Chapter 4

Tangent space, smooth points

4.1 Introduction

One definition of tangent space of a C® manifold M at a point € M is as the real vector space of
derivations of the ring of C'* functions on M centered at z, or of the ring of germs of C'* functions
at z. An analogue definition gives the definition of Zariski tangent space of an algebraic variety at a
point. One needs to consider the analogue of the ring of germs of C'® functions at the point because
if the algebraic variety is complete then global regular functions are locally constant. The advantage
of such an abstract definition is that it is intrinsic by definition. On the other hand, we will identify
the Zariski tangent space at a point a of a closed subset X < A™ with the classical embedded tangent
space, defined by the common zeroes of the linear approximations at a of polynomials in a basis of the
ideal I(X).

A fundamental difference between quasi projective varieties and smooth manifolds is that the di-
mension of the tangent space at a point might depend on the point, even for an irreducible variety.
The points where the dimension has a local minimum are the so-called smooth points of the variety.
Smooth algebraic varieties resemble C* manifolds, or even more closely complex manifolds.

In fact if the field is C then a smooth variety has a natural structure of complex manifold and regular
maps between complex smooth varieties are holomorphic maps of complex manifolds.

4.2 Zariski’s tangent and cotangent space

4.2.1 The local ring at a point

Definition 4.2.1. Let X be an algebraic variety, and let x € X. Let (U, ¢) and (V, ) be couples where
U,V are open subsets of X containing z, and ¢ € K[U], ¥ € K[V]. Then (U, ¢) ~ (V, %) if there exists
an open subset W < X containing = such that W c U n'V and ¢y = ¢¥w-

One checks easily that ~ is an equivalence relation: an equivalence class for the relation ~ is a
germ of regular function of X at x. We may define a sum and a product on the set of germs of regular
functions of X at x by setting

[(U7 Qb)] + [(‘/7 1/])] = [(U N ‘/7 ¢\U(\V + ¢\UOV)]7 (421)
and
(U, )] - [(V,)] = [(U "V, duav - Yoav)]- (4.2.2)

Of course one has to check that the equivalence class of the sum and product is independent of the
choice of representatives: this is easy, we leave details to the reader. With these operations, the set of
germs of regular functions of X at x is a ring.

Definition 4.2.2. Let X be an algebraic variety and let x € X. The local ring of X at x is the ring of
germs of regular functions of X at z, and is denoted Ox ,.
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4. TANGENT SPACE, SMOOTH POINTS

Remark 4.2.3. Let X be an algebraic variety, and let z € X. If V < X is an open subset containing x
then the homomorphism

ﬁV,z i’ ﬁX,z
(W] — [(U.0)] (4.23)

is an isomorphism. Since there exist many V' which are affine, every local ring of a point on an algebraic
variety is isomorphic to the local ring of a point on an affine variety.

There is a well-defined surjective homomorphism

Ox. — K

[(U¢)] — ¢ (4.2.4)

As a matter of notation we let f(z) be the value of the above homomorphism on f = [(U, ¢)]. We have
the natural homomorphism of rings
K[X] - ﬁX,m

;o (X (4:25)
Let m,  K[X] be the ideal defined by
m, = {f € K[X] | f(x) = 0}. (126
If f ¢ m, then p(f) is invertible: in fact the open subset
X; = X\V(f) (4.2.7)

contains x and [(Xy,1/f)] is the inverse of p(f). Let K[X]w, be the localization of K[X] at the maximal
ideal m,, and let p: K[X] — K[X]n, be the localization homomorphism. By the universal property of
the ring of fractions (see Proposition A.4.3) there exists a unique homomorphism

7 K[ X, = Ox» (4.2.8)
such that p =po .

Proposition 4.2.4. Keep notation as above, and suppose that X is an affine variety. Then

K[X]m, > Oxa (4.2.9)

is an isomorphism.

Proof. Suppose that p(f/g) = 0, where f,g € K[X] with g(z) $ 0. This means that there exists an
open U < X containing z such that fj;; = 0. Since the principal open affine subsets of X form a basis
of the Zariski topology, there exists h € K[X] such that X;, ¢ U and x € X}, (see Example 1.6.5). Thus
h ¢ m, and h- f = 0: this gives that f/¢g = 0 in the localization K[X]y,,. This proves that p is injective.

Next we prove that p is surjective. Let f € Ox . Then, since principal open affine subsets of X
form a basis of the Zariski topology, f is represented by a suitable (X, ) where h € K[X] does not
vanish in z. By Example 1.6.5 we have ¢ = g/h” for suitable g € K[X] and exponent N, and hence

f=1Xn, 9)] = plg/h"). -
By the above proposition and Proposition A.4.7 we get the following.

Corollary 4.2.5. Let X be an algebraic variety, and let x € X. Then Ox , is a Noetherian local ring,
and the homomorphism in (4.2.4) is the quotient map to its residue field.

Abusing notation we let m,; < Ox , be the kernel of (4.2.4), i.e. the unique maximal ideal of germs
of regular functions at = vanishing at z.

88



4.2. Zariski’s tangent and cotangent space

4.2.2 Zariski’s tangent space

The homomorphism (4.2.4) equips K with a structure of &x z-module. Moreover Ox , is a K-algebra.
Thus it makes sense to consider K-derivations of Ox , to K.

Definition 4.2.6. Let X be an algebraic variety, and let € X. The Zariski tangent space to X at x
is Derg (Ox 5, K), and will be denoted by ©,X.

