Chapter 4

Tangent space, smooth points

4.1 Introduction

One definition of tangent space of a C^{∞} manifold M at a point $x \in M$ is as the real vector space of derivations of the ring of C^{∞} functions on M centered at x, or of the ring of germs of C^{∞} functions at x. An analogue definition gives the definition of Zariski tangent space of an algebraic variety at a point. One needs to consider the analogue of the ring of germs of C^{∞} functions at the point because if the algebraic variety is complete then global regular functions are locally constant. The advantage of such an abstract definition is that it is intrinsic by definition. On the other hand, we will identify the Zariski tangent space at a point a of a closed subset $X \subset \mathbb{A}^{n}$ with the classical embedded tangent space, defined by the common zeroes of the linear approximations at a of polynomials in a basis of the ideal $I(X)$.

A fundamental difference between quasi projective varieties and smooth manifolds is that the dimension of the tangent space at a point might depend on the point, even for an irreducible variety. The points where the dimension has a local minimum are the so-called smooth points of the variety. Smooth algebraic varieties resemble C^{∞} manifolds, or even more closely complex manifolds.

In fact if the field is \mathbb{C} then a smooth variety has a natural structure of complex manifold and regular maps between complex smooth varieties are holomorphic maps of complex manifolds.

4.2 The local ring of an algebraic variety at a point

Let X be an algebraic variety.
Definition 4.2.1. Let X be an algebraic variety, and let $x \in X$. Let (U, ϕ) and (V, ψ) be couples where U, V are open subsets of X containing x, and $\phi \in \mathbb{K}[U], \psi \in \mathbb{K}[V]$. Then $(U, \phi) \sim(V, \psi)$ if there exists an open subset $W \subset X$ containing x such that $W \subset U \cap V$ and $\phi_{\mid W}=\psi_{\mid W}$.

One checks easily that \sim is an equivalence relation: an equivalence class for the relation \sim is a germ of regular function of X at x. We may define a sum and a product on the set of germs of regular functions of X at x by setting

$$
\begin{equation*}
[(U, \phi)]+[(V, \psi)]:=\left[\left(U \cap V, \phi_{\mid U \cap V}+\psi_{\mid U \cap V}\right)\right], \tag{4.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
[(U, \phi)] \cdot[(V, \psi)]:=\left[\left(U \cap V, \phi_{\mid U \cap V} \cdot \psi_{\mid U \cap V}\right)\right] . \tag{4.2.2}
\end{equation*}
$$

Of course one has to check that the equivalence class of the sum and product is independent of the choice of representatives: this is easy, we leave details to the reader. With these operations, the set of germs of regular functions of X at x is a ring.

Definition 4.2.2. Let X be an algebraic variety and let $x \in X$. The local ring of X at x is the ring of germs of regular functions of X at x, and is denoted $\mathscr{O}_{X, x}$.

Remark 4.2.3. Let X be an algebraic variety, and let $x \in X$. If $V \subset X$ is an open subset containing x then the homomorphism

$$
\begin{array}{ccc}
\mathscr{O}_{V, x} & \xrightarrow{\rho} & \mathscr{O}_{X, x} \tag{4.2.3}\\
{[(U, \varphi)]} & \mapsto & {[(U, \varphi)]}
\end{array}
$$

is an isomorphism. Since there exist many V which are affine, every local ring of a point on an algebraic variety is isomorphic to the local ring of a point on an affine variety.

There is a well-defined surjective homomorphism

$$
\begin{array}{ccc}
\mathscr{O}_{X, x} & \longrightarrow & \mathbb{K} \tag{4.2.4}\\
{[(U, \phi)]} & \mapsto & \phi(x)
\end{array}
$$

As a matter of notation we let $f(x)$ be the value of the above homomorphism on $f=[(U, \phi)]$. We have the natural homomorphism of rings

$$
\begin{array}{ccc}
\mathbb{K}[X] & \xrightarrow{\rho} c & \mathscr{O}_{X, x} \tag{4.2.5}\\
f & \mapsto & {[(X, f)]}
\end{array}
$$

Let $\mathfrak{m}_{x} \subset \mathbb{K}[X]$ be the ideal defined by

$$
\begin{equation*}
\mathfrak{m}_{x}:=\{f \in \mathbb{K}[X] \mid f(x)=0\} \tag{4.2.6}
\end{equation*}
$$

If $f \notin \mathfrak{m}_{x}$ then $\rho(f)$ is invertible: in fact the open subset

$$
\begin{equation*}
X_{f}:=X \backslash V(f) \tag{4.2.7}
\end{equation*}
$$

contains x and $\left[\left(X_{f}, 1 / f\right)\right]$ is the inverse of $\rho(f)$. By the universal property of the ring of fractions (see Proposition A.4.3) there exists a unique homomorphism $\bar{\rho}: \mathbb{K}[X]_{\mathfrak{m}_{x}} \rightarrow \mathscr{O}_{X, x}$ such that $\rho=\bar{\rho} \circ \varphi$, where $\varphi: \mathbb{K}[X] \rightarrow \mathbb{K}[X]_{\mathfrak{m}_{x}}$ is the localization homomorphism.

Proposition 4.2.4. Keep notation as above, and suppose that X is an affine variety. Then

$$
\begin{equation*}
\mathbb{K}[X]_{\mathfrak{m}_{x}} \xrightarrow{\bar{\rho}} \mathscr{O}_{X, x} \tag{4.2.8}
\end{equation*}
$$

is an isomorphism.

Proof. First we prove that $\bar{\rho}$ is injective. Suppose that $\bar{\rho}(f / g)=0$, where $f, g \in \mathbb{K}[X]$ with $g(x) \neq 0$. This means that there exists an open $U \subset X$ containing x such that $f_{\mid U}=0$. Since the principal open affine subsets of X form a basis of the Zariski topology, there exists $h \in \mathbb{K}[X]$ such that $X_{h} \subset U$ and $x \in X_{h}$ (see Example 1.6.5). Thus $h \notin \mathfrak{m}_{x}$ and $h \cdot f=0$: this gives that $f / g=0$.

Next we prove that $\bar{\rho}$ is surjective. Let $f \in \mathscr{O}_{X, x}$. Then is represented by a suitable $\left(X_{h}, \varphi\right)$ where $h \in \mathbb{K}[X]$ does not vanish in x because principal open affine subsets of X form a basis of the Zariski topology. By Example 1.6 .5 we have $\varphi=g / h^{N}$ for suitable $g \in \mathbb{K}[X]$ and exponent N, and hence $f=\left[\left(X_{h}, \varphi\right)\right]=\bar{\rho}\left(g / h^{N}\right)$.

By the above proposition and Proposition A.4.7 we get the following.
Corollary 4.2.5. Let X be an algebraic variety, and let $x \in X$. Then $\mathscr{O}_{X, x}$ is a Noetherian local ring, and the homomorphism in (4.2.4) is the quotient map to its residue field.

We let \mathfrak{m}_{x} be the kernel of (4.2.4), i.e. the ideal of germs of regular functions at x such that $f(x)=0$.

