
Chapter 3

Rational maps, dimension and degree

3.1 Introduction

3.2 Rational maps

Let X,Y be algebraic varieties. We define a relation on the set of couples pU,'q where U Ä X is open
dense and ' : U Ñ Y is a regular map as follows: pU,'q „ pV, q if the restrictions of ' and  to U XV

are equal. Then „ is an equivalence relation. In fact reflexivity and symmetry are trivially true. To
prove transitivity suppose that pU,'q „ pV, q and pV, q „ pW,µq. Then the restrictions of ' and µ to
U XV XW are equal. Since V is open dense in X, the intersection U XV XW is (open) dense in U XW .
Since X is separable it follows that the restrictions of ' and µ to U XW are equal, i.e. pU,'q „ pW,µq.

Definition 3.2.1. A rational map f : X 99K Y is a „-equivalence class of couples pU,'q where U Ä X

is open dense and ' : U Ñ Y is a regular map.

1. The map f is regular at x P X (equivalently x is a regular point of f), if there exists pU,'q in the
equivalence class of f such that x P U . We let Regpfq Ä X be the set of regular points of f . By
definition Regpfq is an open subset of X.

2. The indeterminancy set of f is Indpfq :“ XzRegpfq (notice that Indpfq is closed). A point x P X

is a point of indeterminancy if it belongs to Indpfq.

Example 3.2.2. If f : X Ñ Y is a regular map, we may consider f as a rational map represented by
pX, fq.

Example 3.2.3. Let X be an algebraic variety, and let U Ä X be open. Let ◆ : U ãÑ X be the inclusion
map. Then pU, ◆q represents a rational map f : X 99K U (note that f goes in the “wrong” direction).
Clearly Regpfq “ U .

Example 3.2.4. Let V be a finitely generated vector space and let rv0s P PpV q. Let U – pPpV qztrv0suq.
We assume that dimV • 2, and hence U is open dense in PpV q. The map

U
'99K PpV {xv0yq

rws fiÑ rws

where w is the equivalence class of w, is regular. Hence pU,'q represents a rational map f : PpV q 99K
PpV {xv0yq, which is called the projection from rv0s. If dimV “ 2 then ' is constant and hence ' is
regular. If dimV ° 2 then the regular locus of ' is equal to U .

From now on we will consider only rational maps between irreducible algebraic varieties. Let
f : X 99K Y and g : Y 99K W be rational maps between (irreducible) algebraic varieties. It might
happen that for all x P Regpfq the image fpxq does not belong to Regpgq, and hence the composi-
tion g ˝ f makes no sense. In order to deal with compositions of rational maps, we give the following
definition.
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3. Rational maps, dimension and degree

Definition 3.2.5. A rational map f : X 99K Y between irreducible algebraic varieties is dominant if it
is represented by a couple pU,'q such that 'pUq is dense in Y .

Remark 3.2.6. Let f : X 99K Y be a dominant rational map between irreducible algebraic varieties. If
pV, q is an arbitrary representative of f then  pV q is dense in Y . In fact by definition f is represented
by a couple pU,'q such that 'pUq is dense in Y . Replacing V by V XU (which is open dense in X) we
may assume that V Ä U , and hence  “ '|V . Suppose that  pV q is not dense in Y , i.e. there exists a
proper closed W à Y containing  pV q. Since '´1

pW q Ä U is closed and it contains the dense subset
V Ä U , it is equal to U . Thus 'pUq Ä W , and this is a contradiction.

Let X,Y,W be irreducible algebraic varieties. Let

X
g99K Y

f99K W (3.2.1)

be dominant rational maps, represented by pU,'q and pV, q respectively. Since 'pUq is dense in Y ,
'pUq X V is non empty and hence '´1

pV q is non empty. Since '´1
pV q is open and X is irreducible, it

follows that '´1
pV q is dense in X.

Definition 3.2.7. Keeping notation as above, the composition f ˝g is the rational mapX 99K W repres-
ented by p'

´1
pV q, ˝'q. (The equivalence class of p'

´1
pV q, ˝'q is independent of the representatives

pU,'q and pV, q.)

Definition 3.2.8. A dominant rational map f : X 99K Y between irreducible algebraic varieties is
birational if there exists a dominant rational map g : Y 99K X such that g ˝ f “ IdX and f ˝ g “ IdY .
An irreducible algebraic variety X is rational if it is birational to Pn for some n, it is unirational if
there exists a dominant rational map f : Pn 99K X.

Example 3.2.9. Of course isomorphic irreducible quasi projective varieties are birational. Example 3.2.3
is a slightly less trivial instance of birational map. The inclusion map ◆ : U ãÑ X has rational inverse
the map f : X 99K U of Example 3.2.3.

Example 3.2.10. Let V be a K vector space of dimension n` 1. Suppose that P : V Ñ K is a quadratic
form of rank at least 3, i.e. kerP has codimension at least 3 (recall that kerP Ä V is the subspace of
vectors u such that P pu ` vq “ P pvq for all v P V ). Then P is not the product of linear functions and
hence Q – V pP q Ä PpV q is an irreducible quadric. Let rv0s P pQzPpkerP qq. The restriction of the
projection from rv0s (see Example 3.2.4) is a rational map

Q
f99K PpV {xv0yq. (3.2.2)

We claim that f is birational, and hence Q is rational. The reason is the following. First note that by
associating to a line PpW q Ä PpV q containing rv0s the element W {xv0y of PpV {xv0yq we get a bijection
between the set of lines containing rv0s and PpV {xv0yq. Thus we view the latter as parametrizing lines
through rv0s. An open dense subset of lines through rv0s intersect Q in rv0s and another point (because
P has degree 2). Thus for an open dense U Ä PpV {xv0yq we may define a map U Ñ Q by associating to
the line ⇤ P U the unique point in ⇤XQ other than rv0s. This is a regular map U Ñ Q defining a rational
map g : PpV {xv0yq 99K Q which is the rational inverse of f . More explicitly: in suitable coordinates
Z0, . . . , Zn we have v0 “ p0, 0, . . . , 0, 1q and F “ Z0Zn ´ G, where 0 �“ G P KrZ0, . . . , Zn´1s2. Then

Q
f99K Pn´1

rZ0, . . . , Zns fiÑ rZ0, . . . , Zn´1s

and
Pn´1 g99K Q

n´1

rT0, . . . , Tn´1s fiÑ rT
2
0 , T0T1, . . . , T0Tn´1, GpT0, . . . , Tn´1qs

Notice that if n “ 2, then f and g are regular (see Example 1.5.9). If n • 3 then neither f nor g is
regular. Moreover the quadric Q is not isomorphic to Pn´1. We cannot prove this now in general. For
K “ C and n “ 3 you may show that Q Ä P3

pCq with the Euclidean topology is not homeomorphic to
P2

pCq with the Euclidean topology, and hence they are not isomorphic as algebraic varieties.
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3.2. Rational maps

Proposition 3.2.11. Irreducible algebraic varieties X, Y are birational if and only if there exist open
dense subsets U Ä X and V Ä Y that are isomorphic.

Proof. An isomorphism ' : U
„

›Ñ V clearly defines a birational map f : X 99K Y . To prove the converse,
let

X
g99K Y

f99K X (3.2.3)

be birational inverse maps. Let pU,'q represent g and pV, q represent f . Then '´1
pV q and  ´1

pUq

are open dense subsets of U and V respectively. By hypothesis the composition

 ˝
`
'|'´1pV q

˘
: '´1

pV q Ñ U

is equal to the identity on an open non-empty subset of '´1
pV q. By separability of X we get that

 ˝
`
'|'´1pV q

˘
“ Id'´1pV q. In particular  ˝ '

`
'

´1
pV q

˘
Ä U , i.e. '

`
'

´1
pV q

˘
Ä  

´1
pUq. Similarly

' ˝
`
 | ´1pUq

˘
“ Id ´1pUq,  

`
 

´1
pUq

˘
Ä '

´1
pV q.

Thus the restrictions of ' and  define regular maps '´1
pV q

„
›Ñ  

´1
pUq and  

´1
pUq

„
›Ñ '

´1
pV q

which are inverse of each other.

Example 3.2.12. Let f, g be the birational maps in Example 3.2.10. Assume that n • 3, so that both
non regular. Then

Regpfq “ Qztr0, 0, . . . , 0, 1su, Regpgq “ Pn´1
zV pT0, GpT0, . . . , Tn´1qq. (3.2.4)

On the other hand open dense subsets which are isomorphic are strictly smaller than the regular loci.
In fact f defines an isomorphism

QzV pZ0q
„

›Ñ Pn´1
zV pT0q. (3.2.5)

If X,Y are algebraic varieties defined over a subfield F Ä K, then one defines the notion of rational
map f : X 99K Y defined over F by considering equivalence classes of couples pU,'q where U Ä X is an
open subset defined over F and ' : U Ñ Y is defined over F . As a consequence we have the notion of
algebraic varieties defined over F which are birational over F . In particular we have the notion of an
algebraic varieties defined over F which is rational over F .

Example 3.2.13. Let V0 be an F vector space of dimension n ` 1, and let P0 : V0 Ñ F be a quadratic
form of rank at least 3. Let V – V0 bF K and let P : V Ñ K be the quadratic form obtained from
P0 by extending scalars. Then Q – V pP q is a quadric defined over F . We claim that Q is rational
over F if and only if QpF qzPpkerP0q is not empty. In fact suppose that there exists a birational map
from a projective Pm (for some m) space to Q, and hence a regular dominant map ' : U Ñ Q where
U Ä Pm is open dense. There are plenty of points in U defined over F and their images are points
in QpF q. Moreover not all of these rational points are contained in PpkerP0q because ' is dominant.
Hence QpF qzPpkerP0q is non empty. On the other hand, if there exists a point rv0s in pQpF qzPpkerP0qq,
then the procedure described in Example 3.2.10 gives a birational map f : Q 99K PpV {xv0yq defined over
F . In fact this holds because we can choose coordinates Z0, . . . , Zn for V0 such that v0 “ p0, 0, . . . , 0, 1q

and F “ Z0Zn ´ G, where 0 �“ G P F rZ0, . . . , Zn´1s2.

Many natural invariants of complete algebraic varieties do not separate between birational varieties.
This fact gives practical criteria that allow to establish that couples of complete varieties are not
birational. On the other hand, it leads one to approach the classification of isomorphism classes of
complete (or projective) varieties in two steps: first one classifies equivalence classes for birational
equivalence, then one distinguishes isomorphim classes within each birational equivalence class.
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3. Rational maps, dimension and degree

3.3 The field of rational functions

If X is an a�ne variety then one can reconstruct X from the ring KrXs of regular functions on X.
Actually there is a contravariant equivalence between the category of a�ne varieties and the category
of finitely generated K algebras with no non zero nilpotents, see Section 1.8. On the other hand if X is
proper then, since every regular function is locally constant, the ring KrXs gives very little information
about X (unless X is a finite set, i.e. a�ne). One gets a rich algebraic object by associating to
an irreducible algebraic variety the field of rational functions. From this field one reconstructs the
algebraic variety modulo birational maps.

LetX be an irreducible algebraic variety. A rational function on X is a rational mapX 99K Kp“ A1
q.

We define addition and multiplication of rational functions on X by adding and multiplying regular
representatives. Let f, g : X 99K K be represented by pU,'q and pV, q respectively. Then

f ` g :“ r
`
U X V,'|UXV `  |UXV

˘
s,

f ¨ g :“ r
`
U X V,'|UXV ¨  |UXV

˘
s.

The definition makes sense because changing representatives of f and g we get equivalent couples. We
claim that with the above operations the set of rational functions on X is a field. It is obvious that it
is a ring. To check that every non zero element has a multiplicative inverse let f : X 99K K be a non
zero rational function. Then f “ rpU,'qs where ' �“ 0. Thus V p'q Ä U is a proper closed subset and
therefore U

0 – pUzV p'qq is open dense in X. Then g – rpU
0
,'

´1
qs is the multiplicative inverse of f .

Definition 3.3.1. Let X be an irreducible algebraic variety. The field of rational functions on X is
the set of rational functions on X with the above operations. It is denoted by KpXq.

Remark 3.3.2. Let X be an irreducible algebraic variety. We have a canonical embedding K ãÑ KpXq

as the subfield of constant functions.

Remark 3.3.3. Let X be an irreducible algebraic variety. Let U Ä X be a dense open subset. The map

KpUq
↵

›Ñ KpXq

rpV,'qs fiÑ rpV,'qs
(3.3.6)

is an isomorphism of extensions of K, i.e. it is an isomorphism of fields and the composition K ãÑ
KpUq

↵
›Ñ KpXq, where the first map is the the canonical embedding, equals the canonical embedding

K ãÑ KpXq. In particular KpXq is isomorphic (as extension of K) to the field of rational functions of
any of its dense open a�ne subsets.

The field of rational functions of an irreducible a�ne variety is isomorphic to the field of fractions
of its ring of regular functions. To see this, first note that if X is an irreducible algebraic variety we
have an inclusion of K extensions:

(field of fractions of KrXs) ãÑ KpXq
↵

�
fiÑ rpXzV p�q,

↵

�
qs

(3.3.7)

Claim 3.3.4. Let X be an a�ne irreducible variety. Then (3.3.7) is an isomorphism.

.

Proof. We must prove that the map in (3.3.7) is surjective. Let f P KpXq, and let pU,'q represent f .
By Example 1.6.5, there exists 0 �“ � P KrXs such that the dense principal open subset X� is contained
in U . Moreover, by Example 1.6.5 and Theorem 1.6.2, KrXf s is generated as K-algebra by KrXs and
�

´1, hence � is represented by pX� ,
↵

�m q where ↵ P KrXs. Let � :“ �
m. Since X� “ X� , we have

proved that f belongs to the image of (3.3.7).

