space of 2 ˆ 2 complex matrices. Let n ° 0 and
let Un Ä M2,2pCq be the set of matrices T such that Tn

“ 1 (here 1 P M2,2pCq is the unit matrix).

1. Prove that Un is a closed subset (for the Zariski Topology) of M2,2pCq.

2. Describe the irreducible components of Un and show that there are
`
n`1
2

˘
of them.

Exercise 1.8.4. Let f1, . . . , fr P Krx, ys and suppose that

gcd tf1, . . . , fru “ 1.

Show that V pf1, . . . , frq Ä A2
pKq is finite.

Exercise 1.8.5. Let Z Ä A2
C be a proper closed irreducible subset. Show that Z is either a singleton

or an irreducible hypersurface.

Exercise 1.8.6. Let R be an integral domain, and let pm,nq P `
N2zt0u˘

. Let F P RrX,Y sm and G P RrX,Y sn.
The resultant RpF,Gq is the element of R defined as follows. Consider the map of free R-modules

RrX,Y sn´1 ‘ RrX,Y sm´1
LpF,Gq›Ñ RrX,Y sm`n´1

p�, q fiÑ � ¨ F ` ¨ G (1.8.1)

and let SpF,Gq be the matrix of LpF,Gq relative to the basis

pXn´1
, 0q, pXn´2

Y, 0q, . . . , pY n´1
, 0q, p0, Xm´1q, p0, Xm´2

Y q, . . . , p0, Y m´1q (1.8.2)

of the domain and the basis

X
m`n´1

, X
m`n´2

Y, . . . , XY
m`n´2

, Y
m`n´1 (1.8.3)

of the codomain. Then RpF,Gq is defined by

RpF,Gq – detSpF,Gq. (1.8.4)

Explicitly: if

F “
mÿ

i“0

aiX
m´i

Y
i
, G “

nÿ

j“0

bjX
n´j

Y
j (1.8.5)

then

RpF,Gq “ det

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

a0 0 ¨ ¨ ¨ 0 b0 0 ¨ ¨ ¨ 0
a1 a0 ¨ ¨ ¨ 0 b1 b0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
...

... ¨ ¨ ¨ a0

...
... ¨ ¨ ¨ b0

am am´1 ¨ ¨ ¨
... bn bn´1 ¨ ¨ ¨

...

0 am ¨ ¨ ¨
... 0 bn ¨ ¨ ¨

...

0 0 ¨ ¨ ¨
... 0 0 ¨ ¨ ¨

...
...

... ¨ ¨ ¨
...

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ am 0 0 ¨ ¨ ¨ bn

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

. (1.8.6)

Now let K be a field and K Ä K be an algebraic closure of K. Let F P KrX,Y sm and G P KrX,Y sn.
(a) Prove that RpF,Gq “ 0 if and only if there exists H P KrX,Y sd with d ° 0 which divides both F and G

(in KrX,Y s).
(b) Prove that Rm,npF,Gq “ 0 if and only if there exists a common non-trivial root of F and G in k

2
,

i.e. rX0, Y0s P P1
k
such that F pX0, Y0q “ GpX0, Y0q “ 0.
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(c) Let fpt, xq P Krt1, . . . , tmsrxs and gpt, xq P Krt1, . . . , tmsrxs (here t “ t1, . . . , tm) be polynomials of degrees
m and n in x respectively, i.e.

fpt, xq “
mÿ

i“1

aiptqxm´i
, gpt, xq “

nÿ

j“1

bjptqxn´j
aiptq, bjptq P Krt1, . . . , tms, a0ptq �“ 0 �“ b0ptq.

We let
Dpf, gq – tt P AmpKq | Dx P K such that fpt, xq “ gpt;xq “ 0u.

Using the properties of the resultant proved above show that if f, g are both monic, i.e. a0ptq “ b0ptq “ 1,
then there exists ' P Krt1, . . . , tms such that Dpf, gq “ V p'q.