4.3 The Zariski tangent and cotangent space

The homomorphism (4.2.4) equips \mathbb{K} with a structure of $\mathscr{O}_{X, x}$-module. Moreover $\mathscr{O}_{X, x}$ is a \mathbb{K}-algebra. Thus it makes sense to speak of \mathbb{K}-derivations of $\mathscr{O}_{X, x}$ to \mathbb{K}.
Definition 4.3.1. Let X be an algebraic variety, and let $x \in X$. The Zariski tangent space to X at x is $\operatorname{Der}_{\mathbb{K}}\left(\mathscr{O}_{X, x}, \mathbb{K}\right)$, and will be denoted by $\Theta_{x} X$. Thus $\Theta_{x} X$ is an $\mathscr{O}_{X, x}$-module (see Section ??), and since \mathfrak{m}_{x} annihilates every derivation $\mathscr{O}_{X, x} \rightarrow \mathbb{K}$, it is a complex vector space.
Lemma 4.3.2. Let $a \in \mathbb{A}^{n}$. The complex linear map

$$
\begin{array}{clc}
\Theta_{a} \mathbb{A}^{n} & \longrightarrow & \mathbb{K}^{n} \tag{4.3.9}\\
D & \mapsto & \left(D\left(z_{1}\right), \ldots, D\left(z_{n}\right)\right)
\end{array}
$$

is an isomorphism.
Proof. The formal partial derivative $\frac{\partial}{\partial z_{m}}$ defined by (A.8.7) defines an element of $\Theta_{a} \mathbb{A}^{n}$ by the familiar formula

$$
\frac{\partial}{\partial z_{m}}\left(\frac{f}{g}\right)(a):=\frac{\frac{\partial f}{\partial z_{m}}(a) \cdot g(a)-f(a) \cdot \frac{\partial g}{\partial z_{m}}(a)}{g(a)^{2}}
$$

(See Example A.8.3.) Since $\frac{\partial}{\partial z_{m}}\left(z_{j}\right)=\delta_{m j}$, the map in (4.3.9) is surjective.
Let's prove that the map in (4.3.9) is injective. Assume that $D \in \Theta_{X, x}$ is mapped to 0 by the map in (4.3.9), i.e. $D\left(x_{j}\right)=0$ for $j \in\{1, \ldots, n\}$. Let $f, g \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$, with $g(a) \neq 0$. Then

$$
D\left(\frac{f}{g}\right)=\frac{D(f) \cdot g(a)-f(a) \cdot D(g)}{g(a)^{2}}
$$

(See Example A.8.3.) Hence it suffices to show that $D(f)=0$ for every $f \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$. Consider the first-order expansion of f around a i.e. write

$$
\begin{equation*}
f=f(a)+\sum_{i=1}^{n} c_{i}\left(z_{i}-a\right)+R, \quad R \in \mathfrak{m}_{a}^{2} \tag{4.3.10}
\end{equation*}
$$

Since D is zero on constants (because D is a \mathbb{K}-derivation) and $D\left(z_{j}\right)=0$ for all j it follows that $D(f)=D(R)$, and the latter vanishes by Leibniz' rule and the hypothesis $D\left(z_{j}\right)=0$ for all j.

The differential of a regular map at a point of the domain is defined by the usual procedure. Explicitly, let $f: X \rightarrow Y$ be a regular map of quasi projective varieties, let $x \in X$ and $y:=f(x)$. There is a well-defined pull-back homomorphism

$$
\begin{array}{ccc}
\mathscr{O}_{Y, y} & \xrightarrow{f^{*}} & \mathscr{O}_{X, x} \tag{4.3.11}\\
{[(U, \phi)]} & \mapsto & {\left[\left(f^{-1} U, \phi \circ\left(f_{\mid f^{-1} U}\right)\right)\right]}
\end{array}
$$

The differential of f at x is the linear map of complex vector spaces

$$
\begin{array}{ccc}
T_{x} X & \xrightarrow{d f(x)} & T_{y} Y \tag{4.3.12}\\
D & \mapsto & \left(\phi \mapsto D\left(f^{*} \phi\right)\right)
\end{array}
$$

The differential has the customary functorial properties. Explicitly, suppose that we have

$$
X_{1} \xrightarrow{f_{1}} X_{2} \xrightarrow{f_{2}} X_{3}, \quad x_{1} \in X_{1}, \quad x_{2}=f_{1}\left(x_{1}\right) .
$$

Since $\left(f_{2} \circ f_{1}\right)^{*}=f_{1}^{*} \circ f_{2}^{*}$ we have

$$
\begin{equation*}
d\left(f_{2} \circ f_{1}\right)\left(x_{1}\right)=d f_{2}\left(x_{2}\right) \circ d f_{1}\left(x_{1}\right) \tag{4.3.13}
\end{equation*}
$$

Moreover $d \operatorname{Id}_{X}(x)=\operatorname{Id}_{T_{x} X}$ for $x \in X$.

Remark 4.3.3. It follows from the above that if f is an isomorphism, then $d f(x): T_{x} X \rightarrow T_{f(x)} Y$ is an isomorphism, in particular $\operatorname{dim} T_{x} X=\operatorname{dim} T_{y} Y$.

The next result shows how to compute the Zariski tangent space of a closed subset of \mathbb{A}^{n}. Since every point x of an algebraic variety X is contained in an open affine subset U, and $\Theta_{x} X=\Theta_{x} U$ (because restriction defines an identification $\mathscr{O}_{X, x}=\mathscr{O}_{U, x}$), the result allows to compute the Zariski tangent space in general.

Proposition 4.3.4. Let $\iota: X \hookrightarrow \mathbb{A}^{n}$ be the inclusion of a closed subset and $a \in X$. The differential $d \iota(a): \Theta_{a} X \rightarrow \Theta_{a} \mathbb{A}^{n}$ is injective and, identifying $\Theta_{a} \mathbb{A}^{n}$ with \mathbb{K}^{n} via (4.3.9), we have

$$
\begin{equation*}
\operatorname{im} d j(a)=\left\{v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{K}^{n} \left\lvert\, \sum_{i=1}^{n} \frac{\partial f}{\partial z_{i}}(a) \cdot v_{i}=0 \quad \forall f \in I(X)\right.\right\} \tag{4.3.14}
\end{equation*}
$$

Proof. The differential $d \iota(a)$ is injective because the pull-back $\iota^{*}: \mathscr{O}_{\mathbb{A}^{n}, a} \rightarrow \mathscr{O}_{X, a}$ is surjective. Let $D \in \operatorname{Der}_{\mathbb{K}}\left(\mathscr{O}_{X, a}, \mathbb{K}\right)$. If $f \in I(X) \subset \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$, then $d \iota(D)(f)=D\left(\iota^{*} f\right)=D(0)=0$. Hence im $d \iota(a)$ is contained in the right-hand side of (4.3.14). Let's prove that $\operatorname{im} d \iota(a)$ contains the right-hand side of (4.3.14). Let $\widetilde{D} \in \operatorname{Der}_{\mathbb{K}}\left(\mathscr{O}_{\mathbb{A}^{n}, a}, \mathbb{K}\right)$ belong to the right hand side of (4.3.14), i.e. $\widetilde{D}(f)=0$ for all $f \in I(X)$. By Item (3) of Example A.8.3 it follows that $\widetilde{D}\left(\frac{f}{g}\right)=0$ whenever $f, g \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ and $f \in I(X)$ (of course we assume that $g(a) \neq 0$). Thus \widetilde{D} descends to a \mathbb{K}-derivation $D \in \operatorname{Der}_{\mathbb{K}}\left(\mathscr{O}_{X, a}, \mathbb{K}\right)$, and $\widetilde{D}=d \iota_{*}(a)(D)$.

Remark 4.3.5. With the hypotheses of Proposition 4.3.5, suppose that $I(X)$ is generated by f_{1}, \ldots, f_{r}. Then

$$
\operatorname{im} d j(a)=\left\{v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{K}^{n} \left\lvert\, \sum_{i=1}^{n} \frac{\partial f_{k}}{\partial z_{i}}(a) \cdot v_{i}=0 \quad k \in\{1, \ldots, r\}\right.\right\}
$$

In fact, the right hand side of the above equation is equal to the right hand side of (4.3.14), because if $f=\sum_{j=1}^{r} g_{j} f_{j}$, then $\frac{\partial f}{\partial z_{i}}(a)=\sum_{j=1}^{r} g_{j}(a) \frac{\partial f_{j}(a)}{\partial z_{i}}$.
Example 4.3.6. Let $f \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ be a polynomial without multiple factors, i.e. such that $\sqrt{(f)}=$ (f), and let $X=V(f)$. Let $a \in X$; by Remark 4.3.5 Zariski's tangent space to X is the subspace of \mathbb{K}^{n} defined by

$$
\sum_{i=1}^{n} \frac{\partial f}{\partial z_{i}}(a) \cdot v_{i}=0
$$

Hence

$$
\operatorname{dim} \Theta_{a} X= \begin{cases}n-1 & \text { if }\left(\frac{\partial f}{\partial z_{1}}(a), \ldots, \frac{\partial f}{\partial z_{n}}(a)\right) \neq 0 \\ n & \text { if }\left(\frac{\partial f}{\partial z_{1}}(a), \ldots, \frac{\partial f}{\partial z_{n}}(a)\right)=0\end{cases}
$$

Let us show that

$$
\begin{equation*}
X \backslash V\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right) \tag{4.3.15}
\end{equation*}
$$

is an open dense subset of X (it is obviously open, the point is that it is dense), i.e. $\operatorname{dim} \Theta_{a} X=n-1$ for a in an open dense subset of X.

