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Chapter 0

Introduction

Motivation

We will describe some problems and results in order to whet your appetite. Some (or most) of the
statements below might leave you puzzled, do not worry, they will become clear later on. In fact one
of the goals of reading the book is to be able to understand what is written in the paragraphs below.

We start from the following well known indefinite integral:
ª

dx
?
1 ´ x2

“ arcsinx.

What if we ask ª
dx

?
1 ´ x3

“?

Note that one gets the first integral by writing out the formula for the length of arcs of a circle. Similarly,
one gets the second integral, or more generally integrals of functions ppxq

´1{2, where p is a polynomial
of degree 3 (or 4), if one sets out to compute the length of arcs of ellipses. There is no way to express
the second integral starting from elementary functions. What Fagnano discovered for similar integrals,
and what Euler amplified, is that, although we cannot express the integral via elementary functions,
there is a rational addition formula, i.e. there exists a rational function F of four variables such that
for fixed l0 and varying a, b we have

ª
a

l0

dx
?
1 ´ x3

`

ª
b

l0

dx
?
1 ´ x3

“

ª
c

l0

dx
?
1 ´ x3

` const,

where
c “ F pa, b,

a
1 ´ a3,

a
1 ´ b3q.

Let us sketch a geometric explanation of the addition formula. First of all it is convenient to allow x, y to
be complex numbers. Since couples px,

?
1 ´ x3q are solutions of the equation x

3
` y

2
“ 1, we consider

the curve C0 Ä A2
pCq whose equation is x3

` y
2

“ 1, where A2
pCq “ C2 is the standard complex a�ne

plane. Now C0 is a complex submanifold of A2
pCq, hence a 1-dimensional complex manifold. Since

it is not compact, we consider its closure C Ä P2
pCq in the projective complex plane. This means

adding a single point “at infinity”, namely r0, 0, 1s (we let rT,X, Y s be homogeneous coordinates, and
x “ X{T , y “ Y {T ). Note that by integrating the 1-form dx{y on C (as we will do) we do not have to
pay attention to which of the two square roots of 1 ´ x

3 we choose. A fundamental observation is that
dx{y is holomorphic on all of C0, including the points pe

2⇡mi{3
, 0q where the denominator vanishes),

and moreover it extends to a holomorphic 1-form on all of C. In order to show that there is an
addition formula we fix a line R0 Ä P2

pCq intersecting C in 3 points p1, p2, p3 and, given another line
R intersecting C in 3 points p1, p2, p3, we let

ª
R

R0

dx

y
–

ª
p1

p1

dx

y
`

ª
p2

p2

dx

y
`

ª
p3

p3

dx

y
.
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0. Introduction

Of course in order to make sense of the right hand side one needs to choose paths starting at p
i

and ending at pi for i P t1, 2, 3u. By Goursat’s Theorem the integrals do not vary if the paths are
homotopically equivalent. Hence if we let R move in a small open subset of P2

pCq
_ we may choose

well defined homotopy classes of such paths and the integral above defines a well defined holomorphic
function on the open set. There is no way to define a holomorphic function

R
�
fiÑ

ª
R

R0

dx

y
.

on all of P2
pCq

_: if we define it locally and then we move around, when we come back the value of the
function will change by an additive constant. Since it changes by an additive constant, the di↵erential
d� is a well defined holomorphic 1-form ! on all of P2

pCq
_ although � is only well defined locally. Since

every holomorphic 1-form on a complex projective space is zero, we get that ! “ 0, i.e. the (locally
defined) function � is constant. Now notice that the given points p1, p2 P C there is a unique line R

containing p1, p2 (if p1 “ p2 we let R be the tangent to C at p1), and that the coordinates of the third
point of intersection of R and C, i.e. p3, are rational functions of the coordinates of the first two points.
This gives the validity of the formula

ª
a

l0

dx
?
1 ´ x3

`

ª
b

l0

dx
?
1 ´ x3

“ ´

ª
c

l0

dx
?
1 ´ x3

` const,

where c is a rational function of pa, b,
?
1 ´ a3,

?
1 ´ b3q. With a little more work one gets from this the

addition formula as formulated above.
Next we ask more in general what can be said about integrals of the form

ª
dxa
Dpxq

, (0.0.1)

where Dpxq is a polynomial. For simplicity we assume that Dpxq has no multiple roots. If Dpxq has
degree 3, then the arguments above apply verbatim to give an addition formula. In general, the first
step is to consider the curve C0 Ä A2

pCq whose equation is y2 “ Dpxq. This is a 1-dimensional complex
submanifold of A2

pCq. Since it is not compact it is convenient to compactify. The closure of C0 in
P2

pCq is compact, but if the degree of Dpxq is greater than 3 then the closure of C0 is not a submanifold
of P2

pCq at its unique “point at infinity”(i.e. r0, 0, 1s). Nonetheless there is 1-dimensional complex
manifold C containing C0 as an open dense subset, in fact CzC0 consists of a single point if Dpxq

has odd degree, and consists of two points if Dpxq has even degree. The qualitative behaviour of the
integral that we set out to study is determined by the topology of C. The C8 manifold underlying C is
connected, compact and orientable surface. By the classification compact surfaces it is homeomorphic
to a connected sum of g tori. In fact one show that

g “

Z
degD ´ 1

2

^
. (0.0.2)

For example, if D has degree 3 then g “ 1, i.e. C is a torus. Suppose that g ° 1. Then there exists
an addition formula, but it involves the addition of vectors in Cg obtained by integrating the g linearly
independent holomorphic 1-forms

dx

y
,
xdx

y
, . . . ,

x
g´1

dx

y
. (0.0.3)

Lastly we discuss how the topological quantity g (the genus of C) controls the arithmetic of C. Suppose
that the polynomial ppxq has integer coe�cients. If p is a prime we let Dpxq P Fprxs be the polynomial
whose coe�cients are the equivalence classes of the coe�cients of D - we say that Dpxq is obtained
from D reducing modulo p. We suppose that Dpxq has the same degree as D (i.e. p does not divide
the leading coe�cient of D), and that Dpxq does not have multiple roots in the algebraic closure of Fp.
We also assume that p �“ 2. For n • 1 let Fpn be the finite field of cardinality p

n, and let CpFpnq be

4



the set of solutions in Fpnof the equation y
2

“ Dpxq. We view the points at infinity (there is one if
degD is odd and two if degD is even) as solutions “in Fpn”. A convenient generating function for the
cardinalities |CpFpnq| is given by Weil’s zeta function

ZpC, T q – exp

˜ 8ÿ

n“1

|CpFpnq|

n
T

n

¸
. (0.0.4)

A famous theorem of Weil states that

ZpC, T q “

±2g
i“1p1 ´ aiT q

p1 ´ T qp1 ´ pT q
, (0.0.5)

where each ai is an algebraic integer of modulus p
1{2 (the last statement is an analogue of Riemann’s

hypothesis). This shows that the topological genus g can be extracted from the number of solutions
px, yq P A2

pFpnq of the equation y
2

“ Dpxq. We also see that there is an explicit formula giving
the cardinality |CpFpnq| for all n once we know the cardinalities |CpFpq|, |CpFp2q|, . . . , |CpFp2g q|. The
function of s obtained by making the substitution T “ p

´s, i.e. ZpC, p
´s

q, is a precise analogue of
Riemann’s zeta function ⇣psq, and the statement that each ai has modulus p1{2 is the analogue of the
Riemann Hypothesis. It is very compelling evidence in favour of the validity of the Riemann Hypothesis.
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Chapter 1

Quasi projective varieties

Throughout the book K is an algebraically closed field, e.g. K “ C or Q, the algebraic closure of the
rational field Q, or Fp, the algebraic closure of the finite field Fp where p is a prime. We are interested
in understanding the set of solutions pz1, . . . , znq P Kn of a family of polynomial equations

f1pz1, . . . , znq “ 0, . . . , frpz1, . . . , znq “ 0.

“Polynomial equations” means each fi is an element of the polynomial ring Krz1, . . . , zns.
In order to understand the geometry of a set of solutions of polynomial equations, it is convenient

to replace a�ne space An
pKq by projective space Pn

pKq, and consider the set of points in Pn
pKq which

are solutions of homogeneous polynomial equations in the homogeneous coordinates. As motivation for
this step we recall that results in projective geometry are usually cleaner than in a�ne geometry - for
example two distinct lines in a projective plane have exactly one point of intersection, while two distinct
lines in an a�ne line may intersect in one point or be disjoint. If K “ C we may guess that passing to
projective space makes life simpler because Pn

pCq with the classical topology is compact, while An
pCq

is not (unless n “ 0).
Whenever there is no possibility of a misunderstanding we omit K from the notation for a�ne and

projective space, i.e. An is An
pKq and Pn is Pn

pKq.

1.1 Zariski’s topology on a�ne space

If f1, . . . , fr P Krz1, . . . , zns, we let

V pf1, . . . , frq – tz P An
| fipzq “ 0 @ i P t1, . . . , ruu. (1.1.1)

More generally, if I Ä Krz1, . . . , zns is an ideal (note: the inclusion sign Ä does not mean strict inclusion,
and similarly for Å) we let

V pIq – tz P An
| fpzq “ 0 @ f P Iu. (1.1.2)

Unless n “ 0 or I “ 0 an ideal I of Krz1, . . . , zns has an infinite number of elements so that V pIq is the set
of solutions of an infinite set of polynomial equations. However I has a finite set of generators f1, . . . , fr
by Hilbert’s basis Theorem A.3.6, and it follows that V pIq “ V pf1, . . . , frq. In fact it is clear that
V pIq Ä V pf1, . . . , frq. For the reverse inclusion V pf1, . . . , frq Ä V pIq notice that if z P V pf1, . . . , frq and
f P I, then f “

∞
r

i“1 gifi for suitable g1, . . . , gr P Krz1, . . . , zns and hence fpzq “
∞

r

i“1 gipzqfipzq “ 0.
An elementary observation is that passing from ideals to their zero sets reverses inclusion, i.e. if

I, J Ä Krz1, . . . , zns are ideals then

I Ä J implies that V pIq Å V pJq. (1.1.3)

Proposition 1.1.1. The collection of subsets V pIq Ä An, where I runs through the collection of ideals
of Krz1, . . . , zns, satisfies the axioms for the closed subsets of a topological space.
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1. Quasi projective varieties

Proof. We have H “ V pp1qq, An
“ V pp0qq.

Let I, J Ä Krz1, . . . , zns be ideals. We claim that V pIq Y V pJq “ V pI X Jq. We have V pIq, V pJq Ä

V pI X Jq, because I, J Å I X J . Thus V pIq Y V pJq Ä V pI X Jq. Hence it su�ces to show that if
z P V pI X Jq and z R V pIq, then z P V pJq. Since x R V pIq, there exists f P I such that fpzq �“ 0. If
g P J , then f ¨ g P I X J , and thus pf ¨ gqpzq “ 0 because z P V pI X Jq. Since fpzq �“ 0, it follows that
gpzq “ 0. This proves that z P V pJq.

Lastly, let tItutPT be a family of ideals of Krz1, . . . , zns. Then
£

tPT
V pItq “ V pxtItutPT yq,

where xtItutPT y is the ideal generated by the collection of the It’s.

Definition 1.1.2. The Zariski topology of An is the topology whose closed sets are the sets V pIq, where
I runs through the collection of ideals of Krz1, . . . , zns. The Zariski topology of a subset A Ä An is the
topology induced by the Zariski topology of An.

Remark 1.1.3. If K “ C, the Zariski topology is weaker than the classical topology of An. In fact,
unless n “ 0, the Zariski is much weaker than the classical topology, in particular it is not Hausdor↵.

Example 1.1.4. A subset X Ä An is a hypersurface if it is equal to V pfq, where f is a non constant
homogeneous polynomial.

A picture of a hypersurface in A2 is in Figure 1.1. Notice that px, yq are the a�ne coordinates -
in general, whenever we consider a�ne or projective space of small dimension, we will denore a�ne or
homogeneous coordinates by letters x, y, z, . . . and X,Y, Z, . . . respectively.

What is the field K? The picture shows points with real coordinates. We can view the picture as a
“slice” of the corresponding hypersurface over C, or as the closure (either in the Zariski or the classical
topology) of the corresponding hypersurface over the algebriac closure of the rationals Q.

Figure 1.1: px
2

` 2y2 ´ 1qp3x2
` y

2
´ 1q `

3
100 “ 0

Given a subset X Ä An, let

IpXq :“ tf P Krz1, . . . , zns | fpzq “ 0 for all z P Xu. (1.1.4)

Clearly IpXq is an ideal of Krz1, . . . , zns and X is contained in the closed set V pIpXqq. Moreover
V pIpXqq is the closure of X in the Zariski topology. In fact suppose that V pJq Ä An is a closed

8



1.2. Zariski’s topology on projective space

subset containing X. Then fpzq “ 0 for all f P J and z P X, and hence J Ä IpXq. This shows that
V pJq Å V pIpXqq (recall (1.1.3)).

Remark 1.1.5. Let A be a finite dimensional a�ne space over K of dimension n. Then the Zariski
topology on A may be defined by analogy with the case of An, simply replacing Krz1, . . . , zns by the K
algebra of polynomial functions on A (which is isomorphic to Krz1, . . . , zns). Another way of putting
it is that an a�ne transformation of An is a homemorphism for the Zariski topology.

1.2 Zariski’s topology on projective space

Let F P KrZ0, . . . , Znsd be homogeneous of degree d (to be correct we should say that F belongs to
the homogeneous summand of degree d, because the degree of 0 is ´8). Let x “ rZs P Pn. Then
F pZq “ 0 if and only if F p�Zq “ 0 for every � P K˚, because F p�Zq “ �

d
F pZq. Hence, although F pxq

is not defined, it makes to state that F pxq “ 0 or F pxq �“ 0. Thus if F1, . . . , Fr P KrZ0, . . . , Zns are
homogeneous (of possibly di↵erent degrees) it makes sense to let

V pF1, . . . , Frq :“ tx P Pn
| F1pxq “ . . . “ Frpxq “ 0u. (1.2.1)

As in the case of a�ne space, it is convenient to consider the zero locus of ideals, but we need to consider
homogeneous ideals. An ideal I Ä KrZ0, . . . , Zns is homogeneous if

I “

8à

d“0

I X KrZ0, . . . , Znsd, (1.2.2)

i.e. if it is generated by homogeneous elements. Let I Ä KrZ0, . . . , Zns be a homogeneous ideal; we let

V pIq :“ tx P Pn
| F pxq “ 0 @ homogeneous F P Iu.

By Hilbert’s basis Theorem A.3.6 I is generated by a finite set of homogeneous polynomials F1, . . . , Fr,
and hence V pIq “ V pF1, . . . , Frq. Notice that if I Ä KrZ0, . . . , Zns is a homogeneous ideal we have
two di↵erent meanings for V pIq, namely the subset of Pn defined above and the subset of An`1 defined
in (1.1.2). The context will indicate which of the two we mean.

Proceeding as in the proof of Proposition 1.1.1 one gets the following result.

Proposition 1.2.1. The collection of subsets V pIq Ä Pn, where I runs through the collection of homo-
geneous ideals of KrZ0, . . . , Zns, satisfies the axioms for the closed subsets of a topological space.

Definition 1.2.2. The Zariski topology of Pn is the topology whose closed sets are the sets V pIq Ä Pn,
where I runs through the collection of homogeneous ideals of KrZ0, . . . , Zns. The Zariski topology of a
subset A Ä Pn is the topology induced by the Zariski topology of Pn.

Remark 1.2.3. Let ⇡ : pKn`1
zt0uq ›Ñ Pn be the map defined by ⇡pZq “ rZs, so that Pn is identified as

the quotient of Kn`1
zt0u for the action by homotheties. The Zariski topology of Pn is the quotient of

the Zariski topology on Kn`1
zt0u.

Remark 1.2.4. If F P KrZ0, . . . , Zns is homogeneous we let

Pn

F
– Pn

zV pF q. (1.2.3)

Thus Pn

F
is an open subset of Pn.

From now on we make the identification

An
–Ñ Pn

Z0

pz1, . . . , znq fiÑ r1, z1, . . . , zns

The Zariski topology of An induced by the Zariski topology on Pn is the same as the Zariski topology
of Definition 1.1.2. In fact let X Ä An. Suppose first that X is closed for the topology induced

9



1. Quasi projective varieties

from the Zariski topology of Pn, i.e. X “ pPn

Z0
q X V pF1, . . . , Frq, where each Fj P KrZ0, Z1, . . . , Zns is

homogeneous. Then X “ V pf1, . . . , frq, where

fjpz1, . . . , znq :“ F p1, z1, . . . , znq.

Next suppose that X is closed for the Zariski topology of Definition 1.1.2, i.e. X “ V pf1, . . . , frq where
f1, . . . , fr P Krz1, . . . , xns. We may assume that all fj are non zero because An is clearly closed for the
induced topology, and hence each fj has a well defined degree dj . For j P t1, . . . , ru let

FjpZ0, . . . , Znq :“ Z
dj

0 f

ˆ
Z1

Z0
, . . . ,

Zn

Z0

˙
.

Then Fj is a homogeneous polynomial of degree dj and hence V pF1, . . . , Frq Ä Pn is a closed subset.
Since

V pf1, . . . , frq “ pPn

Z0
q X V pF1, . . . , Frq,

we get that V pf1, . . . , frq is closed for the induced topology.

Example 1.2.5. A subset X Ä Pn is a hypersurface if it is equal to V pF q, where F is a non constant
homogeneous polynomial. Notice that V pF q X An is a hypersurface unless F “ cZ

d

0 for some c P K˚.

Given a subset A Ä Pn, let

IpAq :“ xF P KrZ0, . . . , Zns | F is homogeneous and F ppq “ 0 for all p P Ay, (1.2.4)

where x, y means “the ideal generated by”. Clearly IpAq is a homogeneous ideal of KrZ0, . . . , Zns, and
V pIpAqq is the closure of A in the Zariski topology.

Definition 1.2.6. A quasi-projective variety is a Zariski locally closed subset of a projective space,
i.e. X Ä Pn such that X “ U X Y , where U, Y Ä Pn are Zariski open and Zariski closed respectively.

Example 1.2.7. By Remark 1.2.4, every closed subset of An is a quasi projective variety.

Remark 1.2.8. If V is a finite dimensional complex vector space, the Zariski topology on PpV q is defined
by imitating what was done for Pn: one associates to a homogeneous ideal I Ä SymV

_ the set of zeroes
V pIq, etc. Everything that we do in the present chapter applies to this situation, but for the sake of
concreteness we formulate it for Pn.

1.3 Decomposition into irreducibles

A proper closed subset X Ä P1 (or X Ä A1) is a finite set of points. In general, a quasi projective
variety is a finite union of closed subsets which are irreducible, i.e. are not the union of proper closed
subsets. In order to formulate the relevant result, we give a few definitions.

Definition 1.3.1. Let X be a topological space. We say that X is reducible if either X “ H or there
exist proper closed subsets Y,W Ä X such that X “ Y Y W . We say that X is irreducible if it is not
reducible.

Example 1.3.2. A subset A Ä Rn with the euclidean (classical) topology is irreducible if and only if it
is a singleton.

Example 1.3.3. Projective space Pn with the Zariski topology is irreducible. In fact suppose that
Pn

“ X Y Y with X and Y proper closed subsets. Then there exist homogeneous F P IpXq and
G P IpY q such that F pyq �“ 0 for one (at least) y P Y and Gpxq ‰ 0 for one (at least) x P X. In
particular both F and G are non zero, and hence FG �“ 0 because KrZ0, . . . , Zns is an integral domain.
On the other hand FG “ 0 because Pn

“ Y Y W . This is a contradiction, and hence Pn is irreducible.

Remark 1.3.4. Since the field K is algebraically closed it is infinite, and hence there is no distinction
between the polynomial ring Krz1, . . . , zns and the ring of polynomial functions in z1, . . . , zn. That is
implicit in the argument given in Example 1.3.3, and it will appear repeatedly.
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1.3. Decomposition into irreducibles

Definition 1.3.5. Let X be a topological space. An irreducible decomposition of X consists of a
decomposition (possibly empty)

X “ X1 Y ¨ ¨ ¨ Y Xr (1.3.1)

where each Xi is a closed irreducible subset of X (irreducible with respect to the induced topology)
and moreover Xi Ç Xj for all i ‰ j.

We will prove the following result.

Theorem 1.3.6. Let A Ä Pn with the (induced) Zariski topology. Then A admits an irreducible
decomposition, and such a decomposition is unique up to reordering of components.

The key step in the proof of Theorem 1.3.6 is the following remarkable consequence of Hilbert’s
basis Theorem A.3.6.

Proposition 1.3.7. Let A Ä Pn, and let A Å X0 Å X1 Å . . . Å Xm Å . . . be a descending chain of
Zariski closed subsets of A, i.e Xm Å Xm`1 for all m P N. Then the chain is stationary, i.e. there
exists m0 P N such that Xm “ Xm0 for m • m0.

Proof. Let Xi be the closure of Xi in Pn. Then Xi “ A X Xi, because Xi is closed in A. Hence we
may replace Xi by Xi, or equivalently we may suppose that the Xi are closed in Pn. Let Im “ IpXmq.
Then I0 Ä I1 Ä . . . Ä Im Ä . . . is an ascending chain of (homogeneous) ideals of KrZ0, . . . , Zns. By
Hilbert’s basis Theorem and Lemma A.3.3 the ascending chain of ideals is stationary, i.e. there exists
m0 P N such that Im0 “ Im for m • m0. Thus Xm0 “ V pIm0q “ V pImq “ Xm for m • m0.