Example 3.3.5. By Claim 3.3.4 the field KpAn
q is the field of fractions of Krz1, . . . , zns, i.e. Kpz1, . . . , znq.

By Remark 3.3.3 we also have KpPn
q – Kpz1, . . . , znq.
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3.3. The field of rational functions

Remark 3.3.6. If X is an irreducible algebraic variety then KpXq is finitely generated over K. In fact
by Remark 3.3.3 we may replace X by a dense open a�ne Y Ä X. Then KpY q is the field of quotients
of KrY s by Claim 3.3.4. Let Y Ä An as a closed subset. By Theorem 1.6.2 the restriction of coordinate
functions z1|X , . . . , zn|X generate KrY s as K-algebra and hence they generate KpY q as extension of K.
In particular we can extract a transendence basis of KpY q from z1|X , . . . , zn|X .

Let f : X 99K Y be a dominant rational map of irreducible algebraic varieties. Since f is dominant
the pull-back map

KpY q
f

˚
›Ñ KpXq

' fiÑ ' ˝ f

is well defined. The map f
˚ is an inclusion of fields and if K ãÑ KpY q is the canonical inclusion then

the composition K ãÑ KpY q
'

˚
›Ñ KpXq is the canonical inclusion. Thus f˚ is a morphism of extensions

of K. Suppose that f : X 99K Y and g : Y 99K W are dominant rational maps of irreducible algebraic
varieties. Then g ˝ f : X 99K W is dominant and

f
˚

˝ g
˚

“ pg ˝ fq
˚
. (3.3.8)

Of course Id˚
X
: KpXq Ñ KpXq is the identity map. This gives a contravariant functor

RAT {K ›Ñ FGF {K
X fiÑ KpXq

X
f99K Y fiÑ f

˚
(3.3.9)

where RAT {K is the category whose objects are irreducible algebraic varieties and FGF {K is the
category of finitely generated field extensions of K (with morphisms the morphisms as extensions of K).

Proposition 3.3.7. The functor in (3.3.9) is an equivalence between the category of irreducible algeb-
raic varieties with homomorphisms dominant rational maps and the category of finitely generated field
extensions of K.

Proposition 3.3.7 follows from Proposition 3.3.8, which proves that the functor in (3.3.9) is essentially
surjective, and Proposition 3.3.9, which proves that it is fully faithful.

Proposition 3.3.8. Let E be a finitely generated field extension of K. There exist an irreducible
algebraic variety X and an isomorphisms of E

„
›Ñ KpXq of extensions of K.

Proof. Let m be the transcendenece degree of E over K. By Corollary A.5.9, there exist a prime
polynomial P P Kpz1, . . . , zmqrzm`1s and an isomorphism of extensions of K

E
„

›Ñ Kpz1, . . . , zmqrzm`1s{pP q. (3.3.10)

Write
P “ z

d

m`1 ` c1z
d´1
m`1 ` ¨ ¨ ¨ ` cd, ci P K pz1, . . . , zmq .

Then, for i P t1, . . . , du, we have ci “
ai
bi

where ai, bi P Krz1, . . . , zms and bi �“ 0. Let rP P Krz1, . . . , zm`1s

be obtained from P by clearing denominators, i.e. rP “ pb1 ¨ . . . ¨bdqP . Lastly, let Q P Krz1, . . . , zm`1s be
obtained from rP by factoring out the maximum common divisor of the coe�cients of rP as polynomial
in zm`1 (recall that Krz1, . . . , zms is a UFD). Notice that Q is irreducible and hence prime. Write

Q “ e0z
d

m`1 ` e1z
d´1
m`1 ` ¨ ¨ ¨ ` ed, ei P Krz1, . . . , zms, e0 �“ 0.

ThenX :“ V pQq Ä Am`1 is an irreducible hypersurface becauseQ is prime. Because of the isomorphism
in (3.3.10) it su�ces to prove that there is an isomorphism of extensions of K

Kpz1, . . . , zmqrzm`1s{pP q
„

›Ñ KpXq. (3.3.11)
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3. Rational maps, dimension and degree

Let zi :“ zi|X . We claim that the rational functions on X represented by tz1, . . . , zmu are algebra-
ically independent over K. In fact, suppose that R P Krt1, . . . , tms and Rpz1, . . . , znq “ 0. By the
fundamental Theorem of Algebra, for any p⇠1, . . . , ⇠mq P pAm

zV pe0qq there exists ⇠m`1 P K such that
p⇠1, . . . , ⇠m, ⇠m`1q P X. It follows that Rp⇠1, . . . , ⇠mq “ 0 for all p⇠1, . . . , ⇠mq P pAn

zV pe0qq, and hence
R ¨ e0 vanishes identically on Am. Thus R ¨ e0 “ 0, and since e0 �“ 0 it follows that R “ 0. This
proves that tz1, . . . , zmu are algebraically independent over K. On the other hand zm`1 is algebraic
over Kpz1, . . . , zmq and its minimal polynomial equals P . Thus by mapping zi to zi for i P t1, . . . , n`1u

(and mapping K to K by the identity map) we get an isomorphism of extensions of K as in (3.3.11).

Proposition 3.3.9. Let X and Y be irreducible algebraic varieties, and let ↵ : KpY q ãÑ KpXq is an
inclusion of extensions of K. There exists a unique dominant rational map f : X 99K Y such that
f

˚
“ ↵.

Proof. By remark 3.3.3 we may assume that X Ä An and Y Ä Am are closed. Hence by Claim 3.3.4
KpXq, KpY q are the fields of fractions of KrXs and KrY s respectively. By Theorem 1.6.2, KrXs “

Krz1, . . . , zns{IpXq and KrY s “ Krw1, . . . , wms{IpY q. Given p P Krz1, . . . , zns and q P Krw1, . . . , wms

we let p :“ p|X and q :“ q|Y . We have

↵ pwiq “
f
i

g
i

, fi, gi P Krz1, . . . , zns, g
i

‰ 0.

Let U :“ XzpV pg1q Y . . . Y V pgmqq. Then U is open and dense in X. Let

U
r'

›Ñ Am

a fiÑ

´
f1paq
g1paq , . . . ,

fmpaq
gmpaq

¯

We claim that r'pUq Ä Y . In fact let h P IpY q. Since ↵ is an inclusion of extensions of K,

hpf1{g1, . . . , fm
{g

m
q “ hp↵pw1q, . . . ,↵pwmqq “ ↵phpw1, . . . , wmqq “ ↵p0q “ 0.

This proves that if h P IpY q then h vanishes on r'pUq, i.e. r'pUq Ä Y . Thus r� induces a regular map
' : U Ñ Y . If b P KrY s Ä KpY q then

'
˚

pbq P KrU s Ä KpUq “ KpXq

is equal to ↵pbq. It follows that if b �“ 0 then '˚
pbq �“ 0. Thus ' is dominant. Let f : X 99K Y be the

equivalence class of pU,�q. Then f
˚

“ ↵.
Moreover it is clear from the above construction that f is the unique rational (dominant) map such

that f˚
“ ↵.

The result below follows at once from what has been proved above.

Corollary 3.3.10. Irreducible algebraic varieties are birational if and only if their fields of rational
functions are isomorphic as extensions of K.

Example 3.3.11. Let p P Krzs be free of square factors (and deg p • 1). Then t
2

´ ppzq is prime and
hence X :“ V

`
t
2

´ ppzq
˘

Ä A2 is irreducible. Thus we have the extensions of fields KpXq Å Kpzq Å K
where the top extension is algebraic of degree 2. Then X is rational if and only if KpXq is a purely
trascendental extension of K. If deg p “ 1 then KpXq is a purely trascendental extension of K because
it is generated (over K) by t. Similarly it is a purely trascendental extension of K if deg p “ 2 by
Example 1.5.9. If deg p • 3 then X is not rational (the proof of this fact this requires new ideas) and
hence KpXq is not a purely trascendental extension of K.

The result below follows from the above corollary and the proof of Proposition ??.

Proposition 3.3.12. Let X be an irreducible algebraic variety and let m :“ Tr. degK KpXq. Then X

is birational to an irreducible hypersurface in Am`1.
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3.4. Dimension

3.4 Dimension

Definition 3.4.1. 1. The dimension of an irreducible algebraic variety X is the transcendence de-
gree of KpXq over K.

2. Let X be an arbitrary quasi projective variety, and let X “ X1Y¨ ¨ ¨YXr be its irreducible decom-
position. The dimension of X is the maximum of the dimensions of its irreducible components.
We say that X has pure dimension n if every irreducible component of X has dimension n.

3. Let p P X. The dimension of X at p is the maximum of the dimensions of the irreducible
components of X containing p.

Remark 3.4.2. The dimension of an irreducible algebraic variety X is equal to the dimension of any
open dense subset U Ä X. In fact, by definition it su�ces to prove it for irreducible X, and in that
case it holds because the fields of rational functions KpXq and KpUq are isomorphic extensions of K.

Example 3.4.3. The dimension of An and of Pn is equal to n. In fact KpAn
q “ KpPn

q “ Kpz1, . . . , znq,
and tz1, . . . , znu is a transcendence basis of Kpz1, . . . , znq over K.

Example 3.4.4. The dimension of Grph, V q is equal to h ¨ pdimV ´ hq, because it is irreducible and it
contains an open dense subset isomorphic to an a�ne space of dimension h ¨ pdimV ´hq (actually many
such subsets), see Exercise 2.6.3.

Example 3.4.5. Let X Ä An`1 be a hypersurface. We claim that X has pure dimension n. Since the
irreducible components of X are hypersurfaces, in fact the zero loci of the prime factors of f , it su�ces
to show that if X is an irreducible hypersurface then it has dimensjon n. Let IpXq “ pfq. Reordering
the coordinates pz1, . . . , zn, zn`1q we may assume that

f “ c0z
d

n`1 ` c1z
d´1
n`1 ` ¨ ¨ ¨ ` cd, ci P Krz1, . . . , zns, c0 ‰ 0, d ° 0. (3.4.1)

For i P t1, . . . , n ` 1u let zi – zi|X . In the proof of Proposition 3.3.8 we showed that z1, . . . , zn are
algebraically independent in KpXq. Since KpXq is generated over K by z1, . . . , zn, zn`1 and since zn`1

is algebraic over the subfield generated by z1, . . . , zn it follows that z1, . . . , zn is transcendence basis
of KpXq over K. Similarly, a hypersurface in Pn`1 has pure dimension n. (Intersect with Pn

Zi
for

i P t0, 1, . . . , n ` 1u.)

Remark 3.4.6. An algebraic variety has dimension 0 if and only if it is a finite set.

Remark 3.4.7. If f : X 99K Y is a dominant map of irreducible algebraic varieties then dimX • dimX

because we have the inclusion f
˚ : KpY q ãÑ KpXq of field extensions of K.

Proposition 3.4.8. Let X be an irreducible algebraic variety and let Y Ä X be a proper closed subset.
Then dimY † dimX.

Proof. We may assume that Y is irreducible. Since X is covered by open a�ne varieties, we may assume
that X is a�ne. Thus we may assume that X Ä An. Thus Y is also closed in An. We may choose a
transcendence basis tf1, . . . , fdu of KpY q, where each fi is a regular function on Y , see Remark 3.3.6.

Let f̃1, . . . , f̃d P KrXs such that f̃i|W “ fi. Since Y is a proper closed subset of X, there exists a

non zero g P KrXs such that g|Y “ 0. It su�ces to prove that f̃1, . . . , f̃d, g are algebraically independent
over. We argue by contradiction. Suppose that there exists 0 ‰ P P KrS1, . . . , Sd, T s such that
P pf̃1, . . . , f̃d, gq “ 0. Since X is irreducible we may assume that P is irreducible. Restricting to Y

the equality P pf̃1, . . . , f̃d, gq “ 0, we get that P pf1, . . . , fd, 0q “ 0. Thus P pS1, . . . , Sd, 0q “ 0, because
f1, . . . , fd are algebraically independent. This means that T divides P . Since P is irreducible P “ cT ,
c P K˚. Thus P pf̃1, . . . , f̃d, gq “ 0 reads g “ 0, and that is a contradiction.

Corollary 3.4.9. A (non empty) closed subset X Ä An`1 has pure dimension n if and only if it
is a hypersurface. Similarly, a closed subset X Ä Pn`1 has pure dimension n if and only if it is a
hypersurface.
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Proof. If X Ä An`1 is a hypersurface then it has pure dimension n, see Eaxmple 3.4.1.
In order to prove the converse, suppose that X Ä An`1 is a closed subset of pure dimension n.

Thus every irreducible component of X is a closed subset of An`1 of dimension n. Since the union of
hypersurfaces in An`1 is a hypersurface in An`1, it su�ces to prove that each irreducible component of
X is a hypersurface. Thus we may assume that X is irreducible. Since dimX “ n † dimAn`1, there
exists a non zero f P IpXq Ä Krz1, . . . , zn`1s. Since X is irreducible, the ideal IpXq is prime, and hence
there exists a prime factor g of f which vanishes on X. Thus X Ä V pgq and V pgq is irreducible. By
Example 3.4.1 we have dimV pgq “ n, and hence dimX “ dimV pgq. Since X is closed it follows from
Proposition 3.4.8 that X “ V pgq. This finishes the proof for closed subsets of An`1.

The result for closed subsets of Pn`1 follows by a smilar proof, or by intersecting with the standard
open a�ne subsets Pn

Zi
for i P t0, . . . , n ` 1u.

Proposition 3.4.10. Let X, Y be algebraic varieties. Then dimpX ˆ Y q “ dimX ` dimY .