First assume that f is irreducible. First we notice that there exists $i \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\frac{\partial f}{z_{i}} \neq 0 \tag{4.3.16}
\end{equation*}
$$

In fact assume the contrary. It follows that char $\mathbb{K}=p>0$, and that there exists a polynomial $g \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ such that $f=g\left(z_{1}^{p}, \ldots, z_{n}^{p}\right)$. Let $g=\sum_{I} a_{I} z^{I}$, where I runs through a (finite) collection of multiindices. Since \mathbb{K} is algebraically closed, there exists a (unique) p-th root $a_{I}^{1 / p}$. Let
$h=\sum_{I} a_{I}^{1 / p} z^{I}$. Then $f=h\left(z_{1}, \ldots, z_{n}\right)^{p}$ (recall that $\left.(a+b)^{p}=a^{p}+b^{p}\right)$, and this is a contradiction because f is irreducible. This proves that there exists $i \in\{1, \ldots, n\}$ such that (4.3.16) holds.

Reordering the coordinates, we may assume that $i=n$. hence

$$
f=a_{0} z_{n}^{d}+a_{1} z_{n}^{d-1}+\cdots+a_{d}, \quad a_{i} \in \mathbb{K}\left[z_{1}, \ldots, z_{n-1}\right], \quad a_{0} \neq 0, \quad d>0 .
$$

Thus

$$
\frac{\partial f}{z_{n}}=d a_{0} z_{n}^{d-1}+(d-1) a_{1} z_{n}^{d-2}+\cdots+a_{d-1} \neq 0
$$

The degree in z_{n} of f is d, i.e. f has degree d as element of $\mathbb{K}\left[z_{1}, \ldots, z_{n-1}\right]\left[z_{n}\right]$. On the other hand, $\frac{\partial f}{z_{n}}$ is non zero and its degree in z_{n} is strictly smaller than d. Thus $f \nmid \frac{\partial f}{z_{n}}$, and hence the set in (4.3.15) is dense in X (recall that f is irreducible).

In general, let $f=f_{1} \cdots \cdots f_{r}$ be the decomposition of f as product of prime factors. Let $X_{i}=V\left(f_{i}\right)$. Then

$$
X=X_{1} \cup \cdots \cup X_{r}
$$

is the irreducible decomposition of X. As shown above, for each $i \in\{1, \ldots, r\}$

$$
X_{j} \backslash V\left(\frac{\partial f_{j}}{z_{1}}, \ldots, \frac{\partial f_{j}}{z_{n}}\right) \neq \varnothing
$$

Hence there exists $a \in X_{j}$ such that $\frac{\partial f_{j}}{z_{h}}(a) \neq 0$ for a certain $1 \leqslant h \leqslant n$. We may assume in addition that a does not belong to any other irreducible component of X. It follows that

$$
\frac{\partial f}{z_{h}}(a)=\frac{\partial f_{j}}{z_{h}}(a) \cdot \prod_{k \neq j} f_{k}(a) \neq 0
$$

This proves that the open set in(4.3.15) has non empty intersection with every irreducible component of X, and hence is dense in X.

Notice also that if a belongs to more than one irreducible component of X, then all partial derivatives of f vanish at a. In other words, any point in the open dense subset of points a such that $\operatorname{dim} \Theta_{a}=n-1$ belongs to a single irreducible component of X.

The result below shows that the behaviour of the tangent space examined in the above example is typical of what happens in general.
Proposition 4.3.7. Let X be a quasi projective variety. The function

$$
\begin{array}{ccc}
X & \longrightarrow & \mathbb{N} \\
x & \mapsto & \operatorname{dim} \Theta_{x} X \tag{4.3.17}
\end{array}
$$

is Zariski upper-semicontinuous, i.e. for every $k \in \mathbb{N}$

$$
X_{k}:=\left\{x \in X \mid \operatorname{dim} \Theta_{x} X \geqslant k\right\}
$$

is closed in X.
Proof. Since X has an open affine covering, we may suppose that $X \subset \mathbb{A}^{n}$ is closed. Let $I(X)=$ $\left(f_{1}, \ldots, f_{r}\right)$. For $x \in \mathbb{A}^{n}$ let

$$
J\left(f_{1}, \ldots, f_{s}\right)(x):=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{z_{1}}(x) & \cdots & \frac{\partial f_{1}}{z_{n}}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{r}}{z_{1}}(x) & \cdots & \frac{\partial f_{r}}{z_{n}}(x)
\end{array}\right)
$$

be the Jacobian matrix of $\left(f_{1}, \ldots, f_{s}\right)$ at x. By Proposition 4.3 .5 we have that

$$
\begin{equation*}
X_{k}=\left\{x \in X \mid \operatorname{rk} J\left(f_{1}, \ldots, f_{r}\right)(x) \leqslant n-k\right\} . \tag{4.3.18}
\end{equation*}
$$

Given multi-indices $I=\left\{1 \leqslant i_{1}<\ldots<i_{m} \leqslant s\right\}$ and $J=\left\{1 \leqslant j_{1}<\ldots<j_{m} \leqslant n\right\}$ let $J\left(f_{1}, \ldots, f_{s}\right)(x)_{I, J}$ be the $m \times m$ minor of $J\left(f_{1}, \ldots, f_{r}\right)(x)$ with rows corresponding to I and columns corresponding to J (if $m>\min \{r, n\}$ we set $J\left(f_{1}, \ldots, f_{s}\right)(x)_{I, J}=0$). We may rewrite (4.3.18) as

$$
X_{k}=X \cap V\left(\ldots, \operatorname{det} J\left(f_{1}, \ldots, f_{r}\right)(x)_{I, J}, \ldots\right)_{|I|=|J|=n-k+1} .
$$

It follows that X_{k} is closed.
Let X be a quasi projective variety, and let $x \in X$. The cotangent space to X at x is the dual complex vector space of the tangent space $\Theta_{x} X$, and is denoted $\Omega_{X}(x)$:

$$
\begin{equation*}
\Omega_{X}(x):=\left(\Theta_{x} X\right)^{\vee} . \tag{4.3.19}
\end{equation*}
$$

We define a map

$$
\begin{equation*}
\mathscr{O}_{X, x} \xrightarrow{d} \Omega_{X}(x) \tag{4.3.20}
\end{equation*}
$$

as follows. Let $f \in \mathscr{O}_{X, x}$ be represented by (U, ϕ). The codomain of the differential $d \phi(x): \Theta_{x} U \rightarrow$ $\Theta_{\phi(x)} \mathbb{K}$ is identified with with \mathbb{K}, because of the isomorphism in (4.3.9), and hence $d \phi(x) \in\left(\Theta_{x} U\right)^{\vee}$. Since $U \subset Z$ is an open subset containing x, the differential at x of the inclusion map defines an identification $\Theta_{x} U \xrightarrow{\sim} \Theta_{x} X$. Thus $d \phi(x) \in\left(\Theta_{x} X\right)^{\vee}=\Omega_{X}(x)$. One checks immediately that if (V, ψ) is another representative of f then $d \psi(x)=d \phi(x)$. We let

$$
d f(x):=d \phi(x), \quad(U, \phi) \text { any representative of } f
$$

Remark 4.3.8. We equip $\Omega_{X}(x)$ with a structure of $\mathscr{O}_{X, x}$-module by composing the evaluation map $\mathscr{O}_{X, x} \rightarrow \mathbb{K}$ given by (4.2.4) and scalar multiplication of the complex vector-space $\Omega_{Z}(a)$. With this structure (4.3.20) is a derivation over \mathbb{K}.
Remark 4.3.9. Let $f \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ and $a \in \mathbb{A}^{n}$. Then the familiar formula

$$
d f(a)=\sum_{i=1}^{n} \frac{\partial f}{\partial z_{i}}(a) d z_{i}(a)
$$

holds. In fact this follows from the first-order Taylor expansion of f at a :

$$
\begin{equation*}
f=f(a)+\sum_{i=1}^{n} \frac{\partial f}{\partial z_{i}}(a)\left(z_{i}-a_{i}\right)+\sum_{1 \leqslant i, j \leqslant n} m_{i j}\left(z_{i}-a_{i}\right)\left(z_{j}-a_{j}\right), \quad m_{i j} \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right] . \tag{4.3.21}
\end{equation*}
$$