Proof of Theorem 1.3.6. If A is empty, then it is the empty union (of irreducibles). . Next, suppose
that A is not empty and that it does not admit an irreducible decomposition; we will arrive at a
contradiction. First A in reducible, i.e. A “ X0 Y W0 with X0,W0 Ä A proper closed subsets. If both
X0 and W0 have an irreducible decomposition, then A is the union of the irreducible components of X0

and W0, contradicting the assumption that A does not admit an irreducible decomposition. Hence one
of X0, W0, say X0, does not have an irreducible decomposition. In particular X0 is reducible. Thus
X0 “ X1 Y W1 with X1,W1 Ä X0 proper closed subsets, and arguing as above, one of X1,W1, say X1,
does not admit a decomposition into irredicbles. Iterating, we get a strictly descending chain of closed
subsets

A â X0 â X1 â ¨ ¨ ¨ â Xm â Xm`1 â ¨ ¨ ¨

This contradicts Proposition 1.3.7. This proves that X has a decomposition into irreducibles X “

X1 Y . . . Y Xr.
By discarding Xi’s which are contained in Xj with i �“ j, we may assume that if i �“ j, then Xi is

not contained in Xj .
Lastly, let us prove that such a decomposition is unique up to reordering, by induction on r. The

case r “ 1 is trivially true. Let r • 2. Suppose that X “ Y1 Y . . . Y Ys, where each Yj is Zariski closed
irreducible, and Yj Ç Yk if j �“ k. Since Ys is irreducible, there exists i such that Ys Ä Xi. We may
assume that i “ r. By the same argument, there exists j such that Xr Ä Yj . Thus Ys Ä Xr Ä Yj . It
follows that j “ s, and hence Ys “ Xr. It follows that X1 Y . . . Y Xr´1 “ Y1 Y . . . Y Ys´1, and hence
the decomposition is unique up to reordering by the inductive hypothesis.

Definition 1.3.8. Let X be a quasi projective variety, and let

X “ X1 Y . . . Y Xr

be an irreducible decomposition of X. The Xi’s are the irreducible components of X (this makes sense
because, by Theorem 1.3.6, the collection of the Xi’s is uniquely determined by X).

We notice the following consequence of Proposition 1.3.7.

Corollary 1.3.9. A quasi projective variety X (with the Zariski topology) is quasi compact, i.e. every
open covering of X has a finite subcover.

11



1. Quasi projective varieties

The following result makes a connection between irreducibility and algebra.

Proposition 1.3.10. A subset X Ä Pn is irreducible if and only if IpXq is a prime ideal.

Proof. The proof has essentially been given in Example 1.3.3. Suppose that X is irreducible. In
particular X �“ H (by definition), and hence IpXq is a proper ideal of KrZ0, . . . , Zns. We must prove
that KrZ0, . . . , Zns{IpXq is an integral domain. Suppose the contrary. Then there exist

F,G P KrZ0, . . . , Zns, F R IpXq, G R IpXq, (1.3.2)

such that
F ¨ G P IpXq. (1.3.3)

By (1.3.2) both X X V pF q and X X V pGq are proper closed subsets of X, and by (1.3.3) we have
X “ pX X V pF qq Y pX X V pGqq. This is a contradiction, hence IpXq is a prime ideal.

Next, assume that X is reducible; we must prove that IpXq is not prime. If X “ H, then IpXq “

KrZ0, . . . , Zns and hence IpXq is not prime. Thus we may assume that X �“ H, and hence there
exist proper closed subset Y,W Ä X such that X “ Y Y W . Since Y Ç W and W Ç Y , there exist
F P pIpY qzIpW qq and G P pIpW qzIpY qq. It follows that both (1.3.2) and (1.3.3) hold, and hence IpXq

is not prime.

Remark 1.3.11. Let I :“ pZ
2
0 q Ä KrZ0, Z1s. Then V pIq “ tr0, 1su is irreducible although I is not prime.

Of course IpV pIqq is prime, it equals pZ0q.

Remark 1.3.12. Let X Ä An. Let IpXq Ä Krz1, . . . , zns be the ideal of polynomials vanishing on X.
Then X is irreducible if and only if IpXq is a prime ideal. The proof is analogous to the proof of
Proposition 1.3.10. One may also directly relate IpXq with the ideal J Ä KrZ0, . . . , Zns generated by
homogeneous polynomials vanishing on X (as subset of Pn), and argue that IpXq is prime if and only
if J is.

1.4 The Nullstellensatz

Let an ideal I in a ring R. The radical of I, denoted by
?

I, is the set of elements a P R such that
a
m

P I for some m P N. As is easily checked,
?

I is an ideal. It is clear that
?

I Ä IpV pIqq. The
Nullstellensatz states that we have equality.

Theorem 1.4.1 (Hilbert’s Nullstellensatz). Let I Ä Krz1, . . . , zns be an ideal. Then IpV pIqq “

?

I.

Before discussing the proof of the Nullstellensatz, we introduce some notation. For a “ pa1, . . . , anq

an element of An, let

ma :“ pz1 ´ a1, . . . , zn ´ anq “ tf P Krz1, . . . , zns | fpa1, . . . , anq “ 0u . (1.4.1)

Notice that ma is the kernel of the surjective homomorphism

Krz1, . . . , zns
�

›Ñ K
f fiÑ fpa1, . . . , anq,

and hence is a maximal ideal. The Nullstellensatz is a consequence of the following result.

Proposition 1.4.2. An ideal m Ä Krz1, . . . , zns is maximal if and only if there exists pa1, . . . , anq P An

such that m “ ma.

Proof. We have shown that ma is maximal. Now suppose that m Ä Krz1, . . . , zns is a maximal ideal. Let
F – Krz1, . . . , zns{m. Then F is an algebraic extension of K by Corollary A.5.2. Since K is algebraically
closed F “ K, and hence the quotient map is

Krz1, . . . , zns
�

›Ñ Krz1, . . . , zns{m “ K.
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1.5. Regular maps

For i P t1, . . . , nu let ai – �pziq. Then pzi ´aiq P ker�. Since ma is generated by pz1 ´a1q, . . . , pzn ´anq

it follows that ma Ä m. Since both ma and m are maximal it follows that m “ ma.

Corollary 1.4.3 (Weak Nullstellensatz). Let I Ä Krz1, . . . , zns be an ideal. Then V pIq “ H if and
only if I “ p1q.

Proof. If I “ p1q, then V pIq “ H. Assume that V pIq “ H. Suppose that I ‰ p1q. Then there exists a
maximal ideal m Ä Krz1, . . . , zns containing I. Since I Ä m, V pIq Å V pmq. By Proposition 1.4.2 there
exists a P Kn such that m “ ma and hence V pmq “ V pmaq “ tpa1, . . . , anqu. Thus a P V pIq and hence
V pIq ‰ H. This is a contradiction, and hence I “ p1q.

Proof of Hilbert’s Nullsetellensatz (Rabinowitz’s trick). Let f P IpV pIqq. By Hilbert’s basis theorem
I “ pg1, . . . , gsq for g1, . . . , gs P Krz1, . . . , zns. Let J Ä Krz1, . . . , zn, ws be the ideal

J :“ pg1, . . . , gs, f ¨ w ´ 1q.

Since f P IpV pIqq we have V pJq “ H and hence by the Weak Nullstellensatz J “ p1q. Thus there exist
h1, . . . , hs, h P Krx1, . . . , xn, ys such that

sÿ

i“1

higi ` h pf ¨ w ´ 1q “ 1.

Replacing w by 1{fpzq in the above equality we get

sÿ

i“1

hi

ˆ
z,

1

fpzq

˙
gipzq “ 1. (1.4.2)

Let d °° 0: multiplying both sides of (1.4.2) by f
d we get that

sÿ

i“1

hi pzq gipzq “ f
d
pzq, hi P Krz1, . . . , zns.

Thus f P

?

I.

Example 1.4.4. Let V pF q Ä Pn be a hypersurface, and let F1, . . . , Fr be the distinct prime factors of the
decomposition of F into a products of primes (recall that KrZ0, . . . , Zns is a UFD, by Corollary A.2.2).
The irreducible decomposition of V pF q is

V pF q “ V pF1q Y . . . Y V pFrq.

In fact, each V pFiq is irreducible by Proposition 1.3.10. What is not obvious is that V pFiq Ç V pFjq if
Fi, Fj are non associated primes. This follows from Hilbert’s Nullstellensatz.

1.5 Regular maps

Let U Ä Pn be a locally closed subset. Suppose that F0, . . . , Fm P KrZ0, . . . , Znsd are homogeneous
polynomials of the same degree, and that for all rZs P U we have pF0pZq, . . . , FmpZqq ‰ p0, . . . , 0q. Let
rZs P U . Then rF0pZq, . . . , FmpZqs P Pm and if � P K˚ we have

rF0p�Zq, . . . , Fmp�Zqs “ r�
d
F0pZq, . . . ,�

d
FmpZqs “ rF0pZq, . . . , FmpZqs.

Hence we may define
U ›Ñ Pm

rZs Ñ rF0pZq, . . . , FmpZqs
(1.5.1)

Maps as above are the local models for regular maps between quasi projective varieties.
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1. Quasi projective varieties

Definition 1.5.1. Let X Ä Pn and Y Ä Pm be locally closed subsets (hence X and Y are quasi
projective varieties), and let ' : X Ñ Y be a map. Then ' is regular at a P X if there exist an open
U Ä X containing a such that the restriction of ' to U is described as in (1.5.1). (We assume that
pF0pZq, . . . , FmpZqq ‰ p0, . . . , 0q for all rZs P U .) The map ' is regular if it is regular at each point of
X.

Remark 1.5.2. Let ' : X Ñ Y be a map between quasi projective varieties. Suppose that Y “
î

iPI Ui

is an open cover, that '´1
Ui is open in X for each i P I and that the restriction

'
´1

pUiq ›Ñ Ui

x fiÑ 'pxq

is regular for each i P I. Then ' is regular. In other words regularity of a map is a local notion.

Proposition 1.5.3. A regular map of quasi projective varieties is Zariski continuous.

Proof. Let X Ä Pn and Y Ä Pm be Zariski locally closed, and let ' : X Ñ Y be a regular map. We
must prove that if C Ä Y is Zariski closed, then '

´1
pCq is Zariski closed in X. Let U Ä W be an

open subset such that (1.5.1) holds. Let us show that '´1
pCq X U is closed in U . Since C is closed

C “ V pIq X Y where I Ä KrT0, . . . , Tms is a homogeneous ideal. Thus

'
´1

pCq X U “ trZs P U | P pF0pZq, . . . , FmpZqq “ 0 @P P Iu.

Since each P pF0pZq, . . . , FmpZqq is a homogeneous polynomial, we get that '´1
pCq X U is closed in U .

By definition of regular map X can be covered by Zariski open sets U↵ such that (1.5.1) holds with
U replaced by U↵. We have proved that C↵ – '

´1
pCq X U↵ is closed in U↵ for all ↵. It follows that

'
´1

pCq is closed. In fact let C↵ Ä X be the closure of C↵ and D↵ :“ XzU↵. Since C↵ is closed in U↵

we have

C↵ X U↵ “ C↵ “ '
´1

pCq X U↵. (1.5.2)

Moreover D↵ is closed in X because U↵ is open. By (1.5.2) we have

'
´1

pCq “

£

↵

`
C↵ Y D↵

˘
.

Thus '´1
pCq is an intersection of closed sets and hence is closed.

It is convenient to unravel the condition of being regular for maps with domain a subset of an a�ne
space or both domain and codomain subsets of an a�ne space.

Example 1.5.4. Let X Ä An (“ Pn

Z0
) and Y Ä Pm be locally closed subsets, and let ' : X Ñ Y be a

map. Then ' is a regular map if and only if, given any a P X, there exist f0, . . . , fm P Krz1, . . . , zns (in
general not homogeneous) such that on an open subset U Ä X containing a we have

'pzq “ rf0pzq, . . . , fmpzqs. (1.5.3)

(This includes the statement that V pf1, . . . , fmq X U “ H.) In fact, if ' is regular there exist homo-
geneous F0, . . . , Fm P KrZ0, . . . , Znsd such that 'pr1, zsq “ rF0p1, zq, . . . , Fmp1, zqs, and it su�ces to let
fjpzq :“ Fjp1, zq. Conversley, if (1.5.3) holds, then

'prZ0, Z1, . . . , Znsq “ rZ
d

0 , Z
d

0f1

ˆ
Z1

Z0
, . . . ,

Zn

Z0

˙
, . . . , Z

d

0fm

ˆ
Z1

Z0
, . . . ,

Zn

Z0

˙
s, (1.5.4)

and for d is large enough, each of the rational functions appearing in (1.5.4) is actually a homogeneous
polynomial of degree d.
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1.5. Regular maps

Example 1.5.5. Let X Ä An and Y Ä Am be locally closed subsets and let ' : X Ñ Y be a map.
Recall that An

“ Pn

Z0
and Am

“ Pm

T0
. Then ' is regular if and only if locally there exist f0, . . . , fm P

Krz1, . . . , zns (in general not homogeneous) such that

fpzq “

ˆ
f1pzq

f0pzq
, . . . ,

fmpzq

f0pzq

˙
. (1.5.5)

Here it is understood that f0pzq �“ 0 for all z in the relevant open subset U of X. In fact this follows
from (1.5.3) if we divide the homogeneous coordinates of 'pzq by f0pzq (by hypothesis it does not vanish
for z P U).

The identity map of a quasi projective variety is regular (choose FjpZq “ Zj). If ' : X Ñ Y and
 : Y Ñ W are regular maps of quasi projective varieties, the composition  ˝ ' : X Ñ W is regular
because the composition of homogeneous polynomial functions is a homogeneous polynomial function.
Thus we have the category of quasi projective varieties. In particular we have the notion of isomorphism
between quasi projective varieties.

Definition 1.5.6. A quasi projective variety is

‚ an a�ne variety if it is isomorphic to a closed subset of an a�ne space (as usual An
“ Pn

Z0
Ä Pn),

‚ a projective variety if it is isomorphic to a closed subset of a projective space.

Remark 1.5.7. Let X be an a�ne variety. If Y Ä X is closed then it is an a�ne variety. In fact
by hypothesis there exist a closed subset W Ä An and an isomorphism ' : X

„
›Ñ W . Since ' is an

isomorphism it is a homeomorphism (see Proposition 1.5.3), and hence 'pY q is a closed subset of W .
Since W is closed in An, it follows that 'pY q is a closed subset of An. The isomorphism Y

„
›Ñ 'pY q

shows that Y is an a�ne variety. Similarly one shows that if X is a projective variety and Y Ä X is
closed, then Y is a projective variety.

The example below gives open (and non closed) subsets of an a�ne space which are a�ne varieties.

Example 1.5.8. Let f P Krz1, . . . , zns. We let

An

f
– An

zV pfq. (1.5.6)

Let Y :“ V pfpz1, . . . , znq ¨ w ´ 1q Ä An`1. The regular map

An

f

'
›Ñ Y

pz1, . . . , znq fiÑ pz1, . . . , zn,
1

fpz1,...,znq q

is an isomorphism. In fact the inverse of ' is given by

Y
 

›Ñ An

f

pz1, . . . , zn, wq fiÑ pz1, . . . , znq

Example 1.5.9. Let

Cd “

"
r⇠0, . . . , ⇠ds P Pd

| rk

ˆ
⇠0 ⇠1 ¨ ¨ ¨ ⇠d´1

⇠1 ⇠2 ¨ ¨ ¨ ⇠d

˙
§ 1

*
. (1.5.7)

Since a matrix has rank at most 1 if and only if all the determinants of its 2ˆ2 minors vanish it follows
that Cd is closed. We have a regular map

P1 'd
›Ñ Cd

rs, ts fiÑ rs
d
, s

d´1
t, . . . , t

d
s

(1.5.8)

Let us prove that 'd is an isomorphism. Let  d : Cd Ñ P1 be defined as follows:

 d pr⇠0, . . . , ⇠dsq “

#
r⇠0, ⇠1s if r⇠0, . . . , ⇠ds P Cd X Pd

⇠0

r⇠d´1, ⇠ds if r⇠0, . . . , ⇠ds P Cd X Pd

⇠d

Of course in order for this to make sense one has to check the following:
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1. Quasi projective varieties

1. The subset Cd is the union of the open subsets Cd X Pd

⇠0
and Cd X Pd

⇠d
.

2. The two expressions for  d coincide for points in Cd X Pd

⇠0
X Pd

⇠d
.

To prove (1) suppose that r⇠s P Cd and ⇠0 “ 0. By the equations defining Cd it follows that ⇠1 “ 0,
⇠2 “ 0, etc. up to . . . “ ⇠d´1. Hence if ⇠0 “ 0 then ⇠d �“ 0, and this prove that Item (1) holds.
To prove Item (2) suppose that r⇠s P Cd X Pd

⇠0
X Pd

⇠d
. By the equations defining Cd it follows that

⇠0 ¨ ⇠n ´ ⇠1⇠n´1 “ 0 and hence r⇠0, ⇠1s “ r⇠d´1, ⇠ds. This prove that Item (2) holds.
One checks easily that  d ˝ 'd “ IdP1 and 'd ˝  d “ IdCd . Thus 'd is an isomorphism, as claimed.

Definition 1.5.10. The closed subset Cd Ä Pd defined in (1.5.7) or any X Ä Pd projectively equivalent
to Cd (i.e. given by gpCdq where g P PGLnpKq) is a rational normal curve in Pd.

In the above definition “rational” refers to the fact that Cd (and hence also any X projectively
equivalent to Cd) is isomorphic to P1, “curve” refers to the fact that P1 (and hence also Cd) has
dimension 1 (we will define the dimension of a quasi projective variety later on), the attribute “normal”
will be explained later in the book.

The remark below shows that, in the definition of regular map, we cannot require that ' is given
globally by homogeneous polynomials.

Remark 1.5.11. Unless we are in the trivial case d “ 1, it is not possible to define  d globally as

 d pr⇠0, . . . , ⇠dsq “ rP p⇠0, . . . , ⇠dq, Qp⇠0, . . . , ⇠dqs, (1.5.9)

with P,Q P Kr⇠0, . . . , ⇠dse not vanishing simultaneously on Cd. In fact suppose that (1.5.9) holds, and
let

pps, tq :“ P ps
d
, . . . , t

d
q, qps, tq :“ Qps

d
, . . . , t

d
q.

The polynomials pps, tq, qps, tq are homogeneous of degree de, they do not vanish simultaneously on a
non zero ps0, t0q P K2, and for all rs, ts P P1 we have rpps, tq, qps, tqs “ rs, ts. The last equality means
that tpps, tq “ sqps, tq. It follows that pps, tq “ s ¨ rps, tq and qps, tq “ t ¨ rps, tq where rps, tq has no non
trivial zeroes. Thus rps, tq is constant. In particular de “ deg p “ deg q “ 1, and hence d “ 1.

The example below extends Example 1.5.9 to arbitrary dimension.

Example 1.5.12. We recall the formula

dimKrZ0, . . . , Znsd “

ˆ
d ` n

n

˙
. (1.5.10)

(See Exercise 1.9.9 for a proof.) Let Npn; dq :“
`
d`n

n

˘
´ 1. Let

Pn
⌫
n
d

›Ñ PNpn;dq

rZs fiÑ rZ
d

0 , Z
d´1
0 Z1, . . . , Z

d

n
s

(1.5.11)

be defined by all homogeneous monomials of degree d - this is a Veronese map. Clearly ⌫n
d
is regular.

Note that for n “ 1 we get back the map 'd in (1.5.8).
The homogeneous coordinates on PNpn;dq appearing in (1.5.11) are indiced by length n ` 1 multiin-

dices I “ pi0, . . . , inq P Nn`1 such that deg I :“ i0 ` . . . ` in “ d; we denote them by r. . . , ⇠I , . . .s. Let
V n

d
Ä PNpn;dq be the closed subset defined by

V n

d
:“ V p. . . , ⇠I ¨ ⇠J ´ ⇠K ¨ ⇠L, . . .q,

where I, J, L,K run through all multiindices such that I ` J “ K ` L. Clearly ⌫n
d

pPn
q Ä V n

d
. Let us

show that ⌫n
d
is an isomorphism onto V n

d
.
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1.5. Regular maps

Let s P t0, . . . , nu, and let H P Nn`1 be a multiindex of degree pd ´ 1q. We let es P Nn`1 be the
element all of whose entries are equal to 0 except for the entry at place s ` 1, which is equal to 1, and
Hs – H ` es. Also let

V n

d
zV p⇠H0 , . . . , ⇠Hnq

'
n
d pHq
›Ñ Pn

r. . . , ⇠I , . . .s fiÑ r⇠H0 , . . . , ⇠Hns

Clearly '
n

d
pHq is regular. Moreover if r. . . , ⇠I , . . .s P V n

d
then there exist a multiindex H P Nn`1 of

degree pd ´ 1q such that x belongs to V n

d
zV p⇠H0 , . . . , ⇠Hnq for H P Nn`1 (there exists I P Nn`1 of

degree d such that ⇠I �“ 0 and I “ H ` es where s is such that is �“ 0). Moreover we claim that if
r. . . , ⇠I , . . .s P V n

d
belong both to the domain of 'n

d
pHq and to the domain of 'n

d
pH

1
q, then

'
n

d
pHqpr. . . , ⇠I , . . .sq “ r⇠H0 , . . . , ⇠Hns “ r⇠H1

0
, . . . , ⇠H1

n
s “ '

n

d
pH

1
qprzsq. (1.5.12)

In fact for s, t P t0, . . . , nu we have Hs `H
1
t

“ H `H
1
` es ` et “ Ht `H

1
s
, thus ⇠Hi ¨ ⇠H1

j
´ ⇠Hj ¨ ⇠H1

i
“ 0

by the equations defining V n

d
, and this proves that the equality in (1.5.12) holds. This shows that the

maps 'n

d
pHq’s define a regular map

V n

d

'
n
d

›Ñ Pn
. (1.5.13)

We claim that

'
n

d
˝ ⌫

n

d
“ IdPn (1.5.14)

⌫
n

d
˝ '

n

d
“ IdV n

d
. (1.5.15)

The first equality is easily checked. In order to check the second equality it su�ces to show that ⌫n
d
is

surjective. One may proceed as follows. Let x “ r. . . , ⇠I , . . .s P V n

d
be a point such that ⇠des �“ 0 for

some s P t0, . . . , nu. Thus x P pV n

d
zV p⇠H0 , . . . , ⇠Hnqq where H “ pd ´ 1qe0. It is not di�cult to show

that x “ ⌫
n

d
pr⇠H0 , . . . , ⇠Hnsq. Hence it su�ces to prove that if x “ r. . . , ⇠I , . . .s P V n

d
, then there exists

s P t0, . . . , nu such that ⇠des �“ 0. Equivalently, we must show that the following statement holds: if
⇠ – p. . . , ⇠I , . . .q is such that ⇠des “ 0 for all s P t0, . . . , nu and ⇠I ¨⇠J “ ⇠K ¨⇠L whenever I `J “ K `L,
then ⇠I “ 0 for all multiindices I. This is easily proved by “descending induction” on the maximum
of i0, . . . , in. If the maximum is d, then ⇠I “ 0 by hypothesis. Suppose that the maximum is at least
d{2, i.e. that there exists s P t0, . . . , nu be such that 2is • d. Then 2I “ des ` J where J P Nn`1 is
a multiindex of degree d and hence ⇠2

I
“ ⇠des ¨ ⇠J “ 0 by by the equations defining V n

d
. Thus ⇠I “ 0.

