
Chapter 4

Tangent space, smooth points

4.1 Introduction

One definition of tangent space of a C
8 manifold M at a point x P M is as the real vector space of

derivations of the ring of C8 functions on M centered at x, or of the ring of germs of C8 functions
at x. An analogue definition gives the definition of Zariski tangent space of an algebraic variety at a
point. One needs to consider the analogue of the ring of germs of C8 functions at the point because
if the algebraic variety is complete then global regular functions are locally constant. The advantage
of such an abstract definition is that it is intrinsic by definition. On the other hand, we will identify
the Zariski tangent space at a point a of a closed subset X Ä An with the classical embedded tangent
space, defined by the common zeroes of the linear approximations at a of polynomials in a basis of the
ideal IpXq.

A fundamental di↵erence between quasi projective varieties and smooth manifolds is that the di-
mension of the tangent space at a point might depend on the point, even for an irreducible variety.
The points where the dimension has a local minimum are the so-called smooth points of the variety.
Smooth algebraic varieties resemble C

8 manifolds, or even more closely complex manifolds.
In fact if the field is C then a smooth variety has a natural structure of complex manifold and regular

maps between complex smooth varieties are holomorphic maps of complex manifolds.

4.2 Zariski’s tangent and cotangent space

4.2.1 The local ring at a point

Definition 4.2.1. Let X be an algebraic variety, and let x P X. Let pU,�q and pV, q be couples where
U, V are open subsets of X containing x, and � P KrU s,  P KrV s. Then pU,�q „ pV, q if there exists
an open subset W Ä X containing x such that W Ä U X V and �|W “  |W .

One checks easily that „ is an equivalence relation: an equivalence class for the relation „ is a
germ of regular function of X at x. We may define a sum and a product on the set of germs of regular
functions of X at x by setting

rpU,�qs ` rpV, qs :“ r
`
U X V,�|UXV `  |UXV

˘
s, (4.2.1)

and
rpU,�qs ¨ rpV, qs :“ r

`
U X V,�|UXV ¨  |UXV

˘
s. (4.2.2)

Of course one has to check that the equivalence class of the sum and product is independent of the
choice of representatives: this is easy, we leave details to the reader. With these operations, the set of
germs of regular functions of X at x is a ring.

Definition 4.2.2. Let X be an algebraic variety and let x P X. The local ring of X at x is the ring of
germs of regular functions of X at x, and is denoted OX,x.
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4. Tangent space, smooth points

Remark 4.2.3. Let X be an algebraic variety, and let x P X. If V Ä X is an open subset containing x

then the homomorphism

OV,x

⇢
›Ñ OX,x

rpU,'qs fiÑ rpU,'qs
(4.2.3)

is an isomorphism. Since there exist many V which are a�ne, every local ring of a point on an algebraic
variety is isomorphic to the local ring of a point on an a�ne variety.

There is a well-defined surjective homomorphism

OX,x ›Ñ K
rpU,�qs fiÑ �pxq

(4.2.4)

As a matter of notation we let fpxq be the value of the above homomorphism on f “ rpU,�qs. We have
the natural homomorphism of rings

KrXs
⇢

›Ñ OX,x

f fiÑ rpX, fqs
(4.2.5)

Let mx Ä KrXs be the ideal defined by

mx :“ tf P KrXs | fpxq “ 0u . (4.2.6)

If f R mx then ⇢pfq is invertible: in fact the open subset

Xf – XzV pfq (4.2.7)

contains x and rpXf , 1{fqs is the inverse of ⇢pfq. Let KrXsmx be the localization of KrXs at the maximal
ideal mx, and let ' : KrXs Ñ KrXsmx be the localization homomorphism. By the universal property of
the ring of fractions (see Proposition A.4.3) there exists a unique homomorphism

⇢ : KrXsmx Ñ OX,x (4.2.8)

such that ⇢ “ ⇢ ˝ '.

Proposition 4.2.4. Keep notation as above, and suppose that X is an a�ne variety. Then

KrXsmx

⇢
›Ñ OX,x (4.2.9)

is an isomorphism.

Proof. Suppose that ⇢pf{gq “ 0, where f, g P KrXs with gpxq �“ 0. This means that there exists an
open U Ä X containing x such that f|U “ 0. Since the principal open a�ne subsets of X form a basis
of the Zariski topology, there exists h P KrXs such that Xh Ä U and x P Xh (see Example 1.6.5). Thus
h R mx and h ¨f “ 0: this gives that f{g “ 0 in the localization KrXsmx . This proves that ⇢ is injective.

Next we prove that ⇢ is surjective. Let f P OX,x. Then, since principal open a�ne subsets of X
form a basis of the Zariski topology, f is represented by a suitable pXh,'q where h P KrXs does not
vanish in x. By Example 1.6.5 we have ' “ g{h

N for suitable g P KrXs and exponent N , and hence
f “ rpXh,'qs “ ⇢pg{h

N
q.

By the above proposition and Proposition A.4.7 we get the following.

Corollary 4.2.5. Let X be an algebraic variety, and let x P X. Then OX,x is a Noetherian local ring,
and the homomorphism in (4.2.4) is the quotient map to its residue field.

Abusing notation we let mx Ä OX,x be the kernel of (4.2.4), i.e. the unique maximal ideal of germs
of regular functions at x vanishing at x.
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4.2. Zariski’s tangent and cotangent space

4.2.2 Zariski’s tangent space

The homomorphism (4.2.4) equips K with a structure of OX,x-module. Moreover OX,x is a K-algebra.
Thus it makes sense to consider K-derivations of OX,x to K.

Definition 4.2.6. Let X be an algebraic variety, and let x P X. The Zariski tangent space to X at x
is DerKpOX,x,Kq, and will be denoted by ⇥xX.

Thus ⇥xX is an OX,x-module (see Section A.8), and since mx annihilates every derivation OX,x Ñ K,
it is a complex vector space. This corresponds to the K vector space structure of DerKpOX,x,Kq via the
isomorphism K „

›Ñ OX,x{mx.

Lemma 4.2.7. Let a P An. The complex linear map

⇥aAn
›Ñ Kn

D fiÑ pDpz1q, . . . , Dpznqq
(4.2.10)

is an isomorphism.