(d) Give examples of fpt, xq P Krt1, . . . , tmsrxs and gpt, xq P Krt1, . . . , tmsrxs for which there exists no ' P
Krt1, . . . , tms such that Dpf, gq “ V p'q.

Exercise 1.8.7. Let V be a K vector space of finite dimension, and let 0 § h § dimV . The Grassmannian

Gr ph, V q :“ tW Ä V | dimW “ hu .
is the set of subvector spaces of V of dimension h. Note that if h P t0, dimV u, then Gr ph, V q is a singleton,
that Gr p1, V q “ PpV q, and that we have a bijection

PpV _q ›Ñ Gr pdimV ´ 1, V q
rf s fiÑ kerpfq

The goal of the present exercise is to identify (in a reasonable way) the elements of Gr ph, V q with the points of
a projective variety.

1. Let v1, . . . , va P V be linearly independent, and let ↵ P ôh
V . Prove that

vi ^ ↵ “ 0 @i P t1, . . . , au
if and only if ↵ “ v1 ^ . . . ^ va ^ � for a suitable � P ôh´a

V .

2. For ↵ P ôh
V , let m↵ be the linear map

V
m↵›Ñ ôh`1

V

v fiÑ v ^ ↵

Using the result of Item (1) show that if ↵ �“ 0 then the kernel of m↵ has dimension at most h, and that
it has dimension equal to h if and only if ↵ is decomposable, i.e. ↵ “ w1 ^ . . . ^ wh for suitable linearly
independent w1 ^ . . . ^ wh P V .

3. The Plücker map is given by

Gr ph, V q P›Ñ P
´ôh

V

¯

W fiÑ ôh
W.

Note that this makes sense because
ôh

W is a 1-dimensional subspace of
ôh

V . Using the result of

Item (2) prove that P is injective, and that ImP is a closed subset of P
´ôh

V

¯
. Thus we have identified

Gr ph, V q with a projective variety.

Note that we have a bijection

Gr pk ` 1, V q ›Ñ Grpk,PpV qq :“ tL Ä PpV q | L linear subspace, dimL “ ku
W fiÑ PpW q.

Thus we may also identify Gr pk,PpV qq with a projective variety.

Let v1, . . . , vm be a basis of V . If I “ ti1, . . . , ihu with 1 § i1 † . . . † ih § dimV we let vI – vi1 ^
. . . ^ vih . Then B – t. . . , vI , . . .u, for I running through subsets of t1, . . . ,mu of cardinality h, is a basis ofôh

V . Associated to B we have homogeneous coordinates r. . . , TI , . . .s on Ppôh
V q. By associating to linearly

independent vectors w1, . . . , wh P V the matrix with rows the coordinates of the wi’s in the chosen basis, we
get a matrix ¨

˚̋
a11 ¨ ¨ ¨ a1m

...
. . .

...
ah1 ¨ ¨ ¨ ahm

˛

‹‚
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of rank h. The homogeneous coordinates r. . . , TI , . . .s of Ppxw1, . . . , whyq are given by

TI “ det

¨

˚̋
a1,i1 ¨ ¨ ¨ a1,ih
...

. . .
...

ah,i1 ¨ ¨ ¨ ah,ih

˛

‹‚.

Exercise 1.8.8. The goal of the present exercise is to show that the Grassmannian Grph, V q (identified with
its image by the Plücker embedding) has an open covering by pairwise intersecting open subsets isomorphic to
an a�ne space of dimension h ¨ pdimV ´ hq, and that it is irreducible.

1. Let m :“ dimV , and let tv1, . . . , vmu be a basis of V . Let r. . . , TI , . . .s be the associated homogeneous
coordinates on Ppôh

V q, where I runs through subsets of t1, . . . ,mu of cardinality h. Thus we have the
open covering

Grph, V q “
§

|I|“h

Grph, V qI , (1.8.7)

where Grph, V qI Ä Grph, V q is the open subset of points such that TI �“ 0. Let I “ t1, . . . , hu. Show that
the map

Mh,m´hpKq ›Ñ Grph, V qI¨

˚̋
a1,1 ¨ ¨ ¨ a1,m´h

...
. . .