This proves that if the maximum is at least d{2 then ⇠I “ 0. Iterating the argument we get that if the
maximum is at least d{4 then ⇠I “ 0 etc.

The Veronese map allows us to show that the open a�ne subsets of a quasi projective variety form
a basis for the Zariski topology. First we need a definition.

Definition 1.5.13. Let X Ä Pn be a closed subset. A principal open subset of X is an open U Ä X

which is equal to
XF :“ XzV pF q,

where F P KrZ0, . . . , Zns is a homogeneous polynomial of strictly positive degree.

Claim 1.5.14. Let X Ä Pn be closed. A principal open subset of X is an a�ne variety.

Proof. First we prove the claim for X “ Pn. Let F P KrZ0, . . . , Zns be a homogeneous polyno-
mial of strictly positive degree d. In order to prove that Pn

F
is a�ne we consider the Veronese map

⌫
n

d
: Pn

›Ñ PNpn,dq, see (1.5.11). Let V n

d
:“ imp⌫

n

d
q be the corresponding Veronese variety. As shown

in Example 1.5.12 the map Pn
Ñ V n

d
defined by ⌫

n

d
is an isomorphism. Let F “

∞
I
aIZ

I , and let
H Ä PNpn,dq be the hyperplane H “ V p

∞
I
aI⇠I . Then we have the isomorphism

Pn

F

„
›Ñ pV n

d
zHq

x fiÑ ⌫
n

d
pxq

(1.5.16)
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1. Quasi projective varieties

But PNpn,dq
zH is the a�ne space ANpn,dq, and hence pV n

d
zHq is a closed subset of ANpn,dq. Hence the

map in (1.5.16) is an isomorphism between Pn

F
and closed subset of ANpn,dq, and therefore Pn

F
is an

a�ne variety.
In general, let X Ä Pn be closed, and let F be as above. Then XF is a closed subset of the a�ne

variety Pn

F
, and hence it is an a�ne variety, see Remark rmk:trapano.

Proposition 1.5.15. The open a�ne subsets of a quasi projective variety form a basis of the Zariski
topology.

Proof. Since a quasi-projective variety is an open subset of a projective variety, it su�ces to prove the
result for projective varieties. Let X Ä Pn be closed. Let U Ä X be open. If U “ X then

U “ X “ XZ0 Y XZ1 Y . . . Y XZn , (1.5.17)

and each of the XZi ’s is an open a�ne subset by Claim 1.5.14.
Next asssume that U �“ X. Then U “ XzV pF1, . . . , Frq, where each Fj is a non constant homogen-

eous polynomial, and r • 1. Then
U “ XF1 Y . . . Y XFr ,

and each of the XFj ’s is an open a�ne subset by Claim 1.5.14.

1.6 Regular functions on a�ne varieties

Definition 1.6.1. A regular function on a quasi projective variety X is a regular map X Ñ K.

Let X be a non empty quasi projective variety. The set of regular functions on X with pointwise
addition and multiplication is a K-algebra, named the ring of regular functions of X. We denote it by
KrXs.

If X is a projective variety, then it has few regular functions. In fact we will prove (see Corol-
lary 2.4.8) that every regular function on X is locally constant. On the other hand, a�ne varieties have
plenty of functions. In fact if X Ä An is closed we have an inclusion

Krz1, . . . , zns{IpXq ãÑ KrXs. (1.6.1)

Theorem 1.6.2. Let X Ä An be closed. Then the homomorphism in (1.6.1) is an isomorphism,
i.e. every regular function on X is the restriction of a polynomial function on An.

Theorem 1.6.2 follows from the Nullstellensatz. Before giving the proof we discusse a particular
instance of Theorem 1.6.2, which shows the relation with the Nullstellensatz. Let X Ä An be closed.
Suppose that g P Krz1, . . . , zns and that gpaq ‰ 0 for all a P Z. Then 1{g P KrXs and hence The-
orem 1.6.2 predicts the existence of f P Krz1, . . . , zns such that g

´1
“ f|X . Such an f exists by the

Nullstellensatz. In fact let X “ V pg1, . . . , grq where g1, . . . , gr P Krz1, . . . , zns. By our hypothesis on g

we have V pg1, . . . , gr, gq “ H, and hence pg1, . . . , gr, gq “ p1q by the Nullstellensatz. Hence there exist
f1, . . . , fr, f P Krz1, . . . , zns such that

f1 ¨ g1`, . . . , fr ¨ gr ` f ¨ g “ 1.

Restricting to X we get that fpxq “ gpxq
´1 for all x P X, as claimed.

Before proving Theorem 1.6.2, we notice that, ifX Ä An is closed, the Nullstellensatz forKrz1, . . . , zns

implies a Nullstellensatz forKrz1, . . . , zns{IpXq. First a definition: given an ideal J Ä pKrz1, . . . , zns{IpXqq

we let
V pJq :“ ta P X | fpaq “ 0 @f P Ju .

The following result follows at once from the Nullstellensatz.
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1.6. Regular functions on a�ne varieties

Proposition 1.6.3 (Nullstellensatz for a closed subset of An). Let X Ä An be closed, and let J Ä

pKrz1, . . . , zns{IpXqq be an ideal. Then

 
f P pKrz1, . . . , zns{IpXqq | f|V pJq “ 0

(
“

?

J.

(The radical
?

J is taken inside Krz1, . . . , zns{IpXq.) In particular V pJq “ H if and only if J “ p1q.

We introduce notation that is useful in the proof of Theorem 1.6.2. Given a quasi projective variety
X, and f P KrXs, let

Xf :“ XzV pfq, (1.6.2)

where V pfq :“ tx P X | fpxq “ 0u. Note the similarity with the notation for principal open subsets of
projective varieties.

Remark 1.6.4. Assume that X is a�ne, hence we may assume that X Ä An is closed. The collection
of open subsets tXfu is a basis for the Zariski topology of X. In fact let U be an open subset of
X. Then U “ XzV pg1, . . . , grq where gi P Krz1, . . . , zns for i P t1, . . . , ru. Let fi – gi|X . Then
U “ Xg1 Y . . . Y Xgr .

Proof of Theorem 1.6.2. The proof is simpler if X is irreducible. We first give the proof under this
hypothesis. Let ' P KrXs. We claim that there exist fi, gi P Krz1, . . . , zns for 1 § i § d with gi R IpXq

such that

(a) X “
î

1§i§d
Xgi , i.e. V pg1, . . . , gdq X X “ H,

(b) for all x P Xgi we have 'pxq “
fipxq
gipxq ,

In fact by definition of regular function (see Example 1.5.5) there exist an open cover X “
î
↵PA U↵

and f↵, g↵ P Krz1, . . . , zns for each ↵ P A such that U↵ Ä Xg↵ and 'pxq “
f↵pxq
g↵pxq for each x P U↵. Since

the Zariski topology is quasi compact (see Corollary 1.3.9) we may assume that index set A is finite,
say A “ t1, . . . , du. Of course we may asssume that gi �“ 0 for all i P t1, . . . , du. Since X is irreducible

so is Xgi and hence Ui is dense in Xgi . This imples that 'pxq “
fipxq
gipxq on all of Xgi because regular

functions are Zariski continuous (see Proposition 1.5.3). This proves the claim.
In the rest of the proof we adopt the following notation: for f P Krz1, . . . , zns we let f – f|X .

For i “ 1, . . . , d the equality g
i
' “ f

i
holds on Xgi by Item (2). Since X is irreducible and Xgi is a

non empty subset of X it is dense in X, and hence g
i
' “ f

i
on all of X (this is where the hypothesis that

X is irreducible simplifies the proof). By Proposition 1.6.3 we have that pg1, . . . , gdq “ p1q, i.e. there
exist h1, . . . , hd P Krz1, . . . , zns such that

1 “ h1g1 ` ¨ ¨ ¨ ` hdgd.

where hi :“ hi|X . Multiplying by ' both sides of the above equality we get that

' “ h1g1'` ¨ ¨ ¨ ` hdgd' “ h1f1 ` . . . ` h1fd
“ ph1f1 ` ¨ ¨ ¨ ` hdfdq|X . (1.6.3)

This shows that ' is the restriction to X of a polynomial function on An.
Now we give the proof for arbitrary (closed) X. Let ' P KrXs. This time we claim that there exist

fi, gi P Krz1, . . . , zns for i P t1, . . . , du such that

1. X “
î

1§i§d
Xgi , i.e. V pg1, . . . , gdq X X “ H,

2. for all a P Xgi we have 'paq “
fipaq
gipaq ,

3. for 1 § i § j we have pgjfi ´ gifjq|X “ 0.
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1. Quasi projective varieties

We start proving the claim as in the case of X irreducible. There is a finite open cover X “
î
↵PA U↵

and f↵, g↵ P Krz1, . . . , zns for each ↵ P A such that U↵ Ä Xg↵ and 'pxq “
f↵pxq
g↵pxq for each x P U↵. We

may cover U↵ by open a�ne sets X�↵,1 , . . . , X�↵,r , see Remark 1.6.4. Since V pg
↵

q Ä

rì
j“1

V p�
↵,j

q (recall

that g
↵
and �

↵,j
are the restrictions to X of g↵ and �↵,j respectively), the Nullstellensatz for X gives

that, for each ↵, j, there exist N↵,j ° 0 and µ↵,j P Krz1, . . . , zns such that �
N↵,j

↵,j
“ µ↵,j ¨ g

↵
. Hence

'pxq “ µ↵,jpxqf↵pxq{�↵,jpxq
N↵,j for all x P X�↵,j . Since V p�↵,jq “ V p�

N↵,j

↵,j
q it follows that there exist

f
1
i
, g

1
i

P Krz1, . . . , zns for i P t1, . . . , du such that X “
î

d

i“1 Xg
1
i
and 'pxq “ f

1
i
pxq{g

1
i
pxq for all x P Xg

1
i
.

For i P t1, . . . , du let
fi :“ f

1
i
g

1
i
, gi :“ pg

1
i
q
2
.

Clearly Items (1) and (2) hold. In order to check Item (3) we write

pgjfi ´ gifjq|X “ ppg
1
j
q
2
f

1
i
g

1
i

´ pg
1
i
q
2
f

1
j
g

1
j
q|X “ ppg

1
i
g

1
j
qpf

1
i
g

1
j

´ f
1
j
g

1
i
qq|X .

Since 'pzq “ f
1
i
pxq{g

1
i
pxq “ f

1
j
pxq{g

1
j
pxq for all x P Xg

1
i

X Xg
1
j
the last term vanishes on Xg

1
i

X Xg
1
j
. On

the other hand the last term vanishes also on pXzXg
1
i
XXg

1
j
q “ X XV pg

1
i
g

1
j
q because of the factor pg

1
i
g

1
j
q.

This finishes the proof that there exist fi, gi P Krz1, . . . , zns for i P t1, . . . , du such that (1), (2) and (3)
hold.

Next, for i “ 1, . . . , d let g
i
:“ gi|X and f

i
:“ fi|X . Then

g
i
' “ f

i
. (1.6.4)

In fact by Item (1) it su�ces to check that (1.6.4) holds on Xgj for j “ 1, . . . , d. For j “ i it holds by
Item (2), for j �“ i it holds by Item (3). Given the equalities in (1.6.4), one finishes the proof proceeding
as in the case when X is irreducible.

Example 1.6.5. Let X be an a�ne variety, thus we may assume that X Ä An is closed. If f P KrXs

then Xf is a principal open subset of X. In fact by Theorem 1.6.2 there exists g P Krz1, . . . , zns such
that f “ g|X . If d " 0 then

GpZ0, . . . , Znq – Z
d

0g

ˆ
Z1

Z0
, . . . ,

Z1

Z0

˙

is a homogeneous polynomial whose zero locus (in Pn) is equal to the union of V pZ0q and V pgq (which
is contained in An). Hence XG “ pXzV pGqq “ pXzV pgqq “ Xf . An explicit isomorphism between Xf

and a closed subset of an a�ne space is obtained as follows. Let Y – V pJq Ä An`1 where J is the
ideal generated by IpXq and the polynomial gpz1, . . . , znq ¨ zn`1 ´ 1. Then the map

Xf ›Ñ Y

pz1, . . . , znq fiÑ

´
z1, . . . , zn,

1
fpz1,...,znq

¯

is an isomorphism (see Example 1.5.8). Note that by Theorem 1.6.2 every regular function on Xf is
given by the restriction to Xf of h

fm , where h P KrXs and m P N.

1.7 Quasi-projective varieties defined over a subfield of K

Let F Ä K be a subfield, for example R Ä C, Q Ä C or Fq Ä Fq where q “ p
r with p a prime.

Definition 1.7.1. A locally closed subset X Ä Pn
pKq is defined over F if both the homogeneous

ideals IpXq Ä KrZ0, . . . , Zns and IpXzXq Ä KrZ0, . . . , Zns admit sets of generators belonging to
F rZ0, . . . , Zns.

Trivially Pn
pKq and An

pKq “ Pn
pKqZ0 are defined over the prime field, i.e. over Q if charK “ 0 and

over Fp if charK “ p.
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Remark 1.7.2. A locally closed subsetX Ä An
pKq “ Pn

pKqZ0 is defined over F if both the ideals IpXq Ä

Krz1, . . . , zns and IpXzXq Ä Krz1, . . . , zns (in general non homogeneous) admit sets of generators which
belong to F rz1, . . . , zns. This is so because a polynomial p P Krz1, . . . , zns of degree d vanishes on X if
and only if the homogeneous polynomial P :“ Z

d

0 ¨ fpZ1{Z0, . . . , Zn{Z0q vanishes on X, and conversely
a homogeneous P P KrZ0, . . . , Zns vanishes on X if and only if P p1, z1, . . . , znq P Krz1, . . . , zns vanishes
on X.

Example 1.7.3. Let a “ pa1, . . . , anq P An. If ai belongs to F for all i P t1, . . . , nu then tau is defined
over F because its ideal is generated by pz1 ´ a1, . . . , zn ´ anq. The converse is true if we make a
hypothesis on the field extension F Ä K. Let AutpK, F q be the group of automorphisms of K fixing
every element of F . Assume that the field of elements of K fixed by AutpK, F q is equal to F . (Since K
is algebraically closed this holds if charK “ 0 or, in case charK “ p if F is perfect, i.e. every element
of F has a p-th root in F (necessarily unique).) With this hypothesis, suppose that tau is defined over
F , and let p1, . . . , pr P F rz1, . . . , zns be generators of Iptauq Ä Krz1, . . . , zns. For j P t1, . . . , ru let
pj “

∞
I
cj,Iz

I where cj,I P F for each multiindex I. If � P AutpK, F q we have

0 “ �p0q “ �ppjpaqq “ pjp�pa1q, . . . ,�panqq “

ÿ

I

cj,I�pa1q
i1 . . .�panq

in “ pjp�paqq. (1.7.1)

(The third equality holds because pj has coe�cients in F .) Since the above equality holds for generators
of the ideal of tau, we get that p�pa1q, . . . ,�panqq “ pa1, . . . , anq for all � P AutpK, F q. By our hypothesis
on AutpK, F q it follows that ai P F for all i.

Example 1.7.4. Let Q P RrZ0, . . . , Zns2 be a non zero quadratic form. Then Z – V pQq Ä Pn
pCq is a

projective variety defined over R. In fact if Q has rank at least 2 then Q generates IpZq, and if Q has
rank 1, i.e. Q “ L

2 for L P CrZ0, . . . , Zns1 then either L P RrZ0, . . . , Zns1 or
?

´1L P RrZ0, . . . , Zns1.

Example 1.7.5. The Fermat hypersurface X – V p
∞

n

i“0 Z
d

i
q is defined over the prime field. In order to

check this one must show that IpXq, i.e. the radical of p
∞

n

i“0 Z
d

i
q is generated by a polynomial with

coe�cients in the prime field. If charK does not divide d then the polynomial
∞

n

i“0 Z
d

i
generates a

radical ideal in KrZ0, . . . , Zns (to see this take the formal partial derivative with respect to one of its
variables), and hence it generates IpXq. Since the coe�cients of

∞
n

i“0 Z
d

i
belong to the prime field we

are done. If charK “ p ° 0 write d “ p
r
d0 where p does not divide d0. Then

∞
n

i“0 Z
d

i
“ p

∞
n

i“0 Z
d0
i

q
p
r

and hence IpXq is generated by
∞

n

i“0 Z
d0
i

(see above). Since the coe�cients of
∞

n

i“0 Z
d0
i

belong to the
prime field we are done.

Remark 1.7.6. Let F Ä F
1

Ä K be an inclusion of fields, and let X Ä Pn
pKq be a locally closed subset

defined over F . Then X is also defined over F 1. In particular if X is defined over the prime field it is
defined over every subfield of K.

Definition 1.7.7. Let X Ä Pn
pKq be a locally closed subset defined over F . We let XpF q Ä X be the

set of points represented by pn ` 1q-tuples pZ0, Z1, . . . , Znq P F
n`1

ztp0, . . . , 0qu.

Remark 1.7.8. Let X Ä An
pKq be a locally closed subset defined over F . Then XpF q Ä X is equal to

X X An
pF q.

Remark 1.7.9. Let F Ä F
1

Ä K be an inclusion of fields, and let X Ä Pn
pKq be a locally closed subset

defined over F . Then X is also defined over F 1 and hence XpF
1
q is also defined. In particular XpKq is

defined and equals X.

Remark 1.7.10. Let p be a prime, and suppose that Fq Ä K where q “ p
r. Let X Ä Pn

pFpq be a locally
closed subset defined over Fq. For each m P N` there is a unique inclusion Fq Ä Fqm Ä K, and hence
we have XpFqmq. Clearly XpFqmq is a finite set.

Definition 1.7.11. Let X Ä Pn
pFpq be a locally closed subset defined over Fq, where q “ p

r. The
Weil Zeta function of X is defined to be formal power series in the variable T given by

ZpX,T q – exp

˜ 8ÿ

m“1

|XpFqmq|

m
T

m

¸
(1.7.2)
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Definition 1.7.12. Let X Ä Pn
pKq and Y Ä Pm

pKq be locally closed subset, both defined over a
subfield F Ä K. A map ' – X Ñ Y is defined over F if for each a P X there exist an open U Ä X

containing a and Pj P F rZ0, . . . , Znsd for j P t0, . . . ,mu (d depends on U), such that the restriction of
' to U is

U ›Ñ Pm

rZs Ñ rP0pZq, . . . , PmpZqs
(1.7.3)

(of course pP0pZq, . . . , PmpZqq ‰ p0, . . . , 0q for all rZs P U).

Let F Ä K be a subfield. If X Ä Pn
pKq is a locally closed subset defined over F then the identity

map IdX : X Ñ X is clearly defined over F . If X Ä Pn
pKq, and Y Ä Pm

pKq, W Ä Pl
pKq are locally

closed subsets defined over F and ' : X Ñ Y ,  : Y Ñ W are regular maps defined over F then the
composition  ˝ ' : X Ñ W is also defined over F . In fact this holds because if P P F rZ0, . . . , Zmsd

and Q0, . . . , Qm P F rT0, . . . , Tnse then P pQ0, . . . , Qmq P F rT0, . . . , Tnsde.
Hence we have the category of quasi projective varieties defined over F . In particular we have the

notion of isomorphism over F of varieties defined over F .

Remark 1.7.13. LetX Ä Pn
pKq and Y Ä Pm

pKq be locally closed subsets defined over F . If ' : X Ñ Y is
a regular map defined over F then 'pXpF qq Ä Y pF q because the value of a polynomial with coe�cients
in F at pA0, . . . , Anq P F

n`1 belongs to F .

Example 1.7.14. Let Q1, Q2 P RrZ0, . . . , Zns2 be non degenerate quadratic forms, and let Xi – V pQiq

for i P t1, 2u. Then Xi Ä Pn
pCq is a projective variety defined over R. Since Qi is diagonalizable in

suitable coordinates, there exists a projectivity ' : Pn
pCq Ñ Pn

pCq whose restriction to X1 defines an
isomorphism X1

„
›Ñ X2. In particular X1 is isomorphic to X2 (over C). On the other hand X1 is not

necessarily isomorphic to X2 over R. In fact let Q1 –
∞

n

j“0 Z
2
j
and Q2 – Z

2
0 ´

∞
n

j“1 Z
2
j
. Thus X1pRq

is empty while X2pRq is not empty. Since a regular map ' : X1 Ñ X2 defined over R maps X1pRq to
X2pRq it follows that X1 is not isomorphic to X2 over R (we assume that n • 1).