Remark 4.3.10. Let $X \subset \mathbb{A}^{n}$ be closed, and let $a \in X$. Identify $\Theta_{a} \mathbb{A}^{n}$ with \mathbb{K}^{n} via Lemma 4.3.2. By Remark 4.3.9 we have the identification

$$
T_{a} X=\operatorname{Ann}\{d f(a) \mid f \in I(X)\}
$$

Let X be a quasi projective variety, and let $x \in X$. Let $\mathfrak{m}_{x} \subset \mathscr{O}_{X, x}$ be the maximal ideal. By Leibiniz' rule $d \phi(x)=0$ if $\phi \in \mathfrak{m}_{x}^{2}$ (recall that $d: \mathscr{O}_{X, x} \rightarrow \Omega_{X}(x)$ is a derivation over \mathbb{K}). Thus we have an induced \mathbb{K}-linear map

$$
\begin{array}{ccc}
\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2} & \xrightarrow{\delta(x)} & \Omega_{X}(x) \tag{4.3.22}\\
{[\phi]} & \mapsto & d \phi(a)
\end{array}
$$

Proposition 4.3.11. Keep notation as above. Then $\delta(x)$ is an isomorphism of \mathbb{K} vector spaces.
Proof. First we prove that $\delta(x)$ is surjective. If $X=\mathbb{A}^{n}$, surjectivity follows at once from Lemma 4.3.2. In general, we may assume that X is a closed subset of \mathbb{A}^{n}, and surjectivity follows from Proposition 4.3.5.

In order to prove injectivity of $\delta(x)$, we must show that if $\phi \in \mathfrak{m}_{x}$ is such that $d \phi(x)(D)=0$ for all $D \in \Theta_{x} X$, then $\phi \in \mathfrak{m}_{x}^{2}$. We may suppose that X is a closed subset of \mathbb{A}^{n}. In order to avoid confusion,
we let $x=a=\left(a_{1}, \ldots, a_{n}\right)$. Let $(U, f / g)$ be a representative of ϕ, where $f, g \in \mathbb{K}[X]$, and $f(a)=0$, $g(a) \neq 0$. It will suffice to prove that $f \in \mathfrak{m}_{a}^{2}$. Since $0=d \phi(a)=g(a)^{-1} d f(a)$ we have $d f(a)=0$. By Theorem 1.6.2 there exists $\tilde{f} \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ such that $\tilde{f}_{\mid X}=f$. By Proposition 4.3 .5 we may identify $\Theta_{a} X$ with the subspace of $T_{a} \mathbb{K}^{n}=\mathbb{K}^{n}$ given by (4.3.14). By hypothesis $d \tilde{f}(a)(D)=0$ for all $D \in \Theta_{a} X$, i.e.

$$
d \tilde{f}(a) \in \operatorname{Ann}\left(\Theta_{a} X\right) \subset \Omega_{\mathbb{A}^{n}}(x)
$$

By (4.3.14) there exists $h \in I(X)$ such that $d \tilde{f}(a)=d h(a)$. Then $(\tilde{f}-h)_{\mid X}=f$ and $d(\tilde{f}-h)(a)=0$. Thus $(\tilde{f}-h) \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ has vanishing value and differential at a. It follows (first-order Taylor expansion of $\tilde{f}-h$ at a) that

$$
(\tilde{f}-h) \in\left(z_{1}-a_{1}, \ldots, z_{n}-a_{n}\right)^{2}
$$

Since $h \in I(X)$ we get that $f \in \mathfrak{m}_{a}^{2}$.
The following result is an immediate consequence of Corollary A.9.2.
Corollary 4.3.12. Let X be a quasi-projective variety and $p \in X$. Let $f_{1}, \ldots, f_{n} \in \mathscr{O}_{X, p}$ be germs vanishing at p i.e. belonging to the maximal ideal $\mathfrak{m}_{p} \subset \mathscr{O}_{X, p}$, and suppose that $\delta\left(f_{1}\right), \ldots, \delta\left(f_{n}\right)$ generate $\Omega_{X}(p)$. Then f_{1}, \ldots, f_{n} generate the maximal ideal $\mathfrak{m}_{p} \subset \mathscr{O}_{X, p}$.

4.4 Smooth points

Definition 4.4.1. Let X be an algebraic variety, and let $x \in X$. Then X is smooth at x if $\operatorname{dim} \Theta_{x} X=$ $\operatorname{dim}_{x} X$, it is singular at x otherwise. The set of smooth points of X is denoted by $X^{\text {sm }}$. The set of singular points of X is denoted by $\operatorname{sing} X$.

Example 4.4.2. Let $X \subset \mathbb{A}^{n}$ be a hypersurface. By Corollary 3.4.9, the dimension of X is equal to $n-1$, and hence the set of smooth points of X is an open dense subset of X by Example 4.3.6. By the last sentence in Example 4.3.6, X is locally irreducible at any of its smooth points.

The main result of the present section extends the picture for hypersurfaces to the general case.
Theorem 4.4.3. Let X be an algebraic variety. Then the following hold:

1. The set X^{sm} of smooth points of X is an open dense subset of X.
2. For $x \in X$ we have $\operatorname{dim} \Theta_{x} X \geqslant \operatorname{dim}_{x} X$.
3. X is locally irreducible at any of its smooth points, i.e. if X is smooth at a, there is a single irreducible component of X containing a.

We will prove Theorem 4.4.3 at the end of the section. First we go through some preliminary results. Our first result proves a weaker version of Item (1) of Theorem 4.4.3, and proves Item (2) of the same theorem.

Proposition 4.4.4. Let X be an algebraic variety. Then the following hold:

1. The set of smooth points of X contains an open dense subset of X.
2. For $x \in X$ we have $\operatorname{dim} \Theta_{x} X \geqslant \operatorname{dim}_{x} X$.

Proof. Suppose that X is irreducible of dimension d. By Proposition 3.3.12 there is a birational map $g: X \rightarrow Y$, where $Y \subset \mathbb{A}^{d+1}$ is a hypersurface. By Proposition ?? there exist open dense subsets $U \subset X$ and $V \subset Y$ such that g is regular on U, and it defines an isomorphism $f: U \xrightarrow{\sim} V$. By Example 4.4.2, the set of smooth points Y^{sm} of Y is open and dense in Y. Since V is open and dense in Y the intersection $Y^{\mathrm{sm}} \cap V$ is open and dense dense in Y and hence $f^{-1}\left(Y^{\mathrm{sm}} \cap V\right)$ is an open dense subset of X. Since $f^{-1}\left(Y^{\mathrm{sm}} \cap V\right)$ is contained in U^{sm}, we have proved that the set of smooth points
of X contains an open dense subset of X. We have proved that Item (1) holds if X is irreducible. In general, let $X=X_{1} \cup \cdots \cup X_{r}$ be the irreducible decomposition of X. Let

$$
X_{j}^{0}:=\left(X \backslash \bigcup_{i \neq j} X_{i}\right)=\left(X_{j} \backslash \bigcup_{i \neq j} X_{i}\right)
$$

By the result that was just proved, $\left(X_{j}^{0}\right)^{\mathrm{sm}}$ contains an open dense subset of smooth points. Every smooth point of X_{j}^{0} is a smooth point of X, because X_{j}^{0} is open in X. Thus $\bigcup_{i}\left(X_{i}^{0}\right)^{\mathrm{sm}}$ is an open dense subset of X, containing an open dense subset of X. This proves Item (1).