Proof. We may assume that X and Y are irreducible a�ne varieties. There exist transcendence bases
tf1, . . . , fdu, tg1, . . . , geu of KpXq and KpY q respectively given by regular functions. Let ⇡X : XˆY Ñ X

and ⇡Y : X ˆ Y Ñ Y be the projections. We claim that t⇡
˚
X

pf1q, . . . ,⇡
˚
X

pfdq,⇡
˚
Y

pg1q, . . . ,⇡
˚
Y

pgequ is a
transcendence basis of KpX ˆ Y q.

First, by Proposition 2.3.6KrXˆY s is algebraic over the subring generated (overK) by ⇡˚
X

pf1q, . . . ,⇡
˚
Y

pgeq.
Secondly, let us show that ⇡˚

X
pf1q, . . . ,⇡

˚
Y

pgeq are algebraically independent. Suppose that there is
a polynomial relation

ÿ

0§m1,...,me§N

Pm1,...,mep⇡
˚
X

pf1q, . . . ,⇡
˚
X

pfdqq ¨ ⇡
˚
Y

pg1q
m1 ¨ . . . ¨ ⇡

˚
Y

pgeq
me “ 0,

where each Pm1,...,me is a polynomial. Since g1, . . . , ge are algebraically independent we get that
Pm1,...,mepf1paq, . . . , fdpaqq “ 0 for every a P X. Since f1, . . . , fd are algebraically independent, it
follows that Pm1,...,me “ 0 for every 0 § m1, . . . ,me § N , and hence P “ 0. This proves that
⇡

˚
X

pf1q, . . . ,⇡
˚
Y

pgeq are algebraically independent.

3.5 Dimension and intersection

3.5.1 Closed subsets of Pn
: dimension and intersection with linear subspaces

Let X Ä Pn be a hypersurface. Thus X “ V pF q where F P KrZ0, . . . , Znsd with d ° 0 and F �“ 0. Let
⇤ “ PpUq be a linear subspace of Pn, i.e. U Ä Kn`1 is a K vector subspace. Then ⇤ X X “ V pF|U q. It
follows that if dim⇤ • 1 then ⇤ has non empty intersection with X. If, on the other hand, dim⇤ “ 0
i.e. ⇤ is a point, then ⇤ X X is empty for all points in the dense open subset Pn

zX. An analogous
characterization of the dimension of a closed subset of Pn holds in general. In order to formulate the
relevant result we introduce a definition and a classical piece of terminology.

Definition 3.5.1. Let X be an irreducible algebraic variety, and let Y Ä X be a closed subset. The
codimension of Y in X is equal to dimX ´ dimY , and is denoted by codpY,Xq.

Terminology 3.5.2. Let X be an algebraic variety, and let P be a property that each point of X
might or might not have (formally “the subset of points of X having the property P”). Then a general
point of X has property P if there is a dense open subset of X of points having property P.

Proposition 3.5.3. Let X Ä Pn be closed.

(a) Let k † codpX,Pn
q. Then for a general ⇤ P Grpk,Pn

q we have ⇤ X X “ H (i.e. there exists a
dense open U Ä Grpk,Pn

q such that ⇤ X X “ H for all ⇤ P U).

(b) Let ⇤ Ä Pn be a linear subspace such that dim⇤ • codpX,Pn

Cq. Then ⇤ X X ‰ H.

The proof of Proposition 3.5.3 is given after a few preliminary results.
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Definition 3.5.4. Let X Ä Pn be closed. For k P t0, . . . , nu let �Xpkq Ä X ˆ Grpk,Pn
q be given by

�Xpkq “ tpp,⇤q P X ˆ Grpk,Pn
q | p P ⇤u .

Proposition 3.5.5. Let X Ä Pn be closed. The following hold:

(a) �Xpkq is closed in X ˆ Grpk,Pn
q

(b) dim�Xpkq “ dimX ` kpn ´ kq.

(c) If X is irreducible then �Xpkq is irreducible.

Proof. Let us show that �Pnpkq is closed. Let A – pai,jq P Mk`1,n`1pKq be a matrix of maximal rank,
i.e. of rank k ` 1. Thus the rows of A span a subspace UA Ä Kn`1 of dimension k ` 1, and hence
PpUAq P Grpk,Pn

q. Let rZs P Pn. Then prZs,PpUAqq P �Pnpkq if and only if the pk ` 2q ˆ pn` 1q matrix
obtained by adding the row Z to A has rank less than k ` 2, i.e. if and only if for all 0 § j0 † j1 †

. . . † jk`1 § pn ` 1q we have

Det

»

—————–

Xj0 Xj1 . . . . . . Xjk`1

a0,j0 a0,j1 . . . . . . a0,jk`1

a1,j0 a1,j1 . . . . . . a1,jk`1

...
...

...
. . .

...
ak,j0 ak,j1 . . . . . . ak,jk`1

fi

�����fl
“ 0

Expanding the determinant on the left hand side we get that prZs,PpUAqq P �Pnpkq if and only if

k`1ÿ

s“0

pj0,j1,...,jk`1Xjs “ 0 (3.5.1)

for all 0 § j0 † j1 † . . . † jk`1 § pn ` 1q, where r. . . , pj0,j1,...,jk`1 , . . .s are the Plücker coordinates of

PpUAq (see Exercise 2.6.4) with respect to the basis of
ô

k`1 Kn`1 associated to the standard basis of
Kn`1. This proves that �Pnpkq is closed.

Now we show that �Xpkq is closed for X Ä Pn closed. Let ⇡ : Pn
ˆGrpk,Pn

q Ñ Pn be the projection.
Then �Xpkq “ ⇡

´1
pXq X �Pnpkq. Since X is closed in Pn and ⇡ is regular ⇡´1

pXq is closed in Pn
ˆ

Grpk,Pn
q and hence �Xpkq is closed in Pn

ˆ Grpk,Pn
q because �Pnpkq is closed. Of course this gives

that �Xpkq is closed in X ˆ Grpk,Pn
q. This finishes the proof of Item (a).

Next we note that if X “ X1 Y ¨ ¨ ¨ Y Xr is the irreducible decomposition of X then

�Xpkq “ �X1pkq Y ¨ ¨ ¨ Y �Xr pkq. (3.5.2)

From this we get that it su�ces to prove that (b) and (c) hold for X irreducible. For i P t0, . . . , nu we
have the isomorphism

XZi ˆ Grpk,Kn
q

↵i
›Ñ �Xpkq X pPn

Zi
ˆ Grpk,Pn

qq

pp,W q fiÑ pp, p ` W q
(3.5.3)

where W is a k-dimensional vector subspace of Kn viewed as the vector space acting on the a�ne space
Pn

Zi
» An, and p ` W denotes the closure in Pn of the a�ne subspace p ` W Ä Pn

Zi
» An. Suppose

that �Xpkq X pPn

Zi
ˆ Grpk,Pn

qq is non empty. Then by the isomorphism in (3.5.3) it is irreducible, and

dim
`
�Xpkq X pPn

Zi
ˆ Grpk,Pn

qq
˘

“ dimXZi ˆGrpk,Kn
q “ dimX `dimGrpk,Kn

q “ dimX `kpn´kq.

(See Exercise 3.8.2 for the dimension of Grpk,Kn
q.) Thus �Xpkq is covered by the open non empty

irreducible subsets �Xpkq X pPn

Zi
ˆGrpk,Pn

qq. Since any two (non empty) such subsets have non empty
intersection (because X is irreducible), Items (b) and (c) follow.
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Corollary 3.5.6. Let X Ä Pn be closed. If k § codpX,Pn
q then

dim�Xpkq § dimGrpk,Pn
q, (3.5.4)

and equality holds if and only if k “ codpX,Pn
q.

Proof. By Exercise 3.8.2 we have

dimGrpk,Pn
q “ n ´ k ` kpn ´ kq. (3.5.5)

The corollary follows at once from the above equality and Proposition 3.5.5.

Proposition 3.5.7. Let X Ä Pn be closed. Suppose that p P Pn
zX and that H Ä Pn is a hyperplane

not containing p. Let

pPn
ztpuq

⇡p
›Ñ H

q fiÑ xp, qy X H

be projection from p. Then ⇡ppXq is a closed subset of H and dim⇡ppXq “ dimX.

Proof. We may assume that X is irreducible. Since ⇡p|X is regular and X is projective ⇡ppXq is closed.
It remains to prove that dim⇡ppXq “ dimX. We may assume that p “ r0, . . . , 0, 1s and H “ V pXnq.
We have

⇡pprZ0, . . . , Znsq “ rZ0, . . . , Zn´1s.

Let Y :“ ⇡ppXq. The map ⇡p defines a regular surjective map ⇢ : X Ñ Y between irreducible (pro-
jective) varieties. We have the injection of fields ⇢˚ : KpY q ãÑ KpXq. It su�ces to prove that KpXq is
algebraic over ⇢˚KpY q.

One of V pZ0q, . . . , V pZn´1q does not contain Y , say V pZ0q, and hence KpY q is generated over K by

pZ1{Z0q|Y , . . . , pZn´1{Z0q|Y .

On the other hand KpXq is generated by

pZ1{Z0q|X “ ⇢
˚

ppZ1{Z0q|Y q , . . . , pZn´1{Z0q|X “ ⇢
˚

ppZn´1{Z0q|Y q

and pZn{Z0q|X . There exists F P IpXq such that F ppq ‰ 0 because p R X. Since p “ r0, . . . , 0, 1s we
get that

F “ a0Z
d

n
` a1Z

d´1
n

` ¨ ¨ ¨ ` ad, ai P KrZ0, . . . , Zn´1si, a0 ‰ 0. (3.5.6)

Dividing by Z
d

0 and restricting to X we get that

a0 ¨ ppZn{Z0q|Xq
d

` a1 ¨ ppZn{Z0q|Xq
d´1

` ¨ ¨ ¨ ` ad “ 0

where for 0 § j § d

aj :“ paj{Z
j

0q|X P K p⇢
˚

ppZ1{Z0q|Y q , . . . , ⇢
˚

ppZn´1{Z0q|Y qq . (3.5.7)

Since a0 ‰ 0 this proves that pZn{Z0q|X is algebraic over ⇢˚KpY q.

Proof of Proposition 3.5.3. By considering an irreducible component of X of maximum dimension we
may assume that X is irreducible (see (3.5.2)). Let ⇢ : �Xpkq Ñ Grpk,Pn

q be the restriction of the
projection map Pn

ˆ Grpk,Pn
q Ñ Grpk,Pn

q. Then ⇤ P Grpk,Pn
q has non empty intersection with X if

and only if it belongs to imp⇢q. The map ⇢ is closed because �Xpkq is projective, hence imp⇢q is closed.
Moreover imp⇢q is irreducible because X is irreducible. Thus ⇢ defines a dominant map �Xpkq Ñ imp⇢q

of irreducible varieties. It follows that dimpimp⇢qq § �Xpkq. Now suppose that k † codpX,Pn
q. By

Corollary 3.5.6 we get that dimpimp⇢qq † dimGrpk,Pn
q and hence Grpk,Pn

qz imp⇢q is an open dense
subset of dimGrpk,Pn

q. Item (a) follows because any ⇤ P pGrpk,Pn
qz imp⇢qq does not intersect X.
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3.5. Dimension and intersection

Next we prove Item (b). The proof is by induction on codpX,Pn
q. If codpX,Pn

q “ 0 the result is
trivial (if you don’t like to start from codpX,Pn

q “ 0 you may begin from codpX,Pn
q “ 1, i.e. X is a

hypersurface). Let’s prove the inductive step. Let p P ⇤. If p P X there is nothing to prove; thus we
may assume that p R X. Choose a hyperplane H Ä Pn not containing p and let ⇡p be projection from p

to H as in (3.7.1). Then ⇡ppXq Ä H » Pn´1 is closed because X is projective, and dim⇡ppXq “ dimX

by Proposition 3.5.7. Thus
codp⇡ppXq,Pn´1

q “ codpX,Pn
q ´ 1. (3.5.8)

Let ⇤ :“ ⇡p⇤z tpuq “ ⇤ X H. Thus ⇤ Ä H is a linear subspace and dim⇤ “ pdim⇤ ´ 1q. By the
equality in (3.5.8) it follows that dim⇤ • codp⇡ppXq,Pn´1

q. Hence ⇤ X ⇡ppXq is non empty by the
inductive hypothesis. Let q P ⇤ X ⇡ppXq. Since q P ⇡ppXq there exists q̃ P X such that ⇡ppq̃q “ q. But
q̃ P ⇤ because q P ⇤. Thus q̃ P X X ⇤.

3.5.2 Dimension of intersections

The result below is a remarkable generalization of the well-known result in linear algebra stating that
the set of solutions of a system of m homogeneous linear equations in n • m unknowns has dimension
at least n ´ m.

Proposition 3.5.8. Let X,Y Ä Pn be closed and suppose that pdimX ` dimY q • n. Then X X Y is
non empty and it has dimension at least dimX ` dimY ´ n. If X and Y are irreducible then each of
the irreducible components of X X Y has dimension at least dimX ` dimY ´ n.

Remark 3.5.9. It is clear that one needs the hypothesis that X,Y be closed for the thesis of Proposi-
tion 3.5.8 to hold. The hypothesis that the ambient algebraic variety is Pn is also a key hypothesis. As
soon as one replaces Pn by other complete algebraic varieties the thesis fails to hold. As a test consider
replacing Pn by a product of projective spaces, or by a Grassmannian.

We prove Proposition 3.5.8 after going through a series of preliminary results. The result below
proves the special case of Proposition 3.5.8 that one gets by letting Y be a hyperplane.

Proposition 3.5.10. Let X Ä Pn be closed, irreducible of strictly positive dimension. Let H Ä Pn a
hyperplane not containing X. Then X XH is non empty and it has pure dimension equal to dimX ´1.