Proof. The formal partial derivative B
Bzm defined by (A.8.7) defines an element of ⇥aAn by the familiar

formula
B

Bzm

ˆ
f

g

˙
paq :“

Bf
Bzm paq ¨ gpaq ´ fpaq ¨

Bg
Bzm paq

gpaq2
.

(See Example A.8.3.) Since B
Bzm pzjq “ �mj , the map in (4.2.10) is surjective.

Let’s prove that the map in (4.2.10) is injective. Assume that D P ⇥X,x is mapped to 0 by the map
in (4.2.10), i.e. Dpxjq “ 0 for j P t1, . . . , nu. Let f, g P Krz1, . . . , zns, with gpaq �“ 0. Then

D

ˆ
f

g

˙
“

Dpfq ¨ gpaq ´ fpaq ¨ Dpgq

gpaq2
.

(See Example A.8.3.) Hence it su�ces to show that Dpfq “ 0 for every f P Krz1, . . . , zns. Consider the
first-order expansion of f around a i.e. write

f “ fpaq `

nÿ

i“1

cipzi ´ aq ` R, R P m2
a
. (4.2.11)

Since D is zero on constants (because D is a K-derivation) and Dpzjq “ 0 for all j it follows that
Dpfq “ DpRq, and the latter vanishes by Leibniz’ rule and the hypothesis Dpzjq “ 0 for all j.

The di↵erential of a regular map at a point of the domain is defined by the usual procedure.
Explicitly, let f : X Ñ Y be a regular map of quasi projective varieties, let x P X and y :“ fpxq. There
is a well-defined pull-back homomorphism

OY,y

f
˚

›Ñ OX,x

rpU,�qs fiÑ rpf
´1

U,� ˝ pf|f´1U qqs
(4.2.12)

The di↵erential of f at x is the linear map of complex vector spaces

⇥xX
dfpxq
›Ñ ⇥yY

D fiÑ p� fiÑ D pf
˚
�qq

(4.2.13)

Remark 4.2.8. Suppose that the pull-back homomorphism in (4.2.12) is a surjection. Then the di↵er-
ential dfpxq is injective. In particular if j : X ãÑ Y is the inclusion of a closed (or open) subset, then
djpxq : ⇥xX Ñ ⇥xY is injective for all x P X.
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4. Tangent space, smooth points

The di↵erential has the customary functorial properties. Suppose that we have

X1
f1

›Ñ X2
f2

›Ñ X3, x1 P X1, x2 “ f1 px1q . (4.2.14)

Since pf2 ˝ f1q
˚

“ f
˚
1 ˝ f

˚
2 we have

d pf2 ˝ f1q px1q “ df2 px2q ˝ df1 px1q . (4.2.15)

Moreover d IdXpxq “ Id⇥xX for x P X.

Remark 4.2.9. It follows from the above that if f is an isomorphism, then dfpxq : ⇥xX Ñ ⇥fpxqY is an
isomorphism, in particular dim⇥xX “ dim⇥yY .

4.2.3 Embedded tangent space

Let ◆ : X ãÑ An be the inclusion of a closed subset and a P X. The di↵erential d◆paq : ⇥aX Ñ ⇥aAn is
injective (see Remark 4.2.8), hence the di↵erential d◆paq identifies ⇥aX with a subspace of ⇥aAn. The
latter is identified with Kn via the isomorphism in (4.2.10). Thus we view ⇥aX as a vector subspace
of Kn.

Proposition 4.2.10. Keeping notation as above, we have

⇥aX “

#
v “ pv1, . . . , vnq P Kn

|

nÿ

i“1

Bf

Bzi
paq ¨ vi “ 0 @f P IpXq

+
. (4.2.16)

Proof. The di↵erential d◆paq is injective because the pull-back ◆
˚ : OAn,a Ñ OX,a is surjective. Let

D P DerKpOX,a,Kq. If f P IpXq Ä Krz1, . . . , zns, then d◆pDqpfq “ Dp◆
˚
fq “ Dp0q “ 0. Hence im d◆paq

is contained in the right-hand side of (4.2.16). Let’s prove that im d◆paq contains the right-hand side
of (4.2.16). Let rD P DerKpOAn,a,Kq belong to the right hand side of (4.2.16), i.e. rDpfq “ 0 for all

f P IpXq. By Item (3) of Example A.8.3 it follows that rDp
f

g
q “ 0 whenever f, g P Krz1, . . . , zns and

f P IpXq (of course we assume that gpaq �“ 0). Thus rD descends to a K-derivation D P DerKpOX,a,Kq,

and rD “ d◆˚paqpDq.

Remark 4.2.11. With the hypotheses of Proposition 4.2.10, suppose that IpXq is generated by f1, . . . , fr.
Then

⇥aX “

#
v “ pv1, . . . , vnq P Kn

|

nÿ

i“1

Bfk

Bzi
paq ¨ vi “ 0 k P t1, . . . , ru

+
.

In fact, the right hand side of the above equation is equal to the right hand side of (4.2.16), because if

f “
∞

r

j“1 gjfj , then
Bf
Bzi paq “

∞
r

j“1 gjpaq
Bfjpaq

Bzi .

Remark 4.2.12. Since every point x of an algebraic variety X is contained in an open a�ne subset U ,
and ⇥xX “ ⇥xU (because restriction defines an identification OX,x “ OU,x), the result above allows to
compute the Zariski tangent space in general.

Definition 4.2.13. Let X Ä An be a closed subset and let a P X. The embedded tangent space of X at
a is the a�ne subspace TaX Ä An containing a with vector space of translations given by ⇥aX (given
by the equality in (4.2.16)).

Let a “ pa1, . . . , anq, and suppose that IpXq “ pf1, . . . , frq. By Remark 4.2.11 the embedded
tangent space TaX is given by

TaX “

#
z P An

|

nÿ

i“1

Bfk

Bzi
paq ¨ pzi ´ aiq “ 0 k P t1, . . . , ru

+
. (4.2.17)
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4.2. Zariski’s tangent and cotangent space

Remark 4.2.14. Let R Ä An be a line containing a. Then R belongs to TaX if and only if the restriction
to R of every f P IpXq has a zero of multiplicity at least 2 at a.

There is an analogous notion of embedded projective tangent space of a closed subset X Ä Pn at
a point ras P X. First note that given any subspace V Ä ⇥aPn there exists a unique linear subspace
⇤ Ä Pn such that the tangent space ⇥ras⇤ is equal to V .