Thus ©,X is an Ox ,-module (see Section A.8), and since m,, annihilates every derivation Ox , — K,
it is a complex vector space. This corresponds to the K vector space structure of Derg (Ox »,K) via the
isomorphism K — Ox ,/m,.

Lemma 4.2.7. Let a € A™. The complex linear map

0,A" —> K™

° 4.2.10
D~ (D(x1),....D(zn) (4.2.10)
is an isomorphism.

Proof. The formal partial derivative Pj defined by (A.8.7) defines an element of ©,A™ by the familiar
formula

9

(1Y o ) 000~ S0 220
0Zm ' g(a)? '
(See Example A.8.3.) Since 6:fm (2j) = dmj, the map in (4.2.10) is surjective.

Let’s prove that the map in (4.2.10) is injective. Assume that D € ©x , is mapped to 0 by the map
in (4.2.10), i.e. D(z;) = 0 for j € {1,...,n}. Let f,g € K[z1,..., 2], with g(a) & 0. Then

D (f) D(f)-g(a) ~ f(a) - D(g)

g

(See Example A.8.3.) Hence it suffices to show that D(f) = 0 for every f € K[z1, ..., z,]. Consider the
first-order expansion of f around a i.e. write

f=fla)+ z"] ci(#z —a)+ R, Rem?. (4.2.11)
i=1

Since D is zero on constants (because D is a K-derivation) and D(z;) = 0 for all j it follows that
D(f) = D(R), and the latter vanishes by Leibniz’ rule and the hypothesis D(z;) = 0 for all j. O

The differential of a regular map at a point of the domain is defined by the usual procedure.
Explicitly, let f: X — Y be a regular map of quasi projective varieties, let © € X and y := f(z). There
is a well-defined pull-back homomorphism

ﬁy’y f—*> . ﬁX,z (4212)
[(U7 ¢)] g [(f U7¢O (f|f’1U))]

The differential of f at x is the linear map of complex vector spaces

df ()
0. X — e,Y (4.2.13)
D = (¢ D(f*9))
Remark 4.2.8. Suppose that the pull-back homomorphism in (4.2.12) is a surjection. Then the differ-
ential df (x) is injective. In particular if j: X < Y is the inclusion of a closed (or open) subset, then

dj(z): ©,X — 0,Y is injective for all z € X.
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4. TANGENT SPACE, SMOOTH POINTS

The differential has the customary functorial properties. Suppose that we have

X4 —>fl X5 —>f2 )(3,7 ANS Xl, To = [1 (Il) . (4214)
Since ’2011 * = 7*01* we have
1 2

d(fao f1) (x1) = dfa (2) o df1 (1) (4.2.15)

Moreover dIdx(z) = Ide,x for z € X.

Remark 4.2.9. Tt follows from the above that if f is an isomorphism, then df (z): ©,X — O)Y is an
isomorphism, in particular dim ©,X = dim©,Y".

4.2.3 Embedded tangent space

Let ¢: X < A™ be the inclusion of a closed subset and a € X. The differential di(a): ©,X — ©,A" is
injective (see Remark 4.2.8), hence the differential di(a) identifies ©,X with a subspace of ©,A". The
latter is identified with K™ via the isomorphism in (4.2.10). Thus we view ©,X as a vector subspace
of K.

Proposition 4.2.10. Keeping notation as above, we have

0,X = {'u = (1,...,0,) €K™ | i %(a).ui =0 erI(X)}. (4.2.16)
i=1 """

Proof. The differential di(a) is injective because the pull-back t*: Opn o — Ox o is surjective. Let
D € Derg(Ox o, K). If f e I(X) < K[z1,...,2,], then du(D)(f) = D(t*f) = D(0) = 0. Hence imdi(a)
is contained in the right-hand side of (4.2.16). Let’s prove that imdi(a) contains the right-hand side
of (4.2.16). Let D e Derg(Oyn o, K) belong to the right hand side of (4.2.16), i.e. D(f) = 0 for all
f e I(X). By Item (3) of Example A.8.3 it follows that E(g) = 0 whenever f,g € K[z1,...,2,] and
f e I(X) (of course we assume that g(a) + 0). Thus D descends to a K-derivation D € Derg (O 4, K),
and D = duy(a)(D). O

Remark 4.2.11. With the hypotheses of Proposition 4.2.10, suppose that I(X) is generated by f1,..., fr.
Then

Zﬁf(a)-vi=0 ke{L...,r}}.

OuX = {U=(u1,..l,vn)eﬂ<n 1]
=1

In fact, the right hand side of the above equation is equal to the right hand side of (4.2.16), because if
£ =X 198 then $h(a) = X7_, g;(a) 2.
Remark 4.2.12. Since every point x of an algebraic variety X is contained in an open affine subset U,

and ©,X = O,U (because restriction defines an identification Ox , = Oy ), the result above allows to
compute the Zariski tangent space in general.

Definition 4.2.13. Let X < A" be a closed subset and let a € X. The embedded tangent space of X at
a is the affine subspace T,X < A™ containing a with vector space of translations given by ©,X (given
by the equality in (4.2.16)).

Let a = (ay,...,a,), and suppose that I(X) = (f1,...,fr). By Remark 4.2.11 the embedded
tangent space T, X is given by

T,X = {zeA” | Zn: Zﬁ’f(a) (zi—ai)=0 ke {1,...,r}}. (4.2.17)
i=1 7
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4.2. Zariski’s tangent and cotangent space

Remark 4.2.14. Let R < A™ be a line containing a. Then R belongs to T, X if and only if the restriction
to R of every f € I(X) has a zero of multiplicity at least 2 at a.