Proof. Since X X H à X we have dimX X H † dimX by Proposition 3.4.8. Let c :“ codpX,Pn
q. Let

⇤ Ä H be a linear subspace such that dim⇤ “ c. Note that such subspaces exist because by hypothesis
c § pn ´ 1q “ dimH. By Proposition 3.5.3 applied to X Ä Pn we have ⇤ X X ‰ H, and since ⇤ Ä H

we have ⇤ X X Ä ⇤ X pX X Hq. This proves that X X H is non empty and also, by Proposition 3.5.3,
that codpX X H,Hq § c. The latter inequality gives that

dimpX X Hq • dimH ´ c “ n ´ 1 ´ c “ dimX ´ 1. (3.5.9)

This proves that X X H is non empty and dimpX X Hq “ dimX ´ 1.
The proposition states that in addition X X H has pure dimension. This result is not needed for

the proof of Proposition 3.5.8, but is very important. The proof is by induction on codpX,Pn
q. If

codpX,Pn
q “ 0 then X “ Pn and the statement of the proposition is trivially true. If codpX,Pn

q “ 1
then X is a hypersurface by Corollary 3.4.9, hence X X H is a hypersurface in H and hence every
irreducible component of X XH has codimension one in H by Corollary 3.4.9. This proves the validity
of the proposition if codpX,Pn

q “ 1. Now we prove the inductive step. Assume that codpX,Pn
q “ c • 2.

Let Y be an irreducible component of X XH. Pick a point p P HzX and a hyperplane L not containing
p and di↵erent from H. Let

Pn
ztpu

⇡p
›Ñ L

q fiÑ xp, qy X L

be the projection from p. Let H0 – ⇡ppHztpuq. Note that H0 Ä L is a hyperplane. We consider
⇡ppXq X H0. Let X X H “ Y Y Y1 Y ¨ ¨ ¨ Y Yr be the irreducible decomposition of X X H. We have

⇡ppXq X H0 “ ⇡ppY q Y ⇡ppY1q Y . . . Y ⇡ppYrq,
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3. Rational maps, dimension and degree

and, since p R X, each of ⇡ppY q,⇡ppY1q, . . . ,⇡ppYrq is closed by Proposition 3.5.7. We claim that there
exists p such that

⇡ppY q Ç ⇡ppYiq @i P t1, . . . , ru. (3.5.10)

In fact let q P Y z
î

r

i“1 Yi. By Claim 3.5.12 Jpq, Yiq is closed, irreducible, and

dim Jpq, Yiq “ dimYi ` 1. (3.5.11)

Since dimYi § dimX ´ 1 and since codpX,Pn
q • 2 we have dimYi § dimH ´ 2. Thus (3.5.11) gives

that Jpq, Yiq ‰ H. Hence there exists

p P Hz

r§

i“1

Jpq, Yiq. (3.5.12)

For such a p the statement in (3.5.10) holds, and hence ⇡ppY q is an irreducible component of ⇡ppXqXH0.
By the inductive hypothesis we get that dim⇡ppY q “ dim⇡ppXq ´ 1. Since dim⇡ppY q “ dimY and

dim⇡ppXq “ dimX (by Proposition 3.5.7) we are done.

Let X,Y Ä PN be two closed subsets. Let xXy Ä PN and xY y Ä PN be the linear subspaces
generated by X and Y respectively.

Definition 3.5.11. Suppose that
xXy X xY y “ H. (3.5.13)

The join JpX,Y q of X and Y is the subset of PN swept out by the lines joining a point of X to a point
of Y , i.e.

JpX,Y q :“
§

pPX,qPY
xp, qy. (3.5.14)

Claim 3.5.12. Let X,Y Ä PN be closed and assume that (3.5.13) holds.

1. JpX,Y q is closed in PN .

2. If X and Y are irreducible then JpX,Y q is irreducible.

3. dim JpX,Y q “ dimX ` dimY ` 1.

Proof. Let m :“ dimxXy and n :“ dimxY y. There exist homogeneous coordinates

rS0, . . . , Sm, T0, . . . , Tn, U0, . . . , Ups

on PN such that xXy “ trS0, . . . , Sm, 0, . . . , 0su and xY y “ tr0, . . . , 0, T0, . . . , Tn, 0, . . . , 0su. Then

JpX,Y q “ trS0, . . . , Sm, T0, . . . , Tn, 0, . . . , 0s | rS0, . . . , Sms P X, rT0, . . . , Tns P Y u. (3.5.15)

Item (1) follows at once.
Let r P pJpX,Y qzXzY q. By (3.5.13) there is unique couple p'1prq,'2prqq P X ˆ Y such that

r P x'1prq,'2prqy. Thus we have a map

pJpX,Y qzXzY q
'

›Ñ X ˆ Y

r fiÑ p'1prq,'2prqq
(3.5.16)

As is easily checked ' is regular. The fibers of ' are isomorphic to Kˆ. Moreover for any i P t0, . . . ,mu

and j P t0, . . . , nu we have
'

´1
pXSi ˆ YTj q – XSi ˆ YTj ˆ Kˆ

. (3.5.17)

Items (2) and (3) follow from this.
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Proof of Proposition 3.5.8. It su�ces to prove the statement forX,Y irreducible. Let rS0, . . . , Sn, T0, . . . , Tns

be homogeneous coordinates on P2n`1. We have the two embeddings

Pn i
›Ñ P2n`1

rZ0, . . . , Zns fiÑ rZ0, . . . , Zn, 0, . . . , 0s

Pn j
›Ñ P2n`1

rZ0, . . . , Zns fiÑ r0, . . . , 0, Z0, . . . , Zns
(3.5.18)

Since the images of i and j are disjoint linear subspaces of P2n`1 the join JpipXq, jpY qq is defined. Let
⇤ Ä P2n`1 be the linear subspace given by

⇤ :“ V pS0 ´ T0, . . . , Sn ´ Tnq. (3.5.19)

We have the isomorphism

X X Y
„

›Ñ ⇤ X JpipXq, jpY qq

rZ0, . . . , Zns fiÑ rZ0, . . . , Zn, Z0, . . . , Zns
(3.5.20)

By Claim 3.5.12 the closed subset JpipXq, jpY qq Ä P2n`1 is irreducible of (pure) dimension equal to
dimX ` dimY ` 1. On the other hand ⇤ is a codimension-pn ` 1q linear subspace of P2n`1, hence by
repeated application of Proposition 3.5.10 we get that ⇤ X JpipXq, jppY qq is non empty and each of
its irreducible components has dimension at least equal to pdimX ` dimY ´ nq. By the isomorphism
in (3.5.20) the proposition follows.

3.5.3 Dimension and chains of closed subsets

Let X be an algebraic variety. By Noetherianity there is no infinite chain of closed subsets

X “ X0 â X1 â . . . Xn´1 â Xn â (3.5.21)

Thus every such chain is finite. The following result characterizes the dimension of X via the length of
such chains.

Proposition 3.5.13. Let X be an algebraic variety.

1. The dimension of X is equal to the maximum of the set of n for which there exists a chain

X “ X0 â X1 â . . . Xn´1 â Xn (3.5.22)

of closed subsets with Xi irreducible for all i P t1, . . . , nu.

2. Let p P X. The dimension of X at p is equal to the maximum of the set of n for which there exists
a chain

X “ X0 â X1 â . . . Xn´1 â Xn Q p (3.5.23)

of closed subsets with Xi irreducible for all i P t1, . . . , nu.

Proof. We may assume that X is irreducible. In fact, in proving Item (a) it su�ces to replace X by an
irreducible component computing dimX (i.e. whose dimension is equal to dimX), in proving Item (b)
it su�ces to replace X by an irreducible component containing p and computing dimp X. Replacing X

by an open dense a�ne subset (containing p if we are proving Item (b)) we may assume that X is a�ne
and irreducible. Let d – dimX. Let N be the maximum of the set of n for which there exists a chain
as in (3.5.22) if we are are proving Item (a), respectively a chain as in (3.5.23) if we are are proving
Item (b). If we have (3.5.22) then dimdimXi ° Xi`1 for all i P t0, . . . , n ´ 1u. Since dimXn • 0 it
follows that n § d. Similarly, if we have (3.5.22) then n § d. Thus N § d, both when proving Item (a)
and when proving Item (b). We prove that N • d by induction on d. If d “ 0 then X is a singleton
and the statement is trivially true. We prove the inductive step. Thus d ° 0. Since X is a�ne we may
assume that X Ä Am

“ Pm

Z0
. Let X Ä Pm be the closure of X. Then X is an open dense subset of X

and dimX “ dimX. Let p P X, and let H Ä Pm be a hyperplane containing p but not containing X.
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By Proposition 3.5.10 the intersection H XX has pure dimension d´1. Since H contains p there exists
an irreducible component of H X X containing p, call it X1. Of course dimX1 “ d ´ 1. By inductive
hypothesis there exists a chain X1 â . . . Xd´2 â Xd´1 Q p of closed irreducible subsets. Adding X0 “ X

we get the desired chain (this finishes the proof of both items).

Remark 3.5.14. The Krull dimension of a (commutative unitary) ring R is the supremum of n such
that there is a chain

P0 à P1 à . . . à Pn´1 à Pn

of prime ideals Pi Ä R. Proposition 3.5.13 shows that if X is an a�ne variety then its dimension equals
the Krull dimension of the ring KrXs of regular functions on X.

3.5.4 Dimensions of fibers

The problems that we discuss are the following. Let f : X Ñ Y be a regular map of algebraic varieties.

1. How does the dimension of fibers f´1
pyq vary as y P Y varies?

2. What kind of subset of Y is the image of f?

Note that there is a relation between the two questions, since the image of f is the set of y P Y such
that dim f

´1
pyq • 0.

Example 3.5.15. Let V be a finitely generated K vector space. Let X Ä PpV
_

q
m

ˆ PpV q be given by

tr'1s, . . . , r'ms, rvsq | '1pvq “ . . . “ 'mpvq “ 0u. (3.5.24)

As is easily checked X is a closed subset of PpV
_

q
m

ˆ PpV q. Let f : X Ñ PpV
_

q
m be the restriction of

the projection map PpV
_

q
m

ˆ PpV q Ñ PpV
_

q
m. Let y – pr'1s, . . . , r'msq P PpV

_
q
m: then f

´1
pyq is

identified with the projectivization of the kernel of the map V Ñ Km defined by p'1, . . . ,'mq. From this
we get that the dimension of f´1

pyq is an upper semicontinuous function of y, i.e. for every k P N the set
Dk Ä Y of y such that dim f

´1
pyq • k is (Zariski) closed. In fact Dk is the locus of y “ pr'1s, . . . , r'msq

such that the linear map p'1, . . . ,'mq has rank at most dimV ´ k ´ 1 and thus, once a basis of V has
been chosen, Dk is the zero locus of determinants of all pdimV ´ kq ˆ pdimV ´ kq minors of the matrix
associated to the linear map p'1, . . . ,'mq by the choice of a basis of V . In particular the image of f
equals D0 and hence is closed.

Example 3.5.16. Let f : A2
Ñ A2 be defined by fpw, zq – pw,wzq. We have

dim f
´1

pa, bq “

$
’&

’%

1 if a “ b “ 0,

0 if a �“ 0,

´8 if a “ 0, b �“ 0.

(3.5.25)

In particular the image of f is not closed nor open.

Thus in Example 3.5.15 the dimensions of fibers vary more nicely than in Example 3.5.16. There is
a hypotheses that guarantees a behaviour similar to that of Example 3.5.15.

Definition 3.5.17. A regular map i : X Ñ Y of algebraic varieties is a closed embedding if it factors
as i “ j ˝ f , where f : X

„
›Ñ W is an isomorphism between X and a closed subvariety W Ä Y and

j : W ãÑ Y is the inclusion map.

Definition 3.5.18. A regular map f : X Ñ Y of algebraic varieties is a projective map if there exists
a closed embedding i : X ãÑ PN

ˆ Y such that f “ pY ˝ i where pY : PN
ˆ Y Ñ Y is the projection.
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Remark 3.5.19. Let f : X Ñ Y be regular map of algebraic varieties, and suppose that X is projective.
Then f is a projective map. In fact, assuming that X Ä PN is closed, let

X
i

›Ñ PN
ˆ Y

x fiÑ px, fpxqq
(3.5.26)

Then i is a closed embedding because it defines an isomorphism between X and the graph �f Ä XˆY Ä

PN
ˆ Y which is closed in X ˆ Y (Lemma 2.4.4) and hence closed in PN

ˆ Y . Since f “ pY ˝ i where
pY : PN

ˆ Y Ñ Y is the projection, f is a projective map.

The result below states that if a regular map is projective (with irreducible domain) then the
dimensions of its fibers behave as in Example 3.5.15.

Theorem 3.5.20. Let f : X Ñ Y be a (regular) projective map of algebraic varieties.

(a) The function

Y
'

›Ñ N
y fiÑ dim f

´1
pyq

(3.5.27)

is upper semicontinuous, i.e. for every k P N the set '´1
prk,`8qq is (Zariski) closed.

(b) If X,Y are irreducible and f is dominant then

ty P Y | f
´1

pyq has pure dimension equal to dimX ´ dimY u (3.5.28)

is an open dense subset of Y .

We prove Theorem 3.5.20 after a few preliminary results.

Proposition 3.5.21. Let X be an irreducible algebraic variety, and let f : X Ñ K be a non constant
regular function such that V pfq – f

´1
p0q is non empty. Then V pfq has pure dimension equal to

dimX ´ 1.

