Chapter 4

Tangent space, smooth points

4.1 Introduction

One definition of tangent space of a C® manifold M at a point x € M is as the real vector space of
derivations of the ring of C'*® functions on M centered at x, or of the ring of germs of C* functions
at . An analogue definition gives the definition of Zariski tangent space of an algebraic variety at a
point. One needs to consider the analogue of the ring of germs of C® functions at the point because
if the algebraic variety is complete then global regular functions are locally constant. The advantage
of such an abstract definition is that it is intrinsic by definition. On the other hand, we will identify
the Zariski tangent space at a point a of a closed subset X < A™ with the classical embedded tangent
space, defined by the common zeroes of the linear approximations at a of polynomials in a basis of the
ideal I(X).

A fundamental difference between quasi projective varieties and smooth manifolds is that the di-
mension of the tangent space at a point might depend on the point, even for an irreducible variety.
The points where the dimension has a local minimum are the so-called smooth points of the variety.
Smooth algebraic varieties resemble C® manifolds, or even more closely complex manifolds.

In fact if the field is C then a smooth variety has a natural structure of complex manifold and regular
maps between complex smooth varieties are holomorphic maps of complex manifolds.

4.2 The local ring of an algebraic variety at a point

Let X be an algebraic variety.

Definition 4.2.1. Let X be an algebraic variety, and let z € X. Let (U, ¢) and (V1) be couples where
U,V are open subsets of X containing z, and ¢ € K[U], 1 € K[V]. Then (U, ¢) ~ (V, ) if there exists
an open subset W < X containing x such that W c U n'V and ¢y = ¥w -

One checks easily that ~ is an equivalence relation: an equivalence class for the relation ~ is a
germ of regular function of X at x. We may define a sum and a product on the set of germs of regular
functions of X at x by setting

(U, )] + [(V,9)] == [(U NV, duav +dwav)], (42.1)
and
[(Uv ¢)] : [(‘/7 ¢)] = [(U @ Vv ¢|Ur\V '¢\Umv>]' (422)

Of course one has to check that the equivalence class of the sum and product is independent of the
choice of representatives: this is easy, we leave details to the reader. With these operations, the set of
germs of regular functions of X at x is a ring.

Definition 4.2.2. Let X be an algebraic variety and let x € X. The local ring of X at x is the ring of
germs of regular functions of X at x, and is denoted Ox ;.
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4. TANGENT SPACE, SMOOTH POINTS

Remark 4.2.3. Let X be an algebraic variety, and let x € X. If V < X is an open subset containing x
then the homomorphism

ﬁV,J; i’ ﬁX,g;
(U] — [(Uy)] (4.2.3)

is an isomorphism. Since there exist many V' which are affine, every local ring of a point on an algebraic
variety is isomorphic to the local ring of a point on an affine variety.

There is a well-defined surjective homomorphism

Ox, — K

(U,6)] — o) (4.2.4)

As a matter of notation we let f(x) be the value of the above homomorphism on f = [(U, ¢)]. We have
the natural homomorphism of rings

[ (P 425)
Let m, c K[X] be the ideal defined by
m, = {f € KIX] | f(z) = 0}. (4.2:6)
If f ¢ m, then p(f) is invertible: in fact the open subset
X; = X\V(f) (4.2.7)

contains x and [(Xy,1/f)] is the inverse of p(f). By the universal property of the ring of fractions (see
Proposition A.4.3) there exists a unique homomorphism 5: K[ X |n, — Ox ., such that p = 5o, where
¢: K[X] = K[X ], is the localization homomorphism.

Proposition 4.2.4. Keep notation as above, and suppose that X is an affine variety. Then

K[X]m, - Ox.a (4.2.8)

is an isomorphism.

Proof. First we prove that p is injective. Suppose that p(f/g) = 0, where f, g € K[X] with g(z) % 0.
This means that there exists an open U < X containing x such that fi;; = 0. Since the principal open
affine subsets of X form a basis of the Zariski topology, there exists h € K[X] such that X; < U and
x € X, (see Example 1.6.5). Thus h ¢ m, and h - f = 0: this gives that f/g = 0.

Next we prove that p is surjective. Let f € Ox ,. Then is represented by a suitable (X}, ) where
h € K[X] does not vanish in z because principal open affine subsets of X form a basis of the Zariski
topology. By Example 1.6.5 we have ¢ = g/h"¥ for suitable g € K[X] and exponent N, and hence

f=(Xn, 9)] = plg/hY). &
By the above proposition and Proposition A.4.7 we get the following.

Corollary 4.2.5. Let X be an algebraic variety, and let x € X. Then Ox , is a Noetherian local ring,
and the homomorphism in (4.2.4) is the quotient map to its residue field.