Definition 4.2.15. Let X Ä Pn be a closed subset and let ras P X. The embedded projective tangent
space of X at ras is the unique linear subsapce TrasX Ä Pn containing ras such that ⇥raspTrasXq “

⇥rasX.

Proposition 4.2.16. Let X Ä Pn be a closed subset and let ras “ ra0, . . . , ans P X. Let F1, . . . , Fr be
homogeneous generators of the (homogeneous) ideal IpXq Ä KrZ0, . . . , Zns. Then

TrasX “ V

˜
nÿ

i“0

BF1paq

BZi

Zi, . . . ,

nÿ

i“0

BFrpaq

BZi

Zi

¸
. (4.2.18)

Proof. It su�ces to prove that if ras P Pn

Zs
then the intersection of the two sides of (4.2.18) with Pn

Zs

are equal. The intersection of TrasX and Pn

Zs
is the embedded tangent space to X X Pn

Zs
at the point

pa0{as, . . . , as´1{as, as`1{as, . . . , an{asq, and hence can be computed by the equality in (4.2.17). We
check that it is equal to the intersection of the right hand side of (4.2.18) with Pn

Zs
. We may assume

that s “ 0. It su�ces to prove that if F P IpZq then

V

˜
BF paq

BZ0
`

nÿ

i“1

BF paq

BZi

Zi

¸
“ V

˜
nÿ

i“1

Bfpa1, . . . , anq

BZi

pZi ´ aiq

¸
. (4.2.19)

In order to prove the equality in (4.2.19) we recall Euler’s identity

pdegF q ¨ F “

nÿ

i“0

BF paq

BZi

Zi.

Plugging in Z0 “ 1, Zi “ ai for i P t1, . . . , nu, and noting that F p1, a1, . . . , anq “ 0 we get that

BF paq

BZ0
“ ´

nÿ

i“1

BF pa1, . . . , anq

BZi

ai. (4.2.20)

This proves that the equality in (4.2.19) holds.

Remark 4.2.17. Let ⇤ Ä Pn be a line containing ras. Thus ⇤ “ PpUq where U Ä Kn`1 is a vector
subspace of dimension 2. Then ⇤ belongs to TaX if and only if for all homogeneous F P IpXq the
restriction F|U has a zero of multiplicity at least 2 at a.

4.2.4 Zariski’s cotangent space

Let X be an algebraic variety and let x P X. The cotangent space to X at x is the dual complex vector
space of the tangent space ⇥xX, and is denoted ⌦Xpxq:

⌦Xpxq :“ p⇥xXq
_
. (4.2.21)

We define a map

OX,x

�x
›Ñ ⌦Xpxq (4.2.22)

as follows. Let f “ rpU,'qs P OX,x and let v P ⇥xX be a K-derivation OX,x Ñ K: then �xpfq acts on v

by
x�xpfq, vy – vp'q. (4.2.23)

The action is independent of the representative of f .
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4. Tangent space, smooth points

Remark 4.2.18. We equip ⌦Xpxq with a structure of OX,x-module by composing the evaluation map
OX,x Ñ K given by (4.2.4) and scalar multiplication of the complex vector-space ⌦Xpxq. With this
structure �x is a derivation over K.

Let mx Ä OX,x be the maximal ideal. Since �x is a derivation �xpfq “ 0 for f P m2
x
, and hence we

have an induced K-linear map

mx{m2
x

�x
›Ñ ⌦Xpxq

r�s fiÑ d�paq
(4.2.24)

Proposition 4.2.19. Keep notation as above. Then �x is an isomorphism of K vector spaces.

Proof. First we prove that �x is surjective. If X “ An, surjectivity follows at once from Lemma 4.2.7.
In general, we may assume that X is a closed subset of An, and surjectivity follows from surjectivity
for a�ne space.

In order to prove injectivity of �x, we must show that if � P mx is such that vp�q “ 0 for all v P ⇥xX,
then � P m2

x
. We may suppose that X is a closed subset of An. In order to avoid confusion, we let

x “ a “ pa1, . . . , anq. Let pU, f{gq be a representative of �, where f, g P KrXs, and fpaq “ 0, gpaq �“ 0.
It will su�ce to prove that f P m2

a
. Since 0 “ vp�q “ ´gpaq

´2
vpfq we have vpfq “ 0. By Theorem 1.6.2

there exists f̃ P Krz1, . . . , zns such that f̃|X “ f . By Proposition 4.2.10 we may identify ⇥aX with the
subspace of ⇥aKn

“ Kn given by (4.2.16). In our new notation we have

⇥aX “ Annpt�xppq | p P IpXquq. (4.2.25)

It follows that there exists h P IpXq such that vpf̃q “ vphq fo all v P ⇥aX. Then pf̃ ´ hq|X “ f and

vpf̃ ´ hq “ 0 for all v P ⇥aX. It follows (first-order Taylor expansion of f̃ ´ h at a) that

pf̃ ´ hq P pz1 ´ a1, . . . , zn ´ anq
2
.

Since h P IpXq we get that f P m2
a
.

The following result is an immediate consequence of Corollary A.9.2.

Corollary 4.2.20. Let X be a quasi-projective variety and let x P X. Let f1, . . . , fn P mx Ä OX,x, and
suppose that �xpf1q, . . . , �xpfnq generate ⌦Xpxq. Then f1, . . . , fn generate the maximal ideal mx Ä OX,x.

One may also define a map

OX,x

dx
›Ñ ⌦Xpxq (4.2.26)

as follows. Let f P OX,x be represented by pU,�q. The codomain of the di↵erential d�pxq : ⇥xU Ñ

⇥�pxqK is identified with with K, because of the isomorphism in (4.2.10), and hence d�pxq P p⇥xUq
_.

Since U Ä Z is an open subset containing x, the di↵erential at x of the inclusion map defines an
identification ⇥xU

„
›Ñ ⇥xX. Thus d�pxq P p⇥xXq

_
“ ⌦Xpxq. One checks immediately that if pV, q

is another representative of f then d pxq “ d�pxq. We let

dxpfq :“ d�pxq, pU,�q any representative of f . (4.2.27)

Claim 4.2.21. Let X be an algebraic variety and let x P X. The map �x in (4.2.22) is equal to the
map dx in (4.2.27).