Proof. Since X is a (finite) union of open a�ne subsets we may assume that X is a�ne. Thus X Ä An

is a closed irreducible subset. By Theorem 1.6.2 there exists f̃ P Krz1, . . . , zns such that f “ f̃|X . Let

Y :“ V pf̃q. By hypothesis X X Y is non empty: let W be one of its irreducible components. We must
prove that dimW “ dimX ´ 1. We have An

“ Pn

Z0
Ä Pn as open dense subset. Let X,Y ,W Ä Pn be

the closures of X, Y and W respectively. Then Y Ä Pn is a hypersurface. Let P P KrZ0, . . . , Zns be a
homogeneous polynomial such that Y “ V pP q, and let d be its degree. Let N :“

`
d`n

n

˘
´ 1, and let

Pn
⌫
n
d

›Ñ PN

rZ0, . . . , Zns fiÑ rZ
d

0 , Z
d´1
0 X1, . . . , Z

d

n
s

be the Veronese map. Since Y “ V pP q and P has degree d, there exists a hyperplane H Ä PN such that
p⌫

n

d
q

´1
pHq “ Y . Thus ⌫n

d
defines an isomorphism X X Y

„
›Ñ ⌫

n

d
pXq X H, and ⌫n

d
pW q is an irreducible

component of ⌫n
d

pXq X H. Since f is not constant (and X is irreducible) H does not contain ⌫n
d

pXq.
By Proposition 3.5.10 we have

dimW “ dimW “ dim ⌫
n

d
pW q “ dim ⌫

n

d
pXq ´ 1 “ dimX ´ 1 “ dimX ´ 1.

Corollary 3.5.22. Let f : X Ñ Y be a regular map of algebraic varieties. Let p P X. Every irreducible
component of f´1

pfppqq has dimension at least equal to dimX ´ dimfppq Y .
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Proof. Since X and Y are covered by open a�ne subsets, we may assume that X and Y are a�ne.
Let q – fppq and let m – dimq Y . We claim that there exist '1, . . . ,'m P KrY s such that q is
an irreducible component of V p'1, . . . ,'mq. In fact one argues by induction on m (see the proof of
Proposition 3.5.13). If m “ 0 the statement is trivially true. Let m ° 0 and assume that the claim
holds for lower values of m. Since dimq Y ° 0 there exists 'm P KrY s vanishing at q and not vanishing
on any irreducible component of Y containing q. Then V p'mq contains q, and by Proposition 3.5.21
its dimension at q is equal to m ´ 1. By the inductive hypothesis there exist  1, . . . , m´1 P KrV p'1qs

such that q is an irreducible component of V p 1, . . . , m´1q Ä V p'1q. Since V p'1q is a closed a�ne
subset of the a�ne variety Y , there exist '1, . . . ,'m´1 P KrY s whose restrictions to V p'1q are equal to
 1, . . . , m´1 respectively. Then q is an irreducible component of V p'1, . . . ,'mq. Thus we have

V pf
˚

p'1q, . . . , f
˚

p'mqq “ f
´1

pqq \ W,

where W is closed in X, i.e. f´1
pqq is a union of irreducible components of V pf

˚
p'1q, . . . , f

˚
p'mqq. By

repeated application of Proposition 3.5.21 every irreducible component of V pf
˚

p'1q, . . . , f
˚

p'mqq has
dimension at least equal to dimX ´ m “ dimX ´ dimY .

Proof of Theorem 3.5.20. (a): By definition of projective morphism we may assume that X Ä PN
ˆ Y

is closed and that f is the restriction to X of the projection map pY : X Ä PN
ˆ Y Ñ Y . Let y P Y .

By Proposition 3.5.3 dim f
´1

pyq • k if and only if for all ⇤ P GrpN ´ k,PN
q we have ⇤ˆ tyu XX �“ H.

Thus we have
'

´1
prk,`8qq “

£

⇤PGrpN´k,PN q
pY p⇤ ˆ Y X Xq. (3.5.29)

Now ⇤ ˆ Y X X is closed in PN
ˆ Y because by hypotheses X is closed in PN

ˆ Y . Since pY is closed
(by the Main Theorem of Elimination Theory), it follows that '´1

prk,`8qq is closed.
(b): Since f is closed impfq “ Y . Let y P Y . Then y P impfq and hence by Corollary 3.5.22 every

irreducible component of f´1
pyq has dimension at least r – dimX ´ dimY . It follows that

ty P Y | f
´1

pyq has pure dimension equal to dimX ´ dimY u “ Y z'
´1

prr ` 1,`8qq. (3.5.30)

By Item (a) the right hand side in (3.5.30) is open in Y . It remains to prove that it is non empty.
Replacing Y by an open dense a�ne subset we may assume that Y is a�ne. Thus Y Ä Am

“ Pm

T0
. Let

Y Ä Pm

T0
be the closure of Y . Let

PN
ˆ Pm

�N,m
›Ñ ⌃N,m Ä PNm`N`m (3.5.31)

be the Segre map, which is an isomorphism. Then �N,mpXq is locally closed in PNm`N`m because X

is locally closed in PN
ˆ Y which is closed in PN

ˆ Pm. Of course the restriction of �N,m to X defines
an isomorphism X

„
›Ñ �N,mpXq. Applying r ` 1 times Proposition 3.5.10, we get that if H1, . . . , Hr`1

are r ` 1 general hyperplanes in PNm`N`m then �N,mpXq X H1 X . . . X Hr`1 is either empty (recall
that �N,mpXq is only locally closed) or it has pure dimension equal to dimX ´ r ´ 1 † dimY . Since
�N,m is an isomorphism this means that

dimpX X �
´1
N,m

pH1q X . . . X �
´1
N,m

pHr`1qq † dimY. (3.5.32)

Since f is closed it follows that

fpX X �
´1
N,m

pH1q X . . . X �
´1
N,m

pHr`1qq à Y (3.5.33)

is a (proper) closed subset. On the other hand if y P Y then Hi X pPN
ˆ tyuq is a hyperplane, and hence

'
´1

prr ` 1,`8qq is contained in the set on the left hand side of (3.5.33). This finishes the proof that
the set in (3.5.28) is an open dense subset of Y .

Corollary 3.5.23. Let f : X Ñ Y be a (regular) projective map of irreducible algebraic varieties.
Suppose that there exists y0 P Y such that f´1

py0q is non empty and dim f
´1

py0q “ dimX ´ dimY .
Then f is surjective, and for a general y P Y the fiber f´1

pyq has pure dimension equal to dimX´dimY .
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Proof. Since f is projective it is closed. Suppose that f is not surjective. Then the image impfq is a
proper closed subset of Y , and hence dim impfq † dimY because Y is irreducible. By Corollary 3.5.22
it follows that

dim f
´1

pyq • pdimX ´ dim impfqq ° dimX ´ dimY (3.5.34)

for every y P Y . This contradicts the hypothesis that dim f
´1

py0q “ dimX ´ dimY . We have proved
that f is surjective. By Theorem 3.5.20 it follows that for general y P Y the fiber f

´1
pyq has pure

dimension equal to dimX ´ dimY .

Corollary 3.5.24. Let f : X Ñ Y be a (regular) projective map of algebraic varieties. Suppose that
Y is irreducible and that the fibers f

´1
pyq of f are all irreducible of the same dimension. Then X is

irreducible.

Proof. Let X “ X1 Y . . .YXr be the decomposition into irreducibles. The map f is surjective because
the fibers f´1

pyq of f are all irreducible of the same dimension (hence there are no empty fibers), and
thus Y “ fpX1q Y . . . Y fpXrq. Write t1, . . . , ru “ S \ N where S is the set of i such that fpXiq “ Y

and N is the set of i such that fpXiq à Y . Since fpXiq is closed in Y for each i (because f is closed)
and Y is irreducible, S is non empty. Let i0 P S such that dimXi0 • dimXi for all i P S. We claim that
Xi0 “ X and henceX is irreducible. If y P Y does not belong to the proper closed subset

î
iPN fpXiq

then dim f
´1

pyq “ dimXi0 ´ dimY by Theorem 3.5.20 and our equidimensionality hypothesis. Thus
dim f

´1
pyq “ dimXi0 ´ dimY for all y P Y by the equidimensionality hypothesis. Moreover, letting

fi0 : Xi0 Ñ Y be the restriction of f , we have dim f
´1
i0

pyq “ dimXi0 ´ dimY for all y P Y . Thus,

for every y P Y , f´1
i0

pyq Ä f
´1

pyq is a closed subset and dim f
´1
i0

pyq “ dim f
´1

pyq. Since f
´1

pyq is

irreducible it follows that f´1
i0

pyq “ f
´1

pyq. This shows that Xi0 “ X as claimed.

Lastly we prove that the image of a regular map of algebraic varieties is very large in its closure.

Proposition 3.5.25. Let f : X Ñ Y be a regular map of algebraic varieties. The image of f contains
an open dense subset of its closure.

Proof. It su�ces to prove the proposition for X irreducible. We claim that in fact it su�ces to prove
the result for an irreducible a�ne variety. In fact we may write X “ X0 Y X1 Y . . . Y Xm where X0 is
an open dense (irreducible) a�ne subset of X, X1 is an open dense (irreducible) a�ne subset of one of
the irreducible components of XzX0 (unless X0 “ X in which case we stop), and so on. Of course the
process stops after a finite set of steps by Noetherianity. Thus we may suppose that X is irreducible
and a�ne. Thus we may assume that X Ä AN

“ PN

Z0
is closed. Let �f Ä X ˆ Y be the graph of f ,

and let �f Ä PN
ˆ Y be the closure in PN

ˆ Y . Let F : �f Ñ ˆY be the restriction of the projection
PN

ˆ Y Ñ Y . The isomorphism X
„

›Ñ �f defined by x fiÑ px, fpxqq allows us to identify X with �f

which is an open dense subset of the irreducible algebraic variety �f . Note that the restriction of F to
X “ �f is equal to f . Note also that by construction the map F : �f Ñ ˆY is projective. In particular
impF q Ä Y is closed (and irreducible because �f is irreducible, being the closure of the irreducible
�f ). Since impfq Ä impF q it su�ces to show that impfq contains an open dense subset of impF q. Let
�f z�f “ W1 Y . . . Y Wr be the decomposition into irreducible components. Each Wi is closed in �f

hence closed in PN
ˆ Y and thus F pWiq Ä impF q is closed. Let

S – ti P t1, . . . , ru | F pWiq “ impF qu, N – ti P t1, . . . , ru | F pWiq à impF qu. (3.5.35)

For each i P S let Ui Ä impF q be the open dense subset of y such that f´1
pyq XWi has pure dimension

equal to dimWi ´ dim impF q (such a Ui exists by Theorem 3.5.20 applied to the restriction of F to
Wi). Let U Ä impF q be the open dense subset of y such that f

´1
pyq has pure dimension equal to

dim�f ´ dim impF q. Lastly let

W – U X

£

iPS
Ui X

£

iPN
pimpF qzF pWiqq. (3.5.36)
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Then W is an open dense subset of impF q. We claim that W is contained in the image of f . In fact
let y P W . We must show that F

´1
pyq X �f �“ H. If i P N then F

´1
pyq X Wi “ H. If i P S then

f
´1

pyqXWi has pure dimension equal to dimWi ´dim impF q which is smaller than dim�f ´dim impF q

which is the (pure) dimension of F´1
pyq. It follows, as claimed, that F´1

pyq X �f �“ H.

Remark 3.5.26. If f : M Ñ N is a smooth map of C8 manifold it might very well be that fpMq does
not contain any non-empty open subset of fpMq. For example, let

R f
›Ñ T2 :“ R2

{Z2

t fiÑ rpt,
?
2tqs

We have fpRq “ T2 but fpRq does not contain any non-empty open subset of T2 because it is a subset
of measure 0. Notice also that the analogue of Proposition 3.5.25 does not hold if we consider real
quasi-projective sets with the Zariski topology and real regular maps: consider the projection

A2
R Å V px

2
` y

2
´ 1q ›Ñ A1

R
px, yq fiÑ x

3.5.5 Linear subspaces contained in a hypersurface

Let X Ä Pn be closed. If r is a natural number let FrpXq Ä Grpr,Pn
q be the subset of r-dimensional

linear subspaces contained in X, i.e.

FrpXq – t⇤ P Grpr,Pn
q | ⇤ Ä Xu. (3.5.37)

Then FrpXq is a closed subset of Grpr,Pn
q (see Exercise 2.6.6), and hence it is a projective variety.

Question 3.5.27. Is FrpXq non empty? If it is non empty, what is its dimension?

Consider the case of a hypersurface X Ä Pn. If X is a hyperplane then FrpXq is a Grassmannian. If
X is a non degenerate quadric hypersurface, i.e. X “ V pqq where q P KrZ0, . . . , Zns2 is a non degenerate
quadratic form, then FrpXq is an interesting variety, see Exercises 3.8.7, 3.8.8 and 3.8.9, but it does not
vary as X varies (all non degenerate quadric hypersurfaces are projectively equivalent). If the ideal of
X is generated by a homogeneous polynomial of degree greater than 2 then FrpXq varies with X and
is often a very interesting variety.

The results of the present section can be used to give (partial) answers to the above question.
In order to apply the results about dimensions of fibers we must parametrize hypersurfaces with an
algebraic variety. Recall that the homogeneous ideal of a hypersurface in a projective space is principal.

Definition 3.5.28. Let X Ä Pn be a hypersurface. The degree of X is the degree of any generator of
the (homogeneous) ideal IpXq Ä KrZ0, . . . , Zns.