We let m,, be the kernel of (4.2.4), i.e. the ideal of germs of regular functions at « such that f(x) = 0.
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4.3. The Zariski tangent and cotangent space

4.3 The Zariski tangent and cotangent space

The homomorphism (4.2.4) equips K with a structure of Ox ,-module. Moreover Ox , is a K-algebra.
Thus it makes sense to speak of K-derivations of Ox , to K.

Definition 4.3.1. Let X be an algebraic variety, and let x € X. The Zariski tangent space to X at x
is Derg(Ox 5, K), and will be denoted by ©,X. Thus ©,X is an Ox ,-module (see Section ?7), and
since m, annihilates every derivation Ox , — K, it is a complex vector space.

Lemma 4.3.2. Let a € A™. The complex linear map

0,A" — K™

a 4.3.9
D (D(x1),....D()) (4.3.9)
is an tsomorphism.

Proof. The formal partial derivative % defined by (A.8.7) defines an element of ©,A™ by the familiar
formula

o (f _ #(a) - 9(a) - fla) - 7 (a)
o (3) @ ola)? |

ce Example A.8.3.) bSince =——(z;) = 0,4, the map in (4.3.9) 1s surjective.
See Example A.8.3.) Since 52 (2;) = mj, th in (4.3.9) is surjecti

Zm

Let’s prove that the map in (4.3.9) is injective. Assume that D € ©x , is mapped to 0 by the map
in (4.3.9), i.e. D(z;) =0 for je {1,...,n}. Let f,g e K[z,...,2,], with g(a) & 0. Then
D <f> _ D(f)-g(a) — f(a) - D(g)
g g9(a)?

(See Example A.8.3.) Hence it suffices to show that D(f) = 0 for every f € K[z1,...,2,]. Consider the
first-order expansion of f around a i.e. write

f=f(a)+ 2”1 ci(#z —a) + R, Rem?. (4.3.10)
i=1

Since D is zero on constants (because D is a K-derivation) and D(z;) = 0 for all j it follows that
D(f) = D(R), and the latter vanishes by Leibniz’ rule and the hypothesis D(z;) = 0 for all j. O

The differential of a regular map at a point of the domain is defined by the usual procedure.
Explicitly, let f: X — Y be a regular map of quasi projective varieties, let x € X and y := f(z). There
is a well-defined pull-back homomorphism

Oy EAN Ox a (4.3.11)
[(U,¢)] — [(fT'U,do(fif—0v))]

The differential of f at x is the linear map of complex vector spaces
df (z)
Lx — LY (4.3.12)
D~ (¢~ D(f*9))

The differential has the customary functorial properties. Explicitly, suppose that we have

XlL)XQL)X3’ $1€X1, $2:f1(1‘1).

Since (fo 0 f1)* = fff o fF we have
d(foo f1)(x1) = dfa (x2) o dfi (21) . (4.3.13)

Moreover d1dx (z) = Idg, x for z € X.
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4. TANGENT SPACE, SMOOTH POINTS

Remark 4.3.3. Tt follows from the above that if f is an isomorphism, then df (z): T, X — Ty(,)Y is an
isomorphism, in particular dim7, X = dim7,Y.

The next result shows how to compute the Zariski tangent space of a closed subset of A™. Since
every point z of an algebraic variety X is contained in an open affine subset U, and ©,X = 0,U
(because restriction defines an identification Ox , = Oy ), the result allows to compute the Zariski
tangent space in general.

Proposition 4.3.4. Let 1: X — A" be the inclusion of a closed subset and a € X. The differential
di(a): ©,X — O,A" is injective and, identifying ©,A™ with K™ via (4.3.9), we have

imdj(a) = {v = (v1,...,0,) € K" | Z gj (a) - v; =0 Vf€I(X)}. (4.3.14)
i=1 """

Proof. The differential di(a) is injective because the pull-back ¢*: Oyn , — Ox , is surjective. Let
D € Derg(Ox o, K). If f e I(X) c K[z1,..., 2], then de(D)(f) = D(+*f) = D(0) = 0. Hence imdi(a)
is contained in the right-hand side of (4.3.14). Let’s prove that imdc(a) contains the right-hand side
of (4.3.14). Let D € Derg(Oan q,K) belong to the right hand side of (4.3.14), i.e. D(f) = 0 for all
f e I(X). By Item (3) of Example A.8.3 it follows that ﬁ(%) = 0 whenever f,g € K[z,...,2,] and

f e I(X) (of course we assume that g(a) + 0). Thus D descends to a K-derivation D € Derg(Ox o, K),
and D = diy(a)(D). O

Remark 4.3.5. With the hypotheses of Proposition 4.3.5, suppose that I(X) is generated by f1,..., f..
Then

imdj(a)z{vz(vl,...,vn)e]K"|igﬁ(a)mizo ke{l,...,r}}.
i=1 7%

In fact, the right hand side of the above equation is equal to the right hand side of (4.3.14), because if
r r ofj(a
J =5 9id5, then Z(a) = X, g;(a) 4.