Let us prove Item (2). Let $x_{0} \in X$, and let X_{0} be an irreducible component of X containing x_{0} such that $\operatorname{dim} X_{0}=\operatorname{dim}_{x_{0}} X$. By Item (1) X_{0}^{sm} contains an open dense subset of points x such that $\operatorname{dim} \Theta_{x} X_{0}=\operatorname{dim}_{x} X_{0}$, and hence by Proposition 4.3.7 we have $\operatorname{dim} \Theta_{x} X_{0} \geqslant \operatorname{dim}_{x} X_{0}$ for all $x \in X$. In particular $\operatorname{dim} \Theta_{x_{0}} X_{0} \geqslant \operatorname{dim}_{x_{0}} X_{0}=\operatorname{dim}_{x_{0}} X$. Since $\Theta_{x_{0}} X_{0} \subset \Theta_{x_{0}} X$, it follows that $\operatorname{dim} \Theta_{x_{0}} X \geqslant \operatorname{dim}_{x_{0}} X$.

The next result involves more machinery. We will give an algebraic version of the (analytic) Implicit Function Theorem. The algebraic replacement for the ring of analytic functions defined in a neighborhood of $0 \in \mathbb{A}^{n}$ is the ring $\mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ of formal power series in z_{1}, \ldots, z_{n} with complex coefficients. We have inclusions

$$
\begin{equation*}
\mathbb{K}\left[z_{1}, \ldots, z_{n}\right] \subset \mathscr{O}_{\mathbb{A}^{n}, 0} \subset \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] \tag{4.4.1}
\end{equation*}
$$

(The second inclusion is obtained by developing $\frac{f}{g}$ as convergent power series centered at 0 , where $f, g \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ and $g(0) \neq 0$.) We will need the following elementary results.

Lemma 4.4.5. Let $\mathfrak{m} \subset \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$, $\mathfrak{m}^{\prime} \subset \mathscr{O}_{\mathbb{A}^{n}, 0}$ and $\mathfrak{m}^{\prime \prime} \subset \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ be the ideals generated by z_{1}, \ldots, z_{n} in the corresponding ring. Then for every $i \geqslant 0$ we have $\left(\mathfrak{m}^{\prime \prime}\right)^{i} \cap \mathscr{O}_{\mathbb{A}^{n}, 0}=\left(\mathfrak{m}^{\prime}\right)^{i}$, and $\left(\mathfrak{m}^{\prime}\right)^{i} \cap \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]=\mathfrak{m}^{i}$.

Proof. By induction on i. For $i=0$ the statement is trivially true. The proof of the inductive step is the same in both cases. For definiteness let us show that $\left(\mathfrak{m}^{\prime \prime}\right)^{i+1} \cap \mathscr{O}_{\mathbb{A}^{n}, 0}=\left(\mathfrak{m}^{\prime}\right)^{i+1}$, assuming that $\left(\mathfrak{m}^{\prime \prime}\right)^{i} \cap \mathscr{O}_{\mathbb{A}^{n}, 0}=\left(\mathfrak{m}^{\prime}\right)^{i}$. The non trivial inclusion is $\left(\mathfrak{m}^{\prime \prime}\right)^{i+1} \cap \mathscr{O}_{\mathbb{A}^{n}, 0} \subset\left(\mathfrak{m}^{\prime}\right)^{i+1}$. Assume that $f \in\left(\mathfrak{m}^{\prime \prime}\right)^{i+1} \cap \mathscr{O}_{\mathbb{A}^{n}, 0}$. Then $f \in\left(\mathfrak{m}^{\prime \prime}\right)^{i} \cap \mathscr{O}_{\mathbb{A}^{n}, 0}$, and hence $f \in\left(\mathfrak{m}^{\prime}\right)^{i}$ by the inductive hypothesis. Thus we may write

$$
f=\sum_{|I|} \alpha_{J} z^{J}
$$

where the sum is over all multiindices $J=\left(j_{1}, \ldots, j_{n}\right)$ of weight $|J|=\sum_{s=1}^{n} j_{s}=i$, and $\alpha_{J} \in \mathscr{O}_{\mathbb{A}^{n}, 0}$ for all J. Since $f \in\left(\mathfrak{m}^{\prime \prime}\right)^{i+1}$, we have $\alpha_{J}(0)=0$ for all J. It follows that $\alpha_{J} \in \mathfrak{m}^{\prime}$ for all J, and hence $f \in\left(\mathfrak{m}^{\prime}\right)^{i+1}$.

Proposition 4.4.6 (Formal Implicit Function Theorem). Let $\varphi \in \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$, and suppose that

$$
\begin{equation*}
\varphi=z_{1}+\varphi_{2}+\ldots+\varphi_{d}+\ldots, \quad \varphi_{d} \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]_{d} \tag{4.4.2}
\end{equation*}
$$

Given $\alpha \in \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$, there exists a unique $\beta \in \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ such that

$$
\begin{equation*}
(\alpha-\beta \cdot \varphi) \in \mathbb{K}\left[\left[z_{2}, \ldots, z_{n}\right]\right] . \tag{4.4.3}
\end{equation*}
$$

Proof. Write $\beta=\beta_{0}+\beta_{1}+\ldots+\beta_{d}+\ldots$, where $\beta_{d} \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]_{d}$, and the β_{d} 's are the indeterminates. Expand the product $\beta \cdot \varphi$, and solve for β_{0} by requiring that $\beta \cdot \varphi$ have the same linear term modulo z_{2}, \ldots, z_{n} as α, then solve for β_{1} by requiring that $\beta \cdot \varphi$ have the same quadratic term modulo $\left(z_{2}, \ldots, z_{n}\right)^{2}$ as α, etc. By (4.4.2) there is one and only one solution at each stage.

Corollary 4.4.7. With hypotheses as in Proposition 4.4.7, the natural map $\mathbb{K}\left[\left[z_{2}, \ldots, z_{n}\right]\right] \rightarrow \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] /(\varphi)$ is an isomorphism.

Proposition 4.4.8. Let $f_{1}, \ldots, f_{k} \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ and $a \in \mathbb{A}^{n}$. Suppose that
(i) each f_{i} vanishes at a, and
(ii) the differentials $d f_{1}(a), \ldots, d f_{k}(a)$ are linearly independent.

Then $V\left(f_{1}, \ldots, f_{k}\right)=X \cup Y$, where

1. X, Y are closed in $\mathbb{A}^{n}, a \in X$, while Y does not contain a;
2. X is irreducible of dimension $n-k$, it is smooth at a, and $T_{a}(X)=\operatorname{Ann}\left(\left\langle d f_{1}(a), \ldots, d f_{k}(a)\right\rangle\right)(a s$ subspace of $T_{a} \mathbb{A}^{n}$).

Moreover, there exists a principal open affine set \mathbb{A}_{g}^{n} containing a such that $f_{1 \mid \mathbb{A}_{g}^{n}}, \ldots, f_{k \mid \mathbb{A}_{g}^{n}}$ generate the ideal of $X \cap \mathbb{A}_{g}^{n}$.