Let d ° 0. Then hypersurfaces in Pn of degree d are parametrized by the subset of PpKrZ0, . . . , Znsdq

whose elements are the points rP s with P P KrZ0, . . . , Znsd a square-free polynomial (so that P generates
a radical ideal). This subset turns out to be open, but as soon as d ° 1 it is not the whole projective
space PpKrZ0, . . . , Znsdq. Since it is much better to deal with complete varieties than with non complete
varieties, we would rather have PpKrZ0, . . . , Znsdq as parameter space. This forces us to consider
hypersurfaces with “multiplicities”. This is the higher dimensional version of “roots of polynomials
in one variable counted with multiplicities”. The relevant definitions go as follows. Let DivpPn

q be
the abelian group with generators the irreducible hypersurfaces in Pn. Thus an element of DivpPn

q is
a formal finite sum D “

∞
iPI miDi, where each mi is an integer, and the Di’s are pairwise distinct

irreducible hypersurface in Pn. We have the degree homomorphism (of abelian groups)

DivpPn
q

deg
›Ñ Z∞

iPI miDi fiÑ
∞

iPI mi degDi

(3.5.38)
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The divisor
∞

iPI miDi is e↵ective if mi ° 0 for all i P I (the divisor 0 is e↵ective, it correpsonds to the
empty index set I). Let Div`pPn

q Ä DivpPn
q be the monoid of e↵ective divisors.

Let P P KrZ0, . . . , Znsd be non zero, and let P “

r±
i“1

P
mi
i

be the decomposition into prime factors,

where for i �“ j the factors Pi and Pj are not associated. The divisor of P is the element of DivpPn
q

defined by

divpP q –
rÿ

i“1

miV pPiq. (3.5.39)

Note that divpP q is e↵ective. Let Divd`pPn
q – Div`pPn

qXdeg´1
pdq Ä DivpPn

q be the subset of e↵ective
divisors of degree d. The map

PpKrZ0, . . . , Znsdq
div

›Ñ Divd`pPn
q

rP s fiÑ divpP q
(3.5.40)

is a bijection. This gives a geometric interpretation of PpKrZ0, . . . , Znsdq. From now on we identify
Divd`pPn

q with PpKrZ0, . . . , Znsdq via the bijection in (3.5.40). If D “
∞

iPI miDi is an e↵ective di-
visor, i.e. mi ° 0 for each i P I, the support of D is the union of the Di’s and is denoted by suppD.
Let D P Divd`pPn

q with D “ divpP q. Then

FrpDq – t⇤ P Grpr,Pn
q | ⇤ Ä suppDu “ tU P Grpr ` 1,Kn`1

q | P|U “ 0u. (3.5.41)

In order to answer Question 3.5.27 we let �r,dpPn
q Ä Grpr,Pn

q ˆ PpKrZ0, . . . , Znsdq be the incidence
subset given by

�r,dpPn
q – tp⇤, Dq | ⇤ Ä suppDu. (3.5.42)

Claim 3.5.29. �r,dpPn
q is a closed subset of Grpr,Pn

q ˆ PpKrZ0, . . . , Znsdq.

We leave the proof of Claim 3.5.29 as an exercise.
The restrictions of the projections to �r,dpPn

q give us two regular projective maps

�r,dpPn
q

⇡

xx

⇢

((

Grpr,Pn
q PpKrZ0, . . . , Znsdq

(3.5.43)

Let D P PpKrZ0, . . . , Znsdq: then FrpDq is identified with ⇢´1
pDq. In other words the fibers of ⇢ are

what we are after. It follows that knowing the dimension of �r,dpPn
q helps in answering Question 3.5.27.

While the fibers of ⇢ can be quite mysterious, the fibers of ⇡ are extremely simple. This allows, by
applying the results of the present section, to compute the dimension of �r,dpPn

q. The following claim
is an extremely easy result.

Claim 3.5.30. Keep notation as above, and suppose that r P t0, . . . , n ´ 1u. Let ⇤ P Grpr,Pn
q. Then

⇡
´1

p⇤q is a linear subspace of PpKrZ0, . . . , Znsdq of codimension equal to
`
r`d

r

˘
.

Applying Corollary 3.5.24 and Theorem 3.5.20 to the (projective) regular map ⇡ it follows that
�r,dpPn

q is irreducible and that

codp�r,dpPn
q, Grpr,Pn

q ˆ PpKrZ0, . . . , Znsdqq “

ˆ
r ` d

r

˙
. (3.5.44)

Hence we get that

dim ⇢p�r,dpPn
qq § dim�r,dpPn

q “ dimPpKrZ0, . . . , Znsdqq ` dimGrpr,Pn
q ´

ˆ
r ` d

r

˙
. (3.5.45)

In particular we get the following negative result.
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Proposition 3.5.31. Keep notation as above, and assume that pr`1qpn´rq †
`
r`d

r

˘
. If D P Divd`pPn

q

is general then FrpDq is empty.

On the other hand Corollaries 3.5.22 and 3.5.23 give the following positive result.

Proposition 3.5.32. Keep notation as above, and assume that pr ` 1qpn ´ rq •
`
r`d

r

˘
. Suppose that

there exists (one) D P Divd`pPn
q such that FrpDq is non empty and that

dimFrpDq “ pr ` 1qpn ´ rq ´

ˆ
r ` d

r

˙
. (3.5.46)

Then FrpDq is non empty for every D P Divd`pPn
q, and for general D the equality in (3.5.46) holds.

3.6 Degree of maps

3.6.1 Degree of a map

Definition 3.6.1. Let f : X 99K Y be a rational map of irreducible algebraic varieties. The degree of
f , denoted by deg f , is given by

deg f –
#
0 if f is not dominant,

rKpXq : f˚KpY qs if f is dominant.

Thus 0 † deg f † 8 if and only if f is dominant and dimX “ dimY .

Definition 3.6.2. Let f : X 99K Y be a finite degree rational map of irreducible algebraic varieties.
The separable degree of f , denoted by deg

s
f , is given by

deg
s
f –

#
0 if f is not dominant,

rKpXq
s : f˚KpY qs if f is dominant,

where KpXq
s

Ä KpXq is the maximal separable extension of f˚KpY q (see Theorem A.5.3).

Note that deg
s
f divides deg f , and that if K has characteristic 0 then deg

s
f “ deg f . As a matter

of notation we denote f
˚KpY q by KpY q whenever there is no possibility of confusion.

Remark 3.6.3. f : X 99K Y and g : Y 99K W be rational dominant maps of irreducible algebraic varieties.
Then (see Remark A.5.6) we have

degpg ˝ fq “ degpgq ¨ degpfq, deg
s
pg ˝ fq “ deg

s
pgq ¨ deg

s
pfq. (3.6.1)

Example 3.6.4. Let pz1, . . . , zn, wq be a�ne coordinates on An`1. Let X Ä An`1 be an irreducible
hypersurface and let IpXq “ P . Write

P “ a0w
d

` a1w
d´1

` ¨ ¨ ¨ ` ad, ai P Krz1, . . . , zns, a0 ‰ 0

Let
X

f
›Ñ An

pz1, . . . , zn, wq fiÑ pz1, . . . , znq

Then deg f “ d. In fact if d “ 0 then im f “ V pa0q à An and hence f is not dominant. If d ° 0 then

KpXq “ Kpz1, . . . , znqrws{pP q

and hence rKpXq : Kpz1, . . . , znqs “ d. Suppose that charK “ p ° 0. Let m be the maximum integer
such that p

m
⌫ pd ´ iq for all i P t0, . . . , du such that ai �“ 0. Then deg

s
f “ d{p

m. In fact let
R P Krz1, . . . , zn, ws be the polynomial such that

P pz1, . . . , zn, wq “ Rpz1, . . . , zn, w
p
m

q,
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and let u – w
p
m

. Then

Kpz1, . . . , znqrus – Kpz1, . . . , znqrts{pRpz1, . . . , zn, tqq

is the maximal separable extension of Kpz1, . . . , znq in KpXq.

Definition 3.6.5. A rational map f : X 99K Y of irreducible algebraic varieties is generically separable
if it is dominant and KpXq is an algebraic separable extension of f˚KpY q.

In other words f is generically separable if it has finite non zero degree and deg f “ deg
s
f .

Below is the main result of the present section.

Proposition 3.6.6. Let f : X Ñ Y be a finite degree regular map of irreducible algebraic varieties.
Then for a general y P Y we have

|f
´1

pyq| “ deg
s
f. (3.6.2)

Example 3.6.7. Let us check the statement of Proposition 3.6.6 for the map f : X Ñ An of Example 3.6.4.
Let P P Krz1, . . . , zn, ws be as in that example. Let R P Krz1, . . . , zn, ws be as in Example 3.6.4. Let
g : X Ñ V pRq be defined by gpz, wq – pz, w

p
m

q, and let h : V pRq Ñ An be defined by hpz, wq – z. The
regular map f : X Ñ An factorizes as the composition

X
g

›Ñ V pRq
h

›Ñ An
. (3.6.3)

Note that the corresponding pull-back maps of rational functions give the chain of extensions

KpXq Å Kpz1, . . . , znqrus Å Kpz1, . . . , znq.

The map g is bijective, hence the statement of Proposition 3.6.6 for the map f : X Ñ An holds if and
only if |h

´1
pzq| “ d for a general z P An. The polynomial BR

Bw is non zero (the corresponding extension
of fields is separable) and its degree in w is strictly smaller than the degree in w of R. Hence BR

Bw is not a
multiple of R. Since P is prime (because it generates the ideal of the irreducible hypersurface X) also R

is prime. It follows that BR
Bw does not vanish on V pRq and hence V pR, BR{Bwq is a proper closed subset

of V pRq. Thus V pR, BR{Bwq has dimension smaller than n, and hence also � :“ hpV pR, BR{Bwqq. In
other words � is a proper closed subset of An, and thus U – pAn

zV pa0qz�q is an open dense subset
An. Let z P U . Then Rpz, wq P Krws is a polynomial of degree deg

s
f with simple roots and hence

|h
´1

pzq| “ deg
s
f .

Remark 3.6.8. Let f : X Ñ Y be a finite degree regular map of irreducible algebraic varieties. Let
U Ä X be open and dense. Then for general y P Y we have

f
´1

pyq Ä U. (3.6.4)

In fact if fpXq is not dense in Y , i.e. deg f “ 0, then (3.6.4) holds for y an element of the open dense
subset pY zfpXqq because f

´1
pyq is empty, and if deg f ° 0 then dimpXzUq † dimX “ dimY (the

last equality holds because 0 † deg f † 8), hence dim fpXzUq † dimY and clearly (3.6.4) holds for
y P pY zfpXzUqq. Sligthly more generally, suppose that we have a commutative diagram

X1

f1

✏✏

'
// X1

f2

✏✏

Y1
 

// Y2

(3.6.5)

where f1, f2 are finite degree regular maps of irreducible algebraic varieties, and ',  are birational
maps. By Proposition 3.2.11 there exist open dense subsets Ui Ä Xi and Vi Ä Yi for i P t1, 2u such that
',  are regular on U1, V1 respectively, and they define isomorphisms '|U1

: U1
„

›Ñ U2,  |V1
: V1

„
›Ñ V2.

Then for general y P V1 we have f
´1
1 pyq Ä V1 and f

´1
2 p pyqq Ä V2. In particular we get that the

equality in (3.6.12) holds for f1 if and only it holds for f2.
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3.6.2 Degree and fibers of a generically separable map

Here we prove that the equality in (3.6.12) holds if f : X Ñ Y is a generically separable map, i.e. the
following result.

Proposition 3.6.9. Let f : X Ñ Y be a finite degree generically separable regular map of irreducible
algebraic varieties. Then for a general y P Y we have

|f
´1

pyq| “ deg
s
f “ deg f. (3.6.6)

Before giving the proof we consider the following more general version of Example 3.6.4. Let Y be
an irreducible a�ne variety. Let P P KpY qrws be an irreducible polynomial:

P “ w
d

` a1w
d´1

` ¨ ¨ ¨ ` ad, ai P KpY q.

Since Y is a�ne KpY q is the field of fractions of KrY s. Thus there exists 0 ‰ b P KrY s such that
b ¨ ai P KrY s for all 1 § i § d. Let c0 :“ b, ci :“ b ¨ ai, 1 § i § d and

rP :“ c0w
d

` c1w
d´1

` ¨ ¨ ¨ ` cd P KrY srws. (3.6.7)

If KrY s is a UFD we may factor out the gcd tc0, . . . , cdu and hence by renaming the ci’s we may assume
that gcd tc0, . . . , cdu “ 1. It follows that V p rP q is irreducible (the proof is the same as the one for
hypersurfaces in An). In general KrY s is not a UFD and hence there might be no way of “reducing”
the polynomial of (3.6.7) in order to get that V p rP q is irreducible. (An example of this phenomenon:
Y :“ V pz1z2 ´ z3z4q and rP “ z1w ´ z3. Then V p rP q “ X Y Y where X is the closure of the locus of
pz, wq P V p rP q with z1 �“ 0 and Y – V pz1, z3q. Each of the irreducible components X, Y has dimension
3.) Let ⇡ : Y ˆ A1

Ñ Y be the projection map. An irreducible component Vi of V p rP q dominates Y if
⇡pViq “ Y .

Claim 3.6.10. Keep hypotheses and notation as above. There is one and only one irreducible component
of V p rP q which dominates Y , call it V0. We have an isomorphism

KpV0q – KpY qrws{p rP q (3.6.8)

such that, letting ⇡0 : V0 Ñ Y be the restriction of ⇡, the inclusion of fields ⇡˚
0 : KpY q ãÑ KpV0q is the

obvious one given the above isomorphism.

Proof. To simplify notation let V – V p rP q. Since ⇡pV q contains Y zV pc0q, which is dense in Y , there
exists at least one irreducible component V0 of V such that ⇡pV0q “ Y . Let g P IpV0q. We claim that

rP | g in KpY qrws. (3.6.9)

(Note: we do not claim that rP |g in KrY srws.) In fact suppose that rP does not divide g. Then rP and
g are coprime in KpY qrws because rP is prime, and hence there exist ↵,� P KpY qrws such that

↵ ¨ rP ` � ¨ g “ 1.