There is an analogous notion of embedded projective tangent space of a closed subset X < P™ at
a point [a] € X. First note that given any subspace V < ©,P" there exists a unique linear subspace
A < P" such that the tangent space Opa]A is equal to V.

Definition 4.2.15. Let X < P" be a closed subset and let [a] € X. The embedded projective tangent
space of X at [a] is the unique linear subsapce T X < P containing [a] such that O (T X) =
O X

Proposition 4.2.16. Let X < P™ be a closed subset and let [a] = [ag, . ..,an] € X. Let Fy,...,F, be
homogeneous generators of the (homogeneous) ideal I(X) < K[Zy,...,Z,]. Then

_ * OFy(a)  OF(a)
T[G]Xv(i_o 7 Z;) 7 Zi |. (4.2.18)

Proof. Tt suffices to prove that if [a] € P} then the intersection of the two sides of (4.2.18) with P%_
are equal. The intersection of T, X and ]P"ZL is the embedded tangent space to X n P at the point
(ap/as, ... ,as—1/as,as41/as, - ..,an/as), and hence can be computed by the equality in (4.2.17). We
check that it is equal to the intersection of the right hand side of (4.2.18) with P} . We may assume
that s = 0. It suffices to prove that if F' € I(Z) then '

0F(a) <A 0F(a) )\ _ . (<0 0f(ars. . an)
V< z, &z, Zi) =V <21 5 —ai)> : (4.2.19)

In order to prove the equality in (4.2.19) we recall Fuler’s identity

" 0F(a)

(degF)-F =)
=0

(a
Z;.
0Z;

Plugging in Zy =1, Z; = a; for i € {1,...,n}, and noting that F(1,as,...,a,) = 0 we get that

0F (a) & OF(ay, ... ap)
Ny dn) 4.2.2
Z ; oz, (4.2.20)
This proves that the equality in (4.2.19) holds. O

Remark 4.2.17. Let A < P" be a line containing [a]. Thus A = P(U) where U < K"*! is a vector
subspace of dimension 2. Then A belongs to T,X if and only if for all homogeneous F' € I(X) the
restriction Fjyy has a zero of multiplicity at least 2 at a.

4.2.4 Zariski’s cotangent space

Let X be an algebraic variety and let x € X. The cotangent space to X at x is the dual complex vector
space of the tangent space ©,X, and is denoted Qx (z):

Qx(z) == (0,X)". (4.2.21)
We define a map
Ox.0 25 Qx(2) (4.2.22)

as follows. Let f = [(U, )] € Ox , and let v € ©,X be a K-derivation Ox , — K: then §,(f) acts on v
by
G2(f), v) = v(p)- (4.2.23)

The action is independent of the representative of f.

91



4. TANGENT SPACE, SMOOTH POINTS

Remark 4.2.18. We equip Qx(z) with a structure of €y y-module by composing the evaluation map
Ox, — K given by (4.2.4) and scalar multiplication of the complex vector-space Qx(z). With this
structure 9, is a derivation over K.

Let m;  Ox, be the maximal ideal. Since J, is a derivation d,(f) = 0 for f € m2, and hence we
have an induced K-linear map

mo/m2 2 Qy(a) (4.2.24)
] — dg(a)

Proposition 4.2.19. Keep notation as above. Then &, is an isomorphism of K vector spaces.

Proof. First we prove that 0, is surjective. If X = A", surjectivity follows at once from Lemma 4.2.7.
In general, we may assume that X is a closed subset of A", and surjectivity follows from surjectivity
for affine space.

In order to prove injectivity of &, we must show that if ¢ € m,, is such that v(¢) = 0 for allv € ©,X,
then ¢ € m2. We may suppose that X is a closed subset of A". In order to avoid confusion, we let
z=a=(ay,...,an). Let (U, f/g) be a representative of ¢, where f, g€ K[X], and f(a) =0, g(a) % 0.
It will suffice to prove that f € m2. Since 0 = v(¢) = —g(a)~2v(f) we have v(f) = 0. By Theorem 1.6.2
there exists f € K[z1,...,2,] such that f|X = f. By Proposition 4.2.10 we may identify ©,X with the
subspace of ©,K" = K" given by (4.2.16). In our new notation we have

0,X = Ann({6,(p) | pe [(X)}). (4.2.25)

It follows that there exists h € I(X) such that v(f) = v(h) fo all v € ©,X. Then (f — h)x = f and
v(f —h) =0 for all v e ©,X. It follows (first-order Taylor expansion of f — h at a) that

(f—h)e(zl—al,...,zn—an)2.

Since h € I(X) we get that f € m2. O

The following result is an immediate consequence of Corollary A.9.2.

Corollary 4.2.20. Let X be a quasi-projective variety and let x € X. Let fi,..., fn € my € Ox ,, and
suppose that 65(f1), ..., 05 (fn) generate Qx (x). Then f1,..., fn generate the mazimal ideal m, € Ox ;.

One may also define a map
Ox.c 25 Qx(x) (4.2.26)

as follows. Let f € Ox , be represented by (U, $). The codomain of the differential d¢(z): ©,U —
O4 (K is identified with with K, because of the isomorphism in (4.2.10), and hence dé(z) € (0,U)".
Since U < Z is an open subset containing x, the differential at = of the inclusion map defines an
identification ©,U — ©,X. Thus d¢(z) € (0,X)¥ = Qx(z). One checks immediately that if (V)
is another representative of f then dy(z) = d¢(x). We let

d.(f) := do(z), (U, ¢) any representative of f. (4.2.27)

Claim 4.2.21. Let X be an algebraic variety and let x € X. The map 6, in (4.2.22) is equal to the
map dy in (4.2.27).