Under a suitable hypothesis we can avoid computing the radical of ideals if we wish to decide whether
a locally closed subset X Ä Pn

pKq is defined over a subfield F Ä K. Let AutpK{F q be the group of
automorphisms of K which are the identity on F .

Proposition 1.7.15. Suppose that the fixed field of AutpK{F q is equal to F . Let X Ä Pn
pKq be a

locally closed subset given by V pIqzV pJq where I, J Ä KrZ0, . . . , Zns are homogeneous ideals generated
by polynomials in F rZ0, . . . , Zns. Then X is defined over F .

Before proving Proposition 1.7.15 we go through a few preliminaries. The group AutpKq of field
automorphisms of K acts on Pn as follows: for � P AutpKq

AutpKq ˆ Pn
›Ñ Pn

p�, rZ0, . . . , Znsq fiÑ r�pZ0q, . . . ,�pZnqs
(1.7.4)

Note that if X Ä An (“ Pn

Z0
) then �pz1, . . . , znq “ p�pz1q, . . . ,�pznqq.

Remark 1.7.16. In general the map Pn
Ñ Pn that one gets by fixing a non trivial � P AutpKq in (1.7.4)

is not regular. For example if F “ R Ä C and � is complex conjugation the map is not regular.

Proposition 1.7.17. Let X Ä Pn
pKq be a locally closed subset given by V pIqzV pJq where I, J Ä

KrZ0, . . . , Zns are homogeneous ideals generated by polynomials in F rZ0, . . . , Zns. If � P AutpK{F q

then �pXq “ X.

Proof. It su�ces to prove that �pXq “ X for X “ V pIq Ä Pn
pKq where I Ä KrZ0, . . . , Zns is a

homogeneous ideal generated by polynomials in F rZ0, . . . , Zns. Let P P F rZ0, . . . , ZnsXIpXq be homo-
geneous. Thus P “

∞
I
cIZ

I where each cI belongs to F . If rA0, . . . , Ans P X then P pA0, . . . , Anq “ 0
and hence

0 “ �pP pA0, . . . , Anqq “

ÿ

I

�pcIq�pA0q
i0 . . .�pAnq

in “

ÿ

I

cI�pA0q
i0 . . .�pAnq

in “ P p�pA0q, . . . ,�pAnqq.
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This proves that �pXq Ä X because the ideal IpXq Ä KrZ0, . . . , Zns is generated by homogeneous
elements in F rZ0, . . . , Zns. Thus we also have �´1

pXq Ä X and hence X Ä �pXq.

Proof of Proposition 1.7.15. The group AutpK{F q acts on KrZ0, . . . , Zns by acting on the coe�cients of
polynomials. We claim that AutpK{F q maps IpXq to itself. In fact let � P AutpK{F q and let P P IpXq

be a homogeneous polynomial, P “
∞

I
cIZ

I . By Proposition 1.7.17 we have �´1
pXq “ X, hence

�pP qpAq “

ÿ

I

�pcIqA
I

“ �

˜
ÿ

I

cI�
´1

pA0q
i0 . . .�

´1
pAnq

in

¸
“ �pP p�

´1
pAqq “ 0.

We have an obvious isomorphism KrZ0, . . . , Zns – K bF F rZ0, . . . , Zns and the action of AutpK{F q

that we have just defined matches the action considered in Section A.6. By Proposition A.6.3 it
follows that IpXq is generated (as K vector space by its intersection with F rZ0, . . . , Zns. This proves
Proposition 1.7.15.

Example 1.7.18. Assume that charK “ p ° 0. Let F : K Ñ K be the Frobenius automorphism:
F paq – a

p. Let r be a positive natural number. Of course F r is also an automorphism of K. Note that
F

r
paq “ a

q and that F r
P AutpK{Fqq. There exists a unique embedding Fq Ä K. Suppose that X Ä Pn

is a locally closed subset defined over Fq. Proposition 1.7.17 gives that we have the bijective map

X
⇡

›Ñ X

rZs fiÑ rZ
q

0 , . . . , Z
q

n
s.

This is the Frobenius map of X. Note the exceptional feature of the Frobenius map: it is regular (see
remark 1.7.16) and even defined over the prime field. Note also Note also that XpFqq is equal to the
fixed locus of ⇡:

XpFqq “ Fixp⇡q. (1.7.5)

1.8 Geometry and Algebra

Below is a remarkable consequences of Theorem 1.6.2.

Proposition 1.8.1. Let R be a finitely generated K algebra with no non zero nilpotents. There exists
an a�ne variety X such that KrXs – R (as K algebras).

Proof. Let ↵1, . . . ,↵n be generators (over K) of R, and let ' : Krz1, . . . , zns Ñ R be the surjection of
algebras mapping zi to ↵i. The kernel of ' is an ideal I Ä Krz1, . . . , zns, which is radical because R

has no nilpotents. Let X :“ V pIq Ä An. Then KrXs – R by Theorem 1.6.2.

The Nullstellensatz allows one to construct X abstractly from the K algebra as follows. Let

Spec
m

pRq :“ tm Ä R | m is a maximal ideal of Ru

be the maximal spectrum of R. Hilbert’s Nullstellensatz gives a bijection

X Ø Spec
m

pRq

p fiÑ tf P R | fppq “ 0u

Thus X may be identified with Spec
m

pRq. Moreover f P R defines a function Spec
m

pRq Ñ K by setting
fpmq – f pmod mq. This makes sense because the composition

K ›Ñ R ›Ñ R{m (1.8.1)

is an isomorphism.
Actually we get a contravariant equivalence between the category of a�ne varieties over K with no

non zero nilpotents and that of finitely generated K-algebras. First we give a definition.

23



1. Quasi projective varieties

Definition 1.8.2. Let ' : X Ñ Y be a regular map of non empty quasi projective varieties. The
pull-back '˚ : KrY s Ñ KrXs is the homomorphism of K algebras defined by

KrY s
'

˚
›Ñ KrXs

f fiÑ f ˝ '
(1.8.2)

Proposition 1.8.3. Let Y be an a�ne variety, and let X be a quasi projective variety. The map

tX
'

›Ñ Y | ' regularu ›Ñ tKrY s
↵

›Ñ KrXs | ↵ homom. of K-algebrasu
' fiÑ '

˚ (1.8.3)

is a bijection.

Proof. We may assume that Y Ä An is closed; for i P t1, . . . , nu let zi – zi|X . Suppose that f, g : X Ñ Y

are regular maps, and that f
˚

“ g
˚. Then f

˚
pziq “ g

˚
pziq for i P t1, . . . , nu, and hence f “ g. This

proves injectivity of the map in (1.8.3).
In order to prove surjectivity, let ↵ : KrY s Ñ KrXs be a homomorphism of K algebras. Let fi :“

↵pziq, and let ' : X Ñ An be the regular map defined by 'pxq :“ pf1pxq, . . . , fnpxqq for x P X. We
claim that 'pxq P Y for all x P X. In fact, since Y is closed, it su�ces to show that gp'pxqq “ 0 for all
g P IpXq. Now

gp'pxqq “ gpf1pxq, . . . , fnpxqq “ gp↵pz1q, . . . ,↵pznqq “ ↵pgpz1q, . . . , znq “ ↵p0q “ 0.

(The third equality holds because ↵ is a homomorphism of K-algebras.) Thus ' is a regular map
f : X Ñ Y such that '˚

pziqq “ ↵pziq for i P t1, . . . , nu. By Theorem 1.6.2 the K-algebra KrY s is
generated by z1, . . . , zn; it follows that '˚

“ ↵.

Corollary 1.8.4. In Proposition 1.8.1, the a�ne variety X such that KrXs – R is unique up to
isomorphism.

Proposition 1.8.3 shows that by associating to an a�ne variety over K the K-algebra of its regular
functions we get a contravariant equivalence between the category of a�ne varieties over K (with maps
the regular maps) and the category of finitely generated K-algebras with no non-zero nilpotent elements.
Note that if ' : S Ñ R is a morphism of finitely generated K-algebras with no non-zero nilpotent
elements the corresponding map (in the reverse direction) between the associated a�ne varieties is
given by

Spec
m

pRq ›Ñ Spec
m

pSq

m fiÑ '
´1

pmq — mc

(notice that '´1
pmq is maximal because ' is a morphism of K-algebras).

1.9 Exercises

Exercise 1.9.1. Which of the following subsets of A2 are locally closed? Which are closed?

(a) X –
 

px, yq | exp
`
2⇡

?
´1x

˘
“ 1

(
Ä A2

pCq.

(b) Y –
 `
t, t

2
˘

| t P K
(

Ä A2
pKq.

(c) W –
"ˆ

2t

t2 ` 1
,
t
2

´ 1

t2 ` 1

˙
| t P Cz

 
˘

?
´1

(*
Ä A2

pCq.

(d) V –
 

pt, tuq | pt, uq P K2
(

Ä A2
pKq.

Exercise 1.9.2. Compute IpZq for

1. Z “ V
`
x
2

` 1
˘

Ä A1
pKq,
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1.9. Exercises

2. Z “ Z2
Ä A2

pCq,

3. Z “ V
`
x
2

´ y
2
, x

2
´ xy

˘
Ä A2

pKq.

Exercise 1.9.3. Let M2,2pCq be the complex vector-space of 2 ˆ 2 complex matrices. Let n ° 0 and
let Un Ä M2,2pCq be the set of matrices T such that Tn

“ 1 (here 1 P M2,2pCq is the unit matrix).

1. Prove that Un is a closed subset (for the Zariski Topology) of M2,2pCq.

2. Describe the irreducible components of Un and show that there are
`
n`1
2

˘
of them.

Exercise 1.9.4. Let f1, . . . , fr P Krx, ys and suppose that

gcd tf1, . . . , fru “ 1.

Show that V pf1, . . . , frq Ä A2
pKq is finite.

Exercise 1.9.5. Let X Ä A2
pKq be a proper closed irreducible subset. Show that Z is either a singleton

or an irreducible hypersurface.

Exercise 1.9.6. Let MnpKq be the vector-space of nˆn matrices with entries in K, and let MnpKq´ Ä

MnpKq be the subspace of skew-symmetric matrices. Let X P MnpKq´: then

X “

»

—————–

0 x1,2 . . . . . . x1,n

´x1,2 0 x2,3 . . . x2,n

´x1,3 ´x1,3 0 . . . x3,n
...

...
...

. . .
...

´x1,n ´x2,n . . . . . . 0

fi

�����fl

Thus tx1,2, . . . , x1,n, x2,3, . . . , xn´1,nu is a basis of the dual ofMnpKq´, and henceKrx1,2, . . . , x1,n, x2,3, . . . , xn´1,ns

is the K algebra of. polynomial functions on MnpKq´. Let �n Ä MnpKq´ be the set of n ˆ n singular
skew-symmetric matrices, and let �n be the polynomial on MnpKq´ given by �npXq :“ detX. Then
�n is closed in MnpKq´ because �n “ V p�nq. Prove the following:

(1.9.6a) If n is odd then �n “ MnpKq´.

(1.9.6b) If n is even then �n is a hypersurface and Ip�nq ‰ p�nq.

Exercise 1.9.7. An a�ne map
An

›Ñ An

Z fiÑ A ¨ Z ` B

(here Z,B are column vectors with n entries and A P GLnpKq) is an automorphism of An.

(1.9.7a) Show that every automorphism of A1 is an a�ne map.

(1.9.7b) Let n • 2. Show that if f P Krz1, . . . , zn´1s then

An
�f

›Ñ An

z fiÑ pz1, . . . , xn´1, zn ` fpz1, . . . , zn´1q
(1.9.4)

is an automorphism. Prove that �f is an a�ne map if and only if deg f § 1.

Exercise 1.9.8. Show that one can prove the validity of Theorem 1.6.2 for An by invoking unique
factorization in Krz1, . . . , zns, without using the Nullstellensatz.
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1. Quasi projective varieties

Exercise 1.9.9. Let K be a field. Given a finite-dimensional K-vector space V define the formal power series
pV P Zrrtss as

PV :“
8ÿ

d“0

pdimk Sym
d
V qtd

where Symd
V is the symmetric product of V . Thus if V “ Krx1, . . . , xns1 then S

dpKrx1, . . . , xns1q “
Krx1, . . . , xnsd.

1. Prove that if V “ U ‘ W then PV “ PU ¨ PW .

2. Prove that if dimK V “ n then PV “ p1 ´ tq´n and hence the equality in (1.5.10) holds.

Exercise 1.9.10. The purpose of the present exercise is to give a di↵erent proof of the properties of the
Veronese map ⌫nd discussed in Example 1.5.12, valid if charK “ 0, or more generally charK does not divide d!.
Let

PpKrT0, . . . , Tns1q µn
d›Ñ PpKrT0, . . . , Tnsdq

rLs fiÑ rLds
(1.9.5)

and let W n
d “ impµn

d q. The above map can be identified with the Veronese map ⌫
n
d . In fact, writing L P

KrT0, . . . , Tns1 as L “ ∞n
i“0 ↵iTi, we see that r↵0, . . . ,↵ns are coordinates on PpKrT0, . . . , Tns1q, and they give

an identification Pn „›Ñ PpKrT0, . . . , Tns1q. Moreover, let

Ppd`n
n q´1 „›Ñ PpKrT0, . . . , Tnsdq,

r. . . , ⇠I , . . .s fiÑ ∞
I“pi0,...,inq
i0`...`in“d

d!
i0!¨...¨in!⇠IT

I

where T
I “ T

i0
0 ¨ . . . ¨T in

n . By Newton’s formula p∞n
i“0 ↵iTiqd “ ∞

I

d!
i0!¨...¨in!↵

I
T

I , we see that, modulo the above

isomorphisms, the Veronese map ⌫nd is identified with µ
n
d , and hence V n

d is identified with W n
d .

Now let us show that W n
d is closed. The key observation is that rF s P W n

d if and only if BF
BZ0

, . . . ,
BF

BZn
span

a 1-dimensional subspace of KrZ0, . . . , Zns. This may be proved by induction on degF and Euler’s identity

nÿ

j“0

Zj
BF
BZj

“ pdegF q ¨ F, (1.9.6)

valid for F homogeneous. Now, the condition that BF
BZ0

, . . . ,
BF

BZn
span a 1-dimensional subspace of KrZ0, . . . , Zns

is equivalent to the vanishing of determinants of all 2ˆ2 minors of the matrix whose entries are the coordinates
of BF

BZ0
, . . . ,

BF
BZn

; thus W n
d is closed.

In order to show that µ
n
d is an isomorphism, we notice that if F “ L

d, where L P PpKrT0, . . . , Tns1 is non

zero, then for each i P t0, . . . , nu the partial derivative Bn´1F

BZn´1
i

is a multiple of L (eventually equal to 0 if BL
BZi

“ 0),

and that one at least of such pn ´ 1q-th partial derivative is non zero. Thus, the inverse of µn
d is the regular

map ✓nd : W n
d ›Ñ PpKrT0, . . . , Tns1q defined by

✓
n
d prF sq :“

$
’’&

’’%

r Bn´1F

BZn´1
0

s if Bn´1F

BZn´1
0

�“ 0,

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
r Bn´1F

BZn´1
n

s if Bn´1F

BZn´1
n

�“ 0.

(1.9.7)

Exercise 1.9.11. Let X Ä Pn
pCq and Y Ä Pm

pCq be complex quasi projective varieties defined over
R, and let ' : X Ñ Y be a regular map defined over R. Note that the map XpRq Ñ Y pRq defined by
the restriction of ' to XpRq is continuous for the euclidean topologies of XpRq and Y pRq. Using this
prove that the real quadrics

V pZ
2
0 ´ Z

2
1 ´ Z

2
2 ´ Z

2
3 q Ä P3

pCq, V pZ
2
0 ` Z

2
1 ´ Z

2
2 ´ Z

2
3 q Ä P3

pCq (1.9.8)

are not isomorphic over R although they are isomorphic (actually projectively equivalent) over C.

Exercise 1.9.12. We recall that if � : B Ñ A is a homomorphism of rings, and I Ä A, J Ä B are ideals, the
contraction I

c Ä B and the extension J
e Ä A are the ideals defined as follows:

I
c :“ �

´1pIq, J
e :“

#
rÿ

i“1

�i� pbiq | �i P A, bi P J @i “ 1, . . . , r

+
(1.9.9)
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(In other words, Je is the ideal of A generated by �pJq.)
Let f : X Ñ Y be a regular map between a�ne varieties and suppose that f˚ : KrY s ›Ñ KrXs is injective.

1. Let p P X. Prove that mc
p “ mfppq, in particular it is maximal.

2. Let q P Y . Prove that
f

´1pqq “  
p P X | mp Å me

q

(
,

and conclude, by the Nulstellensatz, that f´1pqq is not empty if and only if me
q ‰ KrXs.

Exercise 1.9.13. The left action of GLnpKq on An defines a left action of GLnpKq on Krz1, . . . , zns as
follows. Let � P Krz1, . . . , zns and g P GLnpKq. Let z be the column vector with entries z1, . . . , zn: we define
g� P Krz1, . . . , zns by letting

g�pXq :“ �pg´1 ¨ zq.
Now let G † GLn pKq be a subgroup. The algebra of G-invariant polynomials is

Krz1, . . . , znsG :“ t�Krz1, . . . , zns P| g� “ � @g P Gu .

(it is clearly a K-algebra). Now suppose that G is finite. One identifies An{G with an a�ne variety proceeding
as follows.

1. Define the Reynolds operator as

Krz1, . . . , zns ›Ñ Krz1, . . . , znsG
� fiÑ 1

|G|
∞

gPG g�.

Prove the Reynolds identity

R p� q “ �R p q @� P Krz1, . . . , znsG.
2. Let I Ä Krz1, . . . , zns be the ideal generated by homogeneous � P Krz1, . . . , znsG of strictly positive

degree (i.e. non-constant). By Hilbert’s basis theorem there exists a finite basis t�1, . . . ,�du of I; we
may assume that each �i is homogeneous and G-invariant. Prove that Krz1, . . . , znsG is generated as

K-algebra by �1, . . . ,�d. Since Krz1, . . . , znsG is an integral domain with no nilpotents it follows that
there exist an a�ne variety X (well-defined up to isomorphism) such that KrXs „›Ñ Krz1, . . . , znsG. One
sets An{G “: X.

3. Let ◆ : Krz1, . . . , znsG ãÑ Krz1, . . . , zns be the inclusion map. By Proposition 1.8.3, there exist a unique
regular map

An ⇡›Ñ X “ An{G. (1.9.10)

such that ◆ “ ⇡
˚. Prove that

⇡ ppq “ ⇡ pqq if and only if q “ gp for some g P G,

and that ⇡ is surjective. [Hint: Let J Ä Krz1, . . . , znsG be an ideal. Show that J
e X Krz1, . . . , znsG “ J

where J
e is the extension relative to the inclusion ◆.]

Exercise 1.9.14. Keep notation and hypotheses as in Exercise 1.9.13. Describe explicitly An{G and the
quotient map ⇡ : An Ñ An{G for the following groups G † GLn pKq:

1. n “ 2, G “ t˘12u.

2. n “ 2, G “
Bˆ

!k 0
0 !

´1
k

˙F
where !k is a primitive k-th rooth of 1.

3. G “ Sn, the group of permutation of n elements viewed in the obvious way as a subgroup of GLn pKq
(group of permutations of coordinates).
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Chapter 2

Algebraic varieties

2.1 Introduction

The definition of quasi projective variety that we have given sounds very classical when compared to the
definition of smooth manifold that one learns in a first course in Di↵erential Geometry. In the present
chapter we provide a definition of algebraic variety along the lines of the definition of smooth manifold.
Quasi projective varieties are examples of algebraic varieties. ***********

2.2 Algebraic prevarieties

Definition of algebraic prevariety

Definition 2.2.1. Let X be a topological space. An algebraic atlas of X defined over K consists of
an open covering A “ tAiuiPI of X, and for each i P I an a�ne variety Vi defined over K (with the
Zariski topology) together with a homeomorphism 'i : Vi ›Ñ Ai (an a�ne chart), such that for each
i, j P I the transition map

Vi X '
´1
i

pAi X Ajq
'j,i
›Ñ Vj X '

´1
j

pAj X Aiq

p fiÑ '
´1
j

p'ippqq
(2.2.1)

is a regular map of quasi projective varieties.

Example 2.2.2. Let X be a quasi projective variety. The collection A – tAiuiPI of open a�ne subsets
of X is a basis for the Zariski topology of X, see Proposition 1.5.15. Choosing for every i P I the
identity a�ne chart IdAi : Ai

„
›Ñ Ai we get the canonical algebraic atlas of X.

Let pX,A q and pY,Bq be topological spaces with algebraic atlases over K. Thus A “ tAiuiPI
and B “ tBjujPJ are open coverings of X and Y respectively, and we are given homeomorphisms
'i : Vi

„
›Ñ Ai and  j : Wj

„
›Ñ Bj for all i P I and j P J , where Vi and Wj are a�ne varieties.

Definition 2.2.3. A regular map pX,A q Ñ pY,Bq of topological spaces with algebraic atlases defined
over K is a continuous map f : X Ñ Y such that for all i P I and j P J the composition

'
´1
i

pAi X f
´1

Bjq
'i|...
›Ñ Ai X f

´1
Bj

f|...
›Ñ Bj

 
´1
j

›Ñ Wj (2.2.2)

is a regular map of (quasi projective) varieties. As a matter of notation we denote the map by
f : pX,A q Ñ pY,Bq or simply by f : X Ñ Y .

Example 2.2.4. Let X,Y be quasi projective varieties and let A ,B be their canonical atlases, see
Example 2.2.2. If f : X Ñ Y is a regular map, then it is a regular map of topological spaces with
atlases.
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2. Algebraic varieties

Note that the composition of regular maps between topological spaces with algebraic atlases is
regular, and the identity map pX,A q Ñ pX,A q is regular.