Multiplying by 0 ‰ � P KrY srws such that ↵ ¨ �, � ¨ � belong to KrY srws we get that

p↵ ¨ �q rP ` p� ¨ �qg “ �.

Let q P V0: then gpqq “ 0, and since V Å V0 we get that �pqq “ 0. Since � ‰ 0 it follows that ⇡pV0q is
not dense in Y , and that is a contradiction. This proves that (3.6.9) holds.

Let IpV0q “ pg1, . . . , grq. From (3.6.9) we get that there exist h1, . . . , hr P KrY srws and m1, . . . ,mr P

KrY s such that
mi ¨ gi “ rP ¨ hi, mi ‰ 0, i “ 1, . . . , r.

Set m “ m1 ¨ ¨ ¨ ¨ ¨ mr. By the above equation we get that V zV pmq “ V0zV pmq and hence V0 is the
unique irreducible component of V dominating Y . The last statement of the claim is clealry true.
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Proof of Proposition 3.6.9. Let d – deg f ° 0. Since Y is covered by open a�ne sets we may assume
that Y itself is a�ne. By definition we have an inclusion f

˚ : KpY q ãÑ KpXq. Since KpXq is a separable
extension of KpY q there exists ⇠ P KpXq primitive over KpY q. Let

P “ w
d

` a1w
d´1

` ¨ ¨ ¨ ` ad, ai P KpY q (3.6.10)

be the minimal polynomial of ⇠. Let V p rP q Ä Y ˆ A1 - notation as in Claim 3.6.10. Let V0 Ä V p rP q be
the unique irreducible component dominating Y . We have a commutative diagram

X
�

//

f
��

V0

⇡0
~~

Y

with � birational. By Remark 3.6.8 it su�ces to prove that for general y P Y we have

|⇡0pyq| “ deg ⇡0. (3.6.11)

Arguing as in Example 3.6.7 we immediately get the above equality.

3.6.3 Degree and fibers: purely inseparable extensions of fields

Here we prove that the equality in (3.6.12) holds if KpXq Å f
˚KpY q is a purely inseparable extension,

i.e. the following result.

Proposition 3.6.11. Let f : X Ñ Y be a finite degree regular map of irreducible algebraic varieties
such that KpXq Å KpY q is a purely inseparable extension. Then for a general y P Y we have

|f
´1

pyq| “ deg
s
f “ 1. (3.6.12)

Proof. The charachteristic of K is positive because in charachteristic 0 every algebraic extension is
separable. Let charK “ p ° 0. Since X and Y contain (many) dense open a�ne subsets we may assume
that X and Y are a�ne, see Remark 3.6.8. Let '1, . . . ,'r be generators of KrXs as KrY s algebra. Let
i P t1, . . . , ru. Since KpXq Å KpY q is a purely inseparable extension there exist ai, bi P KrY s with
ai �“ 0 and mi P N` such that (see Theorem A.5.3)

ai'
mi
i

` bi “ 0. (3.6.13)

Let U – Y zV pa1, . . . , arq. Thus U is open dense in Y . By Proposition 3.5.25 the image of f contains
an open dense subset V Ä Y . The open subset U X V is dense in Y . If y P U X V then f

´1
pyq is a

singleton by the equations in (3.6.13) (recall that charK “ p). This finishes the proof.

3.6.4 Degree and fibers: the general case

Here we prove Proposition 3.6.6. If deg f “ 0 then fpXq ‰ Y and f
´1

pyq is empty for y an element
of the open dense subset Y zfpXq. If KpXq is a separable extension of KpY q, then Proposition 3.6.6
holds by Proposition 3.6.9. Lastly, assume that KpXq is not a separable extension of KpY q. Then we
have the chain of inclusions KpXq Å KpXq

s
Å KpY q where KpXq

s is the maximal separable extension
of KpY q in KpXq. Let W be an algebraic variety such that KpW q – KpXq

s, see Proposition 3.3.8.
Correspondingly, see Proposition 3.3.9, we have have a factorization of f as f “ h ˝ g as a product of
dominant rational maps of irreducible algebraic varieties of finite degrees

X
g99K W

h99K Y.

Let W0 Ä W be the open dense subset of points where h is regular, and let X0 Ä X be the open
dense subset of points x such that g is regular and gpxq P W0. Let g0 : X0 Ñ W0, h0 : W0 Ñ Y and
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f0 : X0 Ñ Y be the restrictions of g, h and f to X0, W0 and X0 respectively. We have the factorization
f0 “ h0 ˝ g0, and by Remark 3.6.8 it su�ces to prove that |f

´1
0 pyq| “ deg fs. By Proposition 3.6.11 we

may further shrink W0 and X0 so that g0pwq is a singleton for every w P W0.
Let y P Y be general. Since h0 is separable we have |h

´1
0 pyq| “ deg

s
ph0q “ deg

s
h by Proposi-

tion 3.6.9. Moreover, since y P Y is general, each point of h´1
0 pyq belongs to W0 (see Remark 3.6.8) and

hence
|g

´1
0 ph

´1
0 pyqq| “ |h

´1
0 pyq| “ deg

s
h “ deg

s
f. (3.6.14)

3.7 Degree of a closed subset of a projective space

3.7.1 Definition

Let X Ä Pn be closed, and let c be its codimension. Suppose that X is irreducible and let ⇡ be the
forgetful regular map

�Xpcq
⇡

›Ñ Grpc,Pn
q

pp,⇤q fiÑ ⇤
(3.7.1)

Since �Xpcq and Grpc,Pn
q are irreducible we have a well-defined deg ⇡. By Corollary 3.5.6 we have

dim�Xpcq “ dimGrpc,Pn
q. Thus deg ⇡ † 8. The degree of X is defined to be the separable degree

degX – deg
s
p�Xpcq

⇡
›Ñ Grpc,Pn

qq. (3.7.2)

In general let X “ X1 Y ¨ ¨ ¨ Y Xr be the irreducible decomposition of X. The degree of X is defined to
be the sum of the degrees of irreducible components of X which realize the dimension of X:

degX :“
ÿ

dimXi“dimX

degXi. (3.7.3)

Proposition 3.7.1. Let X Ä Pn be closed of codimension c. There exists an open dense U Ä Grpc,Pn
q

with the following property: if ⇤ P U then X X ⇤ is finite non empty of cardinality equal to degX.

Proof. If X is irreducible the first statement follows from Proposition 3.6.6 applied to the map ⇡

in (3.7.1), and the positivity of degX follows from Proposition 3.5.3. In general let X “ X1 Y ¨ ¨ ¨ Y Xr

be the irreducible decomposition of X. If ⇤ P Grpc,Pn
q is general then by Proposition 3.5.3

⇤ X Xi “ H if dimXi † dimX, ⇤ X pXi X Xjq “ H if i ‰ j. (3.7.4)

It follows that if ⇤ P Grpc,Pn
q is general then

⇤ X X “

ß

dimXi“dimX

⇤ X Xi, (3.7.5)

and hence the claim follows from the case when X is irreducible.

Example 3.7.2. If X Ä Pn is a hypersurface we have given another definition of the degree of X, namely
in Definition 3.5.28. That definition agrees with the definition given above. To see why we may assume
that X is irreducible because the irreducible components of a hypersurface are hypersurfaces. We show
that the map �Xp1q

⇡
›Ñ Grp1,Pn

q has degree equal to degF .
Let IpXq “ pF q. Thus F is prime. There exists s P t0, . . . , nu such that BF {BZs �“ 0. In fact

suppose the contrary. Then charK “ p ° 0 and F “
∞

|I|“d
aIZ

pI . For each I let bI P K be the

unique p-th root of aI . Then F “ p
∞

|I|“d
bIZ

I
q
p, and this contradicts the hypothesis that F is prime.

Reordering the indices we may assume that

BF {BZ1 �“ 0. (3.7.6)
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Let U Ä Grp1,Pn
q be the open dense subset parametrizing lines which do not meet the codimension 2

linear subspace V pZ0, Z1q. It su�ces to prove that the map

�Xp1q X pX ˆ U q
⇡

›Ñ U (3.7.7)

has degree equal to degF . We have the isomorphism

A2n´2 „
›Ñ U

pa2, . . . , an, b2, . . . , bnq fiÑ spanpr1, 0, a2, . . . , ans, r0, 1, b2, . . . , bnsq
(3.7.8)

Let Y Ä U ˆ P1 be the closed subset defined by (we let a – a2, . . . , an, b – b2, . . . , bn)

Y – tpa, b, rT0, T1sq | F pT0, T1, a2T0 ` b2T1, . . . , anT0 ` bnT1q “ 0u. (3.7.9)

We have the isomorphism

Y
„

›Ñ �Xp1q X pX ˆ U q

pa, b, rT0, T1sq fiÑ rT0, T1, a2T0 ` b2T1, . . . , anT0 ` bnT1s
(3.7.10)

and via this isomorphism the map in (3.7.7) is identified with the forgetful map

Y
f

›Ñ U
pa, b, rT0, T1sq fiÑ pa2, . . . , an, b2, . . . , bnq

(3.7.11)

The polynomial G – F pT0, T1, a2T0 `b2T1, . . . , anT0 `bnT1q P Kpa2, . . . , an, b2, . . . , bnqrT0, T1s, which is
homogeneous in T0, T1 of degree equal to degF is prime because F is prime, and moreover BG{BT1 �“ 0
because of (3.7.6). It follows that f is generically separable of degree equal to degF , see Example 3.6.4.

Remark 3.7.3. The map in (3.7.2) is separable in general, but we do not show this here.

Example 3.7.4. Let Cn Ä Pn be the rational normal curve, i.e. the image of the Veronese map

P1 ⌫
1
n

›Ñ Ñ Pn

rS, T s fiÑ rS
n
, S

n´1
T, . . . , T

n
s

(3.7.12)

Then deg Cn “ n. In fact let r⇠0, . . . , ⇠ns be homogeneous coordinates on Pn. Let H – V p
∞

n

i“0 ai⇠iq Ä

Pn be a hyperplane. Then

H X Cn “ ⌫
1
n

ptrS, T s P P1
|

nÿ

i“0

aiS
n´i

T
i

“ 0uq. (3.7.13)

Hence for a general hyperplane H the cardinality of H X Cn is equal to n, and by Proposition 3.7.1 we
get that degCn “ n.

Remark 3.7.5. Let X Ä Pn be closed of dimension d. Then degX is equal to the cardinality of
X X H1 X . . . X Hd for H1, . . . , Hd Ä Pn generic hyperplanes. (This means that there exists an open
dense subset U Ä pPn

q
_

ˆ . . . ˆ pPn
q

_ with the property that |X X H1 X . . . X Hd| “ degX for
pH1, . . . , Hdq P U .) In fact if H1, . . . , Hd Ä Pn are generic hyperplanes then H1 X . . . X Hd is a generic
linear subspace of dimension equal to n ´ d, i.e. the codimension of X.

Proposition 3.7.6. Let X Ä Pn be closed of pure dimension, and let c be its codimension. Let
⇤ P Grpc,Pn

q be such that ⇤ X X is zero dimensional. Then ⇤ X X has cardinality at most equal to
degX.

Proof. ***

Corollary 3.7.7. A closed, pure dimensional X Ä Pn has degree 1 if and only if it is a linear subspace.

Proof. ***
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3.7.2 Minimal degree of non degenerate closed subsets of projective spaces

Definition 3.7.8. A subset X Ä Pn is degenerate if it contained in a proper linear subspace, it is non
degenerate if it is not degenerate.

Proposition 3.7.9. Let X Ä Pn be a closed irreducible non degenerate subset. Then

degX ` dimX • n ` 1. (3.7.1)

Proof. ***

The following result describes all the 1 dimensional (curves) of Pn for which the inequality in (3.7.1)
is an equality.

Proposition 3.7.10. Let X Ä Pn be a closed irreducible non degenerate curve. Then degX “ n if and
only if X is projectively equivalent to the rational normal curve.

Proof. ***

Definition 3.7.11. A closed irreducible non degenerate subset X Ä Pn has extremal degree if degX `

dimX • n ` 1, i.e. the inequality in (3.7.1) is an equality.

The closed irreducible non degenerate subsets of Pn of extremal degree have been classified. Before
giving the classification we discuss a few constructions. Let d – pd1, . . . , drq be a sequence of r positive
integers, let Npdq – r ´ 1 `

∞
r

i“1 di and let ⇤1, . . . ,⇤r Ä PNpdq be linear subspaces of dimensions
d1, . . . , dr spanning PNpdq. In other words there is a direct sum decomposition KNpdq`1

“ V1 ‘ . . .‘Vr

and ⇤i “ PpViq for i P t1, . . . , ru. For i P t1, . . . , ru let ⌫1
di
: P1

Ñ ⇤i be “the” Veronese map.

Definition 3.7.12. Keeping notation as above, the rational normal scroll Spd1, . . . , drq Ä PNpdq is
defined by

Spd1, . . . , drq –
§

pPP1

x⌫
1
d1

ppq, . . . , ⌫
1
di

ppq, . . . , ⌫
1
dr

ppqy. (3.7.2)

Remark 3.7.13. Note that Spd1q is the rational normal curve of degree d1.

Example 3.7.14. One checks that Spd1, . . . , drq is irreducible of dimension r, that it is a closed non
degenerate subset of PN

pdq, and that

degSpd1, . . . , drq “

rÿ

i“1

di. (3.7.3)

Hence Spd1, . . . , drq has extremal degree. We prove the equality in (3.7.3) later on. See Exercise 3.8.14
for a proof for d1 “ . . . “ dr “ 1.