Proof. This is because ¢*(z) = ¢, where z is the coordinate on K. O

Because of the above identification from now on we denote d,(f) by df (z).
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4.3. Smooth points

Remark 4.2.22. Let f € K[z1,...,2,] and a € A™. Then the familiar formula

d(a) = Y, £ (@)dzi(a)
holds. In fact this follows from the first-order Taylor expansion of f at a:
f=fa)+)] S (@) —a) + D omijlzi—ai)(z—ag),  migeKa, .z (42.28)
i=1 """ 1<i,j<n

Remark 4.2.23. Let X < A" be closed, and let a € X. Identify ©,A™ with K" via Lemma 4.2.7. By
Remark 4.2.22 we have the identification

ToX = Ann{df(a) | f € I(X)}.

Let f: X — Y be a regular map of algebraic varieties. Let € X, and let y := f(z). The transpose
of the differential df (z): ©,X — ©,Y is also denoted by f*(z):

f*(x) = df(2)': Qy (y) — Qx(2). (4.2.29)
The notation is justified by the following observation. By Proposition 4.2.19 and Claim 4.2.21 we have

the identification

my/mj = Qv (y) iy Qx (z) = my/m? (4.2.30)
[(U,@)] (modm?) — [(f7HU),po(fiy~1w))] (modm3)

Proposition 4.2.24. Let f: X — Y be a reqular map of algebraic varieties, and let ¢ € K[Y]. Then
for every x € X we have

d(f*¢)(z) = f*(dp(z)). (4.2.31)

Proof. Follows from the description of the transpose of the differential in (4.2.30). In fact both left and
right hand side are the class of f*(¢ — ¢(y)) in m,/m2.

O
4.3 Smooth points
4.3.1 Stratification by dimensions of the tangent spaces
Proposition 4.3.1. Let X be a quasi projective variety. The function
X = N (4.3.1)

r +— dim©O,X
is Zariski upper-semicontinuous, i.e. for every k € N
Xi:={re X |dm0O,X > k}
is closed in X.

Proof. Since X has an open affine covering, we may suppose that X < A" is closed. Let I(X) =
(f1,---, fr). For z € A™ let

Liw) - L)
T J@) =
Lifg) - L)
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4. TANGENT SPACE, SMOOTH POINTS

be the Jacobian matrix of (fi,..., fs) at z. By Proposition 4.2.10 we have that

X ={zeX|rtkJ(f1,..., fr)(@) <n—k}. (4.3.2)
Given multi-indices I = {1 < i3 < ... < 4 < spand J = {1 < j1 < ... < jm < n} let
J(f1,-.., fs)(@)r,s be the m x m minor of J(f1,..., fr)(x) with rows corresponding to I and columns

corresponding to J (if m > min{r,n} we set J(f1,..., fs)(@)r,s = 0). We may rewrite (4.3.2) as
Xk =Xn V( . ,detJ(fl, . ..,fr)(fL')LJ,. . ')|I|:|J\:n—k+1 .
It follows that X, is closed. O

Ezample 4.3.2. Let X < A™ be a hypersurface. Thus I(X) = (f) where f € K[z1,..., z,] is a polynomial
without multiple factors. Let a € X. The tangent space to X at a is identified with the subspace of K"

defined by
n f B
:E E v; = 0.

Hence

_ e (Of of
diIIl @aX — n 1 lf (%Zl (a)7 R} ()62" (a)) :*: 07
n if (5 (a),..., 7:-(a)) =0.
Let us show that of of
X\V ., 4.3.
w2 (433)

is an open dense subset of X (it is obviously open, the point is that it is dense), i.e. dim©, X =n —1
for @ in an open dense subset of X.

First assume that X is irreducible. As shown in Example 3.7.2 there exists ¢ € {1,...,n} such that
0f/0fz; £ 0. Reordering the coordinates, we may assume that i = n. Write

d—1

f=az +a123  +- - 4aq, aieK[z,...,201], a0 #0, d>0.

Thus
=dapzd™' + (d - 1a128 2+ +ag_1 + 0.

of
n

The degree in z, of f is d, i.e. f has degree d as element of K|[z1,...,2,-1][2,]. On the other hand, %

is non zero and its degree in z, is strictly smaller than d. Thus f { 2—f, and hence the set in (4.3.3) is
dense in X (recall that X is irreducible). !
In general, let f = f; - -+ - f, be the decomposition of f as product of (non associated) prime
factors. Let X; = V(f;). Then
X=Xju---uX,

is the irreducible decomposition of X. As shown above, for each i € {1,...,r}
of; of;
XNV (ii> .
Z1 Zn

Hence there exists a € X; such that pfj( ) # 0 for a certain 1 < h < n. We may assume in addition
that a does not belong to any other irreducible component of X. It follows that

{if( ﬁf] )- [ [ fr(@

Zh k#j

This proves that the open set in(4.3.3) has non empty intersection with every irreducible component of
X, and hence is dense in X.

Notice also that if a belongs to more than one irreducible component of X, then all partial derivatives
of f vanish at a. In other words, any point in the open dense subset of points a such that dim©®, = n—1
belongs to a single irreducible component of X.
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4.4. The local ring of a smooth point is an integral domain

4.3.2 Smooth points

Definition 4.3.3. Let X be an algebraic variety, and let x € X. Then X is smooth at = if dim 0, X =
dim, X, it is singular at x otherwise. The set of smooth points of X is denoted by X*™ and if X*™ = X
then X is smooth. The set of singular points of X is denoted by sing X.