Ezample 4.3.6. Let f € K[z1,...,2,] be a polynomial without multiple factors, i.e. such that 4/(f) =
(f), and let X = V(f). Let a € X; by Remark 4.3.5 Zariski’s tangent space to X is the subspace of K"
defined by

=1
Hence . 8
_ e (OF f
dimo,x = {771 Tl (@)oo (@) 40,
no i (G(a), . 52 (a) = 0.
Let us show that o o
X ., = 4.3.1
\V<(92’17 aazn> ( 3 5)

is an open dense subset of X (it is obviously open, the point is that it is dense), i.e. dim©,X =n —1
for a in an open dense subset of X.
First assume that f is irreducible. First we notice that there exists i € {1,...,n} such that

of

Zi

+ 0. (4.3.16)

In fact assume the contrary. It follows that charK = p > 0, and that there exists a polynomial
g € Klz1,...,2,] such that f = g(2,...,28). Let g = >, asz!, where I runs through a (finite)
collection of multiindices. Since K is algebraically closed, there exists a (unique) p-th root a}/ P Let
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4.3. The Zariski tangent and cotangent space

h =3, a}/pzl Then f = h(z1,...,2,)P (recall that (a + b)? = aP + bP), and this is a contradiction
because f is irreducible. This proves that there exists ¢ € {1,...,n} such that (4.3.16) holds.
Reordering the coordinates, we may assume that ¢ = n. hence

f—aoz +alzd1—|—-~-+ad, a; €K[z1,...y2n-1]y, ap#0, d>0.
Thus 5
—f—daozd1+(d—1)alzd2+~-~+ad,1:|=0.
Zn

The degree in z, of f is d, i.e. f has degree d as element of K|[z1,...,2,-1][2,]. On the other hand, g—f

is non zero and its degree in z,, is strictly smaller than d. Thus f { g, and hence the set in (4.3.15) is
dense in X (recall that f is irreducible).
In general, let f = fy---- - f, be the decomposition of f as product of prime factors. Let X; = V(f;).
Then
X=X,u---uUX,

is the irreducible decomposition of X. As shown above, for each i € {1,...,r}

b
Z1 Zn

X;\V ( ) +

Hence there exists a € X, such that a{ i(a) # 0 for a certain 1 < h < n. We may assume in addition
that a does not belong to any other irreducible component of X. It follows that

—(a) afj )- T (@)

Zh k35

This proves that the open set in(4.3.15) has non empty intersection with every irreducible component
of X, and hence is dense in X.

Notice also that if a belongs to more than one irreducible component of X, then all partial derivatives
of f vanish at a. In other words, any point in the open dense subset of points a such that dim©, = n—1
belongs to a single irreducible component of X.

The result below shows that the behaviour of the tangent space examined in the above example is
typical of what happens in general.

Proposition 4.3.7. Let X be a quasi projective variety. The function

X — N
r — dimO,X

(4.3.17)
is Zariski upper-semicontinuous, i.e. for every k € N
={re X |dimO,X >k}

is closed in X.

Proof. Since X has an open affine covering, we may suppose that X < A" is closed. Let I(X) =
(fi,---y fr). For x € A™ let

Us(z) ... Ui(y)
J(fis-os fo)(@) = :

D
=
8
~

oA

21

be the Jacobian matrix of (f1,..., fs) at z. By Proposition 4.3.5 we have that
Xi={ze X |tkJ(f1,...,f[r)(x) <n—k}. (4.3.18)
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4. TANGENT SPACE, SMOOTH POINTS

Given multi-indices I = {1 < i3 < ... < ip < sfand J = {1 < j1 < ... < jm < n} let
J(f1,..., fs)(@)r,5 be the m x m minor of J(f1,..., fr)(x) with rows corresponding to I and columns
corresponding to J (if m > min{r,n} we set J(f1,..., fs)(z)r,; = 0). We may rewrite (4.3.18) as

Xk: =XnV ( .. 7det J(fh e 7fr)($)I’J, .. ')|I\:\J|:n—k+1 .
It follows that X}, is closed. O

Let X be a quasi projective variety, and let z € X. The cotangent space to X at x is the dual
complex vector space of the tangent space ©,X, and is denoted Qx (z):

QOx (@) = (0,X)". (4.3.19)

We define a map
Ox 4 -4, Qx(x) (4.3.20)

as follows. Let f € Ox . be represented by (U, ¢). The codomain of the differential d¢(x): ©,U —
O4()K is identified with with K, because of the isomorphism in (4.3.9), and hence d¢(z) € (©.U)".
Since U < Z is an open subset containing x, the differential at x of the inclusion map defines an
identification ©,U — 6, X. Thus d¢(z) € (0,X)" = Qx(x). One checks immediately that if (V)
is another representative of f then di(z) = d¢(x). We let

df (z) := do(x), (U, ¢) any representative of f.