Example 3.7.15. Let v
2
2 : P2

›Ñ P5 be the Veronese map given by monomials of degree 2, and let
X – impv

2
2q (the Veronese surface in P5). Then degX “ 4 (see Exercise 3.8.15) and hence X has

extremal degree.

Remark 3.7.16. Let ⇤ Ä Pn be a hyperplane, and let X Ä ⇤ be irreducible and non degenerate (in ⇤
of course). If p0 P pPn

z⇤q the cone on X with vertex p0 is

Y –
§

xPX
xp0, xy. (3.7.4)

One checks easily that Y is irreducible, dimY “ dimX ` 1 and Y and non degenerate in Pn. Moreover
we have deg Y “ degX (intersect Y with dimX ` 1 general hyperplanes, see Remark 3.7.5). In
particular, if X has extremal degree then so does Y . Of course we ca iterate the above procedure and
we get an iterated cone. If X has extremal degree then so does an iterated cone over X.
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Theorem 3.7.17 (del Pezzo-Bertini). A closed irreducible non degenerate subset X Ä Pn has extremal
degree if and only if it is projectively equivalent to one of the following:

1. Pn
Ä Pn (trivial case).

2. A hypersurface X Ä Pn of degree 2 (semitrivial case).

3. The rational normal scroll Spd1, . . . , drq Ä PNpdq.

4. The Veronese surface in P5.

An iterated cone over one of the above varieties.

3.8 Exercises

Exercise 3.8.1. The Veronese map is

P2 f99K P2

rZ0, Z1, Z2s fiÑ rZ1Z2, Z0Z2, Z0Z1s
(3.8.5)

1. Prove that f is a birational map.

2. Determine Regpfq.

3. Describe maximal open sets U, V Ä P2 such that f induecs an isomorphism U
„

›Ñ V .

Exercise 3.8.2. Prove that dimGrph, V q has dimension equal to h ¨ pdimV ´ hq.

Exercise 3.8.3. An algebraic group is an algebraic variety G equipped with a group structure such that the
map

G ˆ G ›Ñ G.

px, yq fiÑ xy
´1 (3.8.6)

is regular. For example GLnpKq with matrix multiplication is an algebraic group. Prove that the irreducible
components of an algebraic groups are pairwise disjoint and they all have the same dimension.

Exercise 3.8.4. Let Mn,npKq be the vector-space of n ˆ n matrices with entries in K. If charK �“ 2 define
OnpKq and SOnpKq as usual:

OnpKq – tA P Mn,npKq | A
t

¨ A “ 1nu, SOnpKq – tA P OnpKq | DetA “ 1u, (3.8.7)

where 1n P Mn,npKq is the unit matrix.

1. Let Q – V pz
2
1 ` z

2
2 ` . . . ` z

2
n ´ 1q Ä An, and let f : SOnpKq Ñ Q be the map associating to A P SOnpKq

its first column. Prove that f´1
pzq is isomorphic to SOn´1pKq for every z P Q.

2. Let X be an irreducible component of SOnpKq. Prove that fpXq contains an open dense subset of Q.

3. Prove by induction on n that SOnpKq is irreducible.

4. Prove that OnpKq has two irreducible components.

Exercise 3.8.5. Let
UnpKq :“ tZ P Mn,npKq | Detp1n ´ Zq �“ 0u.

The Cayley map is given by
UnpKq

'
›Ñ Mn,npKq

Z fiÑ p1n ` Zq ¨ p1n ´ Zq
´1 (3.8.8)

1. Prove that ' defines a birational map f : Mn,npKq 99K Mn,npKq. Determine the rational inverse f´1 : Mn,npKq 99K
Mn,npKq

2. Assume that charK �“ 2. Let onpKq Ä Mn,npKq be the subspace of anti-symmetric matrices and let
SOnpKq Ä Mn,npKq be the group of special orthogonal matrices. Prove that if Z P onpKq X UnpKq then
'pZq P SOnpKq. Let  : onpKq X UnpKq Ñ SOnpKq be the restriction of '.
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3. Prove that the image of  is dense in SOnpKq, and hence  defines a dominant rational map g : onpKq 99K
SOnpKq.

4. Prove that Regpf
´1

q contains an open dense subset of SOnpKq and hence g is a birational map.

5. Notice that g is defined over the prime field. Produce many matrices in SO3pQq.

Exercise 3.8.6. Let V be a finitely generated K vector space, and let Q Ä PpV q be a quadric hypersurface,
i.e. Q “ V pqq where q : V Ñ K is a non zero quadratic form (if q “ `

2 where ` : V Ñ K is a linear form then
V pqq “ V p`q is a hyperplane, the “quadric hypersurface” should be understood to mean the degree 2 e↵ective
divisor 2V p`q). The kernel of q, denoted by ker q, is the set of u P V such that qpv`uq “ qpvq for all v P V . Note
that ker q is a vector subspace of V . The quadric is degenerate if ker q �“ t0u, and non degenerate if ker q “ t0u.

1. Prove that if Q is a degenerate quadric hypersurface then Q is a cone with vertex Ppker qq, i.e. there exists
a closed subset XQ Ä PpV { ker qq such that Q is the union of the linear subspaces ⇤ Ä PpV q containing
Ppker qq parametrized by X (we say that Q is a cone with vertex Ppker qq over X). (Note: this makes sense
because the projective space PpV { ker qq is in a natural bijective correspondence with vector subspaces
W Ä V containing ker q whose dimension is equal to dimpker qq ` 1.) Show that XQ is a non degenerate
quadric in PpV { ker qq.

2. Let Q1, Q2 Ä PpV q be quadric hypersurfaces, given by quadratic forms q1, q2 respectively. Prove that
Q1, Q2 are projectively equivalent, i.e. there exists g P PGLn`1pKq such that gpQ1q “ Q2, if and only
ker q1 and ker q2 have the same dimensions.

3. Now suppose that charK �“ 2. Let Q Ä PpV q be a non degenerate quadric hypersurface, given by the
quadratic form q. Since charK �“ 2 there exists a unique bilinear symmetric form b : V ˆ V Ñ K such
that qpvq “ bpv, vq for all v P V . Let p0 “ rv0s P PpV q. The polar hypersurface of p0 is given by

p
K
0 – Ppv

K
0 q “ Pptv P V | bpv0, vq “ 0uq. (3.8.9)

Prove that pK
0 X Q is a quadric hypersurface in p

K
0 , that it is degenerate if and only if p0 P Q, and that if

the latter holds then it is a cone with vertex p0 over a non degenerate quadric hypersurface in Ppv
K
0 {xv0yq.

Exercise 3.8.7. Assume that charK �“ 2. Let Qn
Ä Pn`1 be a non degenerate quadric hypersurface.

1. Prove that if ⇤ Ä Q is a linear space then dim⇤ §
n
2 .

2. Let r :“ tn
2 u. Describe FrpQ

n
q in terms of well-known varieties for n P t1, 2, 3, 4u.

Exercise 3.8.8. Assume that charK �“ 2. Let Q
2r`1

Ä P2r`2 be a non degenerate odd dimensional quadric
hypersurface.

1. Let �rpQ
2r`1

q Ä Q
2r`1

ˆ Grpr,P2r`2
q be the incidence subset defined by

�rpQ
2r`1

q – tpp,⇤q | p P ⇤ Ä Q
2r`1

u. (3.8.10)

The restrictions to �rpQ
2r`1

q of the projection maps of Q2r`1
ˆ Grpr,P2r`2

q define regular projective
maps

�rpQ
2r`1

q

⇡r

yy

⇢r

&&

Q
2r`1 Grpr,P2r`2

q

(3.8.11)

Note that imp⇢rq “ FrpQ
2r`1

q. Prove that ⇡´1
r ppq – Fr´1pQ

2r´1
q for every p P Q

2r`1.

2. Prove, using Item (2) and arguing by induction on r, that FrpQ
2r`1

q is irreducible and

dimFrpQ
2r`1

q “

˜
r ` 2
2

¸
. (3.8.12)

Exercise 3.8.9. Let Q
2r

Ä P2r`1 be a non degenerate even dimensional quadric hypersurface. The purpose
of this exercise is to prove that

(I) FrpQ
2r

q has two irreducible components FrpQ
2r

q` and FrpQ
2r

q´, each of dimension
`
r`1
2

˘
, and they are

disjoint.

84



3.8. Exercises

(II) ⇤1,⇤2 P FrpQ
2r

q belong to the same irreducible component if and only if

dimp⇤1 X ⇤2q ” r pmod 2q.

(Here we agree that dimH “ ´1.)

1. Prove that each irreducible component of FrpQ
2r

q has dimension at least
`
r`1
2

˘
. (Hint: this amounts to

the statement that each irreducible component of FrpQ
2r

q has codimension at most dimKrT0, . . . , Trs2.)

2. Let H Ä P2r`1 be a hyperplane such that Q2r
XH is non degenerate, i.e. H “ p

K where p P pP2r`1
zQ

2r
q.

Show that there is a well-defined regular map

FrpQ
2r

q ›Ñ Fr´1pQ
2r´1

q

⇤ fiÑ ⇤ X H
(3.8.13)

and use this, together with Item (1) to prove that FrpQ
2r

q has pure dimension
`
r`1
2

˘
, and that it has at

most two connected components.

3. Given W P FrpQ
2r

q let AW Ä FrpQ
2r

q be defined by

AW – tU P FrpQ
2r

q | U X W “ t0uu.

Prove that AW is an a�ne space of dimension equal to
`
r`1
2

˘
, and that if W1,W2 P AW then

dimW1 X W2 ” r ` 1 pmod 2q.

(Hint: Fix W0 P AW . The symmetric bilinear form b induces an isomorphism W » W
_
0 . Given U P AW

the condition U XW “ t0u gives that U Ä K2r`2
“ W0 ‘W is the graph of a linear map �U : W0 Ñ W »

W
_
0 . Lastly note that �U is skew-symmetric, i.e. �t

U “ ´�U , because W0 is isotropic for a quadratic form
defining Q

2r.)

4. Prove that FrpQ
2r

q “
î

WPFrpQ2rq AW and that if dimW1 X W2 ı r ` 1 pmod 2q then AW1 X AW2 “ H.

5. Prove that (I) and (II) hold.

Exercise 3.8.10. Prove Claims 3.5.29 and 3.5.30.

Exercise 3.8.11. Prove Propositions 3.5.31 and 3.5.32.

Exercise 3.8.12. The goal of the exercise is to prove the following result:

Every cubic surface in P3 contains a line. (3.8.14)

Let F “ Z3 ¨ pZ0Z1 ´ Z
2
2 q ` L1 ¨ L2 ¨ L3 where Li P KrZ0, Z1, Z2s1 are linear functions such that the following

hold.

‚ The intersection in P2 of V pLiq and V pZ0Z1 ´ Z
2
2 q consists of two distinct points.

‚ If i, j P t1, 2, 3u are distinct then V pLiq X V pLjq X V pZ0Z1 ´ Z
2
2 q (intersection in P2) is empty.

It follows that the intersection in P2 of V pL1 ¨ L2 ¨ L3q and V pZ0Z1 ´ Z
2
2 q consists of six distinct points:

V pL1 ¨ L2 ¨ L3q X V pZ0Z1 ´ Z
2
2 q “ tq1, . . . , q6u. (3.8.15)

Let X – V pF q Ä P3.

1. Prove that F is prime and hence X is an irreducible cubic surface.

2. Let p0 “ r0, 0, 0, 1s P X, and let

X
f99K P2

rZ0, Z1, Z2, Z3s fiÑ rZ0, Z1, Z2s
(3.8.16)

Show that f is birational.

3. Let R Ä P3 be a line. Prove that R Ä X if and only if one of the following hold.

(3a) R “ xp0, qjy where qj is one of the points appearing in (3.8.15).

(3b) R “ xqj , qky where qj , qk are two distinct pointsappearing in (3.8.15).
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3. Rational maps, dimension and degree

4. Prove that the statement in (3.8.14) holds.

Exercise 3.8.13. Let Pn
d Ä Divd

`pPn
q be the set of prime divisors, i.e. the set of irreducible hypersurface of

degree d. Prove that if n • 2 and d • 2 then the codimension of the complement of Pn
d in PpKrZ0, . . . , Znsdq

is equal to ˜
d ` n ´ 1
n ´ 1

¸
´ n. (3.8.17)

In particular Pn
d is a dense open subset of PpKrZ0, . . . , Znsdq. (Hint: For 0 † a † d let �d

apPn
q Ä Diva

`pPn
q ˆ

Divd
`pPn

q be the subset defined by

�d
apPn

q – tpA,Dq | D “ A ` B, B P Divd´a
` pPn

qu. (3.8.18)

Show that �d
apPn

q is closed subset. Consider the two regular maps �d
apPn

q Ñ Diva
`pPn

q and �d
apPn

q Ñ Divd
`pPn

q

given by the restrictions of the projections of Diva
`pPn

q ˆ Divd
`pPn

q.)

Exercise 3.8.14. Let
P1

ˆ Pn �
›Ñ P2n`1

be the Segre embedding, and letXn Ä P2n`1 be its image. Prove that degXn “ n`1, i.e. degXn`dimXn “ 2n`

2. Next show that Xn is projectively equivalent to the rational normal scroll Sp1, 1, . . . , 1q, see Example 3.7.14.

Exercise 3.8.15. Let v22 : P2
›Ñ P5 be the Veronese map given by monomials of degree 2, and let X – impv

2
2q.

Prove that degX “ 4 by following the steps below.

1. By Remark 3.7.5 it su�ces to prove that for general hyperplanes H1, H2 Ä P5 the intersection XXH1XH2

has cardinality 4.

2. By Item (1) we are reduced to showing that if C1, C2 Ä P2 are generic curves of degree 2 then C1 X C2

has cardinality 4. Prove it.
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