Proof. This is because �˚
pzq “ �, where z is the coordinate on K.

Because of the above identification from now on we denote �xpfq by dfpxq.
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4.3. Smooth points

Remark 4.2.22. Let f P Krz1, . . . , zns and a P An. Then the familiar formula

dfpaq “

nÿ

i“1

Bf

Bzi
paqdzipaq

holds. In fact this follows from the first-order Taylor expansion of f at a:

f “ fpaq `

nÿ

i“1

Bf

Bzi
paqpzi ´ aiq `

ÿ

1§i,j§n

mijpzi ´ aiqpzj ´ ajq, mij P Krz1, . . . , zns. (4.2.28)

Remark 4.2.23. Let X Ä An be closed, and let a P X. Identify ⇥aAn with Kn via Lemma 4.2.7. By
Remark 4.2.22 we have the identification

TaX “ Anntdfpaq | f P IpXqu.

Let f : X Ñ Y be a regular map of algebraic varieties. Let x P X, and let y – fpxq. The transpose
of the di↵erential dfpxq : ⇥xX Ñ ⇥yY is also denoted by f

˚
pxq:

f
˚

pxq “ dfpxq
t : ⌦Y pyq ›Ñ ⌦Xpxq. (4.2.29)

The notation is justified by the following observation. By Proposition 4.2.19 and Claim 4.2.21 we have
the identification

my{m2
y

“ ⌦Y pyq
dfpxqt
›Ñ ⌦Xpxq “ mx{m2

x

rpU,'qs pmod m2
y
q fiÑ rpf

´1
pUq,' ˝ pf|f´1pUqqs pmod m2

x
q

(4.2.30)

Proposition 4.2.24. Let f : X Ñ Y be a regular map of algebraic varieties, and let ' P KrY s. Then
for every x P X we have

dpf
˚
'qpxq “ f

˚
pd'pxqq. (4.2.31)

Proof. Follows from the description of the transpose of the di↵erential in (4.2.30). In fact both left and
right hand side are the class of f˚

p'´ 'pyqq in mx{m2
x
.

4.3 Smooth points

4.3.1 Stratification by dimensions of the tangent spaces

Proposition 4.3.1. Let X be a quasi projective variety. The function

X ›Ñ N
x fiÑ dim⇥xX

(4.3.1)

is Zariski upper-semicontinuous, i.e. for every k P N

Xk :“ tx P X | dim⇥xX • ku

is closed in X.

Proof. Since X has an open a�ne covering, we may suppose that X Ä An is closed. Let IpXq “

pf1, . . . , frq. For x P An let

Jpf1, . . . , fsqpxq :“

¨

˚̋
Bf1
z1

pxq ¨ ¨ ¨
Bf1
zn

pxq

...
. . .

...
Bfr
z1

pxq ¨ ¨ ¨
Bfr
zn

pxq

˛

‹‚
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4. Tangent space, smooth points

be the Jacobian matrix of pf1, . . . , fsq at x. By Proposition 4.2.10 we have that

Xk “ tx P X | rk Jpf1, . . . , frqpxq § n ´ ku . (4.3.2)

Given multi-indices I “ t1 § i1 † . . . † im § su and J “ t1 § j1 † . . . † jm § nu let
Jpf1, . . . , fsqpxqI,J be the m ˆ m minor of Jpf1, . . . , frqpxq with rows corresponding to I and columns
corresponding to J (if m ° mintr, nu we set Jpf1, . . . , fsqpxqI,J “ 0). We may rewrite (4.3.2) as

Xk “ X X V p. . . , det Jpf1, . . . , frqpxqI,J , . . .q|I|“|J|“n´k`1 .

It follows that Xk is closed.

Example 4.3.2. LetX Ä An be a hypersurface. Thus IpXq “ pfq where f P Krz1, . . . , zns is a polynomial
without multiple factors. Let a P X. The tangent space to X at a is identified with the subspace of Kn

defined by
nÿ

i“1

Bf

Bzi
paq ¨ vi “ 0.

Hence

dim⇥aX “

#
n ´ 1 if p

Bf
Bz1 paq, . . . ,

Bf
Bzn paqq �“ 0,

n if p
Bf
Bz1 paq, . . . ,

Bf
Bzn paqq “ 0.

Let us show that

XzV

ˆ
Bf

Bz1
, . . . ,

Bf

Bzn

˙
(4.3.3)

is an open dense subset of X (it is obviously open, the point is that it is dense), i.e. dim⇥aX “ n ´ 1
for a in an open dense subset of X.

First assume that X is irreducible. As shown in Example 3.7.2 there exists i P t1, . . . , nu such that
Bf{Bfzi �“ 0. Reordering the coordinates, we may assume that i “ n. Write

f “ a0z
d

n
` a1z

d´1
n

` ¨ ¨ ¨ ` ad, ai P Krz1, . . . , zn´1s, a0 ‰ 0, d ° 0.

Thus
Bf

zn
“ da0z

d´1
n

` pd ´ 1qa1z
d´2
n

` ¨ ¨ ¨ ` ad´1 �“ 0.

The degree in zn of f is d, i.e. f has degree d as element of Krz1, . . . , zn´1srzns. On the other hand, Bf
zn

is non zero and its degree in zn is strictly smaller than d. Thus f - Bf
zn
, and hence the set in (4.3.3) is

dense in X (recall that X is irreducible).
In general, let f “ f1 ¨ ¨ ¨ ¨ ¨ fr be the decomposition of f as product of (non associated) prime

factors. Let Xi “ V pfiq. Then
X “ X1 Y ¨ ¨ ¨ Y Xr

is the irreducible decomposition of X. As shown above, for each i P t1, . . . , ru

XjzV

ˆ
Bfj

z1
, . . . ,

Bfj

zn

˙
�“ H.

Hence there exists a P Xj such that Bfj
zh

paq ‰ 0 for a certain 1 § h § n. We may assume in addition
that a does not belong to any other irreducible component of X. It follows that

Bf

zh
paq “

Bfj

zh
paq ¨

π

k‰j

fkpaq ‰ 0.

This proves that the open set in(4.3.3) has non empty intersection with every irreducible component of
X, and hence is dense in X.