Remark 4.3.8. We equip Qx (z) with a structure of Ox ,-module by composing the evaluation map
Ox ., — K given by (4.2.4) and scalar multiplication of the complex vector-space Qz(a). With this
structure (4.3.20) is a derivation over K.

Remark 4.3.9. Let f € K[z1,...,2,] and a € A™. Then the familiar formula

n 8
UCEDWOEID
holds. In fact this follows from the first-order Taylor expansion of f at a:

f=fla)+ Z a—zz(a)(zz —a;) + Z mi;(zi — a;) (2 — a;), mi; € K[z1,..., 2n]. (4.3.21)

1<i,j<n

Remark 4.3.10. Let X < A™ be closed, and let a € X. Identify ©,A™ with K" via Lemma 4.3.2. By
Remark 4.3.9 we have the identification

T.X = Ann{df(a) | f € I(X)}.

Let X be a quasi projective variety, and let x € X. Let m, < Ox, be the maximal ideal. By
Leibiniz’ rule dé(z) = 0 if ¢ € m2 (recall that d: Ox , — Qx(z) is a derivation over K). Thus we have
an induced K-linear map

my/m2 " Qy(a) (4.3.22)
[4] = dé(a)

Proposition 4.3.11. Keep notation as above. Then §(z) is an isomorphism of K vector spaces.

Proof. First we prove that d(x) is surjective. If X = A", surjectivity follows at once from Lemma 4.3.2.
In general, we may assume that X is a closed subset of A™, and surjectivity follows from Proposi-
tion 4.3.5.

In order to prove injectivity of d(x), we must show that if ¢ € m, is such that d¢(z)(D) = 0 for all
D e ©,X, then ¢ € m2. We may suppose that X is a closed subset of A™. In order to avoid confusion,
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4.4. Smooth points

we let x = a = (a1,...,a,). Let (U, f/g) be a representative of ¢, where f,g € K[X], and f(a) = 0,
g(a) # 0. Tt will suffice to prove that f € m2. Since 0 = d¢(a) = g(a)~'df(a) we have df(a) = 0. By
Theorem 1.6.2 there exists f € K[z1,...,2,] such that f‘X = f. By Proposition 4.3.5 we may identify
0,X with the subspace of T, K" = K" given by (4.3.14). By hypothesis df(a)(D) =0forallDe O, X,

i.e.

df(a) € Ann (0,X) < OQpn ().

By (4.3.14) there exists h € I(X) such that df(a) = dh(a). Then (f — h)x = f and d(f — h)(a) = 0.
Thus (f — h) € K[z1,...,2,] has vanishing value and differential at a. It follows (first-order Taylor
expansion of f — h at a) that

(f=h)e(z1—ar,..., 2 —an)?

Since h € I(X) we get that f e m2. O
The following result is an immediate consequence of Corollary A.9.2.

Corollary 4.3.12. Let X be a quasi-projective variety and p € X. Let fi,...,f, € Ox,p be germs
vanishing at p i.e. belonging to the mazimal ideal m, € Ox p,, and suppose that 6(f1),...,0(fn) generate
Qx(p). Then fi,..., fn generate the mazimal ideal my, € Ox .

4.4 Smooth points

Definition 4.4.1. Let X be an algebraic variety, and let x € X. Then X is smooth at x if dim©,X =
dim, X, it is singular at x otherwise. The set of smooth points of X is denoted by X*™. The set of
singular points of X is denoted by sing X.

Ezxample 4.4.2. Let X < A™ be a hypersurface. By Corollary 3.4.9, the dimension of X is equal to
n — 1, and hence the set of smooth points of X is an open dense subset of X by Example 4.3.6. By the
last sentence in Example 4.3.6, X is locally irreducible at any of its smooth points.

The main result of the present section extends the picture for hypersurfaces to the general case.
Theorem 4.4.3. Let X be an algebraic variety. Then the following hold:

1. The set X®™ of smooth points of X is an open dense subset of X.

2. For x € X we have dim©,X > dim, X.

3. X s locally irreducible at any of its smooth points, i.e. if X is smooth at a, there is a single
irreducible component of X containing a.

We will prove Theorem 4.4.3 at the end of the section. First we go through some preliminary results.
Our first result proves a weaker version of Item (1) of Theorem 4.4.3, and proves Item (2) of the
same theorem.

Proposition 4.4.4. Let X be an algebraic variety. Then the following hold:
1. The set of smooth points of X contains an open dense subset of X.