Example 4.3.4. Affine space is smooth. It follows that every algebraic variety which has an open covering
by affine spaces is smooth. Examples of such varieties are Grassmannians.

Ezample 4.3.5. Let X < A" be a hypersurface. Since the dimension of X is equal to n — 1 (see Corol-
lary 3.4.9), the set of smooth points of X is an open dense subset of X by Example 4.3.2. Notice that
X may very well have many singular points. For example if Y, W are distinct irreducible components
of X then every point of Y n W is a singular point. Even an irreducible X may have many singular
points, for example Whitneys’ umbrella V(22 — yw?) = A? is singular along the line V (z, w).

Proposition 4.3.6. Let X be an algebraic variety. Then the following hold:
1. The set of smooth points of X contains an open dense subset of X.

2. For x € X we have dim©,X > dim, X.

Proof. (1): Suppose first that X is irreducible of dimension d. By Proposition 3.3.12 there is a birational
map g: X --» Y, where Y < A%*! is a hypersurface. By Proposition 3.2.11 there exist open dense
subsets U ¢ X and V < Y such that g is regular on U, and it defines an isomorphism f: U — V. By
Example 4.3.5, the set of smooth points Y*™ of Y is open and dense in Y. Since V is open and dense
in Y the intersection Y™ NV is open and dense dense in Y and hence f~1(Y™ n V) is an open dense
subset of X. Since f~1(Y*® n V) is contained in U™, we have proved that the set of smooth points
of X contains an open dense subset of X. We have proved that Item (1) holds if X is irreducible. In
general, let X = X7 U --- U X, be the irreducible decomposition of X. Let

X0 = 0\ [ X)) = (0 x)
i#] i#]
By the result that was just proved, (X;-))Sm contains an open dense subset of smooth points. Every
smooth point of XJQ is a smooth point of X, because XJQ is open in X. Thus Ui(X?)SI“ is an open dense
subset of X, containing an open dense subset of X. This proves Item (1).

(2): Let xg € X, and let Xy be an irreducible component of X containing zy such that dim X, =
dim,, X. By Item (1) X§™ contains an open dense subset of points z such that dim ©,X, = dim, X,
and hence by Proposition 4.3.1 we have dim ©,X( > dim, X, for all z € X. In particular dim ©,, X, >
dimy, Xo = dim,, X. Since ©,,X¢ < 0,,X, it follows that dim ©,,X > dim,, X. O

4.4 The local ring of a smooth point is an integral domain

4.4.1 The main result

Theorem 4.4.1. Let X be an algebraic variety, and let x be a smooth point of X. Then the local ring
Ox o 1s an integral domain.

The proof of Theorem 4.4.1 is in Subsection 4.4.4. Here we note that Ox , being an integral domain
has a straightfoward geometric translation.

Claim 4.4.2. Let X be an algebraic variety, and let x € X. The local ring Ox , is an integral domain
if and only if there is only one irreducible component of X containing x.

Proof. Suppose that there is only one irreducible component of X containing x. Then there is an open
irreducible affine subset of X containing x. Hence we may assume that X is affine and irreducible.
Thus Ox , is isomorphic to K[X ], by Proposition 4.2.4. Since X is irreducible the ring of regular
functions K[X] is an integral domain. It follows that the localization K[X]y,, is an integral domain.
To prove the converse one argues as in the proof of Proposition 1.3.10. O
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4. TANGENT SPACE, SMOOTH POINTS

Next we show that from Theorem 4.4.1 we get a stronger version of Item (1) of Proposition 4.3.6.

Corollary 4.4.3. Let X be an algebraic variety. Then the set X™ of smooth points of X is an open
dense subset of X.

Proof. Let X = |J,c; Xi be the irreducible decomposition of X. By Theorem 4.4.1 we have

iel
X e X\ (Xin X5). (4.4.1)
i,jel
%]
The right hand side of (4.4.1) is an open dense subset of X. Let X? be an irreducible component of the
right hand side of (4.4.1). Thus X? < X; is the complement of the intersection of X; with the other
irreducible componets of X. The set of smooth points of X? is non empty by Proposition 4.3.6, and
it is open by upper semicontinuity of the dimension of ©,X ( Proposition 4.3.1), because dim, X is
independent of z € X?. Hence X*™ is an open dense subset of the open dense subset of X given by the
right hand side of (4.4.1), and hence is open and dense in X.
O

4.4.2 Algebraic Implicit Function Theorem

We give an algebraic version of the (analytic) Implicit Function Theorem. The algebraic replacement
for the ring of analytic functions defined in a neighborhood of 0 € A™ is the ring K[[z1,...,2,]] of
formal power series in z1, ..., z, with complex coefficients. We have inclusions

Klz1,...,2n] € Oano < K[[21, ..., 20]]. (4.4.2)

(The second inclusion is obtained by developing g as convergent power series centered at 0, where
fig€K[z,...,2,] and g(0) & 0.) We will need the following elementary results.

Lemma 4.4.4. Let m < K[z1,...,2,], M © Opng and m” < K[[21,..., 2,]] be the ideals generated
by z1,...,2n in the corresponding ring. Then for every i = 0 we have (m")" N Opn g = (W), and
(M) " K[z1,...,2,] = m".