Proof. By changing affine coordinates, if necessary, we may assume that $a=0$, and that $d f_{i}(0)=z_{i}$ for $i \in\{1, \ldots, k\}$. Let $J^{\prime} \subset \mathscr{O}_{\mathbb{A}^{n}, 0}$ be the ideal generated by f_{1}, \ldots, f_{k} (to be consistent with our notation, we should write $\left.J^{\prime}=\left(\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{k}\right)\right)\right)$, let $J:=J^{\prime} \cap \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$, and let $J^{\prime \prime} \subset \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ be the ideal generated by f_{1}, \ldots, f_{k}. Lastly, let $I \subset \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ be the ideal generated by f_{1}, \ldots, f_{k}. We claim that

$$
\begin{equation*}
J \cdot g \subset I \subset J \tag{4.4.4}
\end{equation*}
$$

for a suitable $g \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ with $g(0) \neq 0$. In fact, the second inclusion is trivially true. In order to prove the first inclusion, let h_{1}, \ldots, h_{r} be generators of the ideal $J \subset \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$. By definition of J, there exist $a_{i}, g_{i} \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$, for $i \in\{1, \ldots, r\}$, such that $a_{i} \in I, g_{i}(0) \neq 0$, and $h_{i}=\frac{a_{i}}{g_{i}}$. Hence the second inclusion in (4.4.4) holds with $g=g_{1} \cdot \ldots \cdot g_{r}$. This proves (4.4.4), and hence we have $V(J) \subset V(I) \subset(V(J) \cup V(g))$. It follows that, letting $X:=V(J)$, there exists a closed $Y \subset V(g)$ such that

$$
\begin{equation*}
V\left(f_{1}, \ldots, f_{k}\right)=X \cup Y, \quad 0 \notin Y \tag{4.4.5}
\end{equation*}
$$

Let us prove that J is a prime ideal, so that in particular X is irreducible. First, we claim that

$$
\begin{equation*}
J^{\prime \prime} \cap \mathscr{O}_{\mathbb{A}^{n}, 0}=J^{\prime} \tag{4.4.6}
\end{equation*}
$$

The non trivial inclusion to be proved is $J^{\prime \prime} \cap \mathscr{O}_{\mathbb{A}^{n}, 0} \subset J^{\prime}$. Let $f \in J^{\prime \prime} \cap \mathscr{O}_{\mathbb{A}^{n}, 0}$. Then there exist $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ such that $f=\sum_{j=1}^{k} \alpha_{j} f_{j}$. Given $s \in \mathbb{N}$, let α_{j}^{s} be the MacLaurin polynomial of α_{j} of degree s, i.e. such that $\left(\alpha_{j}-\alpha_{j}^{s}\right) \in\left(\mathfrak{m}^{\prime \prime}\right)^{s+1}$, where $\mathfrak{m}^{\prime \prime}$ is as in Lemma 4.4.5. Then

$$
f=\sum_{j=1}^{k} \alpha_{j}^{(s)} f_{j}+\sum_{j=1}^{k}\left(\alpha_{j}-\alpha_{j}^{s}\right) f_{j}
$$

Both addends are in $\mathscr{O}_{\mathbb{A}^{n}, 0}$. In addition, the first addend belongs to J^{\prime}, and the second one belongs to $\left(\mathfrak{m}^{\prime \prime}\right)^{s+1}$. By Lemma 4.4.5, it follows that the second one belongs to $\left(\mathfrak{m}^{\prime}\right)^{s+1}$. Hence $f \in \bigcap_{s=0}^{\infty}\left(I^{\prime}+\right.$ $\left.\left(\mathfrak{m}^{\prime}\right)^{s+1}\right)$. By Corollary A.10.2, it follows that $f \in I^{\prime}$. This proves (4.4.6). By (4.4.6) and the definition of J, we have an inclusion

$$
\mathbb{K}\left[z_{1}, \ldots, z_{n}\right] / J \subset \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] / J^{\prime \prime}
$$

Hence, in order to prove that J is prime, it suffices to show that $\mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] / J^{\prime \prime}$ is an integral domain. In fact we will see that the natural map

$$
\begin{equation*}
\mathbb{K}\left[z_{k+1}, \ldots, z_{n}\right] \longrightarrow \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] / J^{\prime \prime} \tag{4.4.7}
\end{equation*}
$$

is an isomorphism of rings. This follows from the algebraic version of the Implicit Function Theorem, i.e. Proposition 4.4.7. In fact, by Proposition 4.4.7, the natural map $\mathbb{K}\left[\left[z_{2}, \ldots, z_{n}\right]\right] \rightarrow \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] /\left(f_{1}\right)$ is an isomorphism. Let $i \in\{2, \ldots, k\}$. Given the identification $\mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] /\left(f_{1}\right)=\mathbb{K}\left[\left[z_{2}, \ldots, z_{n}\right]\right]$, the image of f_{i} under the quotient map $\mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] \rightarrow \mathbb{K}\left[\left[z_{1}, \ldots, z_{n}\right]\right] /\left(f_{1}\right)$ is an element $z_{i}+f_{i}^{\prime}$, where $f_{i}^{\prime} \in\left(\mathfrak{m}^{\prime \prime}\right)^{2}$ (notation as in Lemma 4.4.5). Iterating, we get that the map in (4.4.7) is an isomorphism of
rings. As explained above, this proves that J is a prime ideal. In particular X is irreducible. Moreover, since $z_{k+1}, \ldots, z_{n} \in \mathbb{K}[X]$, the isomorphism in (4.4.7) shows that $\mathbb{K}(X)$ has transcendence degree $n-k$, i.e. X has dimension $n-k$. Since f_{1}, \ldots, f_{k} vanish on X, and their differentials are linearly independent, it follows that $\operatorname{dim} \Theta_{0}(X) \leqslant(n-k)=\operatorname{dim}_{0} X$. Hence $\operatorname{dim} \Theta_{0}(X)=(n-k)=\operatorname{dim}_{0} X$, by Item (2) of Proposition 4.4.4, i.e. X is smooth at 0 , and $\Theta_{0}(X) \subset \Theta_{0} \mathbb{A}^{n}$ is the annihilator of $d f_{1}(0), \ldots, d f_{k}(0)$. This proves Items (1) and (2). The last statement in the proposition holds with the polynomial g appearing in (4.4.4).

Corollary 4.4.9. Let $X \subset \mathbb{A}^{n}$ be a Zariski closed subset. Let a be a smooth point of X, and let $k=n-\operatorname{dim}_{a} X$. Then following hold:

1. there exist $f_{1}, \ldots, f_{k} \in \mathbb{K}\left[z_{1}, \ldots, z_{n}\right]$ with linerly independent differentials $d f_{1}(a), \ldots, d f_{k}(a)$, and a Zariski open affine subset $U \subset \mathbb{A}^{n}$ containing a, such that $I(X \cap U)=\left(f_{1 \mid U}, \ldots, f_{k \mid U}\right)$;
2. there is a unique irreducible component of X containing a.

Proof. Since X is smooth at a, and $\operatorname{dim}_{a} X=n-k$, there exist $f_{1}, \ldots, f_{k} \in I(X)$ such that $d f_{1}(a), \ldots, d f_{k}(a)$ are linearly independent. Of course $X \subset V\left(f_{1}, \ldots, f_{k}\right)$. By Proposition 4.4.9 there is a unique irreducible component of $V\left(f_{1}, \ldots, f_{k}\right)$ containing a, call it Y, and $\operatorname{dim} Y=n-k$. Every irreducible component of X containing a is contained in Y. Since $\operatorname{dim}_{a} X=n-k$, there exists (at least) one irreducible component of X containing a of dimension $n-k$. Let X^{\prime} be such an irreducible component; by Proposition 3.4.8, $X^{\prime}=Y$. It follows that there is a single component of X containing a, and it is equal to the unique irreducible component of $V\left(f_{1}, \ldots, f_{k}\right)$ containing a. Hence the corollary follows from Proposition 4.4.9.

Proof of Theorem 4.4.3. Item (2) has been proved in Proposition 4.4.4. Item (3) follows at once from Corollary 4.4.9, because X is covered by open affine subset.