Notice also that if a belongs to more than one irreducible component ofX, then all partial derivatives
of f vanish at a. In other words, any point in the open dense subset of points a such that dim⇥a “ n´1
belongs to a single irreducible component of X.
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4.4. The local ring of a smooth point is an integral domain

4.3.2 Smooth points

Definition 4.3.3. Let X be an algebraic variety, and let x P X. Then X is smooth at x if dim⇥xX “

dimx X, it is singular at x otherwise. The set of smooth points of X is denoted by X
sm, and if Xsm

“ X

then X is smooth. The set of singular points of X is denoted by singX.

Example 4.3.4. A�ne space is smooth. It follows that every algebraic variety which has an open covering
by a�ne spaces is smooth. Examples of such varieties are Grassmannians.

Example 4.3.5. Let X Ä An be a hypersurface. Since the dimension of X is equal to n ´ 1 (see Corol-
lary 3.4.9), the set of smooth points of X is an open dense subset of X by Example 4.3.2. Notice that
X may very well have many singular points. For example if Y,W are distinct irreducible components
of X then every point of Y X W is a singular point. Even an irreducible X may have many singular
points, for example Whitneys’ umbrella V px

2
´ yw

2
q Ä A3 is singular along the line V px,wq.

Proposition 4.3.6. Let X be an algebraic variety. Then the following hold:

1. The set of smooth points of X contains an open dense subset of X.

2. For x P X we have dim⇥xX • dimx X.

Proof. (1): Suppose first that X is irreducible of dimension d. By Proposition 3.3.12 there is a birational
map g : X 99K Y , where Y Ä Ad`1 is a hypersurface. By Proposition 3.2.11 there exist open dense
subsets U Ä X and V Ä Y such that g is regular on U , and it defines an isomorphism f : U

„
›Ñ V . By

Example 4.3.5, the set of smooth points Y sm of Y is open and dense in Y . Since V is open and dense
in Y the intersection Y

sm
X V is open and dense dense in Y and hence f

´1
pY

sm
X V q is an open dense

subset of X. Since f
´1

pY
sm

X V q is contained in U
sm, we have proved that the set of smooth points

of X contains an open dense subset of X. We have proved that Item (1) holds if X is irreducible. In
general, let X “ X1 Y ¨ ¨ ¨ Y Xr be the irreducible decomposition of X. Let

X
0
j
:“ pXz

§

i‰j

Xiq “ pXjz

§

i‰j

Xiq

By the result that was just proved, pX
0
j

q
sm contains an open dense subset of smooth points. Every

smooth point of X0
j
is a smooth point of X, because X0

j
is open in X. Thus

î
i
pX

0
i

q
sm is an open dense

subset of X, containing an open dense subset of X. This proves Item (1).
(2): Let x0 P X, and let X0 be an irreducible component of X containing x0 such that dimX0 “

dimx0 X. By Item (1) Xsm
0 contains an open dense subset of points x such that dim⇥xX0 “ dimx X0,

and hence by Proposition 4.3.1 we have dim⇥xX0 • dimx X0 for all x P X. In particular dim⇥x0X0 •

dimx0 X0 “ dimx0 X. Since ⇥x0X0 Ä ⇥x0X, it follows that dim⇥x0X • dimx0 X.

4.4 The local ring of a smooth point is an integral domain

4.4.1 The main result

Theorem 4.4.1. Let X be an algebraic variety, and let x be a smooth point of X. Then the local ring
OX,x is an integral domain.

The proof of Theorem 4.4.1 is in Subsection 4.4.4. Here we note that OX,x being an integral domain
has a straightfoward geometric translation.

Claim 4.4.2. Let X be an algebraic variety, and let x P X. The local ring OX,x is an integral domain
if and only if there is only one irreducible component of X containing x.

Proof. Suppose that there is only one irreducible component of X containing x. Then there is an open
irreducible a�ne subset of X containing x. Hence we may assume that X is a�ne and irreducible.
Thus OX,x is isomorphic to KrXsmx by Proposition 4.2.4. Since X is irreducible the ring of regular
functions KrXs is an integral domain. It follows that the localization KrXsmx is an integral domain.
To prove the converse one argues as in the proof of Proposition 1.3.10.
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4. Tangent space, smooth points

Next we show that from Theorem 4.4.1 we get a stronger version of Item (1) of Proposition 4.3.6.

Corollary 4.4.3. Let X be an algebraic variety. Then the set Xsm of smooth points of X is an open
dense subset of X.

Proof. Let X “
î

iPI Xi be the irreducible decomposition of X. By Theorem 4.4.1 we have

X
sm

Ä Xz

§

i,jPI
i �“j

pXi X Xjq. (4.4.1)

The right hand side of (4.4.1) is an open dense subset of X. Let X0
i
be an irreducible component of the

right hand side of (4.4.1). Thus X
0
i

Ä Xi is the complement of the intersection of Xi with the other
irreducible componets of X. The set of smooth points of X0

i
is non empty by Proposition 4.3.6, and

it is open by upper semicontinuity of the dimension of ⇥xX ( Proposition 4.3.1), because dimx X is
independent of x P X

0
i
. Hence X

sm is an open dense subset of the open dense subset of X given by the
right hand side of (4.4.1), and hence is open and dense in X.

4.4.2 Algebraic Implicit Function Theorem

We give an algebraic version of the (analytic) Implicit Function Theorem. The algebraic replacement
for the ring of analytic functions defined in a neighborhood of 0 P An is the ring Krrz1, . . . , znss of
formal power series in z1, . . . , zn with complex coe�cients. We have inclusions

Krz1, . . . , zns Ä OAn,0 Ä Krrz1, . . . , znss. (4.4.2)

(The second inclusion is obtained by developing f

g
as convergent power series centered at 0, where

f, g P Krz1, . . . , zns and gp0q �“ 0.) We will need the following elementary results.

Lemma 4.4.4. Let m Ä Krz1, . . . , zns, m1
Ä OAn,0 and m2

Ä Krrz1, . . . , znss be the ideals generated
by z1, . . . , zn in the corresponding ring. Then for every i • 0 we have pm2

q
i

X OAn,0 “ pm1
q
i, and

pm1
q
i

X Krz1, . . . , zns “ mi.