Proof. By induction on i. For i = 0 the statement is trivially true. The proof of the inductive step
is the same in both cases. For definiteness let us show that (m”)"*! A Opn g = (m')*+!) assuming

that (m”)? N Oan o = (m’)’. The non trivial inclusion is (m”)"*! A Gyn g = (M), Assume that
fe M) A Opng. Then f e (m”)! N Opnp, and hence f € (m’)? by the inductive hypothesis. Thus

we may write
f=> a7,

171

where the sum is over all multiindices J = (ji,...,Jn) of weight |J| = Y"_, js = 4, and ay € Oan g
for all J. Since f € (m”)**!, we have a;(0) = 0 for all J. It follows that oy € m’ for all J, and hence
fe(m)ith O

Proposition 4.4.5 (Formal Implicit Function Theorem). Let ¢ € K[[z1,...,2,]], and suppose that
p=z1+twa+...+pa+..., pa€K[z1,...,21]a (4.4.3)
Given a € K[[z1, ..., 2zn]], there exists a unique 8 € K[[z1, ..., zn]] such that
(a—=pB-p)eK][[z2---,2n]] (4.4.4)

Proof. Write 8 = Bo+B1+...+84+-.., where 84 € K[21,...,2,]4, and the By’s are the indeterminates.
Expand the product S - ¢, and solve for 5y by requiring that g - ¢ have the same linear term modulo
Z9,...,2n as a, then solve for 81 by requiring that 5-¢ have the same quadratic term modulo (22, . . . , 2, )?
as « , etc. By (4.4.3) there is one and only one solution at each stage. O
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4.4. The local ring of a smooth point is an integral domain

Corollary 4.4.6. With hypotheses as in Proposition 4.4.6, the natural map

K[[Zz, ceey Zn]] d K[[Zl» sy Zn]]/(@)

is an isomorphism.

4.4.3 Zero locus of polynomials with linearly independent differentials
Below is the main technical result needed to prove Theorem 4.4.1.
Proposition 4.4.7. Let fi,..., fr € K[z1,...,2,] and a € A™. Suppose that
(i) each f; vanishes at a, and
(it) the differentials dfi(a),...,dfx(a) are linearly independent.
Then V (fi,...,fx) = X 0Y, where
1. XY are closed in A™, a € X, while Y does not contain a;

2. X is irreducible of dimension n—k, it is smooth at a, and T (X) = Ann({df1(a), ..., dfx(a))) (as
subspace of T, A™).

Moreover, there exists a principal open affine set Ay containing a such that fl‘An, .. .,fkmn generate
g g
the ideal of X n Ay.

Proof. By changing affine coordinates, if necessary, we may assume that a = 0, and that df;(0) = z; for
ie{l,...,k}. Let J' < On o be the ideal generated by fi,..., fr (to be consistent with our notation,
we should write J' = (¢(f1),...,0(fx))), let J := J nK[z1,...,2,], and let J” < K[[z1,...,2,]] be
the ideal generated by f1,..., fx. Lastly, let I < K[z1,..., z,] be the ideal generated by f1,..., fr. We
claim that

J-gclclJ (4.4.5)

for a suitable g € K[z1,...,2,] with g(0) & 0. In fact, the second inclusion is trivially true. In order
to prove the first inclusion, let hq, ..., h, be generators of the ideal J < K|[z1,...,2,]. By definition
of J, there exist a;,9; € K[z1,...,2y], for i € {1,...,r}, such that a; € I, ¢;(0) &+ 0, and h; = %
Hence the second inclusion in (4.4.5) holds with g = ¢1 - ... - g,-. This proves (4.4.5), and hence we have
V(J)c V() c (V(J)uV(g)). It follows that, letting X := V(J), there exists a closed Y < V(g) such
that

V(fi,-..fe) =X 0Y, 0¢Y. (4.4.6)

Let us prove that J is a prime ideal, so that in particular X is irreducible. First, we claim that
J"NOpng=J. (4.4.7)

The non trivial inclusion to be proved is J” n Opng < J'. Let f € J” N Oyno. Then there exist
aq,...,a € K[[z1,...,2,]] such that f = 25:1 @ fj. Given s € N, let o be the MacLaurin polynomial

of a; of degree s, i.e. such that (o; — o) € (m”)**!, where m” is as in Lemma 4.4.4. Then

k k
F=>1alf+ Y —ad) ;.
j=1 j=1

Both addends are in n . In addition, the first addend belongs to J’, and the second one belongs
to (m”)**1. By Lemma 4.4.4, it follows that the second one belongs to (m’)**!. Hence f e (L, (I’ +
(m/)**1). By Corollary A.10.2, it follows that f € I’. This proves (4.4.7). By (4.4.7) and the definition
of J, we have an inclusion

Klz1,. .., 2z0)/J < K[[21, -, 2a]]/T".
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Hence, in order to prove that J is prime, it suffices to show that K[[z1,. .., 2,]]/J” is an integral domain.
In fact we will see that the natural map