In order to prove Item (1), let $X=\bigcup_{i \in I} X_{i}$ be the irreducible decomposition of X. Since X is covered by open affine subset, Corollary 4.4.9 gives that

$$
\begin{equation*}
X^{\mathrm{sm}} \subset X \backslash \bigcup_{\substack{i, j \in I \\ i \neq j}}\left(X_{i} \cap X_{j}\right) \tag{4.4.8}
\end{equation*}
$$

The right hand side of (4.4.8) is an open dense subset of X. Let X_{i}^{0} be an irreducible component of the right hand side of (4.4.8). Thus $X_{i}^{0} \subset X_{i}$ is the complement of the intersection of X_{i} with the other irreducible componets of X. The set of smooth points of X_{i}^{0} is non empty by Proposition 4.4.4, and it is open by upper semicontinuity of the dimension of $\Theta_{x} X$ (Proposition 4.3.7), because $\operatorname{dim}_{x} X$ is independent of $x \in X_{i}^{0}$. Hence X^{sm} is an open dense subset of the open dense subset of X given by the right hand side of (4.4.8), and hence is open and dense in X.

4.5 Criterion for local invertibility of regular maps

In the present subsection we prove the following analogue, in the category of quasi-projective varieties, of the local invertibility results valid for C^{∞} or holomorphic maps.

Theorem 4.5.1. Let $f: X \rightarrow Y$ be a projective map of quasi-projective sets. Let $p \in X$ and suppose that the following hold:

1. $f^{-1}(f(p))=\{p\}$.
2. $d f(p): \Theta_{p} X \rightarrow \Theta_{f(p)} Y$ is injective.

Then there exists an open $U \subset Y$ containing $f(p)$ such that the restriction of f to $f^{-1}(U)$ is an isomorphism to a closed subset of U.

Before proving Theorem 4.5.1 we give some preliminary result. Let $\varphi: A \rightarrow B$ be a homomorphism of rings. By setting $a \cdot b:=\varphi(a) b$ we equip B with a structure of A-module: we say that B is finite over A if it is a finitely generated A-module. Let X, Y be affine varieties, and let $f: X \rightarrow Y$ be a regular map; the pull back $f^{*}: \mathbb{K}[Y] \rightarrow \mathbb{K}[X]$ is a homomorphism of rings, hence (with f understood) it makes sense to state that $\mathbb{K}[X]$ is finite over $\mathbb{K}[Y]$.

Lemma 4.5.2. Let $f: X \rightarrow Y$ be a projective map of quasi projective varieties. Let $y_{0} \in Y$ and suppose that $f^{-1}\left(y_{0}\right)$ is finite. There exists an open affine $Y_{0} \subset Y$ containing y_{0} such that $X_{0}:=f^{-1}\left(Y_{0}\right)$ is affine and $\mathbb{K}\left[X_{0}\right]$ is finite over $\mathbb{K}\left[Y_{0}\right]$.

Proof. By Definition 5.2 .4 we may assume that $X \subset \mathbb{P}^{n} \times Y$ is closed and f is the restriction of the projection $\pi: \mathbb{P}^{n} \times Y \rightarrow Y$. Since $X \cap\left(\mathbb{P}^{n} \times y_{0}\right)$ is finite there exists homogeneous coordinates $\left[Z_{0}, \ldots, Z_{n}\right]$ on \mathbb{P}^{n} such that $X \cap\left(V\left(Z_{0}\right) \times\left\{y_{0}\right\}\right)=\varnothing$. The intersection $X \cap\left(V\left(Z_{0}\right) \times Y\right)$ is a closed subset of $\mathbb{P}^{n} \times Y$. By Elimination Theory (i.e. Theorem 2.4.2) $C:=\pi\left(X \cap\left(V\left(Z_{0}\right) \times Y\right)\right)$ is closed in Y. Hence $(Y \backslash C)$ is an open subset of Y containing y_{0}. Let $Y_{*} \subset(Y \backslash C)$ be an open affine subset containing y_{0}. Then $X_{*}:=X \cap\left(\mathbb{P}^{n} \times Y_{*}\right)=f^{-1}\left(Y_{*}\right)$ is a closed subset of the affine set $\mathbb{P}_{Z_{0}}^{n} \times Y_{*}$ and hence is affine. It remains to prove that $\mathbb{K}\left[X_{*}\right]$ is finite over $\mathbb{K}\left[Y_{*}\right]$. The proof is by induction on n. If $n=0$ then $\mathbb{K}\left[X_{*}\right]=\mathbb{K}\left[Y_{*}\right]$ and there is nothing to prove. Let's prove the inductive step. Since X_{*} is closed in $\mathbb{P}^{n} \times Y_{*}$ there exist $F_{i} \in \mathbb{K}\left[X_{*}\right]\left[Z_{0}, \ldots, Z_{n}\right]_{d_{i}}$ for $i=1, \ldots, r$ such that

$$
X_{*}=V\left(F_{1}, \ldots, F_{r}\right) .
$$

(See Claim 2.3.27.) Since $X_{*} \cap\left(V\left(Z_{0}\right) \times\left\{y_{0}\right\}\right)$ is empty we have

$$
V\left(F_{1}\left(y_{0}\right)\left(0, Z_{1}, \ldots, Z_{n}\right), \ldots, F_{r}\left(y_{0}\right)\left(0, Z_{1}, \ldots, Z_{n}\right)\right)=\varnothing
$$

By Hilbert's Nullstellensatz, there exists $M>0$ such that

$$
\left(Z_{1}, \ldots, Z_{n}\right)^{M} \subset\left(F_{1}\left(y_{0}\right)\left(0, Z_{1}, \ldots, Z_{n}\right), \ldots, F_{r}\left(y_{0}\right)\left(0, Z_{1}, \ldots, Z_{n}\right)\right)
$$

It follows (see the proof of Theorem 2.4.2) that, shrinking Y_{*} around y_{0}, we may assume that

$$
\begin{equation*}
Z_{1}^{M}, \ldots, Z_{n}^{M} \in\left(F_{1}\left(0, Z_{1}, \ldots, Z_{n}\right), \ldots, F_{r}\left(0, Z_{1}, \ldots, Z_{n}\right)\right) \tag{4.5.1}
\end{equation*}
$$

(Actually we may arrange so that (4.5.1) holds for the original Y_{*} - but we do not need this). Equation (4.5.1) gives that there exists

$$
G=\left(Z_{n}^{M}+A_{1} Z_{n}^{M-1}+\ldots+A_{M}\right) \in\left(F_{1}, \ldots, F_{r}\right), \quad A_{i} \in \mathbb{K}\left[Y_{*}\right]\left[Z_{0}, \ldots, Z_{n-1}\right]_{i} .
$$

Thus $\left.G\right|_{X_{*}}=0$: dividing by Z_{0}^{M} and setting $z_{i}:=Z_{i} / Z_{0}, a_{i}=A_{i} / Z_{0}^{i} \in \mathbb{C}\left[z_{1}, \ldots, z_{n-1}\right]$ we get that

$$
\begin{equation*}
\left.\left(z_{n}^{M}+a_{1} z_{n}^{M-1}+\ldots+a_{M}\right)\right|_{X_{*}}=0 \tag{4.5.2}
\end{equation*}
$$

Let $Q:=[0, \ldots, 0,1] \in \mathbb{P}^{n}$. The product of projection from Q and $\operatorname{Id}_{Y_{*}}$

$$
\begin{array}{ccc}
\left(\mathbb{P}^{n} \backslash\{P\}\right) \times Y_{*} & \xrightarrow{\rho} & \mathbb{P}^{n-1} \times Y_{*} \\
\left(\left[Z_{0}, \ldots, Z_{n}\right], p\right) & \mapsto & \left(\left[Z_{0}, \ldots, Z_{n-1}\right], p\right)
\end{array}
$$

is not projective but the restriction of ρ to X_{*} is projective. In fact locally over open sets of a covering $\bigcup_{j \in J} U_{j}$ of Y_{*} we may embed X_{*} as a closed subset of $\mathbb{P}^{1} \times U_{j}$ so that ρ is the restriction of the projection $\left(\mathbb{P}^{1} \times U_{j}\right) \rightarrow U_{j}$. Thus the image $\rho\left(X_{*}\right)$ is a closed subset of $\mathbb{P}^{n-1} \times Z_{*}$. Since the fiber of $\rho\left(X_{*}\right) \rightarrow Y_{*}$ over y_{0} is finite we may assume (possibly after shrinking Y_{*} and X_{*}) that $\rho\left(X_{*}\right)$ is affine (we just proved it). The ring $\mathbb{K}\left[X_{*}\right]$ is obtained from $\mathbb{K}\left[\rho\left(X_{*}\right]\right.$ by adding z_{n}. Equation (4.5.2) gives that $\mathbb{K}\left[X_{*}\right]$ is finite over $\mathbb{K}\left[\rho\left(X_{*}\right]\right.$. By the inductive hypothesis $\mathbb{K}\left[\rho\left(X_{*}\right]\right.$ is finite over $\mathbb{K}\left[Y_{*}\right]$ (possibly after shrinking $\left.\mathbb{K}\left[Y_{*}\right]\right)$: it follows that $\mathbb{K}\left[X_{*}\right]$ is finite over $\mathbb{K}\left[Y_{*}\right]$.