2. For x € X we have dim©0,X > dim, X.

Proof. Suppose that X is irreducible of dimension d. By Proposition 3.3.12 there is a birational map
g: X --» Y, where Y < A% is a hypersurface. By Proposition ?? there exist open dense subsets
Uc X and V < Y such that g is regular on U, and it defines an isomorphism f: U — V. By
Example 4.4.2, the set of smooth points Y™ of Y is open and dense in Y. Since V is open and dense
in Y the intersection Y™ NV is open and dense dense in Y and hence f~(Y*™ n V) is an open dense
subset of X. Since f~1(Y" n V) is contained in U™, we have proved that the set of smooth points
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4. TANGENT SPACE, SMOOTH POINTS

of X contains an open dense subset of X. We have proved that Item (1) holds if X is irreducible. In
general, let X = X; u--- U X, be the irreducible decomposition of X. Let

X7 =X\ x) = (x\ [ x)

1#] 17#]

By the result that was just proved, (XJQ)Sm contains an open dense subset of smooth points. Every
smooth point of X]O is a smooth point of X, because XJQ is open in X. Thus Ui(Xio)sm is an open dense
subset of X, containing an open dense subset of X. This proves Item (1).

Let us prove Item (2). Let xzp € X, and let Xy be an irreducible component of X containing
xo such that dim Xy = dim,, X. By Item (1) X§™ contains an open dense subset of points = such
that dim©,Xy = dim, Xy, and hence by Proposition 4.3.7 we have dim©0,Xy, > dim, Xy for all
x € X. In particular dim©,,X¢ > dim,, Xo = dimg, X. Since ©,, X9 < O, X, it follows that
dim ©,,X > dim,, X. O]

The next result involves more machinery. We will give an algebraic version of the (analytic) Implicit
Function Theorem. The algebraic replacement for the ring of analytic functions defined in a neighbor-
hood of 0 € A™ is the ring K[[21,. .., 2,]] of formal power series in z1, ..., 2z, with complex coefficients.
We have inclusions

Klz1,...,2n] € Oano < K[[21,. .., 2]]. (4.4.1)
b
g
fi9€XK|[z1,...,2,] and g(0) + 0.) We will need the following elementary results.

(The second inclusion is obtained by developing £ as convergent power series centered at 0, where

Lemma 4.4.5. Let m < K[zq,...,2,], W' © Ogn o and m” < K[[21,...,2,]] be the ideals generated
by 21,...,2n in the corresponding ring. Then for every i = 0 we have (m")! A Opn g = (W)?, and
(m") A K[z1,...,2,] = mb.

Proof. By induction on i. For i = 0 the statement is trivially true. The proof of the inductive step
is the same in both cases. For definiteness let us show that (m”)*! A Gpn o = (M), assuming
that (m”)" N Oun g = (m’)". The non trivial inclusion is (m”)*1 N Opng = (m’)**1. Assume that
fem”) T A Opng. Then f e (m”)" N Opnp, and hence f € (m')? by the inductive hypothesis. Thus

we may write
f = ZanJa

11|
where the sum is over all multiindices J = (j1,...,J,) of weight |J| = X'_,js =i, and ay € Opnyg
for all J. Since f € (m”)"*!, we have a;(0) = 0 for all J. It follows that a; € m’ for all J, and hence
fe ()t O

Proposition 4.4.6 (Formal Implicit Function Theorem). Let ¢ € K[[z1,..., z,]], and suppose that

o=z1+p2+...+0q+ ..., wa€K[z1,...,2n]a (4.4.2)
Given a € K[[21,...,24]], there exists a unique B € K[[21,...,2,]] such that
(a—B-p)eK][[z,-.-,2n]] (4.4.3)

Proof. Write 8 = Bo+S1+...+84+..., where 84 € K[z1,..., 2,]q4, and the ;s are the indeterminates.
Expand the product j - ¢, and solve for By by requiring that 5 - ¢ have the same linear term modulo
22, ..., 2n as a, then solve for 81 by requiring that 3-¢ have the same quadratic term modulo (22, . . . , 2, )?
as « , etc. By (4.4.2) there is one and only one solution at each stage. O

Corollary 4.4.7. With hypotheses as in Proposition 4.4.7, the natural map K[[z2, ..., zn]] = K[[21, ..., 2:]]/(®)
is an isomorphism.

Proposition 4.4.8. Let fi,..., fr € K[z1,...,2,] and a € A™. Suppose that
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(i) each f; vanishes at a, and
(ii) the differentials dfy(a),...,dfx(a) are linearly independent.
Then V (f1,..., fr) = X Y, where
1. X,Y are closed in A™, a € X, while Y does not contain a;

2. X is irreducible of dimension n—k, it is smooth at a, and Ty (X) = Ann({dfi(a),...,dfx(a))) (as
subspace of T,A™).

Moreover, there exists a principal open affine set Ay containing a such that fl\A37 .. ~7fk|A; generate
the ideal of X N Ay.