Kl2kt1s- -5 2n)] — K[[21,- -, 2]/ (4.4.8)

is an isomorphism of rings. This follows from the algebraic version of the Implicit Function Theorem, i.e.
Proposition 4.4.6. In fact, by Proposition 4.4.6, the natural map K[[zo, ..., z,]] = K[[21, ..., 2.]]/(f1)
is an isomorphism. Let i € {2,...,k}. Given the identification K[[z1, ..., 2,]]/(f1) = K[[22, ..., z,]], the
image of f; under the quotient map K[[z1,...,2,]] = K[[21,.-.,2,]]/(f1) is an element z; + f/, where
f1 € (m")? (notation as in Lemma 4.4.4). Iterating, we get that the map in (4.4.8) is an isomorphism of
rings. As explained above, this proves that J is a prime ideal. In particular X is irreducible. Moreover,
since zg41, - - ., 2n, € K[X], the isomorphism in (4.4.8) shows that K(X) has transcendence degree n — k,
i.e. X has dimension n—k. Since f1, ..., fx vanish on X, and their differentials are linearly independent,
it follows that dim ©¢(X) < (n — k) = dimg X. Hence dim ©¢(X) = (n — k) = dimy X, by Item (2) of
Proposition 4.3.6, i.e. X is smooth at 0, and ©¢(X) < ©¢A™ is the annihilator of df1(0), ..., df;(0). This
proves Items (1) and (2). The last statement in the proposition holds with the polynomial g appearing
in (4.4.5). O

4.4.4 Proof that the local ring at a smooth point is an integral domain

First we prove the following result.

Proposition 4.4.8. Let X < A™ be a Zariski closed subset. Let a be a smooth point of X, and let
k =n—dim, X. Then following hold:

1. Only one irreducible component of X contains a.

2. There exist f1,..., fx € K[z1,...,2n] with linerly independent differentials dfi(a),...,dfx(a), and
a Zariski open affine subset U = A™ containing a, such that I(X nU) = (fiys-- -, frju);

Proof. Since X is smooth at a, and dim, X = n—Fk, there exist f1, ..., fx € I(X) such that df;(a), ..., dfx(a)
are linearly independent. Of course X < V(fi,..., fr). By Proposition 4.4.7 only one irreducible com-
ponent of V(fi,..., fr) contains a, call it Y. Moreover dimY = n — k by the same proposition. Every
irreducible component of X containing a is contained in Y. Since dim, X = n — k, there exists (at
least) one irreducible component of X containing a of dimension n — k. Let X be such an irreducible
component. By Proposition 3.4.8 we get that Xy = Y. It follows that there is only one irreducible
component of X containing a, and it is equal to the unique irreducible component of V' (fi,..., f)
containing a. This prove Item (1). Item (2) follows from the last statement of Proposition 4.4.7. O

Theorem 4.4.1 follows at once from Proposition 4.4.8 because every point of an algebraic variety is
contained in an affine open subset.
4.4.5 Smooth complex algebraic varieties and complex manifolds

4.5 Sard’s Theorem for algebraic varieties in characteristic 0
4.6 Inverse function Theorem

4.6.1 Finite maps

Let ¢: A — B be a homomorphism of rings. By setting a - b := ¢(a)b we equip B with a structure
of A-module: we say that B is finite over A if it is a finitely generated A-module. Let X, Y be affine
varieties, and let f: X — Y be a regular map; the pull back f*: K[Y] — K[X] is a homomorphism of
rings, hence (with f understood) it makes sense to state that K[X] is finite over K[YT].
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4.6. Inverse function Theorem

Lemma 4.6.1. Let f: X — Y be a projective map of quasi projective varieties. Let yg € Y and suppose
that f=Y(yo) is finite. There exists an open affine Yy < Y containing yo such that Xo := f~1(Yy) is
affine and K[Xo] is finite over K[Yp].

Proof. By Definition 5.2.4 we may assume that X < P” x Y is closed and f is the restriction of
the projection 7: P* x Y — Y. Since X n (P" x yo) is finite there exists homogeneous coordinates
[Zo, ..., Zy] on P™ such that X n (V(Zp) x {yo}) = &. The intersection X n (V(Zp) x Y) is a closed
subset of P" x Y. By Elimination Theory (i.e. Theorem 2.4.2) C := n(X n (V(Zy) xY)) is closed in Y.
Hence (Y\C) is an open subset of Y containing yo. Let Y, < (Y\C') be an open affine subset containing
yo. Then X, := X n (P" x Y;) = f~1(Ys) is a closed subset of the affine set P x Yy and hence is
affine. It remains to prove that K[X,] is finite over K[Y,]. The proof is by induction on n. If n =0
then K[X,] = K[Y%] and there is nothing to prove. Let’s prove the inductive step. Since X, is closed
in P™ x Y there exist F; € K[X«][Zo,. .., Zn]a; for i =1,...,7 such that

Xy =V(F,...,F).
(See Claim 2.3.27.) Since X, n (V(Zp) % {yo}) is empty we have
V(Fi(y0)(0,Z1, ..., Zn), -, Fr(y0)(0,Z1,...,2,)) = &.
By Hilbert’s Nullstellensatz, there exists M > 0 such that
(Z1,. o Zo)M < (Fi(yo)(0, 21, Zn)s oo, Fr(y0) (0, Z1, - ., Z0)).
It follows (see the proof of Theorem 2.4.2) that, shrinking Y around gy, we may assume that

ZM L ZM e (F(0,Z,.. ., Z), ..., Fr(0, 24, ..., Zy)). (4.6.1)

n

(Actually we may arrange so that (4.6.1) holds for the original Y, - but we do not need this). Equa-
tion (4.6.1) gives that there exists

G= (Z,,]lu + AlZfl”_l + ...+ A]u) € (F‘l7 ce 7F‘,«), Al € K[Y*][Zo, .. ~>Zn71]i~

Thus G|x, = 0: dividing by ZM and setting z; 1= Z;/Zy, a; = A;/Z} € Clz1, ..., 2,—1] We get that

M-1

(M + a7+t au)|x, = 0. (4.6.2)