...
ah,1 ¨ ¨ ¨ ah,m´h

˛

‹‚ fiÑ x. . . , vi ` ∞m´h
j“1 ai,jvh`j , . . .y1§i§h

(1.8.8)

is an isomorphism. Show that for any other multiindex J we have an analogous isomorphisms

Ahpm´kq – Mh,m´hpKq „›Ñ Gr ph, V qJ .

2. Show that for all subsets I, J Ä t1, . . . ,mu of cardinality h the interesection Gr ph, V qI X Gr ph, V qJ is
non empty.

3. Show that the Grassmannian Grph, V q is irreducible.

Exercise 1.8.9. Let K be a field. Given a finite-dimensional K-vector space V define the formal power series
pV P Zrrtss as

PV :“
8ÿ

d“0

pdimk Sym
d
V qtd

where Symd
V is the symmetric product of V . Thus if V “ Krx1, . . . , xns1 then S

dpKrx1, . . . , xns1q “
Krx1, . . . , xnsd.

1. Prove that if V “ U ‘ W then PV “ PU ¨ PW .

2. Prove that if dimK V “ n then PV “ p1 ´ tq´n and hence the equality in (1.5.8) holds.

Exercise 1.8.10. The purpose of the present exercise is to give a di↵erent proof of the properties of the
Veronese map ⌫nd discussed in Example 1.5.6, valid if charK “ 0, or more generally charK does not divide d!.
Let

PpKrT0, . . . , Tns1q µn
d›Ñ PpKrT0, . . . , Tnsdq

rLs fiÑ rLds
(1.8.9)

and let W
n
d “ Impµn

d q. The above map can be identified with the Veronese map ⌫
n
d . In fact, writing L P

KrT0, . . . , Tns1 as L “ ∞n
i“0 ↵iTi, we see that r↵0, . . . ,↵ns are coordinates on PpKrT0, . . . , Tns1q, and they give

an identification Pn „›Ñ PpKrT0, . . . , Tns1q. Moreover, let

Ppd`n
n q´1 „›Ñ PpKrT0, . . . , Tnsdq,

r. . . , ⇠I , . . .s fiÑ ∞
I“pi0,...,inq
i0`...`in“d

d!
i0!¨...¨in!⇠IT

I

where T
I “ T

i0
0 ¨ . . . ¨T in

n . By Newton’s formula p∞n
i“0 ↵iTiqd “ ∞

I

d!
i0!¨...¨in!↵

I
T

I , we see that, modulo the above

isomorphisms, the Veronese map ⌫nd is identified with µ
n
d , and hence V

n
d is identified with W

n
d .
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Now let us show that W
n
d is closed. The key observation is that rF s P W

n
d if and only if BF

BZ0
, . . . ,

BF
BZn

span
a 1-dimensional subspace of KrZ0, . . . , Zns. This may be proved by induction on degF and Euler’s identity

nÿ

j“0

Zj
BF
BZj

“ pdegF q ¨ F, (1.8.10)

valid for F homogeneous. Now, the condition that BF
BZ0

, . . . ,
BF

BZn
span a 1-dimensional subspace of KrZ0, . . . , Zns

is equivalent to the vanishing of determinants of all 2ˆ2 minors of the matrix whose entries are the coordinates
of BF

BZ0
, . . . ,

BF
BZn

; thus W
n
d is closed.

In order to show that µ
n
d is an isomorphism, we notice that if F “ L

d, where L P PpKrT0, . . . , Tns1 is non

zero, then for each i P t0, . . . , nu the partial derivative Bn´1F

BZn´1
i

is a multiple of L (eventually equal to 0 if BL
BZi

“ 0),

and that one at least of such pn ´ 1q-th partial derivative is non zero. Thus, the inverse of µn
d is the regular

map ✓nd : W
n
d ›Ñ PpKrT0, . . . , Tns1q defined by

✓
n
d prF sq :“

$
’’&

’’%

r Bn´1F

BZn´1
0

s if Bn´1F

BZn´1
0

�“ 0,

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
r Bn´1F

BZn´1
n

s if Bn´1F

BZn´1
n

�“ 0.