Proof. By induction on i. For i “ 0 the statement is trivially true. The proof of the inductive step
is the same in both cases. For definiteness let us show that pm2

q
i`1

X OAn,0 “ pm1
q
i`1, assuming

that pm2
q
i

X OAn,0 “ pm1
q
i. The non trivial inclusion is pm2

q
i`1

X OAn,0 Ä pm1
q
i`1. Assume that

f P pm2
q
i`1

X OAn,0. Then f P pm2
q
i

X OAn,0, and hence f P pm1
q
i by the inductive hypothesis. Thus

we may write
f “

ÿ

|I|
↵Jz

J
,

where the sum is over all multiindices J “ pj1, . . . , jnq of weight |J | “
∞

n

s“1 js “ i, and ↵J P OAn,0

for all J . Since f P pm2
q
i`1, we have ↵Jp0q “ 0 for all J . It follows that ↵J P m1 for all J , and hence

f P pm1
q
i`1.

Proposition 4.4.5 (Formal Implicit Function Theorem). Let ' P Krrz1, . . . , znss, and suppose that

' “ z1 ` '2 ` . . . ` 'd ` . . . , 'd P Krz1, . . . , znsd. (4.4.3)

Given ↵ P Krrz1, . . . , znss, there exists a unique � P Krrz1, . . . , znss such that

p↵ ´ � ¨ 'q P Krrz2, . . . , znss. (4.4.4)

Proof. Write � “ �0 `�1 ` . . .`�d ` . . ., where �d P Krz1, . . . , znsd, and the �d’s are the indeterminates.
Expand the product � ¨ ', and solve for �0 by requiring that � ¨ ' have the same linear term modulo
z2, . . . , zn as ↵, then solve for �1 by requiring that �¨' have the same quadratic term modulo pz2, . . . , znq

2

as ↵ , etc. By (4.4.3) there is one and only one solution at each stage.
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4.4. The local ring of a smooth point is an integral domain

Corollary 4.4.6. With hypotheses as in Proposition 4.4.6, the natural map

Krrz2, . . . , znss Ñ Krrz1, . . . , znss{p'q

is an isomorphism.

4.4.3 Zero locus of polynomials with linearly independent di↵erentials

Below is the main technical result needed to prove Theorem 4.4.1.

Proposition 4.4.7. Let f1, . . . , fk P Krz1, . . . , zns and a P An. Suppose that

(i) each fi vanishes at a, and

(ii) the di↵erentials df1paq, . . . , dfkpaq are linearly independent.

Then V pf1, . . . , fkq “ X Y Y , where

1. X,Y are closed in An, a P X, while Y does not contain a;

2. X is irreducible of dimension n´ k, it is smooth at a, and TapXq “ Annpxdf1paq, . . . , dfkpaqyq (as
subspace of TaAn).

Moreover, there exists a principal open a�ne set An

g
containing a such that f1|An

g
, . . . , fk|An

g
generate

the ideal of X X An

g
.

Proof. By changing a�ne coordinates, if necessary, we may assume that a “ 0, and that dfip0q “ zi for
i P t1, . . . , ku. Let J 1

Ä OAn,0 be the ideal generated by f1, . . . , fk (to be consistent with our notation,
we should write J

1
“ p'pf1q, . . . ,'pfkqq), let J :“ J

1
X Krz1, . . . , zns, and let J

2
Ä Krrz1, . . . , znss be

the ideal generated by f1, . . . , fk. Lastly, let I Ä Krz1, . . . , zns be the ideal generated by f1, . . . , fk. We
claim that

J ¨ g Ä I Ä J. (4.4.5)

for a suitable g P Krz1, . . . , zns with gp0q �“ 0. In fact, the second inclusion is trivially true. In order
to prove the first inclusion, let h1, . . . , hr be generators of the ideal J Ä Krz1, . . . , zns. By definition
of J , there exist ai, gi P Krz1, . . . , zns, for i P t1, . . . , ru, such that ai P I, gip0q �“ 0, and hi “

ai
gi
.

Hence the second inclusion in (4.4.5) holds with g “ g1 ¨ . . . ¨ gr. This proves (4.4.5), and hence we have
V pJq Ä V pIq Ä pV pJq Y V pgqq. It follows that, letting X :“ V pJq, there exists a closed Y Ä V pgq such
that

V pf1, . . . , fkq “ X Y Y, 0 R Y. (4.4.6)

Let us prove that J is a prime ideal, so that in particular X is irreducible. First, we claim that

J
2

X OAn,0 “ J
1
. (4.4.7)

The non trivial inclusion to be proved is J
2

X OAn,0 Ä J
1. Let f P J

2
X OAn,0. Then there exist

↵1, . . . ,↵k P Krrz1, . . . , znss such that f “
∞

k

j“1 ↵jfj . Given s P N, let ↵s

j
be the MacLaurin polynomial

of ↵j of degree s, i.e. such that p↵j ´ ↵
s

j
q P pm2

q
s`1, where m2 is as in Lemma 4.4.4. Then

f “

kÿ

j“1

↵
psq
j

fj `

kÿ

j“1

p↵j ´ ↵
s

j
qfj .

Both addends are in OAn,0. In addition, the first addend belongs to J
1, and the second one belongs

to pm2
q
s`1. By Lemma 4.4.4, it follows that the second one belongs to pm1

q
s`1. Hence f P

ì8
s“0pI

1
`

pm1
q
s`1

q. By Corollary A.10.2, it follows that f P I
1. This proves (4.4.7). By (4.4.7) and the definition

of J , we have an inclusion
Krz1, . . . , zns{J Ä Krrz1, . . . , znss{J

2
.
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4. Tangent space, smooth points

Hence, in order to prove that J is prime, it su�ces to show that Krrz1, . . . , znss{J
2 is an integral domain.