Proof of Theorem 4.5.1. Since f is projective it has closed image: thus we may assume that f is surjective. By Lemma 4.5 .2 we may assume that X and Y are affine and that $\mathbb{K}[X]$ is finite over $\mathbb{K}[Y]$. By surjectivity of f the pull-back defines an inclusion $f^{*}: \mathbb{K}[Y] \hookrightarrow \mathbb{K}[X]$. We will prove that there exists an open affine $\mathscr{U} \subset Y$ containing q such that $\left.f^{*}\right|_{\mathscr{U}}: \mathbb{K}[\mathscr{U}] \hookrightarrow \mathbb{K}\left[f^{-1} \mathscr{U}\right]$ is surjective: that will give that $\left.f\right|_{\mathscr{U}}: f^{-1} \mathscr{U} \rightarrow \mathscr{U}$ is an isomorphism. Let $q:=f(p)$. By Item (1) and the Nullstellensatz we have

$$
\begin{equation*}
\mathfrak{m}_{p}=\sqrt{f * \mathfrak{m}_{q} \mathbb{K}[X]} . \tag{4.5.3}
\end{equation*}
$$

Here $f^{*} \mathfrak{m}_{q} \mathbb{K}[X]$ is the ideal of $\mathbb{K}[X]$ generated by $f^{*} \phi$ for $\psi \in \mathfrak{m}_{q}$ (we will use similar notation in the course of the proof). Let $\mathfrak{m}_{p}=\left(\phi_{1}, \ldots, \phi_{n}\right)$. Item (2) gives that for each $1 \leqslant i \leqslant n$ there exist an affine open U_{i} containing p and $\psi_{i} \in \mathbb{K}[Y]$ such that $\left.\left(\phi_{i}-f^{*} \psi_{i}\right)\right|_{U_{i}} \in \mathfrak{m}_{p}^{2} \mathbb{K}\left[U_{i}\right]$. Since f is closed it follows that there exists a principal open affine Y_{h} neighborhood of q (thus $h \in \mathbb{K}[Y]$ with $\left.h(q) \neq 0\right)$ such that

$$
\begin{equation*}
\left.\left(\phi_{i}-f^{*} \psi_{i}\right)\right|_{f^{-1}\left(Y_{h}\right)} \in \mathfrak{m}_{p}^{2} \mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right] \quad \forall 1 \leqslant i \leqslant n . \tag{4.5.4}
\end{equation*}
$$

Let's prove by "descending induction" on k that

$$
\begin{equation*}
\mathfrak{m}_{p}^{k} \mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right] \subset f^{*} \mathfrak{m}_{q} \mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right] \quad \forall 1 \leqslant k \tag{4.5.5}
\end{equation*}
$$

By (4.5.3) there exists $N>0$ such that (4.5.5) holds for $k \geqslant N$. Let's prove the "inductive step": we assume that (4.5.5) holds with $k \geqslant 2$ and we prove that it holds with k replaced by $(k-1)$. Let

$$
\begin{equation*}
\varphi=\sum_{|L|=k-1} c_{L} \phi_{1}^{l_{1}} \ldots \phi_{n}^{l_{n}} \in \mathfrak{m}_{p}^{k-1} \mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right] . \tag{4.5.6}
\end{equation*}
$$

By (4.5.4) we may write $\phi_{i}=f^{*} \psi_{i}+\epsilon_{i}$ where $\epsilon_{i} \in \mathfrak{m}_{p}^{2} \mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right]$ for $i=1, \ldots, n$: substituting in (4.5.6) and invoking the inductive hypothesis we get that $\varphi \in f^{*} \mathfrak{m}_{q} \mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right]$. We have proved (4.5.5). Since $\mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right]=\mathbb{K}[Y]_{\left(f * h^{s}\right)}$ (the localization of $\mathbb{K}[Y]$ with respect to the multiplicative system of powers of $\left.f^{*} h\right)$ we get that

$$
\begin{equation*}
I_{p}:=\left\{\varphi \in \mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right] \mid \varphi(p)=0\right\}=f^{*} \mathfrak{m}_{q} \mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right] \tag{4.5.7}
\end{equation*}
$$

Now notice that $\mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right]$ is a finite $\mathbb{K}\left[Y_{h}\right]$-module because $\mathbb{K}\left[f^{-1} Y\right]$ is a finite $\mathbb{K}[Y]$-module. We will apply Nakayama's Lemma to the finitely generated $\mathbb{K}\left[Y_{h}\right]$-module

$$
M:=\mathbb{K}\left[f^{-1}\left(Y_{h}\right)\right] / f^{*} \mathbb{K}\left[Y_{h}\right]
$$

and the ideal \mathfrak{m}_{q}. We claim that $M \subset \mathfrak{m}_{q} M$. In fact since $\mathbb{K} \subset f^{*} \mathbb{K}\left[Y_{h}\right]$ every element of M is represented by $\alpha \in I_{p}$ (notation as in (4.5.7)) and $\bar{\alpha} \in \mathfrak{m}_{q} M$ by (4.5.5). By Lemma A.9.2 there exists $\varphi \in \mathfrak{m}_{q}$ such that

$$
\begin{equation*}
(1+\varphi) \mathbb{K}\left[f^{-1} Y_{h}\right] \subset f^{*} \mathbb{K}\left[Y_{h}\right] \tag{4.5.8}
\end{equation*}
$$

The open affine $Y_{h(1+\varphi)} \subset Y$ contains q (because $\varphi(q)=0$). By (4.5.8) we get that

$$
\mathbb{K}\left[f^{-1} Y_{h(1+\varphi)}\right]=f^{*} \mathbb{K}\left[Y_{h(1+\varphi)}\right]
$$

Example 4.5.3. Suppose that $X \subset \mathbb{P}^{n}$ is closed irreducible and $r \in\left(\mathbb{P}^{n} \backslash X\right)$. Let $H \subset \mathbb{P}^{n}$ be a hyperplane not containing r. Projection

$$
\begin{array}{ccc}
X & \xrightarrow{m} & H \\
p & \mapsto & \langle p, r\rangle \cap H
\end{array}
$$

is a projective map with finite fibers. Let $p \in X$ and suppose that the projective tangent space $\mathbf{T}_{p} X$ does not contain the line $\langle r, p\rangle$: then $d f(p)$ is injective. Suppose in addition that $\pi^{-1}(\pi(p))=\{p\}$: by Theorem 4.5.1 we get that π is birational onto its image. As long as $\operatorname{dim} \Theta_{p}(X)<n$, and X has codimension at least 2 , there exists a point r such that the two conditions above hold. Iterating we get that if $\operatorname{dim} X=m$ we can choose a projection from a linear space of dimension $(n-m-2)$ giving a birational map from $\varphi: X \rightarrow Y$ where $Y \subset \mathbb{P}^{m+1}$ is a hypersurface, and such that φ restricts to an isomorphism from a neighborood of p to a neighborhood of $\varphi(p)$.