(1.8.11)

Exercise 1.8.11. We recall that if � : B Ñ A is a homomorphism of rings, and I Ä A, J Ä B are ideals, the
contraction I

c Ä B and the extension J
e Ä A are the ideals defined as follows:

I
c :“ �

´1
I, J

e :“
#

rÿ

i“1

�i� pbiq | �i P A, bi P J @i “ 1, . . . , r

+
(1.8.12)

(In other words, Je is the ideal of A generated by �pJq.)
Let f : X Ñ Y be a regular map between a�ne varieties and suppose that f˚ : KrY s ›Ñ KrXs is injective.

1. Let p P X. Prove that mc
p “ mfppq, in particular it is maximal.

2. Let q P Y . Prove that
f

´1pqq “  
p P X | mp Å me

q

(
,

and conclude, by the Nulstellensatz, that f´1pqq is not empty if and only if me
q ‰ KrXs.

Exercise 1.8.12. The left action of GLnpKq on An defines a left action of GLnpKq on Krz1, . . . , zns as
follows. Let � P Krz1, . . . , zns and g P GLnpKq. Let z be the column vector with entries z1, . . . , zn: we define
g� P Krz1, . . . , zns by letting

g�pXq :“ �pg´1 ¨ zq.
Now let G † GLn pKq be a subgroup. The algebra of G-invariant polynomials is

Krz1, . . . , znsG :“ t�Krz1, . . . , zns P| g� “ � @g P Gu .

(it is clearly a K-algebra). Now suppose that G is finite. One identifies An{G with an a�ne variety proceeding
as follows.

1. Define the Reynolds operator as

Krz1, . . . , zns ›Ñ Krz1, . . . , znsG
� fiÑ 1

|G|
∞

gPG g�.

Prove the Reynolds identity

R p� q “ �R p q @� P Krz1, . . . , znsG.
2. Let I Ä Krz1, . . . , zns be the ideal generated by homogeneous � P Krz1, . . . , znsG of strictly positive

degree (i.e. non-constant). By Hilbert’s basis theorem there exists a finite basis t�1, . . . ,�du of I; we
may assume that each �i is homogeneous and G-invariant. Prove that Krz1, . . . , znsG is generated as

K-algebra by �1, . . . ,�d. Since Krz1, . . . , znsG is an integral domain with no nilpotents it follows that
there exist an a�ne variety X (well-defined up to isomorphism) such that KrXs „›Ñ Krz1, . . . , znsG. One
sets An{G “: X.
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3. Let ◆ : Krz1, . . . , znsG ãÑ Krz1, . . . , zns be the inclusion map. By Proposition 1.6.6, there exist a unique
regular map

An ⇡›Ñ X “ An{G. (1.8.13)

such that ◆ “ ⇡
˚. Prove that

⇡ ppq “ ⇡ pqq if and only if q “ gp for some g P G,

and that ⇡ is surjective. [Hint: Let J Ä Krz1, . . . , znsG be an ideal. Show that J
e X Krz1, . . . , znsG “ J

where J
e is the extension relative to the inclusion ◆.]

Exercise 1.8.13. Keep notation and hypotheses as in Exercise 1.8.12. Describe explicitly An{G and the
quotient map ⇡ : An Ñ An{G for the following groups G † GLn pKq:

1. n “ 2, G “ t˘12u.

2. n “ 2, G “
Bˆ

!k 0
0 !

´1
k

˙F
where !k is a primitive k-th rooth of 1.

3. G “ Sn, the group of permutation of n elements viewed in the obvious way as a subgroup of GLn pKq
(group of permutations of coordinates).
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