In fact we will see that the natural map

Krzk`1, . . . , zns ›Ñ Krrz1, . . . , znss{J
2 (4.4.8)

is an isomorphism of rings. This follows from the algebraic version of the Implicit Function Theorem, i.e.
Proposition 4.4.6. In fact, by Proposition 4.4.6, the natural map Krrz2, . . . , znss Ñ Krrz1, . . . , znss{pf1q

is an isomorphism. Let i P t2, . . . , ku. Given the identification Krrz1, . . . , znss{pf1q “ Krrz2, . . . , znss, the
image of fi under the quotient map Krrz1, . . . , znss Ñ Krrz1, . . . , znss{pf1q is an element zi ` f

1
i
, where

f
1
i

P pm2
q
2 (notation as in Lemma 4.4.4). Iterating, we get that the map in (4.4.8) is an isomorphism of

rings. As explained above, this proves that J is a prime ideal. In particular X is irreducible. Moreover,
since zk`1, . . . , zn P KrXs, the isomorphism in (4.4.8) shows that KpXq has transcendence degree n´k,
i.e. X has dimension n´k. Since f1, . . . , fk vanish on X, and their di↵erentials are linearly independent,
it follows that dim⇥0pXq § pn ´ kq “ dim0 X. Hence dim⇥0pXq “ pn ´ kq “ dim0 X, by Item (2) of
Proposition 4.3.6, i.e. X is smooth at 0, and ⇥0pXq Ä ⇥0An is the annihilator of df1p0q, . . . , dfkp0q. This
proves Items (1) and (2). The last statement in the proposition holds with the polynomial g appearing
in (4.4.5).

4.4.4 Proof that the local ring at a smooth point is an integral domain

First we prove the following result.

Proposition 4.4.8. Let X Ä An be a Zariski closed subset. Let a be a smooth point of X, and let
k “ n ´ dima X. Then following hold:

1. Only one irreducible component of X contains a.

2. There exist f1, . . . , fk P Krz1, . . . , zns with linerly independent di↵erentials df1paq, . . . , dfkpaq, and
a Zariski open a�ne subset U Ä An containing a, such that IpX X Uq “ pf1|U , . . . , fk|U q;

Proof. SinceX is smooth at a, and dima X “ n´k, there exist f1, . . . , fk P IpXq such that df1paq, . . . , dfkpaq

are linearly independent. Of course X Ä V pf1, . . . , fkq. By Proposition 4.4.7 only one irreducible com-
ponent of V pf1, . . . , fkq contains a, call it Y . Moreover dimY “ n ´ k by the same proposition. Every
irreducible component of X containing a is contained in Y . Since dima X “ n ´ k, there exists (at
least) one irreducible component of X containing a of dimension n ´ k. Let X0 be such an irreducible
component. By Proposition 3.4.8 we get that X0 “ Y . It follows that there is only one irreducible
component of X containing a, and it is equal to the unique irreducible component of V pf1, . . . , fkq

containing a. This prove Item (1). Item (2) follows from the last statement of Proposition 4.4.7.

Theorem 4.4.1 follows at once from Proposition 4.4.8 because every point of an algebraic variety is
contained in an a�ne open subset.

4.4.5 Smooth complex algebraic varieties and complex manifolds

4.5 Sard’s Theorem for algebraic varieties in characteristic 0

4.6 Inverse function Theorem

4.6.1 Finite maps

Let ' : A Ñ B be a homomorphism of rings. By setting a ¨ b :“ 'paqb we equip B with a structure
of A-module: we say that B is finite over A if it is a finitely generated A-module. Let X,Y be a�ne
varieties, and let f : X Ñ Y be a regular map; the pull back f

˚ : KrY s Ñ KrXs is a homomorphism of
rings, hence (with f understood) it makes sense to state that KrXs is finite over KrY s.
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4.6. Inverse function Theorem

Lemma 4.6.1. Let f : X Ñ Y be a projective map of quasi projective varieties. Let y0 P Y and suppose
that f´1

py0q is finite. There exists an open a�ne Y0 Ä Y containing y0 such that X0 :“ f
´1

pY0q is
a�ne and KrX0s is finite over KrY0s.

Proof. By Definition 5.2.4 we may assume that X Ä Pn
ˆ Y is closed and f is the restriction of

the projection ⇡ : Pn
ˆ Y Ñ Y . Since X X pPn

ˆ y0q is finite there exists homogeneous coordinates
rZ0, . . . , Zns on Pn such that X X pV pZ0q ˆ ty0uq “ H. The intersection X X pV pZ0q ˆ Y q is a closed
subset of Pn

ˆY . By Elimination Theory (i.e. Theorem 2.4.2) C :“ ⇡pX X pV pZ0q ˆY qq is closed in Y .
Hence pY zCq is an open subset of Y containing y0. Let Y˚ Ä pY zCq be an open a�ne subset containing
y0. Then X˚ :“ X X pPn

ˆ Y˚q “ f
´1

pY˚q is a closed subset of the a�ne set Pn

Z0
ˆ Y˚ and hence is

a�ne. It remains to prove that KrX˚s is finite over KrY˚s. The proof is by induction on n. If n “ 0
then KrX˚s “ KrY˚s and there is nothing to prove. Let’s prove the inductive step. Since X˚ is closed
in Pn

ˆ Y˚ there exist Fi P KrX˚srZ0, . . . , Znsdi for i “ 1, . . . , r such that

X˚ “ V pF1, . . . , Frq.

(See Claim 2.3.27.) Since X˚ X pV pZ0q ˆ ty0uq is empty we have

V pF1py0qp0, Z1, . . . , Znq, . . . , Frpy0qp0, Z1, . . . , Znqq “ H.

By Hilbert’s Nullstellensatz, there exists M ° 0 such that

pZ1, . . . , Znq
M

Ä pF1py0qp0, Z1, . . . , Znq, . . . , Frpy0qp0, Z1, . . . , Znqq.

It follows (see the proof of Theorem 2.4.2) that, shrinking Y˚ around y0, we may assume that

Z
M

1 , . . . , Z
M

n
P pF1p0, Z1, . . . , Znq, . . . , Frp0, Z1, . . . , Znqq. (4.6.1)

(Actually we may arrange so that (4.6.1) holds for the original Y˚ - but we do not need this). Equa-
tion (4.6.1) gives that there exists

G “ pZ
M

n
` A1Z

M´1
n

` . . . ` AM q P pF1, . . . , Frq, Ai P KrY˚srZ0, . . . , Zn´1si.