Proof. By changing affine coordinates, if necessary, we may assume that a = 0, and that df;(0) = z; for
i€{l,...,k}. Let J' © Opn o be the ideal generated by f1,..., fr (to be consistent with our notation,
we should write J' = (p(f1),...,9(fx))), let J := J nK|[z1,...,2,], and let J” < K[[z1,...,2,]] be
the ideal generated by f1,..., fx. Lastly, let I < K[z1,...,2,] be the ideal generated by fi,..., fr. We
claim that

J-gclcld (4.4.4)

for a suitable g € K[z1,...,2,] with g(0) # 0. In fact, the second inclusion is trivially true. In order
to prove the first inclusion, let hq,...,h, be generators of the ideal J < K|z1,...,2,]. By definition
of J, there exist a;,g; € K[z1,...,2y], for i € {1,...,7}, such that a; € I, ¢;(0) + 0, and h; = %
Hence the second inclusion in (4.4.4) holds with g = g; ... g,. This proves (4.4.4), and hence we have
V() c V()< (V(J)uV(g)). It follows that, letting X := V' (.J), there exists a closed Y < V(g) such
that

V(fi,-- s fr)=X0Y, 0¢Y. (4.4.5)

Let us prove that J is a prime ideal, so that in particular X is irreducible. First, we claim that
J” (@) ﬁA",O = J/. (446)

The non trivial inclusion to be proved is J” n Opng < J'. Let f € J” N Oang. Then there exist
a1, ..., 0 € K[[21,...,2,]] such that f = Z?:l a;fj. Given s € N, let o be the MacLaurin polynomial

of a; of degree s, i.e. such that (a; — af) € (m”)**!, where m” is as in Lemma 4.4.5. Then

k k
f= Z Oéj('s)fj + Z(aj — Ozj)fj
j=1 j=1

Both addends are in Oyn . In addition, the first addend belongs to J’, and the second one belongs
to (m”)**1. By Lemma 4.4.5, it follows that the second one belongs to (m’)**!. Hence f € (i_,(I’ +
(m/)**1). By Corollary A.10.2, it follows that f € I’. This proves (4.4.6). By (4.4.6) and the definition
of .J, we have an inclusion

Klz1, ..., 2n]/d € K[[21, .-, 2a]]/J".

Hence, in order to prove that J is prime, it suffices to show that K[[z1, ..., 2,]]/J” is an integral domain.
In fact we will see that the natural map

K[zks1s---52n] — K[[21,- -, 20]]/J" (4.4.7)

is an isomorphism of rings. This follows from the algebraic version of the Implicit Function Theorem, i.e.
Proposition 4.4.7. In fact, by Proposition 4.4.7, the natural map K[|z, ..., 2z,]] = K[[21, -, 2n]]/(f1)
is an isomorphism. Let i € {2,..., k}. Given the identification K[[z1, ..., 2,]]/(f1) = K[[22, .- ., zn]], the
image of f; under the quotient map K[[z1,...,2,]] = K[[21,--.,2,]]/(f1) is an element z; + f/, where
[/ € (m”)? (notation as in Lemma 4.4.5). Iterating, we get that the map in (4.4.7) is an isomorphism of
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rings. As explained above, this proves that J is a prime ideal. In particular X is irreducible. Moreover,
since zg41, - .., zn € K[X], the isomorphism in (4.4.7) shows that K(X) has transcendence degree n —k,
i.e. X has dimension n—k. Since fi, ..., fx vanish on X, and their differentials are linearly independent,
it follows that dim ©y(X) < (n — k) = dimg X. Hence dim ©y(X) = (n — k) = dimg X, by Item (2) of
Proposition 4.4.4, i.e. X is smooth at 0, and Oy(X) < ©gA™ is the annihilator of df;(0), ..., df,(0). This
proves Items (1) and (2). The last statement in the proposition holds with the polynomial g appearing
in (4.4.4). O

Corollary 4.4.9. Let X < A™ be a Zariski closed subset. Let a be a smooth point of X, and let
k =n—dim, X. Then following hold:

1. there exist f1,..., fx € K[z1,...,2,] with linerly independent differentials dfy(a),...,dfx(a), and
a Zariski open affine subset U < A" containing a, such that (X nU) = (f1,y,---, few);

2. there is a unique irreducible component of X containing a.