Definition 2.2.5. Let X be a topological space. An algebraic atlas A on X is equivalent to an
algebraic atlas B on X (both atlases defined over K) if the identity maps IdX – pX,A q Ñ pX,Bq and
IdX – pX,Bq Ñ pX,A q are both regular.

Note that A is equivalent to itself, A equivalent to B implies that B equivalent to A , and that if
A is equivalent to B and B is equivalent to C , then A is equivalent to C . This justifies the use of the
word “equivalent”.

Definition 2.2.6. An algebraic prevariety defined over K (or simply a prevariety) is a couple pX, rA sq

where X is a topological space and rA s is an equivalence class of algebraic atlases. It is of finite type
it there exists a representative of the equivalence class of A with a finite set of indices. Let pX, rA sq

and pY, rBsq be algebraic prevarieties over K; a map f : X Ñ Y is regular if it is regular as map
pX,A q Ñ pY,Bq (this makes sense because if it is regular for one choice of representative atlases then
it is regular for any choice).

Whenever the equivalence class of finite algebraic atlases rA s is understood (or when we are too
lazy to write it out) we denote pX, rA sq by X. The topology of an algebraic prevariety pX, rA sq is
called (for obvious reasons) the Zariski topology of X.

Remark 2.2.7. A quasi projective variety with the equivalence class of its canonical atlas is a prevariety.
In fact it is a prevariety of finite type because the Zariski topology is quasi-compact, see Corollary 1.3.9.
Let X,Y be quasi projective varieties viewed as prevarieties (via their canonical atlases). A map
f : X Ñ Y is regular (as map of prevarieties) if and only if it is a regular map of quasi projective
varieties.

Example 2.2.8. A finite algebraic atlas for Pn is as follows. Let Ai – Pn

Zi
– An for i P t0, . . . , nu. Let

z0piq, . . . , zi´1piq, zi`1piq, . . . , znpiq (there is no zipiq) be the a�ne coordinates on Ai given by zspiq –
Zs{Zi. We can think of the coordinates zspiq as giving the map 'i : An

Ñ Ai. Thus '´1
i

pAi X Ajq “

An
zV pzjpiqq and '´1

j
pAj X Aiq “ An

zV pzipjqq. The transition map 'j,i is determined by the formulae

'
˚
j,i

pzspjqq :“

#
zjpiq

´1
¨ zspiq if s �“ i

z
´1
j

piq if s “ i
(2.2.3)

Example 2.2.9. Let X be a prevariety. An open subset U Ä X can be given the structure of a prevariety
so that the inclusion U ãÑ X is regular. In fact let tAiuiPI be an algebraic atlas, with a�ne charts
'i : Vi Ñ Ai. For i P I let Wi – '

´1
i

pAi XUq. Then Wi is an open subset of Vi, and it is the union of its
open a�ne subsets Ui,j where j P Jpiq for an index set Jpiq which depends on i P I. As algebraic atlas
of U we take the collection t'ipUi,jquiPI,jPJpiq with a�ne charts 'i|Ui,j

: Ui,j Ñ 'ipUi,jq. Similarly, a
closed subset Y Ä X can be given the structure of a prevariety so that the inclusion Y ãÑ X is regular.
We leave details to the reader. Lastly, if Y Ä X is a locally closed subset, say Y “ U XW where U Ä X

is open and W Ä X is closed, then Y is a closed subset of the prevariety U , and hence it inherits a
structure of prevariety.

Prevarieties of finite type have an irreducible decomposition. First we prove the following result.

Lemma 2.2.10. Let X be a prevariety of finite type, and let

X Å X0 Å X1 Å . . . Å Xn Å Xn`1 . . . (2.2.4)

be a descending chain of closed subsets indexed by N. Then the chain is stationary, i.e. there exists
m P N such that Xn “ Xn`1 for all n • m.
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Proof. Let tAiuiPI be a finite algebraic atlas, with a�ne charts 'i : Vi Ñ Ai. For each i P I the
descending chain of closed subsets

Vi Å '
1
i
pX0q Å '

1
i
pX1q Å . . . Å '

1
i
pXnq Å '

1
i
pXn`1q . . . (2.2.5)

is stationary by Proposition 1.3.7. Thus there exists mi P N such that Xn “ Xn`1 for all n • mi. The
proposition holds with m – maxtmiuiPI (which exists because I is finite).

Proposition 2.2.11. If X is a prevariety of finite type it has an irreducible decomposition.

Proof. Since Lemma 2.2.10 holds, one can repeat word-by-word the proof of Theorem 1.3.6.

Prevarieties defined over a subfield

Let F Ä K be a subfield. Then one can repeat all the definitions above restricting to a�ne varieties
and regular maps defined over F in order to define prevarieties defined over F . An algebraic atlas
A “ tAiuiPI on a topological space X with a�ne charts 'i : Vi Ñ Ai is defined over F if

1. for all i P I the a�ne variety Vi is defined over F ,

2. for all i, j P I the quasi projective variety Vi X '
´1
i

pAi X Ajq is defined over F and the transition
map in (2.2.1) is regular.

Let pX, rA sq and pY, rBsq be topological spaces X with algebraic atlases defined over F . A regular map
f : pX, rA sq Ñ pY, rBsq is defined over F if the maps in (2.2.2) are defined over F for every i, j. This
said it is clear how to mimick the definitions that we have given in order to define what are prevarieties
defined over F and what are regular maps defined over F . Note that if pX, rA sq is a prevariety defined
over F then XpF q makes sense, it consists of all the points 'ipaq where a P VipF q. This makes sense
because if 'ipaq P Aj then 'ipaq “ 'jp'

´1
j

p'ipaqqq and since the map appearing in (2.2.1) is defined

over F we have '´1
j

p'ipaqq P VjpF q. Moreover if f : pX, rA sq Ñ pY, rBsq is is a regular map defined
over F then fpXpF qq Ä Y pF q.

Gluing a�ne varieties

A method for producing a topological space with an algebraic atlas is to glue a�ne varieties along
open subsets via regular maps. The simplest case is the following: let V,W be a�ne varieties, with
isomorphic open subsets A Ä V and B Ä W , and let f : A

„
›Ñ B be an isomorphism. Let „ be the

equivalence relation on V \ W generated by letting p „ fppq for p P A Ä V (and fppq P B Ä W ). Let

X :“ V \ W { „

be the quotient topological space. Let ⇡ : pV \W q Ñ X be the quotient map. The associated algebraic
atlas of X is given by the open covering t⇡pV q,⇡pW qu and the homeomorphisms V

„
›Ñ ⇡pV q, W

„
›Ñ

⇡pW q obtained by restricting ⇡.

Example 2.2.12. Let V “ W “ A1, A “ B “ A1
zt0u, and let

A Å A1
zt0u

f
›Ñ A1

zt0u Ä B

z fiÑ z
´1

(2.2.6)

and
A Å A1

zt0u
g

›Ñ A1
zt0u Ä B

z fiÑ z
(2.2.7)
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2. Algebraic varieties

Let X be the quotient topological space for the identification in (2.2.6), and let A be the corresponding
atlas. The prevariety pX, rA sq is isomorphic to P1 with its canonical algebraic atlas. In fact let
r' : V \ W ›Ñ P1 be the map defined by

r'pzq –
#

r1, zs if z P V ,

rz, 1s if z P W .
(2.2.8)

Then r' descends to a regular map ' – pX,A q ›Ñ P1 which is an isomorphism. We will come back
later to the prevariety corresponding to the identification in (2.2.7).

A more general version of the gluing construction is as follows. Suppose that we are given

‚ a family of a�ne varieties tViuiPI ,

‚ for all i, j P I open subsets Ai,j Ä Vi and Bi,j Ä Vj and a (gluing) regular map 'j,i : Ai,j Ñ Bi,j ,

subject to the following conditions:

Hypothesis 2.2.13. 1. For all i P I we have Ai,i “ Bi,i “ Vi and 'i,i “ IdVi .

2. For all i, j P I we have Aj,i “ Bi,j (and of course Bj,i “ Ai,j) 'i,j “ '
´1
j,i

.

3. For all i, j, k P I and p P Ai,j such that 'j,ippq P Ajk we have

'k,jp'j,ippqq “ 'k,ippq. (2.2.9)

Gluing Construction 2.2.14. Let „ be the relation on
ó

iPI Vi defined as follows. Let p P Vi and q P Vj

for i, j P I: then p „ q if p P Ai,j , q P Bi,j , and q “ 'j,ippq. Then „ is an equivalence relation. In fact
the relation is reflexive by Item (1), it is symmetric by Item (2), and it is transitive by Item (3). Let

X :“
ß

iPI
Vi{ „

be the quotient topological space. Let ⇡ :
ó

iPI Vi Ñ X be the quotient map. The associated algebraic
atlas of X is given by the open covering t⇡pViquiPI and the homeomorphisms Vi

„
›Ñ ⇡pViq obtained by

restricting ⇡.

Example 2.2.15. Let I :“ t0, 1, . . . , nu and let Vi “ An for all i P I. Let pz0piq, . . . , zi´1piq, zi`1piq, . . . , znpiqq

be a�ne coordinates on Vi (note that there is no coordinate zipiq). Let Ai,j :“ An
zV pzjpiqq and

Bi,j :“ An
zV pzipjqq. We define 'j,i : Ai,j Ñ Bi,j by letting

'
˚
j,i

pzspjqq :“

#
zjpiq

´1
¨ zspiq if s �“ i

z
´1
j

piq if s “ i
(2.2.10)

One checks that Items (1), (2) and (3) above hold. The corresponding prevariety pX, rA sq is isomorphic
to Pn, see Example 2.2.8. Explicitely, let r' : V0 \ . . . \ Vn ›Ñ Pn be the map defined by setting

Vi ›Ñ Pn

pz0piq, . . . , zi´1piq, zi`1piq, . . . , znpiqq fiÑ rz0piq, . . . , zi´1piq, 1, zi`1piq, . . . , znpiqs
(2.2.11)

Then r' descends to a regular map ' – pX,A q ›Ñ Pn which is an isomorphism.

Example 2.2.16. Let pY, rA sq be a prevariety, with a�ne charts  i – Vi Ñ Ai. For i, j P I let
Ai,j –  

´1
i

pAi X Ajq and Bi,j –  
´1
j

pAj X Aiq. Let

Ai,j

'j,i
›Ñ Bi,j

p fiÑ '
´1
j

p'ippqq
(2.2.12)

Then Hypothesis 2.2.13 holds, hence there is a corresponding prevariety pX, rBsq, where B is the
algebraic atlas t⇡pViquiPI . Clearly pX, rBsq is isomorphic to pY,A sq - this generalizes Example 2.2.15.
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2.3. Products, algebraic varieties

As shown by the example above, the gluing construction is at the heart of the definition of prevariety.
In fact they are two di↵erent point of views of the same objects. In the definition of a prevariety we
are given a topological space and a collection of a�ne charts, in the gluing construction we are given a
collection of a�ne varieties and gluing data 'j,i and we define a topological space.

2.3 Products, algebraic varieties

Let X be a prevariety. The Zarisky Topology of X is not Hausdor↵ unless X is finite. Nonethless X

might share key properties of Hausdor↵ topological spaces. In fact suppose that X is an a�ne variety.
Thus we may assume that X Ä An is closed. The square X ˆ X Ä An

ˆ An
“ A2n is closed, so it

is an a�ne variety. Moreover the diagonal �X Ä X ˆ X is closed in the Zariski topology. In fact let
px1, . . . , xn, y1, . . . , ynq be the obvious a�ne coordinates on An

ˆ An: then �X is the intersection of
X ˆ X and the closed subset V px1 ´ y1, x2 ´ y2, . . . , xn ´ ynq. Recall that a topological space X is
Hausdor↵ if and only if the diagonal in X ˆ X (wuth the product topology) is closed. So apparently
we have a contradiction: if X is an a�ne variety which is not finite then it is not Hausdor↵ but its
diagonal is closed in X ˆ X. In fact this is not a contradiction because if X is not finite the Zarsiki
topology on X ˆ X si much finer that the product topology. The conclusion is that the right version
of Hausdorfness for an algebraic prevariety X is that the diagonal be closed in X ˆ X. Thus our first
step is to define the product of prevarieties.

Products in a category

We start by recalling the definition of product of two objects in a category.

Definition 2.3.1. Let C be a category, and let X,Y P ObpC q be objects of C . A product of X and Y

consists of an object Z P ObpC q and morphisms pX : Z Ñ X and pY : Z Ñ Y (the projections) which
have the following universal property. Assume that W P ObpC q and that f : W Ñ X, g : W Ñ Y are
morphisms. Then there exists a unique morphism h : W Ñ Z such that the following is a commutative
diagram

W

f

��

g

##

D!h
  

Z

pX

✏✏

pY

// Y

X

(2.3.1)

Suppose that a product W of X and Y exists. If W 1 is another product of X and Y (with projections
p

1
X
: W 1

Ñ X and p
1
Y
: W 1

Ñ Y ), then there exists a unique morphism h : W Ñ W
1 commuting with

the projections, i.e. p1
X

˝ � “ pX and p
1
Y

˝ � “ pY . Of course we also have the corresponding morphism
h

1 : W 1
Ñ W . By the unicity requirement in the definition of product the compositions h1

˝h and h ˝h
1

are equal to the identities of W and W
1. Thus we have a well defined isomorphism between any two

products of X and Y (assuming a product exists). Since the product is well defined up to (unique)
isomorphism it makes sense to talk of “the” product of X and Y . One denotes it by X ˆY . We denote
by pf, gq the unique morphism h appearing in (2.3.1).

Example 2.3.2. Let Sets be the category of sets (one has to be careful with definitions or one runs
into Russell’s paradox, but we ignore this point here). If X,Y P ObpSetsq i.e. X,Y are sets, then the
Cartesian product X ˆ Y with projections pXpx, yq – x and pY px, yq – y is the product of X and Y

in the category Sets.

Example 2.3.3. Let Grps be the category of groups. If G,H P ObpGrpsq i.e. G,H are groups, then
the direct product G ˆ H with projections pGpg, hq – g and pHpg, hq – h is the product of G and H

in the category Grps. Sets.
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2. Algebraic varieties

Example 2.3.4. Let S be a set, and let Sets {S be the category whose objects are maps f : X Ñ S from
a set X to S, and morphisms from a map f : X Ñ S to a map g : Y Ñ S are morphisms ' : X Ñ Y

which commute with f and g, i.e. a commutative diagram

X

f

��

'
// Y

g

��

S

(2.3.2)

The product of f : X Ñ S and g : Y Ñ S in the category Sets {S is given by the object

X ˆS Y – tpx, yq P X ˆ Y | fpxq “ gpyqu ›Ñ S

px, yq fiÑ fpxq p“ gpyqq
(2.3.3)

(the fiber product of X and Y over S) with projections given by the restrictions of the projections
X ˆ Y Ñ X and X ˆ Y Ñ Y .

Products of a�ne varieties

Let X, Y be a�ne varieties. Thus, we may assume that X Ä Am and Y Ä An are closed subsets. Then
XˆY Ä Am

ˆAn
– Am`n is a closed subset, and the projections pX : XˆY Ñ X and pY : XˆY Ñ Y

given by the two projections are regular.

Proposition 2.3.5. Keeping notation as above, X ˆY with projections pX , pY is the product of X and
Y in the category of prevarieties.

Proof. Let W be a prevariety and let f : W Ñ X, g : W Ñ Y be regular maps. We must prove that
there exists a regular map h : W Ñ X ˆY such that pX ˝h “ f , py ˝h “ g, and that h is unique. Since
prevarieties are sets (with extra structure) and regular maps between prevarieties are maps between
the underlying sets (satisfying suitable conditions), if h exists it is necessarily given by

W
pf,gq
›Ñ X ˆ Y

p fiÑ pfppq, gppqq
(2.3.4)

Thus all we need to prove is that pf, gq is regular. As we showed (see Example 2.2.16) any prevariety
is obtained by the gluing construction in 2.2.14. Thus W is obtained by gluing a�ne varieties tViuiPI
as in 2.2.14. To simplify notation denote ⇡pViq Ä W by Vi. It su�ces to show that the restriction of
pf, gq to Vi is regular. Since f and g are regular both the restrictions of f and g to Vi are regular. It
follows at once that the restriction of pf, gq to Vi is regular.

The K algebra of regular functions of X ˆ Y is constructed from KrXs and KrY s as follows. Let
⇡X : X ˆ Y Ñ X and ⇡Y : X ˆ Y Ñ Y be the projections. The K-bilinear map

KrXs ˆ KrY s ›Ñ KrX ˆ Y s

pf, gq fiÑ ⇡
˚
X

pfq ¨ ⇡
˚
Y

pgq
(2.3.5)

induces a linear map
KrXs bK KrY s ›Ñ KrX ˆ Y s. (2.3.6)

Proposition 2.3.6. The map in (2.3.6) is an isomorphism.

Proof. We may assume that X Ä Am and Y Ä An are closed subsets. Since X ˆ Y Ä Am`n is
closed the map in (2.3.6) is surjective by Theorem 1.6.2. It remains to prove injectivity, i.e. the
following: if A Ä KrXs and B Ä KrY s are finite-dimensional complex vector subspaces, then the
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2.3. Products, algebraic varieties

map A b B Ñ KrX ˆ Y s obtained by restriction of (2.3.6) is injective. Let tf1, . . . , fau, tg1, . . . , gbu be
bases of A and B. By considering the maps

X ›Ñ Ka

z fiÑ pf1pzq, . . . , fapzqq

Y ›Ñ Kb

z fiÑ pg1pzq, . . . , gbpzqq
(2.3.7)

we get that there exist p1, . . . , pa P X and q1, . . . , qb P Y such that the square matrices pfippjqq and
pgipqjqq are non-singular. By change of bases, we may assume that fippjq “ �ij and gkpqhq “ �kh.
Computing the values of ⇡˚

X
pfiq ¨ ⇡

˚
Y

pgjq on pps, qtq for 1 § i, s § a and 1 § j, t § b we get that the
functions . . . ,⇡˚

X
pfiq ¨ ⇡

˚
Y

pgjq, . . . are linearly independent. Thus A b B Ñ KrW ˆ Zs is injective.

Products of prevarieties

Proposition 2.3.7. Let X,Y be prevarieties. There exists a product of X and Y in the category of
prevarieties.

Proof. By Example 2.2.16 X is obtained by gluing a�ne varieties tViuiPI as in 2.2.14, and Y is obtained
by gluing a�ne varieties tWjujPJ . More precisely for each i1, i2 P I we have regular maps 'X

i2,i1
: AX

i1,i2
Ñ

B
X

i1,i2
, where A

X

i1,i2
Ä Vi1 and B

X

i1,i2
Ä Vi2 are open subsets, and they are the gluings defining X.

Analogously, for each j1, j2 P J we have regular maps 'Y

j2,j1
: AY

j1,j2
Ñ B

Y

j1,j2
, where A

Y

j1,j2
Ä Wj1 and

B
Y

j1,j2
Ä Wj2 are open subsets, and they are the gluings defining Y . Then we can glue the collection of

a�ne varieties tVi ˆ Wjupi,jqPIˆJ as follows. For pi1, j1q, pi2, j2q P I ˆ J let

Api1,j1q,pi2,j2q – A
X

i1,i2
ˆ A

Y

j1,j2
Ä Vi1 ˆ Wj1 , Bpi1,j1q,pi2,j2q – B

X

i1,i2
ˆ B

Y

j1,j2
Ä Vi2 ˆ Wj2 (2.3.8)

These are open subsets of Vi1 ˆ Wj1 and Vi2 ˆ Wj2 respectively. We let

Api1,j1q,pi2,j2q
'pi1,j1q,pi2,j2q

›Ñ Bpi1,j1q,pi2,j2q
pp, qq fiÑ p'

X

i2,i1
ppq,'

Y

j2,j1
pqqq

(2.3.9)

This collection of a�ne varieties and gluing maps satisfy the conditions in Hypothesis 2.2.13. Let Z be
the prevariety obtained by gluing the tVi ˆ Wjupi,jqPIˆJ ’s as specified above. We have obvious maps
pX : Z Ñ X and pY : Z Ñ Y . In fact let z P Z. Then z “ pp, qq P Vi ˆ Wj for some pi, jq P I ˆ J

(by no means unique). Here, in order to simplify notation, we denote ⇡X
pViq Ä X and ⇡Y

pWjq Ä Y

by Vi and Wj respectively. Then we let pXpp, qq – p and pY pp, qq – q. As is easily checked the maps
pX , pY are regular. We claim that Z with the regular maps pX and pY is the categorical product of X
and Y . First note that the map of sets ppX , pW q : Z Ñ X ˆ Y is bijective. Hence, given regular maps
f : U Ñ X and g : U Ñ Y , there is a unique map h : U Ñ Z of sets commuting with the projections.
In fact if u P U we let hpuq be the unique z P Z such that pXpzq “ fpuq and pY pzq “ gpuq. Arguing as
in the proof of Proposition 2.3.5 one shows that h is a regular map.

Remark 2.3.8. We stress that the categorical product of prevarieties X,Y is canonically identified, as
a set, with the Cartesian product of X and Y .

Remark 2.3.9. Let X,Y be prevarieties, and let X0 Ä X, Y0 Ä Y be locally colsed subsets. Then
X0 ˆ Y0 Ä X ˆ Y is a locally closed subset. The restrictions of the projections X ˆ Y Ñ X and
X ˆ Y Ñ Y to X0 ˆ Y0 define regular maps pX0 : X0 ˆ Y0 Ñ X0 and pY0 : X0 ˆ Y0 Ñ Y0. As is easily
checked, X0 ˆ Y0 with the regular maps pX0 and pY0 is the product of X0 and Y0.