Thus G|X˚ “ 0: dividing by Z
M

0 and setting zi :“ Zi{Z0, ai “ Ai{Z
i

0 P Crz1, . . . , zn´1s we get that

pz
M

n
` a1z

M´1
n

` . . . ` aM q|X˚ “ 0. (4.6.2)

Let Q :“ r0, . . . , 0, 1s P Pn. The product of projection from Q and IdY˚

pPn
ztP uq ˆ Y˚

⇢
›Ñ Pn´1

ˆ Y˚
prZ0, . . . , Zns, pq fiÑ prZ0, . . . , Zn´1s, pq

is not projective but the restriction of ⇢ to X˚ is projective. In fact locally over open sets of a coveringî
jPJ Uj of Y˚ we may embed X˚ as a closed subset of P1

ˆ Uj so that ⇢ is the restriction of the

projection pP1
ˆ Ujq Ñ Uj . Thus the image ⇢pX˚q is a closed subset of Pn´1

ˆ Z˚. Since the fiber of
⇢pX˚q Ñ Y˚ over y0 is finite we may assume (possibly after shrinking Y˚ and X˚) that ⇢pX˚q is a�ne
(we just proved it). The ring KrX˚s is obtained from Kr⇢pX˚s by adding zn. Equation (4.6.2) gives
that KrX˚s is finite over Kr⇢pX˚s. By the inductive hypothesis Kr⇢pX˚s is finite over KrY˚s (possibly
after shrinking KrY˚s): it follows that KrX˚s is finite over KrY˚s.

4.6.2 Proof of the algebraic inverse function Theorem

We prove the following analogue, in the category of algebraic varieties, of the local invertibility results
valid for C8 or holomorphic maps.

Theorem 4.6.2. Let f : X Ñ Y be a projective map of algebraic varieties. Let p P X and suppose that
the following hold:
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4. Tangent space, smooth points

1. f
´1

pfppqq “ tpu.

2. dfppq : ⇥pX Ñ ⇥fppqY is injective.

Then there exists an open U Ä Y containing fppq such that the restriction of f to f
´1

pUq is an
isomorphism to a closed subset of U .

Proof. Since f is projective it has closed image: thus we may assume that f is surjective. By
Lemma 4.6.1 we may assume that X and Y are a�ne and that KrXs is finite over KrY s. By sur-
jectivity of f the pull-back defines an inclusion f

˚ : KrY s ãÑ KrXs. We will prove that there exists an
open a�ne U Ä Y containing q such that f˚

|U : KrU s ãÑ Krf
´1U s is surjective: that will give that

f |U : f´1U Ñ U is an isomorphism. Let q :“ fppq. By Item (1) and the Nullstellensatz we have

mp “

b
f˚mqKrXs. (4.6.3)

Here f
˚mqKrXs is the ideal of KrXs generated by f

˚
� for  P mq (we will use similar notation in the

course of the proof). Let mp “ p�1, . . . ,�nq. Item (2) gives that for each 1 § i § n there exist an a�ne
open Ui containing p and  i P KrY s such that p�i ´ f

˚
 iq|Ui P m2

p
KrUis. Since f is closed it follows

that there exists a principal open a�ne Yh neighborhood of q (thus h P KrY s with hpqq �“ 0) such that

p�i ´ f
˚
 iq|f´1pYhq P m2

p
Krf

´1
pYhqs @1 § i § n. (4.6.4)

Let’s prove by “descending induction” on k that

mk

p
Krf

´1
pYhqs Ä f

˚mqKrf
´1

pYhqs @1 § k. (4.6.5)

By (4.6.3) there exists N ° 0 such that (4.6.5) holds for k • N . Let’s prove the “inductive step”: we
assume that (4.6.5) holds with k • 2 and we prove that it holds with k replaced by pk ´ 1q. Let

' “

ÿ

|L|“k´1

cL�
l1
1 . . .�

ln
n

P mk´1
p

Krf
´1

pYhqs. (4.6.6)

By (4.6.4) we may write �i “ f
˚
 i `✏i where ✏i P m2

p
Krf

´1
pYhqs for i “ 1, . . . , n: substituting in (4.6.6)

and invoking the inductive hypothesis we get that ' P f
˚mqKrf

´1
pYhqs. We have proved (4.6.5). Since

Krf
´1

pYhqs “ KrY spf˚hsq (the localization of KrY s with respect to the multiplicative system of powers
of f˚

h) we get that

Ip :“ t' P Krf
´1

pYhqs | 'ppq “ 0u “ f
˚mqKrf

´1
pYhqs. (4.6.7)

Now notice that Krf
´1

pYhqs is a finite KrYhs-module because Krf
´1

Y s is a finite KrY s-module. We
will apply Nakayama’s Lemma to the finitely generated KrYhs-module

M :“ Krf
´1

pYhqs{f
˚KrYhs

and the ideal mq. We claim that M Ä mqM . In fact since K Ä f
˚KrYhs every element of M is

represented by ↵ P Ip (notation as in (4.6.7)) and ↵ P mqM by (4.6.5). By Lemma A.9.2 there exists
' P mq such that

p1 ` 'qKrf
´1

Yhs Ä f
˚KrYhs. (4.6.8)

The open a�ne Yhp1`'q Ä Y contains q (because 'pqq “ 0). By (4.6.8) we get that

Krf
´1

Yhp1`'qs “ f
˚KrYhp1`'qs.
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4.7. The local ring of a smooth point is a unique factorization domain

Example 4.6.3. Suppose that X Ä Pn is closed irreducible and r P pPn
zXq. Let H Ä Pn be a hyperplane

not containing r. Projection
X

⇡
›Ñ H

p fiÑ xp, ry X H

is a projective map with finite fibers. Let p P X and suppose that the projective tangent space TpX

does not contain the line xr, py: then dfppq is injective. Suppose in addition that ⇡´1
p⇡ppqq “ tpu:

by Theorem 4.6.2 we get that ⇡ is birational onto its image. As long as dim⇥ppXq † n, and X has
codimension at least 2, there exists a point r such that the two conditions above hold. Iterating we
get that if dimX “ m we can choose a projection from a linear space of dimension pn ´ m ´ 2q giving
a birational map from ' : X Ñ Y where Y Ä Pm`1 is a hypersurface, and such that ' restricts to an
isomorphism from a neighborood of p to a neighborhood of 'ppq.

4.7 The local ring of a smooth point is a unique factorization domain

4.7.1 Unique factorization of the local ring and codimension 1 closed subsets

4.7.2 Proof of unique factorization

4.7.3 Line bundles and divisors on locally factorial varieties

4.8 Tangent and cotangent bundle
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