Proof. Since X is smooth at a, and dim, X = n—Fk, there exist f1,..., fx € [(X) such that df;(a), ..., dfx(a)
are linearly independent. Of course X < V(f1,..., fx). By Proposition 4.4.9 there is a unique irre-
ducible component of V(f1,..., fik) containing a, call it ¥, and dimY = n — k. Every irreducible
component of X containing a is contained in Y. Since dim, X = n — k, there exists (at least) one
irreducible component of X containing a of dimension n — k. Let X’ be such an irreducible component;
by Proposition 3.4.8, X’ =Y. It follows that there is a single component of X containing a, and it is
equal to the unique irreducible component of V(f1,..., fx) containing a. Hence the corollary follows
from Proposition 4.4.9. O

Proof of Theorem 4.4.5. Ttem (2) has been proved in Proposition 4.4.4. Ttem (3) follows at once from
Corollary 4.4.9, because X is covered by open affine subset.

In order to prove Item (1), let X = (J,.; X; be the irreducible decomposition of X. Since X is
covered by open affine subset, Corollary 4.4.9 gives that

xm e X\ (0 Xy). (4.4.8)
i,5€l
i%j

The right hand side of (4.4.8) is an open dense subset of X. Let X? be an irreducible component of the
right hand side of (4.4.8). Thus X? < X; is the complement of the intersection of X; with the other
irreducible componets of X. The set of smooth points of X! is non empty by Proposition 4.4.4, and
it is open by upper semicontinuity of the dimension of ©,X ( Proposition 4.3.7), because dim, X is
independent of x € X?. Hence X*™ is an open dense subset of the open dense subset of X given by the
right hand side of (4.4.8), and hence is open and dense in X. O

4.5 Criterion for local invertibility of regular maps

In the present subsection we prove the following analogue, in the category of quasi-projective varieties,
of the local invertibility results valid for C* or holomorphic maps.

Theorem 4.5.1. Let f: X — Y be a projective map of quasi-projective sets. Let p € X and suppose
that the following hold:

1. f7H(f(p) = {p}-
2. df(p): ©,X — O4,)Y is injective.

Then there exists an open U < Y containing f(p) such that the restriction of f to f~Y(U) is an
isomorphism to a closed subset of U.
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Before proving Theorem 4.5.1 we give some preliminary result. Let ¢: A — B be a homomorphism
of rings. By setting a-b := ¢(a)b we equip B with a structure of A-module: we say that B is finite over
A if it is a finitely generated A-module. Let X,Y be affine varieties, and let f: X — Y be a regular
map; the pull back f*: K[Y] — K[X] is a homomorphism of rings, hence (with f understood) it makes
sense to state that K[X] is finite over K[Y].

Lemma 4.5.2. Let f: X — Y be a projective map of quasi projective varieties. Let yo € Y and suppose
that f~Y(yo) is finite. There ewists an open affine Yo < Y containing yo such that Xo := f~1(Yp) is
affine and K[Xo] is finite over K[Yp].

Proof. By Definition 5.2.4 we may assume that X < P™ x Y is closed and f is the restriction of
the projection 7: P* x Y — Y. Since X n (P™ x yp) is finite there exists homogeneous coordinates
[Zo,...,Zn] on P™ such that X n (V(Zy) x {yo}) = &. The intersection X n (V(Zy) x Y) is a closed
subset of P" x Y. By Elimination Theory (i.e. Theorem 2.4.2) C' := w(X n (V(Zy) x Y)) is closed in Y.
Hence (Y\C) is an open subset of Y containing yo. Let Yy < (Y\C) be an open affine subset containing
yo. Then X, := X n (P® x Yy) = f~1(Ys) is a closed subset of the affine set P?  x Yy and hence is
affine. It remains to prove that K[X] is finite over K[Y,]. The proof is by induction on n. If n =0
then K[X,] = K[Y%] and there is nothing to prove. Let’s prove the inductive step. Since X is closed
in P x Y, there exist F; € K[X]|[Zo, ..., Zn]a, for i =1,...,r such that

X =V(F,...,F.).
(See Claim 2.3.27.) Since Xy n (V(Zp) x {yo}) is empty we have
V(Fi(yo)(0,Z1,..., Zn)y -, Fr(y0)(0, 21, ..., Zy)) = &.
By Hilbert’s Nullstellensatz, there exists M > 0 such that
(Z1,.. . Zo)M < (Fi(90)(0, Z1, ..., Z0)s - o Fr(10)(0, Z1, ..., Z0)).
It follows (see the proof of Theorem 2.4.2) that, shrinking Y, around yo, we may assume that
zM L ZM e (0, 2y, ..., Zy)s . (0,24, Z). (4.5.1)

(Actually we may arrange so that (4.5.1) holds for the original Yy - but we do not need this). Equa-
tion (4.5.1) gives that there exists

G=ZM 4+ AZ" " . .+ Ay)e(F,...,F), A eK[Yil[Zo,---s Zn1)i-

Thus G|x, = 0: dividing by ZM and setting z; := Z;/Zo, a; = Ai/Z% € Clz1, ..., 2n—1] We get that
* 0 0