Remark 2.3.10. If F Ä K is a subfield and X,Y are prevarieties over F , then X ˆ Y is defined over F .
We leave the reader check this fact.
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2. Algebraic varieties

Separated prevarieties

Let X be a prevariety. The diagonal �X Ä X ˆ X is defined to be

�X – tpx, xq | x P Xu. (2.3.10)

This makes sense because as a set X ˆ X is identified with the Cartesian square of X.

Example 2.3.11. Let X be an a�ne variety. Thus we may assume that X Ä An is closed. Then
X ˆ X Ä A2n is closed. Letting px1, . . . , xn, y1, . . . , ynq be the standard a�ne coordinates on A2n, we
have

�X X pX ˆ Xq “ V px1 ´ y1, x2 ´ y2, . . . , xn ´ ynq X pX ˆ Xq. (2.3.11)

hence the diagonal of an a�ne variety is closed.

Remark 2.3.12. Let X be an algebraic prevariety. The diagonal �X is a locally closed subset of X ˆX.
In fact by Example 2.2.16 X is obtained by gluing a�ne varieties tViuiPI as in 2.2.14. The open subsets
Vi ˆ Vj for pi, jq P I cover X (to simplify notation we denote ⇡pViq, ⇡pAijq and ⇡pBijq by Vi, Aij and
Bij respectively). Thus it su�ces to show that the intersection of �X with each open subset Vi ˆ Vj is
locally closed in Vi ˆ Vj . We have

�X X pVi ˆ Vjq “ tpx, yq P Aij ˆ Bij | y “ 'jipxqu. (2.3.12)

Arguing as in Example 2.3.11 we get that �X X pVi ˆ Vjq is a closed subset of the open set Aij ˆ Bij ,
and hence �X is a closed subset of the open subset of X ˆ X given by the union of all the Aij ˆ Bij ’s.

Example 2.3.13. Let pY, rBsq be the prevariety defined by the second atlas (given by the regular map g)
in Example 2.2.12. Then the diagonal is not closed in Y ˆ Y . In fact denote by V,W the open subsets
⇡pV q,⇡pW q respectively. Then V ˆ W – A2 and

�Y X pV ˆ W q “ tpz, zq P A2
| z �“ 0u, (2.3.13)

which is not closed.

Definition 2.3.14. An algebraic prevariety X is separated if the diagonal �X Ä X ˆ X is closed.

Example 2.3.15. By Example 2.3.11 an a�ne variety X with its canonical structure of prevariety is
separated.

Remark 2.3.16. Let X be a prevariety. We may assume that X is obtained by gluing a�ne varieties
tViuiPI as in 2.2.14. As usual we denote ⇡pViq, ⇡pAijq and ⇡pBijq by Vi, Aij and Bij respectively.
Since tVi ˆ Vjupi,jqPI2 is an open covering of X ˆ X the diagonal �X is closed in X ˆ X if and only if
�X XpViˆVjq is closed for all pi, jq P I

2. Since �X XpViˆViq is closed, see Example 2.3.15, it su�ces to
check that �X X pVi ˆVjq is closed for all couples i �“ j. We can halve the verifications needed because
�X X pVi ˆ Vjq is closed if and only if �X X pVj ˆ Viq is closed. Moreover, since �X X pAij ˆ Bijq is
closed (see Remark 2.3.12), in order to show that �X X pVi ˆVjq is closed it su�ces to show that there
exists a subset C Ä Aij ˆ Bij containing �X X pVi ˆ Vjq which is closed in Vi ˆ Vj .

Example 2.3.17. Let pX, rA sq be the prevariety defined by the first atlas (given by the regular map f)
in Example 2.2.12. Then pX, rA sq is separated. In fact denote by V,W the open subsets ⇡pV q,⇡pW q

respectively. Then V ˆ W – A2 and

�Y X pV ˆ W q “ V pwz ´ 1q. (2.3.14)

Since pX, rA sq is isomorphic to P1, we get that P1 is separated.

Example 2.3.18. Let pY, rBsq be the prevariety defined by the second atlas (given by the regular map
g) in Example 2.2.12. The diagonal �Y is not closed in Y ˆ Y , see Example 2.3.13. Hence pY, rBsq is
not separated.
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2.3. Products, algebraic varieties

The following result shows that separated prevarieties enjoy a key property of Hausdor↵ topological
spaces.

Proposition 2.3.19. Let X,Y be prevarieties, and assume that Y is separated. If f, g : X Ñ Y are
regular maps, then the subset of X defined by

tx P X | fpxq “ gpxqu (2.3.15)

is closed in X.

Proof. By the universal property of the product Y ˆ Y (we let p1, p2 be the projections to Y ) we have
the regular map pf, gq : X Ñ Y ˆ Y such that p1 ˝ pf, gq “ f and p2 ˝ pf, gq “ g. Let W be the subset
of X appearing in (2.3.15). Then W “ pf, gq

´1
p�Y q. Since Y is separated �Y is closed and hence W

is closed.

A useful result valid for separated varieties is the following.

Proposition 2.3.20. Let X be a separated prevariety. If U, V Ä X are open a�ne subsets then the
intersection U X V is a�ne.

Proof. The map
U X V ›Ñ pU ˆ V q X �X

x fiÑ px, xq
(2.3.16)

is an isomorphism. Since U ˆV is a�ne and �X is closed in X ˆX, it follows that U XV is isomorphic
to a closed subset of an a�ne variety, and hence is a�ne.

Algebraic varieties

Definition 2.3.21. An algebraic prevariety is an algebraic variety if it is of finite type and separated.

An a�ne variety is an algebraic variety by Remark 2.2.7 and Example 2.3.15. Also P1 is an algebraic
variety by Remark 2.2.7 and Example 2.3.17. More generally, a quasi projective variety is an algebraic
variety.

Proposition 2.3.22. A quasi projective variety (with its canonical structure of prevariety) is an algeb-
raic variety.

Proof. We have already noticed that a quasi projective variety is of finite type, see Remark 2.2.7. It
remains to show that it is separated. First we consider Pn (the key case). Following Example 2.2.15, Pn

is obtained by gluing pn ` 1q copies tV0, . . . , Vnu of a�ne space An. As usual we use the same symbol
Vi to denote ⇡pViq. It su�ces to check that �Pn X pVi ˆ Vjq is closed in pVi ˆ Vjq for all i �“ j. By the
formulae for the gluing maps in (2.2.10) we get that �Pn X pVi ˆ Vjq is contained in the closed subset
V pxjpiq ¨ xipjq ´ 1q Ä pVi ˆ Vjq. Since this closed subset is contained in Aij ˆ Bij we are done, see the
last sentence of Remark 2.3.16. Now let X Ä Pn be a locally closed subset. Then X ˆ X is a locally
closed subset of Pn

ˆPn and �Pn X pX ˆXq “ �X . Since �Pn is closed in Pn
ˆPn, it follows that �X

is closed in X ˆ X.

Next we consider constructions which, starting from an algebraic variety (or algebraic varieties)
produce another algebraic variety.

Let X be an algebraic prevariety, with algebraic atlas A “ tAiuiPI and a�ne charts 'i : Vi Ñ Ai.
If U Ä X is an open subset then we define an algebraic atlas on U as follows. For i P I the open subset
'

´1
i

pVi X Uq Ä Vi is the union of its open a�ne subsets. The restriction of 'i to an open a�ne subset
Wi,k Ä '

´1
i

pVi X Uq defines a homeomorphism  i,k : Wik Ñ 'ipWi,kq, and 'ipWi,kq is open in U . Thus
U is covered by the open subsets 'ipWi,kq and the maps  i,k give a�ne charts. If the algebraic atlas
A is replaced by an equivalent one we get an equivalent atlas of U . Thus we have equipped U with a
canonical structure of prevariety. Note that the inclusion map U ãÑ X is regular.
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2. Algebraic varieties

Proposition 2.3.23. Let X be an algebraic variety. If U Ä X is an open subset with its canonical
structure of algebraic prevariety (see Example 2.2.9), then U is an algebraic variety.

Proof. We must prove that U is of finite type and separated. Since X is of finite type there exists a
finite algebraic atlas A “ tA1, . . . , anu with a�ne charts 'i : Vi Ñ Ai. The open subset '´1

i
pVi X Uq

is the union of its a�ne open subsets, and since the Zariski topology of a quasi projective variety is
quasi compact it is the union of a finite family of open subsets. From this it follows that U has a finite
algebraic atlas, and hence is of finite type. The subset pU ˆ Uq Ä pX ˆ Xq is the (categorical) square
of U , this follows from the universal property of the product X ˆ X and the fact that the ninclusion
U ãÑ X is regular. Since the diagonal �U is equal to the intersection pU ˆUq X�X in X ˆX and �X

is closed in X ˆ X, it follows that �U is closed in U ˆ U , and hence U is separated.

Arguing as above one proves the following result.

Proposition 2.3.24. Let X be an algebraic variety. If Y Ä X is a locally closed subset with its
canonical structure of algebraic prevariety (see Example 2.2.9), then Y is an algebraic variety.

Proposition 2.3.25. If X,Y are algebraic varieties, then the product X ˆ Y is an algebraic variety.

Proof. By hypothesis there exists finite algebraic atlases A “ tAiuiPI , B “ tBjujPJ of X and Y

respectively, with a�ne charts 'i : Vi Ñ Ai and  j : Wj Ñ Bj . Then A ˆB – tAi ˆBjupi,jqPIˆJ , with
a�ne charts 'i ˆ  j : Vi ˆ Wj Ñ Ai ˆ Bj is a finite algebraic atlas of X ˆ Y . Thus X ˆ Y is of finite
type. The projection maps f : pX ˆ Y q ˆ pX ˆ Y q Ñ X ˆ X and to Y ˆ Y

pX ˆ Y q ˆ pX ˆ Y q
f

›Ñ X ˆ X

ppx1, y1q, px2, y2qq fiÑ px1, x2q
,

pX ˆ Y q ˆ pX ˆ Y q
g

›Ñ Y ˆ Y

ppx1, y1q, px2, y2qq fiÑ py1, y2q
, (2.3.17)

are regular (by the universal property of products) and hence continuous. Thus �XˆY “ f
´1

p�Xq X

g
´1

p�Y q is closed. This proves that X ˆ Y is separated.

Products of quasi projective varieties

In the present subsubsection we prove the following result.

Proposition 2.3.26. If X and Y are quasi projective varieties, then XˆY is a quasi projective variety.

Before proving Proposition 2.3.26 we go through a few preliminary results. A polynomial F pW ;Zq P

KrW0, . . . ,Wm, Z0, . . . , Zns is bihomogeneous of degree pd, eq if F p�W ;µZq “ �
d
µ
e
F pW ;Zq for all �, µ P

K. Let Fi P KrW0, . . . ,Wm, Z0, . . . , Zns for i P t1, . . . , ru be a bihomogeneous polynomial of degree
pdi, eiq. Then it makes sense to let

V pF1, . . . , Frq – tprW s, rZsq P Pm
ˆ Pn

| F1pW ;Zq “ . . . “ FrpW ;Zq “ 0u. (2.3.18)

Claim 2.3.27. A subset X Ä Pm
ˆ Pn is closed if and only if there exist bihomogeneous polynomials

F1, . . . , Fr P KrW0, . . . ,Wm, Z0, . . . , Zns such that X “ V pF1, . . . , Frq.

Proof. We have
Pm

ˆ Pn
“

§

0§i§m

0§j§n

Pm

Wi
ˆ Pn

Zj
(2.3.19)

and each of the open subsets Pm

Wi
ˆ Pn

Zj
is isomorphic to Am`n. If F1, . . . , Fr are as above, then

V pF1, . . . , Frq X Pm

Wi
ˆ Pn

Zj
is clearly closed. It follows that V pF1, . . . , Frq is closed. Now suppose

that X Ä Pm
ˆ Pn is closed. Then X X Pm

Wi
ˆ Pn

Zj
is closed for every i, j, and hence there exists

f
i,j

1 , . . . , f
i,j

s
P Kr

W0
Wi

, . . . ,
Wm
Wi

,
Z0
Zj

, . . . ,
Zn
Zj

s such that

X X Pm

Wi
ˆ Pn

Zj
“ V pf

i,j

1 , . . . , f
i,j

s
q. (2.3.20)
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2.3. Products, algebraic varieties

If d " 0 and e " 0 are natural numbers then F
i,j

l
– W

d

i
¨ Z

e

j
¨ f

i,j

l

´
W0
Wi

, . . . ,
Wm
Wi

,
Z0
Zj

, . . . ,
Zn
Zj

¯
is

bihomogeneous of degree pd, eq and V pF
i,j

l
q “ V pf

i,j

l
q Y V pWiq Y V pZjq. Thus X is the zero locus of

all the bihomogeneous polynomials F i,j

l
’s.

Remark 2.3.28. In the statement of Claim 2.3.27 we may require, if we wish, that all the Fi’s are
bihomogeneous of degrees pdi, diq, i.e. of the same degrees in both variables.

Next we introduce Segre varieties and Segre maps. Let Mm`1,n`1pKq be the K vector space of
complex pm ` 1q ˆ pn ` 1q matrices. Row and column indices for matrices in Mm`1,n`1pKq start from
0. Thus we denote them by

T “

¨

˚̊
˝

T00 T01 . . . T0n

T10 T11 . . . T1n

. . . . . . . . . . . .

Tm0 Tm1 . . . Tmn

˛

‹‹‚ (2.3.21)

Let
⌃m,n :“ trT s P PpMm`1,n`1pKqq | rkT § 1u.

Then ⌃m,n is a projective variety in PpMm`1,n`1pKqq “ Pmn`m`n. In fact rT s P PpMm`1,n`1pKqq

belongs to ⌃m,n if and only if the determinants of all 2ˆ2 minors of T vanish. This is the Segre variety
in PpMm`1,n`1pKqq.

If rW s P Pm and rZs P Pn, viewed as column matrices, then W ¨ Z
t

P Mm`1,n`1pKq and the rank of
W ¨ Z

t is 1. If we rescale W or Z then W ¨ Z
t gets rescaled. Thus we have a well defined Segre map

Pm
ˆ Pn

�m,n
›Ñ ⌃m,n

prW s, rZsq fiÑ rW ¨ Z
t
s

(2.3.22)

Explicitly

�m,nprW s, rZsq “

»

——–

¨

˚̊
˝

W0 ¨ Z0 W0 ¨ Z1 . . . W0 ¨ Z0

W1 ¨ Z0 W1 ¨ Z1 . . . W1 ¨ Zn

. . . . . . . . . . . .

Wm ¨ Z0 Wm ¨ Z1 . . . Wm ¨ Zn

˛

‹‹‚

fi

��fl (2.3.23)

Proposition 2.3.29. The Segre map in (2.3.22) is an isomorphism of algebraic varieties.

Proof. First we prove that the Segre map is bijective. Let rT s P ⌃m,n. Then T has rank 1 because T �“ 0.
Hence the associated linear map LT : Kn`1

Ñ Km`1 (given by LT pUq – T ¨ U , where U is a column
matrix) can be factored as LT “ LW ˝ LZt where LZt : Kn`1

Ñ K is surjective and LW : K Ñ Km`1

is injective. This gives that T “ W ¨ Z
t. We also get that kerpLT q “ kerpLZtq and impLT q “ impLW q.

Thus W and Z are determined by rT s up to a scalar factor, and hence �m,n is injective.
Next we prove that the Segre map is a homeomorphism. Let C Ä ⌃m,n be a closed subset, i.e. C “

⌃m,n X V pP1, . . . , Prq where Pi P KrT00, T01, . . . , Tmnsdi . Then

�
´1
m,n

pCq “ V pP1pW0 ¨ Z0,W0 ¨ Z1, . . . ,Wm ¨ Znq, . . . , PrpW0 ¨ Z0,W0 ¨ Z1, . . . ,Wm ¨ Znqq. (2.3.24)

Since PipW0¨Z0,W0¨Z1, . . . ,Wm¨Znq for i P t1, . . . , ru is a bihomogeneous polynomial (of degree pdi, diq),
it follows that �´1

m,n
pCq is closed in Pm

ˆ Pn, se Claim 2.3.27. This shows that �m,n is continuous.
Now suppose that D Ä Pm

ˆ Pn is closed. By Claim 2.3.27 there exist bihomogeneous polynomials
F1, . . . , Fr P KrW0, . . . ,Wm, Z0, . . . , Zns such that X “ V pF1, . . . , Frq. As noticed in Remark 2.3.28 we
may assume that Fi is bihomogeneous polynomial of degree pdi, diq for each i P t1, . . . , ru, and hence
there exists Pi P KrT00, T01, . . . , Tmnsdi such that

PipW0 ¨ Z0,W0 ¨ Z1, . . . ,Wm ¨ Znq “ FipW0, . . . ,Wm;Z0, . . . , Znq. (2.3.25)

This implies that �m,npDq “ ⌃m,n X V pP1, . . . , Prq and hence �m,npDq is closed. Thus also the inverse
of the Segre map is continuous and hence �m,n is a homemomorphism.
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2. Algebraic varieties

It remains to show that the Segre map is an isomorphism of algebraic varieties. Recall that we have
the open covering in (2.3.19). Now �m,n maps the a�ne space Pn

Wi
ˆ Pm

Zj
to the open set ⌃m,nzV pTijq

and, as is easily checked the map

Pn

Wi
ˆ Pm

Zj
›Ñ ⌃m,nzV pTijq (2.3.26)

is an isomorphism (of a�ne spaces). It follows that �m,n is an isomorphism of algebraic varieties.

Proof of Proposition 2.3.26. We may assume that X Ä Pm and Y Ä Pn are locally closed. Then
X ˆY Ä Pm

ˆPn is locally closed, and it is the product of X and Y , see Remark 2.3.9. Since the Segre
map �m,n : Pm

ˆ Pn
Ñ ⌃m,n is an isomorphism, it restricts to an isomorphism between X ˆ Y and the

locally closed subset �m,npX ˆ Y q Ä ⌃m,n. Since ⌃m,n is a projective variety, �m,npX ˆ Y q is a quasi
projective variety.

2.4 Complete varieties

In the present section we introduce the notion of complete varieties, which are the analogues of compact
topological space in the category of prevarieties. The prime example of complete varieties are projective
varieties. We note that a complex quasi projective variety is complete if and only if, equipped with the
Euclidean topology, it is compact. Since every quasi projective variety is quasi compact (and also every
prevariety of finite type), one defines “compactness” for algebraic varieties by relying on a di↵erent
characterization of compact topological spaces.

Let M be a topological space. Then M is quasi compact, i.e. every open covering has a finite
subcovering, if and only if M is universally closed, i.e. for any topological space T , the projection map
T ˆ M Ñ T is closed, i.e. it maps closed sets to closed sets. (See tag/005M in [?].) A quasi projective
variety X is quasi compact, but it is not generally true that, for a variety T , the projection T ˆX Ñ T

is closed. In fact, let X Ä Pn be locally closed; then �X , the diagonal of X, is closed in X ˆ Pn,
because it is the intersection of X ˆ X Ä Pn

ˆ Pn with the diagonal �Pn Ä Pn
ˆ Pn, which is closed.

The projection X ˆ Pn
Ñ Pn maps X to X, hence if X is not closed in Pn, then X is not universally

closed. This does not contradict the result in topology quoted above, because the Zariski topology of
the product of quasi projective varieties is not the product topology.

Definition 2.4.1. An algebraic prevariety X is complete (or proper over K) if X is an algebraic variety
and it is universally closed, i.e. for any prevariety T , the projection map T ˆ X Ñ T is closed.

As noticed above, if X Ä Pn is not closed (e.g. Pn

Zi
if n ° 0), then it is not universally closed, and

hence X is not complete.
The following is a key result.

Theorem 2.4.2 (Main Theorem of Elimination Theory). Projective varieties are complete.

Proof. Let X be projective variety. Since X is an algebraic variety we must prove that X is universally
closed.

By hypothesis we may assume that X Ä Pn is closed. We claim that it su�ces to prove that Pn

is universally closed. In fact assume that that Pn is universally closed. Let T be a prevariety and let
⇡
X

T
: T ˆ X Ñ T be the projection. Let C Ä T ˆ X be closed. Since T ˆ X Ä T ˆ Pn is closed, C is

closed also in T ˆ Pn. Let ⇡Pn

T
: T ˆ Pn

Ñ T be the projection. Then ⇡X

T
pCq “ ⇡

Pn

T
pCq, and hence it

is closed because by assumption Pn is universally closed. Since T is covered by open a�ne subsets, we
may assume that T is a�ne, i.e. T is (isomorphic to) a closed subset of Am for some m. Lastly, we may
as well assume that T “ Am.

To sum up: it su�ces to prove that if C Ä Am
ˆ Pn is closed, then ⇡pCq is closed in Am, where

⇡ : Am
ˆ Pn

Ñ Am is the projection. We will show that pAm
z⇡pCqq is open. By Claim 2.3.27 there

exist Fi P Krt1, . . . , tm, Z0, . . . , Zns for i “ 1, . . . , r, homogeneous as polynomial in Z0, . . . , Zn such that

C “ tpt, rZsq | 0 “ F1pt, Zq “ . . . “ Frpt, Zqu.
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2.4. Complete varieties

Suppose that Fi P Krt1, . . . , tmsrZ0, . . . , Znsdi i.e. Fi is homogeneous of degree di in Z0, . . . , Zn. Let
t P pAm

z⇡pCqq. By Hilbert’s Nullstellensatz, there exists N • 0 such that

pF1pt, Zq, . . . , Frpt, Zqq Å KrZ0, . . . , ZnsN . (2.4.1)

We may assume that N • di for 1 § i § r. For t P Am let

KrZ0, . . . , ZnsN´d1 ˆ . . . ˆ rZ0, . . . , ZnsN´dr

�ptq
›Ñ KrZ0, . . . , ZnsN

pG1, . . . , Grq fiÑ
∞

r

i“1 Gi ¨ Fi

Thus �ptq is a linear map: choose bases of domain and codomain and let Mptq be the matrix associated
to �ptq. Clearly the entries of Mptq are elements of Krt1, . . . , tms. By hypothesis �ptq is surjective
and hence there exists a maximal minor of Mptq, say MI,Jptq, such that detMI,Jptq �“ 0. The open
pAm

zV pdetMI,Jqq is contained in pT z⇡pCqq. This finishes the proof of Theorem 2.4.2.