Let @ :=[0,...,0,1] € P*. The product of projection from @ and Idy,

(P\{P}) x Yy 2 Pl x Y,
([ZOV"vZn]?p) g ([Zoa-"7Zn—l]7p)

is not projective but the restriction of p to X, is projective. In fact locally over open sets of a covering
Ujes Uj of Yy we may embed X, as a closed subset of P! x U; so that p is the restriction of the
projection (P! x U;) — U;. Thus the image p(X) is a closed subset of P"~! x Z,. Since the fiber of
p(X4) — Yy over yq is finite we may assume (possibly after shrinking Y; and X, ) that p(X,) is affine
(we just proved it). The ring K[X] is obtained from K[p(X] by adding z,. Equation (4.6.2) gives
that K[X] is finite over K[p(X4]. By the inductive hypothesis K[p(X] is finite over K[Y;] (possibly
after shrinking K[Y%]): it follows that K[X,] is finite over K[Y]. O

4.6.2 Proof of the algebraic inverse function Theorem

We prove the following analogue, in the category of algebraic varieties, of the local invertibility results
valid for C*® or holomorphic maps.

Theorem 4.6.2. Let f: X — Y be a projective map of algebraic varieties. Let p € X and suppose that
the following hold:
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1 f=(f(p) = {p}
2. df(p): ©,X — Op,)Y is injective.

Then there exists an open U < Y containing f(p) such that the restriction of f to f~1(U) is an
isomorphism to a closed subset of U.

Proof. Since f is projective it has closed image: thus we may assume that f is surjective. By
Lemma 4.6.1 we may assume that X and Y are affine and that K[X] is finite over K[Y]. By sur-
jectivity of f the pull-back defines an inclusion f*: K[Y] — K[X]. We will prove that there exists an
open affine % — Y containing q such that f*|4 : K[%] — K[f~'%] is surjective: that will give that
flaw: 7Y% — U is an isomorphism. Let ¢ := f(p). By Item (1) and the Nullstellensatz we have

my, =4/ f*m K[X]. (4.6.3)

Here f*m K[X] is the ideal of K[X] generated by f*¢ for ¢ € m; (we will use similar notation in the
course of the proof). Let m, = (¢1,...,¢,). Item (2) gives that for each 1 < i < n there exist an affine
open U; containing p and v; € K[Y] such that (¢; — f*¢;)|y, € m2K[U;]. Since f is closed it follows
that there exists a principal open affine ¥} neighborhood of ¢ (thus h € K[Y] with h(g) % 0) such that

(6i — F*i)| 1) EMK[f 1 (YR)] VI<i<n. (4.6.4)
Let’s prove by “descending induction” on k that
miK[ (V)] © fFm K[ H(Ya)] V1< k. (4.6.5)

By (4.6.3) there exists N > 0 such that (4.6.5) holds for k > N. Let’s prove the “inductive step”: we
assume that (4.6.5) holds with k£ > 2 and we prove that it holds with k replaced by (k — 1). Let

e= > crdi.. o emE KTV (4.6.6)
|L|=k—1

By (4.6.4) we may write ¢; = f*1; +¢; where ¢; € m2K[f~!(Y},)] for i = 1,...,n: substituting in (4.6.6)
and invoking the inductive hypothesis we get that ¢ € f*m,K[f~!(Y,)]. We have proved (4.6.5). Since
K[f~*(Ya)] = K[Y](f#n+) (the localization of K[Y] with respect to the multiplicative system of powers
of f*h) we get that

I == {p e K[f ' (Ya)] | ¢(p) = 0} = f*mK[f " (¥2)]. (4.6.7)

Now notice that K[f~1(Y})] is a finite K[Y}]-module because K[f~1Y] is a finite K[Y]-module. We
will apply Nakayama’s Lemma to the finitely generated K[Y},]-module

M = K[ (Ya)]/F*K[Ya]

and the ideal my;. We claim that M < m M. In fact since K < f*K[Y}] every element of M is
represented by « € I, (notation as in (4.6.7)) and @ € myM by (4.6.5). By Lemma A.9.2 there exists
¢ € my such that

(14 @)K[f V3] < F*K[Ya]. (4.6.8)

The open affine Yj,(11,) © Y contains g (because ¢(q) = 0). By (4.6.8) we get that

KIf ™ "Yaase)] = FRYi(10)]-
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4.7. The local ring of a smooth point is a unique factorization domain

Ezample 4.6.3. Suppose that X < P" is closed irreducible and r € (P™\X). Let H < P be a hyperplane
not containing r. Projection

x 5 H

p = {rnH
is a projective map with finite fibers. Let p € X and suppose that the projective tangent space T, X
does not contain the line {(r,p): then df(p) is injective. Suppose in addition that #~(x(p)) = {p}:
by Theorem 4.6.2 we get that 7 is birational onto its image. As long as dim©,(X) < n, and X has
codimension at least 2, there exists a point r such that the two conditions above hold. Iterating we
get that if dim X = m we can choose a projection from a linear space of dimension (n —m — 2) giving
a birational map from ¢: X — Y where Y < P™*! is a hypersurface, and such that ¢ restricts to an
isomorphism from a neighborood of p to a neighborhood of ¢(p).

4.7 The local ring of a smooth point is a unique factorization domain

4.7.1 Unique factorization of the local ring and codimension 1 closed subsets
4.7.2 Proof of unique factorization
4.7.3 Line bundles and divisors on locally factorial varieties

4.8 Tangent and cotangent bundle
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