M+ a2+ 4 am)|x, = 0. (4.5.2)

Let @ :=[0,...,0,1] € P". The product of projection from @ and Idy,

(P"\{P}) x Y, 2 PPl x Y,
([Zo,...,Zan) > ([Zo,...,anl],p)

is not projective but the restriction of p to X, is projective. In fact locally over open sets of a covering
Ujes Uj of Yy we may embed X, as a closed subset of P! x U; so that p is the restriction of the
projection (P! x U;) — U;. Thus the image p(Xy) is a closed subset of P"~! x Z,. Since the fiber of
p(Xy) — Yy, over yo is finite we may assume (possibly after shrinking Y, and X, ) that p(X,) is affine
(we just proved it). The ring K[X,] is obtained from K[p(X] by adding z,. Equation (4.5.2) gives
that K[X,] is finite over K[p(X]. By the inductive hypothesis K[p(X,] is finite over K[Y,] (possibly
after shrinking K[Y%]): it follows that K[X,] is finite over K[Yy]. O
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Proof of Theorem 4.5.1. Since f is projective it has closed image: thus we may assume that f is sur-
jective. By Lemma 4.5.2 we may assume that X and Y are affine and that K[X] is finite over K[Y].
By surjectivity of f the pull-back defines an inclusion f*: K[Y] — K[X]. We will prove that there
exists an open affine 7 < Y containing ¢ such that f*|4 : K[%] — K[f~1%] is surjective: that will
give that flo : f~1% — % is an isomorphism. Let ¢ := f(p). By Item (1) and the Nullstellensatz we

have
my, =4/ f*m/K[X]. (4.5.3)

Here f*m,K[X] is the ideal of K[X] generated by f*¢ for ) € m,; (we will use similar notation in the
course of the proof). Let m, = (¢1,...,¢,). Item (2) gives that for each 1 < ¢ < n there exist an affine
open U; containing p and ¢; € K[Y] such that (¢; — f*1;)|v, € m>K[U;]. Since f is closed it follows
that there exists a principal open affine Y}, neighborhood of ¢ (thus h € K[Y] with h(q) # 0) such that

(6i — [*0i) |l 1 vy € K[ f7H(Y3)] VI<i<n. (4.5.4)
Let’s prove by “descending induction” on k that
me K[ (Va)] < Ao K[ (Ya)] VI<k (4.5.5)

By (4.5.3) there exists N > 0 such that (4.5.5) holds for &k > N. Let’s prove the “inductive step”: we
assume that (4.5.5) holds with k£ > 2 and we prove that it holds with k replaced by (k —1). Let

o= Lt ... ol emETIK[F (VA (4.5.6)
|L|=k—1

By (4.5.4) we may write ¢; = f*1); +¢; where ¢; € m2K[f~1(Y})] for i = 1,..., n: substituting in (4.5.6)
and invoking the inductive hypothesis we get that ¢ € f*m,K[f~*(Y})]. We have proved (4.5.5). Since
K[f~'(Yn)] = K[Y](#ns) (the localization of K[Y] with respect to the multiplicative system of powers
of f*h) we get that

I = {p e K[fT (V)] | o(p) = 0} = fHrm K[f~(Ya)]- (4.5.7)
Now notice that K[f~1(Y},)] is a finite K[Y}]-module because K[f~1Y] is a finite K[Y]-module. We
will apply Nakayama’s Lemma to the finitely generated K[Y},]-module

M = K[f " (Y)]/F*K[Y3]

and the ideal m,. We claim that M < m,M. In fact since K < f*K[Y}] every element of M is
represented by a € I, (notation as in (4.5.7)) and @ € myM by (4.5.5). By Lemma A.9.2 there exists
¢ € my such that

(1+ @)K[f~'Y] © fFFK[Y4]. (4.5.8)

The open affine Yj,(14,) © Y contains ¢ (because ¢(q) = 0). By (4.5.8) we get that

K[filyh(lﬂp)] = [*K[Yh(14+¢)]-
O

Ezample 4.5.3. Suppose that X < P" is closed irreducible and r € (P™\X). Let H < P" be a hyperplane
not containing r. Projection

X 5 H

p ~— <(prynH
is a projective map with finite fibers. Let p € X and suppose that the projective tangent space T, X
does not contain the line (r,p): then df(p) is injective. Suppose in addition that 7=1(7(p)) = {p}:
by Theorem 4.5.1 we get that 7 is birational onto its image. As long as dim©,(X) < n, and X has
codimension at least 2, there exists a point r such that the two conditions above hold. Iterating we
get that if dim X = m we can choose a projection from a linear space of dimension (n —m — 2) giving
a birational map from ¢: X — Y where Y < P™*! is a hypersurface, and such that ¢ restricts to an
isomorphism from a neighborood of p to a neighborhood of ¢(p).
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