Next give a few general results on complete algebraic varieties.

Proposition 2.4.3. Let X,Y be complete (algebraic) varieties.

1. If W Ä X is closed then (with its canonical structure of variety, see Proposition 2.3.24) W is
complete.

2. The product X ˆ Y is complete.

Proof. (1): We must check that W is universally closed. One argues as in the second paragraph of the
proof of Theorem 2.4.2. (2): By Proposition 2.3.25 X ˆ Y is an algebraic variety. Hence it remains
to check that X ˆ Y is universally closed. Let T be a prevariety, and let C Ä T ˆ pX ˆ Y q be closed.
Factoring the projection ⇡ : T ˆ pX ˆ Y q Ñ T as the composition of f : T ˆ pX ˆ Y q Ñ T ˆ Y followed
by g : T ˆ Y Ñ T , we get that fpCq Ä T ˆ Y is closed because X is universally closed, and gpfpCq,
i.e. ⇡pCq, is closed because Y is universally closed.

If f : X Ñ Y is a regular map between prevarieties, the graph of f is the subset �f of X ˆY defined
by

�f :“ tpx, fpxqq | x P Xu. (2.4.2)

Lemma 2.4.4. Let f : X Ñ Y be a regular map between algebraic prevarieties, and suppose that Y is
separated. Then the graph of f is closed in X ˆ Y .

Proof. The map

X ˆ Y
fˆIdY
›Ñ Y ˆ Y

px, yq fiÑ pfpxq, yq
(2.4.3)

is regular, and hence continuous. Since �f “ pf ˆ IdXq
´1

p�Y q and �Y is closed in Y ˆ Y (because Y

is separated) it follows that �f is closed.

Proposition 2.4.5. Let X,Y be algebraic varieties, with X complete and Y separated. If f : X Ñ Y

is a regular map then it is closed.

Proof. Since, by Proposition 2.4.3, closed subsets of X are complete varieties, it su�ces to prove that
fpXq is closed in Y . Let ⇡ : X ˆY Ñ Y be the projection map. By Lemma 2.4.4 �f is closed in X ˆY ,
and hence ⇡p�f q is closed in Y because X is complete. Since fpXq “ ⇡p�f q we are done.

Corollary 2.4.6. Let X be a complete algebraic variety and let Y Ä X be a locally closed subset (with
its canonical structure of algebraic variety, see Proposition 2.3.24). Then Y is complete if and only if
Y is closed.
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2. Algebraic varieties

Proof. If Y is closed then it is complete by Proposition 2.4.3. Conversely, suppose that Y is com-
plete. Since the inclusion map i : Y ãÑ X is regular and X is separated, Y “ ipY q is closed in X by
Proposition 2.4.5.

Remark 2.4.7. In particular a locally closed of a projective space is projective only if it is closed. By
way of contrast, notice that it is not true that a locally-closed subset of An is a�ne if and only if it is
closed. In fact the complement of a hypersurface V pfq Ä An is a�ne but not closed.

Corollary 2.4.8. Let X be a complete algebraic variety. A regular map f : X Ñ K is locally constant.
If X is irreducible (recall Proposition 2.2.11) then f is constant.

Proof. Composing f with the inclusion j : K ãÑ P1

K jãÑ P1

z fiÑ r1, zs
(2.4.4)

we get the regular map j ˝ f : X Ñ P1. By Proposition 2.4.5 j ˝ fpXq is closed, i.e. j ˝ fpXq “ V pIq

for some homogeneous ideal I Ä KrZ0, Z1s. Since r0, 1s R j ˝ fpXq there exists a non zero polynomial
P P I and hence j ˝ fpXq “ fpXq is contained in the finite set V pP q. The second statement follows at
once from the first.

2.5 Algebraic vector bundles

Definitions and first examples

A very important notion in Topology and in Di↵erential Geometry is that of continuous and C
8 vector

bundle respectively. One defines an analogous notion in the context of algebraic varieties.

Definition 2.5.1. Let X be an algebraic variety defined over K. A rank r algebraic vector bundle over
X (we call it a line bundle if r “ 1)consists of the following data:

1. A regular map ⇡ : E Ñ X of algebraic varieties.

2. For each x P X a structure of K vector space of dimension r on the fiber Epxq :“ ⇡
´1

pxq.

These data are subject to the following conditions.

(a) There exist an open cover X “
î
↵PA U↵ and for each ↵ P A an isomorphism of varieties

'↵ : ⇡´1
pU↵q

„
›Ñ U↵ ˆ Kr such that the diagram

⇡
´1

pU↵q
'↵

//

⇡|U↵
##

U↵ ˆ Kr

pr↵
{{

U↵

(2.5.1)

where pr
↵
is the projection. (This is a trivialization of E over U↵.)

(b) For each ↵ P A and x P U↵ the restriction of '↵ to Epxq, which is an isomorphism

'↵pxq : Epxq
„

›Ñ txu ˆ Kr
“ Kr (2.5.2)

by Item (a), is a K-linear map (and hence an isomorphism of K vector spaces)

Example 2.5.2. Let X be an algebraic variety. Then E – X ˆ Kr with ⇡ : E Ñ X given by the
projection map is clearly a rank r algebraic vector bundle on X.
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2.5. Algebraic vector bundles

An algebraic vector bundle is always of a fixed rank, even if we do not mention explicitly the value
of the rank. From now on by vector bundle on an algebraic variety X we mean an algebraic vector
bundle on X.

Definition 2.5.3. Let X be an algebraic variety, and let ⇡ : E Ñ X be a vector bundle of rank r on X.
If Y Ä X is a locally closed subset with its canonical structure of algebraic variety, then ⇡´1

pY q Ñ Y

is a vector bundle of rank r on Y . We denote it by E|Y .

Definition 2.5.4. Let X be an algebraic variety (defined over K), and let ⇡ : E Ñ X, ⇢ : F Ñ X be
vector bundles on X. A morphism of vector bundles E Ñ F consists of a regular map of algebraic
varieties g : E Ñ F such that the diagram

E
g

//

⇡
  

F

⇢
~~

X

(2.5.3)

is commutative, and such that for every x P X the restriction of g to Epxq is a linear map gpxq : Epxq Ñ

F pxq of K vector spaces.

The identity map IdE : E Ñ E of a vector bundle is a morphism of vector bundles, and the com-
position of morphisms of vector bundles on X is a morphism of vector bundles on X. Hence vector
bundles on X form a category. In particular we have the notion of isomorphic vector bundles on X.

Definition 2.5.5. Let X be an algebraic variety. A vector bundle E of rank r on X is trivial if it is
isomorphic to the vector bundle in Example 2.5.2.

Next we define a fundamental line bundle on projective space. Let V be a finite dimensional K
vector space. We view points of PpV q as 1 dimensional (vector) subspaces ` Ä V . Let L Ä PpV q ˆ V

be defined by
L – tp`, vq P PpV q ˆ V | v P `u. (2.5.4)

We claim that L is a closed subset of PpV q ˆ V , and hence an algebraic variety. In fact choose a basis
of V so that V and PpV q are identified with Kn`1 and Pn respectively. Then

L “ tprZ0, . . . , Zns, pW0, . . . ,Wnqq P Pn
ˆ Kn`1

| rk

ˆ
Z0 . . . Zn

W0 . . . Wn

˙
§ 1u. (2.5.5)

This shows that L is closed in PpV q ˆ V . Let ⇡ : L Ñ PpV q be the restriction of the projection
PpV q ˆ V Ñ PpV q. If ` P PpV q then Lp`q “ ⇡

´1
p`q “ ` and this gives the structure of 1 dimensional K

vector space to Lp`q. Let i P t0, . . . , nu. We define 'i : ⇡´1
pPn

Zi
q Ñ Pn

Zi
ˆ K as follows:

⇡
´1

pPn

Zi
q

'i
›Ñ Pn

Zi
ˆ K

prZs,W q fiÑ prZs,Wiq
(2.5.6)

This shows that L Ñ PpV q is a line bundle. It is called the tautological line bundle on PpV q. If n ° 0
then L is not trivial. Before showing this we introduce sections of a vector bundle.

Definition 2.5.6. Let X be an algebraic variety, and let ⇡ : E Ñ X be a vector bundle on X. A
section of E is a map � : X Ñ E such that ⇡ ˝ � “ IdX , i.e. such that �pxq P Epxq for every x P X.
The section � is regular if it is regular as map of algebraic varieties.

Example 2.5.7. Let X be an algebraic variety, and let E “ X ˆ Kr with ⇡ : E Ñ X the projection.
A regular section � : X Ñ E is equivalent to the r-tuple of regular maps fi : X Ñ K that one gets
by projecting to factors of Kr. Let �i for i P t1, . . . , ru be the section corresponding to the r-tuple
p0, . . . , 0, 1, 0, . . . , 0q with 1 is in the i-th place. Then for every x P X the vectors �1pxq, . . . ,�rpxq P Epxq

form a basis of Epxq.
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2. Algebraic varieties

Example 2.5.8. Let X be an algebraic variety, and let ⇡ : E Ñ X be an algebraic vector bundle. The
zero section of E is defined by setting �pxq – 0 P Epxq for every x P X. This is a regular section.

We let
�pX,Eq – t� : X Ñ E | � is a section of Eu. (2.5.7)

The sum of regular sections is a regular section, and the product of an element of K by a regular section
is a regular section. With these operations �pX,Eq acquires the structure of a K vector space. The
zero of the vector space is the zero section.

Remark 2.5.9. Let X be an algebraic variety, and let ⇡ : E Ñ X be an algebraic vector bundle. Let �
be a section of E. If x P X then it makes sense to state that �pxq P Epxq is zero or not. The notation
�pxq “ 0 means that �pxq is zero. The zero-set of � is the subset of X defined by

Zp�q – tx P X | �pxq “ 0u. (2.5.8)

As is easily checked Zp�q is a closed subset of X.

Let E Ñ X and F Ñ X be vector bundles on X, and suppose that ' : E Ñ F is a morphism of
vector bundles. If � is a regular section of E Ñ X then '˝� : X Ñ F is a regular section of F . Usually
one denotes ' ˝ � by 'p�q. As is easily checked the map

�pX,Eq ›Ñ �pX,F q

� fiÑ 'p�q
(2.5.9)

is K linear. In particular if E and F are isomorphic, then their spaces of global sections are isomorphic.

Remark 2.5.10. Let E Ñ X be a vector bundle of rank r on X. Then E is trivial if and only if there
exist �i P �pX,Eq for i P t1, . . . , ru such that for every x P X the vectors �1pxq, . . . ,�rpxq P Epxq form
a basis of Epxq. In fact if E is trivial then �1, . . . ,�r exist by Example 2.5.7. Conversely, suppose that
there exist such �1, . . . ,�r. Then the map

X ˆ Kr
›Ñ E

px, tq fiÑ
∞

r

i“1 ti�ipxq
(2.5.10)

is an isomorphism of vector bundles.

Proposition 2.5.11. Let V be a finitely generated K vector space of dimension at least 2, and let L be
the tautological line bundle on PpV q. Then �pPpV q, Lq “ t0u and L is non trivial.

Proof. Let � P �pPpV q, Lq. The composition

PpV q
�

›Ñ L ãÑ PpV q ˆ V ›Ñ V – Kr`1 (2.5.11)

is regular and hence constant by Corollary 2.4.8. The unique element in the image is a vector which
belongs to every 1 dimensional (vector) subspace of V . Since dimV • 2 it follows that it is the zero
vector. Since there are no nonzero sections of L it follows that L is non trivial, see Example 2.5.7.

Vector bundles and 1-cocycles

Let ⇡ : E Ñ X be a rank r vector bundle. We assume that it is trivial on each open set of a covering
tU↵u↵PA as in Definition 2.5.1. For ↵,� P A we define the corresponding transition map as follows:

U↵ X U�
g↵�
›Ñ GLrpKq

x fiÑ '↵pxq ˝ '
´1
�

pxq
(2.5.12)

Note that g↵� is a regular map between algebraic varieties (GLrpKq “ Mr,rpKqzV pDetrq where Detrpgq –
Detpgq is the determinant of g P Mr,rpKq, and hence GLrpKq is an a�ne variety).

Remark 2.5.12. Let tg↵�u be as above. Then the following hold:
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1. For ↵ P A we have g↵↵pxq “ 1r for all x P U↵ (1r is the unit r ˆ r matrix).

2. For ↵,� P A we have g�↵pxq “ g↵�pxq
´1.

3. For ↵,�, � P A we have g↵�pxq ¨ g��pxq “ g↵�pxq for all x P U↵ X U� X U� .

Example 2.5.13. Let ⇡ : L Ñ Pn be the tautological line bundle. Then we have the trivialization 'i of
L over Pn

Zi
given by (2.5.6). Thus we have

Pn

Zi
ˆ K

'
´1
j

›Ñ ⇡
´1

pPn

Zi
q

prZs, tq fiÑ prZs, pt ¨ Z
´1
j

q ¨ Zq

(2.5.13)

It follows that gij “ 'i ˝ '
´1
j

is given by

gijprZsq “
Zi

Zj

, rZs P Pn

Zi
X Pn

Zj
. (2.5.14)

Here we identify GL1pKq with Kˆ.

Definition 2.5.14. LetX be an algebraic variety and tU↵u↵PA an open covering ofX. A 1-cochain with
values in GLrpKq (relative to the given open covering) consists of the assignment of a regular function
g↵� : U↵ X U� Ñ GLrpKq to each couple p↵,�q P A

2. We denote it by g “ tg↵�u. The 1-cochain g is a
1-cocycle if Items (1), (2) and (3) hold.

Thus we have assigned a 1-cocycle with values in GLrpKq to every rank r vector bundle ⇡ : E Ñ X

with local trivializations.

Remark 2.5.15. Let ⇡ : E Ñ X be a rank r vector bundle with local trivializations as in Definition 2.5.1.
For ↵ P A let h↵ : U↵ Ñ GLrpKq be a regular map. Then also h↵ ¨'↵ : U↵ Ñ GLrpKq is a trivialization
of ⇡´1

pU↵q Ñ U↵ and conversely, every trivialization of ⇡´1
pU↵q Ñ U↵ is obtained in this way. The

1-cocycle rg↵� : U↵ X U� Ñ GLrpKq corresponding to this new local trivialization is given by rg↵� “

h↵ ¨ g↵� ¨ h
´1
�

. In particular a moment’s thought shows that E is trivial if and only if there exists

th↵u↵PA as above such that g↵� “ h
´1
↵

¨ h� , or equivalently such that g↵� “ h↵ ¨ h
´1
�

. Beware that the
last formula is formally the same as the formula in (2.5.22) defining the 1-cocycle g↵� , but in (2.5.22)
we compose two linear maps with inverted domains and codomains, while h↵ ¨ h

´1
�

is the composition
(or product) of two automorphisms of Kr.

Remark 2.5.16. Let ⇡ : E Ñ X be a rank r vector bundle with trivializations as in Definition 2.5.1 with
corresponding 1-cocycle g – tg↵�up↵,�qPA2 . Let tV�u�P⇤ be an open covering of X with a refinement
map ⇢ : ⇤ Ñ A, i.e. such that V� Ä U⇢p�q for each � P ⇤. Then we get an induced 1-cocycle th�µup�,µqP⇤2

by setting h�µ – pg⇢p�q⇢pµqq|V�XVµ
. Let us denote th�µup�,µqP⇤2 by ⇢pgq.

Now let ⇡ : E Ñ X and ⌫ : F Ñ X be rank r vector bundles on X with local trivializations over
the sets of open coverings tU↵u↵PA and tV�u�P⇤. Let g – tg↵�up↵,�qPA2 and h – th�µup�,µqP⇤2 be the
corresponding 1-cocycles. There exists a common refinement, i.e. an open covering tW⇠u⇠P⌅ and maps
⇢ : ⌅ Ñ A, ! : ⌅ Ñ ⇤ such that W⇠ Ä U⇢p⇠q X V!p⇠q for each ⇠ P ⌅ (e.g. consider the open sets given by
intersections of an open set U↵ and an open set V�). Thus ⇡ : E Ñ X and ⌫ : F Ñ X have also associated
1-cocycles t⇢pgqq⇠⇣up⇠,⇣qP⌅2 and t!phqq⇠⇣up⇠,⇣qP⌅2 relative to the same open covering tW⇠u⇠P⌅. It follows
from Remark 2.5.15 that the vector bundles ⇡ : E Ñ X and ⌫ : F Ñ X are isomorphic if and only if
there exists a collection of regular mapsm⇠ : W⇠ Ñ GLrpKq for ⇠ P ⌅ such that ⇢pgq⇠⇣ “ m⇠ ¨!phq⇠⇣ ¨m

´1
⇣

for all p⇠, ⇣q P ⌅2.

Above we have associated to a vector bundle with local trivializations a 1-cocycle. One can invert
this construction. Let X be an algebraic variety and tU�u�P⇤ an open covering of X, and let g “ tg�µu

be a 1-cocycle with values in GLrpKq relative to the given open covering. Then we can define a vector
bundle E Ñ X as follows. First, since open a�ne subsets of an algebraic are a basis of the Zariski
topology, we may refine the open covering, see Remark 2.5.16, and get an induced 1-cocycle relative to
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2. Algebraic varieties

an open covering by a�ne sets. The construction that we give does not depend (up to isomorphism)
on the refinement, so we assume from the beginning that the open subsets U� are a�ne. For �, µ P A

let
pU� X Uµq ˆ Kr

'�µ
›Ñ pU� X Uµq ˆ Kr

px, ⇠q fiÑ px, g�µ ¨ ⇠q
(2.5.15)

If we let A�µ – pU�XUµqˆKr
Ä U�ˆKr and B�µ – pU�XUµqˆKr

Ä Uµ ˆKr then Hypothesis 2.2.13
are satisfied, and hence we may glue the a�ne varieties U� ˆ Kr via the '�µ see the Gluing Construc-
tion 2.2.14. Let E be the prevariety that we get. The regular maps U� ˆ Kr

Ñ U� ãÑ X glue to give a
regular map ⇡ : E Ñ X.

Claim 2.5.17. The prevariety E is an algebraic variety.

Proof. We must check that E is of finite type and separated. Since X is of finite type it has a finite
cover X “ V1 Y . . .YVm by open a�ne sets. Since Vi is quasi compact the covering Vi “

î
�P⇤pVi XU�q

has a finite subcover. Each Vi XU� is an open a�ne set by Proposition 2.3.20. We have ⇡´1
pVi XU�q –

Vi X U� ˆ Kr, and hence E is a finite union of open a�ne subsets. This proves that E is of finite type.
In order to prove that E is separated we notice that if �, µ P ⇤ then

pU� ˆ Kr
q ˆ pUµ ˆ Kr

q X �E “ ppU� ˆ Uµq X �Xq X pU� ˆ Uµq ˆ �Kr . (2.5.16)

This shows that pU� ˆ Kr
q ˆ pUµ ˆ Kr

q X �E is closed. Since E ˆ E is the union of the open subsets
pU� ˆ Kr

q ˆ pUµ ˆ Kr
q, it follows that �E is closed in E ˆ E, i.e. E is separated.

Linear algebra constructions on vector bundles

One can produce vector bundles from given vector bundles by lifting linear algebra constructions.

Direct sum of vector bundles

Let ⇡ : E Ñ X and ⇢ : F Ñ X be algebraic vector bundles. Let

E ‘ F – E ˆX F “ tpe, fq P E ˆ F | ⇡peq “ ⇢pfqu. (2.5.17)

The map µ : E‘F Ñ X defined by setting µpe, fq – ⇡peq “ ⇢pfq is regular. If x P X the fiber µ´1
pxq is

identified with Epxq ‘F pxq and hence it has a structure of K vector space of dimension rkpEq ` rkpF q.
Lastly, by choosing an open cover of X which trivializes both E and F we get that µ : E ‘ F Ñ X has
a local trivialization. Thus E ‘ F is an algebraic vector bundle over X. This is the direct sum of E
and F .

Functorial constructions

Let E Ñ X be an algebraic vector bundles. Then one constructs a vector bundle E
_

Ñ X whose
fiber over x P X is identified with the dual vector space Epxq

_. Analogously one constructs a vector
bundle E b E Ñ X whose fiber over x P X is identified with the tensor square Epxq b Epxq. More
generally let ⇤ be a functor (possibly contravariant) from the category of K vector spaces to itself.
Then one can construct a vector bundle ⇤pEq Ñ X whose fiber over x P X is identified with the vector
space ⇤pEpxqq. In fact let g – tg↵�u be the 1-cocycle corresponding to local trivializations of E as in
Definition 2.5.1. Then ⇤pgq – t⇤pg↵�qu is a 1-cocycle which defines by gluing a vector bundle F Ñ X.
If we change local trivializations of E the vector bundle obtained from the new 1-cocycle is isomorphic
to F by Remark 2.5.16. Thus we have produced a vector bundle well determined up to isomorphism,
that we denote by ⇤pEq. In order to define an isomorphism between ⇤pEqpxq and ⇤pEpxqq one proceeds
as follows. The vector bundle ⇤pEq is obtained by gluing the a�ne varieties U↵ˆ⇤pKr

q (by refining the
open covering tU↵u we may assume that U↵ is a�ne for every ↵ P A) via the maps pIdU↵XU� ,⇤pg↵�qq.

Thus for x P U↵ we have the isomorphism of vector spaces  ↵pxq : ⇤pEqpxq
„

›Ñ ⇤pKr
q. If x P U↵ then
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we also have the isomorphism ⇤p'↵pxqq : ⇤pEpxqq
„

›Ñ ⇤pKr
q. The composition gives the isomorphism

of vector spaces
⇤p'↵pxqq

´1
˝  ↵pxq : ⇤pEqpxq

„
›Ñ ⇤pEpxqq. (2.5.18)

By functoriality the above isomorphism is independent of the open set U↵ containing x.

Example 2.5.18. If tg↵�u is a 1-cocycle representing E Ñ X, then E
_

Ñ X is represented by the
1-cocycle tpg

t

↵�
q

´1
u.

Example 2.5.19. Let L Ñ Pn be the tautological line bundle. In Example 2.5.13 we have show that L
is represented by the 1-cocycle g “ tgiju relative to the open cover tPn

Zi
u
n

i“0 given by gijprZsq “ Zi{Zj

for rZs P Pn

Zi
XPn

Zj
. It follows that the dual L_

Ñ Pn is represented by the 1-cocycle h “ thiju relative
to the open cover tPn

Zi
u
n

i“0 given by hijprZsq “ Zj{Zi for rZs P Pn

Zi
X Pn

Zj
.

Remark 2.5.20. Let L Ñ Pn be the tautological line bundle and let L_
Ñ Pn be its dual. Let f : V Ñ K

be a linear map. We associate a section �f : PpV q Ñ L
_ by mapping rZs P Pn to the linear function

on LprZsq “ spanpZq given by the restriction of f to spanpZq. The section �f is regular. In fact the
trivialization of L_ considered in Example 2.5.19 gives a generator  i of L_

|Pn
Zi

characterized by the fact

that  i takes the value Wi on prZs,W q. We have the equality

�f |Pn
Zi

“
fpZq

Zi

 i. (2.5.19)

This show that �f is regular. As an exercise one should check that the local sections on the right hand
side of the above equation do indeed glue to give a global section of L_.

Example 2.5.21. Let L Ñ X be a line bundle, represented by the 1-cocycle g “ tg↵�u relative to an open
cover tU↵u. The tensor power Lbm

Ñ X is represented by the 1-cocycle h “ th↵�u where h↵� – g
m

↵�
.

Note that if we set m “ ´1 we get a 1-cocycle representing L
´1. This is one reason for using L

´1

as alternative notation for the dual L_. Of course L
´m is used to denote pL

bm
q

´1. Note also that
the 1-cocycle g

0
↵�

represents the trivial line bundle. This justifies setting L
b0 equal to the trivial line

bundle.

Tensor product of vector bundles

Let ⇡ : E Ñ X and ⇢ : F Ñ X be algebraic vector bundles. One constructs a tensor product vector
bundle E b F Ñ X whose fiber over x P X is identified with the tensor square Epxq b F pxq by a
procedure which is analogous to what was done in the previous subsubsection. We leave details to the
reader. Of course if E “ F then the tensor product vector bundle is the square tensor vector bundle of
the previous subsubsection.

Quotient of a vector bundle by a subbundle

Let ⇡ : E Ñ X and ⇢ : G Ñ X be algebraic vector bundles. A morphism ✓ : G Ñ E of vector bundles, see
Definition 2.5.4, is an injection of vector bundles if for every x P X the linear map ✓pxq : Gpxq Ñ Epxq

is injective. If this is the case then the image imp✓q is a closed subset of E.

Definition 2.5.22. Let ⇡ : E Ñ X be an algebraic vector bundle. A closed subset F Ä E is a subvector
bundle of rank s if there exists an injection of vector bundles ✓ : G Ñ E, where G has rank s, such that
F “ imp✓q.

Note that, by definition, a subvector bundle of rank s of ⇡ : E Ñ X is a vector bundle of rank s on
X.

Let ⇡ : E Ñ X be an algebraic vector bundle r and let F Ä E be a subvector bundle of rank s.
One defines a vector bundle with fiber over x P X identified with Epxq{F pxq proceeding as follows. For
x P X let µpxq : Epxq Ñ Epxq{F pxq be the quotient map. Let tU↵u↵PA be an open covering of X which

47



2. Algebraic varieties

trivializes E, as in Definition 2.5.1. Let ↵ P A. Let  ↵ : Kr´s ãÑ Kr be an injection of vector spaces,
and for x P U↵ let

Kr´s µ↵pxq
›Ñ Epxq{F pxq (2.5.20)

be the composition

Kr´s  ↵pxq
›Ñ Kr '↵pxq´1

›Ñ Epxq
µpxq
›Ñ Epxq{F pxq. (2.5.21)

By refining the covering tU↵u and choosing appropriately the injections  ↵ we may assume that µ↵pxq

is an isomorphism for all ↵ P A and all x P U↵. For ↵,� P A we define the map U↵ X U� Ñ GLrpKq as
follows:

U↵ X U�
g↵�
›Ñ GLrpKq

x fiÑ µ↵pxq ˝ µ
´1
�

pxq
(2.5.22)

Then tg↵�u↵,�PA is a 1-cocycle with values in GLr´spKq, and hence there is an associated vector bundle.
Up to isomorphism the vector bundle does not depend on the choices that we made: this the quotient
vector bundle E{F . Let x P X: proceeding as has been done for previous constructions one defines an
isomorphism between the fiber pE{F qpxq and the quotient Epxq{F pxq.

Note that the map µ : E Ñ E{F defined by setting µ|Epxq – µpxq for all x P X is a (regular) map
of vector bundles. Suppose that G ãÑ E is a subvector bundle such that for all x P X the restriction of
µpxq to Gpxq is an isomorphism. Then the composition G ãÑ E

µ
›Ñ E{F is an isomorphism of vector

bundles. One could hope to define the quotient vector bundle as being isomorphic to any subvector
bundle G Ä E with the above property. This would not be an acceptable definition because in general
there is no such subvector bundle, see Exercise 2.6.7.

Sheaves

There is a di↵erent way of viewing a vector bundle, namely as a particular kind of sheaf. First we
introduce sheaves.

Definition 2.5.23. Let X be a topological space. A sheaf of sets F on X consists of the following
data:

1. for each open U Ä X a set F pUq, and

2. for each inclusion U Ä V of open subsets of X a restriction map ⇢V,U : F pV q Ñ F pUq,

such that the following hold:

(a) ⇢U,U “ IdFpUq.

(b) If U Ä V Ä W are inclusions of open subset of X then ⇢V,U ˝ ⇢W,V “ ⇢W,U .

(c) Let V Ä X be open and suppose that V “
î

iPI Vi where each Vi is open.

(c1) If �, ⌧ P F pUq and ⇢V,Vip�q “ ⇢V,Vip⌧q for all i P I then � “ ⌧ .

(c2) If there exists a collection of �i P F pViq for every i P I such that ⇢Vi,ViXVj p�iq “ ⇢Vj ,ViXVj p�jq

for all i, j P I then there exists � P F pV q such that ⇢V,Vip�q “ ⇢V,Vip⌧q for all i P I.

If each of the sets F pUq has a structure of group, and ⇢V,U is a homomorphism of groups, then we say
that F is a sheaf of groups. If each of the sets F pUq has a structure of ring, and ⇢V,U is a homomorphism
of groups, then we say that F is a sheaf of groups.

Example 2.5.24. LetX,Y be topological space. For U Ä X open let F pUq be the set whose elements are
the continuous maps f : U Ñ Y . If U Ä V is an inclusion of open subsets of X let ⇢V,U : F pV q Ñ F pUq

be defined by setting ⇢V,U pfq – f|U . Then F is a sheaf of sets on X. Suppose that Y is a topological
group, i.e. that multiplication and inverse are continuos maps. Then pointwise multiplication defines a
structure of group on F pUq, and we get a sheaf of groups.
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Example 2.5.25. Let X be a prevariety. For U Ä X open let F pUq be the ring whose elements are
the regular maps f : U Ñ K with addition and multiplication defined pointwise. If U Ä V is an
inclusion of open subsets of X let ⇢V,U : F pV q Ñ F pUq be the homomorphism of rings defined by
setting ⇢V,U pfq – f|U . Then F is a sheaf of rings on X. This is the structure sheaf of X and is denoted
by OX .

Definition 2.5.26. Let X be a topological space, and let R be a sheaf of rings on X. A sheaf of
R-modules is a sheaf of sets F on X with the extra datum of a structure of RpUq-module on F pUq

for every opne U Ä X. We require that for every inclusion U Ä V of open subsets of X and � P F pV q,
f P RpV q we have

⇢
F
V,U

pf ¨ �q “ ⇢
R
V,U

pfq ¨ ⇢
F
V,U

p�q, (2.5.23)

where ⇢F
V,U

and ⇢R
V,U

are the restriction maps of F and R respectively.

Definition 2.5.27. Let X be a topological space, and let F be a sheaf of sets on X. If V Ä X is
open then we get a sheaf of sets on V by assigning to U Ä V open the set F pUq, and by defining, for
U Ä W Ä V open, the restriction map equal to the restriction map ⇢W,U of F . This sheaf of sets on V

is the restriction of F to V and is denoted by F|V . If F is a sheaf of (groups)/(rings)/(modules over a
sheaf of rings) then F|V is a sheaf of (groups)/(rings)/(modules over a sheaf of rings) in a natural way.

Remark 2.5.28. Let X be a topological space, and let F be a sheaf of (sets)/(groups)/(rings)/(modules
over a sheaf of rings) over X. If U Ä X is open then F pUq is the set/group/ring/module of sections of
F over U , and is denoted also by �pU,F|U q.

Example 2.5.29. Let X be an algebraic prevariety. If U Ä X is open it has a canonical structure of
algebraic prevariety. Restriction of regular functions defines an identification between OX|U and OU .
The ring of sections OXpUq “ �pU,F|U q is equal to KrU s.

Definition 2.5.30. Let F ,G be sheaves of (sets)/(groups)/(rings)/(modules over a sheaf of rings) on
a topological space X. A morphism ' : F Ñ G consists of the assignment of a morphism 'U P F pUq Ñ

G pUq (i.e. respectively a (map of sets)/(homomorphism of groups)/(homomorphism of rings)/(homomorphism
of modules)) such that the following holds. If U Ä V are open subsets of X then the following diagram
is commutative:

F pV q

⇢
F
V,U

✏✏

'V
// G pV q

⇢
G
V,U

✏✏

F pUq
'U

// G pUq

(2.5.24)

If F is a sheaf as above on X the identity map IdU P F pUq Ñ F pUq defines a morphism of F :
this is the Identity morphism. If F ,G ,H are sheaves as above on X, and ' : F Ñ G ,  : G Ñ H are
morphisms of sheaves, one gets a morphism of sheaves  ˝ ' : F Ñ H by setting p ˝ 'qU –  U ˝ 'U .
Thus we have the category of sheaves of (sets)/(groups)/(rings)/(modules over a sheaf of rings) on X.
In particular we have the notion of isomorphism of sheaves.

Vector bundles and locally free sheaves

Let ⇡ : E Ñ X be a vector bundle on an algebraic variety X. For U Ä X open (in the Zariski topology)
let

S pEqpUq – t� : U Ñ E | � is regular and ⇡ ˝ � “ IdUu “ �pU,E|U q. (2.5.25)

If �, ⌧ P S pEqpUq then the map p� ` ⌧q : U Ñ E|U mapping x to �pxq ` ⌧pxq is a regular section
of E|U . If f P OXpUq then the map f� : U Ñ E|U mapping x to fpxq ¨ �pxq is a regular section of
E|U . With these operations S pEqpUq is an OXpUq-module. Let U Ä V be open subsets of X and
let � P S pEqpV q. Then the restriction of � to U is a regular section of E|U . Thus we have a map
⇢
E

V,U
: S pEqpV q Ñ S pEqpUq. One easily checks that this gives a sheaf of OX -modules.
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Definition 2.5.31. Let ⇡ : E Ñ X be a vector bundle on an algebraic variety X. The sheaf of germs
of sections of E is the sheaf S pEq of OX -modules defined above.

Example 2.5.32. Let ⇡ : L Ñ X be the trivial line bundle, i.e. L “ X ˆK and ⇡ is the projection. Then
S pLq is isomorphic to OX . In fact if U Ä X is open then

S pLqpUq “ tf : U Ñ K | f is regularu “ OXpUq. (2.5.26)

Definition 2.5.33. Let L Ñ Pn be the tautological line bundle. Then

1. OPnp´1q is the sheaf of germs of sections of L, i.e. OPnp´1q – S pLq.

2. OPnp1q is the sheaf of germs of sections of L_, i.e. OPnp1q – S pL
_

q.

3. If d P N then OPnpdq is the sheaf of germs of sections of pL
_

q
bd and OPnp´dq is the sheaf of germs

of sections of pLq
bd. Note that OPnp0q – OX , see Example 2.5.21.

Suppose that ⇡ : E Ñ X, ⇢ : F Ñ X are vector bundles on an algebraic variety X, and that
f : E Ñ F is a morphism of vector bundles. If U Ä X is open let S pfqU : S pEqpUq Ñ S pF qpUq be
defined by S pfqp�q – f ˝ �. The collection of the maps S pfqU defines a morphism of OX -modules
S pEq Ñ S pF q. Thus we have defines a functor from the category of vector bundles over X to the
category of OX -modules.

The sheaf of germs of sections of a vector bundle is a very particular kind of sheaf of OX -modules,
i.e. the image of the functor that we have defined is far from being the whole category of OX -modules
(unless X is a finite set). In order to give a precise characterization of the image we need to go through
a few (more) definitions. Let X be a topological space, let R be a sheaf of rings on X, and let F ,G be
sheaf of R-modules on X. By associating to U Ä X open the direct sum F pUq‘G pUq we get an RpUq-
module. If U Ä V are open the restriction maps ⇢F

V,U
and ⇢G

V,U
define maps ⇢F

V,U
: pF pV q ‘ G pV qq Ñ

pF pUq ‘ G pUqq. As is easily checked this defines a sheaf of R-modules on X.

Definition 2.5.34. Let X be a topological space, let R be a sheaf of rings on X, and let F ,G be
sheaf of R-modules on X. The direct sum of F and G is the sheaf of R-modules on X defined above,
and is denoted by F ‘ G .

Example 2.5.35. Let ⇡ : E Ñ X and ⇢ : F Ñ X be vector bundles on the algebraic variety X. Then
S pE ‘F q, i.e. the sheaf of germs of sections of E ‘F , is isomorphic to the direct sum S pEq ‘ S pF q.

Definition 2.5.36. Let X be a topological space, and let R be a sheaf of rings on X. A sheaf F of
R-modules is locally free of rank r if there exists an open covering tU↵u↵PA of X such that for every
↵ P A the restriction F|U↵

is isomorphic to R‘r

|U↵
, i.e. the direct sum of r copies of R|U↵

.

Claim 2.5.37. Let ⇡ : E Ñ X be a vector bundle of rank r on an algebraic variety X. Then S pEq,
i.e. the sheaf of germs of sections of E, is locally free of rank r.

Proof. By definition there exists an open covering tU↵u↵PA of X such that E|U↵
is trivial of rank r. By

Examples 2.5.32 and 2.5.35 it follows that E|U↵
is isomorphic to O‘r

X|U↵
.

The following result gives that vector bundles and locally free sheaves are equivalent notions.

Proposition 2.5.38. Let X be an algebraic variety. By assigning to a vector bundle E on X its sheaf
of germs of sections S pEq and to a morphism f : E Ñ F of vector bundles on X the morphism of
OX-modules S pfq : S pEq Ñ S pF q we get an equivalence between the functor of vector bundles (of
constant rank) on X and the functor of locally free sheaves of OX-modules (of constant rank).
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Proof. Let F be a locally free sheaf of OX -modules of rank r. By hypothesis there exists an open
covering tU↵u↵PA and for each ↵ P A an isomorphism

'↵ : F|U↵

„
›Ñ O‘r

X|U↵
. (2.5.27)

From this we produce a 1-cocycle with values in GLrpKq as follows. For ↵,� P A the composition

O‘r

X|U↵XU�

'
´1
�|...

›Ñ F|U↵XU�

'↵|...
›Ñ O‘r

X|U↵XU�
(2.5.28)

is an isomorphism

 ↵� : O‘r

X|U↵XU�

„
›Ñ O‘r

X|U↵XU�
. (2.5.29)

There exist gij
↵�

P OXpU↵ X U�q for i, j P t1, . . . , ru such that

 ↵�pe
↵�

j
q “

rÿ

i“1

g
ij

↵�
pxqe

↵�

i
. (2.5.30)

The rˆr matrix g↵� – pg
ij

↵�
q with values in OXpU↵XU�q is invertible because  ↵� ˝ �↵ is the identity.

Thus we have the 1-cochain g “ tg↵�u with values in GLrpKq. One checks that g is a 1-cocycle. Let
⇡ : E Ñ X be the associated rank r vector bundle. The sheaf of germs of sections S pEq is isomorphic
to F . Moreover if ' : E Ñ F is a morphism of locally free sheaves, and E,F are vector bundles such
that S pEq – E , S pF q – F , then there exists a morphism of vector bundles f : E Ñ F such that
S pfq “ '. We leave details of the proofs to the reader.

Because of the above result one does not distinguish between vector bundles and locally free sheaves.
For example OPnpdq (see Definition 2.5.33), which strictly speaking is a locally free sheaf of rank 1,
denotes also the corresponding line bundle on Pn, e.g. the dual of the tautological line bundle if d “ 1.

Line bundles and regular maps to projective spaces

2.6 Exercises

Exercise 2.6.1. Let R be an integral domain, and let pm,nq P `
N2zt0u˘

. Let F P RrX,Y sm and G P RrX,Y sn.
The resultant RpF,Gq is the element of R defined as follows. Consider the map of free R-modules

RrX,Y sn´1 ‘ RrX,Y sm´1
LpF,Gq›Ñ RrX,Y sm`n´1

p�, q fiÑ � ¨ F ` ¨ G (2.6.31)

and let SpF,Gq be the matrix of LpF,Gq relative to the basis

pXn´1
, 0q, pXn´2

Y, 0q, . . . , pY n´1
, 0q, p0, Xm´1q, p0, Xm´2

Y q, . . . , p0, Y m´1q (2.6.32)

of the domain and the basis

X
m`n´1

, X
m`n´2

Y, . . . , XY
m`n´2

, Y
m`n´1 (2.6.33)

of the codomain. Then RpF,Gq is defined by

RpF,Gq – detSpF,Gq. (2.6.34)

Explicitly: if

F “
mÿ

i“0

aiX
m´i

Y
i
, G “

nÿ

j“0

bjX
n´j

Y
j (2.6.35)
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then

RpF,Gq “ det

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

a0 0 ¨ ¨ ¨ 0 b0 0 ¨ ¨ ¨ 0
a1 a0 ¨ ¨ ¨ 0 b1 b0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
...

... ¨ ¨ ¨ a0

...
... ¨ ¨ ¨ b0

am am´1 ¨ ¨ ¨
... bn bn´1 ¨ ¨ ¨

...

0 am ¨ ¨ ¨
... 0 bn ¨ ¨ ¨

...

0 0 ¨ ¨ ¨
... 0 0 ¨ ¨ ¨

...
...

... ¨ ¨ ¨
...

...
... ¨ ¨ ¨

...
0 0 ¨ ¨ ¨ am 0 0 ¨ ¨ ¨ bn

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

. (2.6.36)

Now let K be a field and K Ä K be an algebraic closure of K. Let F P KrX,Y sm and G P KrX,Y sn.
(a) Prove that RpF,Gq “ 0 if and only if there exists H P KrX,Y sd with d ° 0 which divides both F and G

(in KrX,Y s).
(b) Prove that Rm,npF,Gq “ 0 if and only if there exists a common non-trivial root of F and G in K2,

i.e. rX0, Y0s P P1pKq such that F pX0, Y0q “ GpX0, Y0q “ 0.

(c) Let fpt, xq P Krt1, . . . , tmsrxs and gpt, xq P Krt1, . . . , tmsrxs (here t “ t1, . . . , tm) be polynomials of degrees
m and n in x respectively, i.e.

fpt, xq “
mÿ

i“1

aiptqxm´i
, gpt, xq “

nÿ

j“1

bjptqxn´j
aiptq, bjptq P Krt1, . . . , tms, a0ptq �“ 0 �“ b0ptq.

We let
Dpf, gq – tt P AmpKq | Dx P K such that fpt, xq “ gpt;xq “ 0u.

Using the properties of the resultant proved above show that if f, g are both monic, i.e. a0ptq “ b0ptq “ 1,
then there exists ' P Krt1, . . . , tms such that Dpf, gq “ V p'q.

(d) Give examples of fpt, xq P Krt1, . . . , tmsrxs and gpt, xq P Krt1, . . . , tmsrxs for which there exists no ' P
Krt1, . . . , tms such that Dpf, gq “ V p'q.

Exercise 2.6.2. The goal of the exercise is to prove the Main Theorem of Elimination Theory, i.e. The-
orem 2.4.2, without invoking the Nullstellensatz.

(a) Let ⇡ : Am ˆ P1 Ñ Am be the projection. Prove that if X Ä Am ˆ P1 is closed then ⇡pXq is closed in Am

by using Item (b) of Exercise 2.6.1.

(b) Let µn : pP1qn Ñ Pn be the map defined by

pP1qn µn›Ñ PpKrX,Y snq – Pn

pra0, b0s, ra1, b1s, . . . , ran, bnsq fiÑ rpa0X ´ b0Y q ¨ ¨ ¨ pa1X ´ b1Y q ¨ . . . ¨ panX ´ bnY q (2.6.37)

Prove that µn is regular.

(c) Let ⇡ : Am ˆ Pn Ñ Am be the projection. Let X Ä Am ˆ P1 be closed. Prove that ⇡pXq is closed in Am

by considering the closed subset µ´1
n pXq Ä pP1qn (see Item (b)), and applying Item (a) to the projections

Am ˆ pP1qn Ñ Am ˆ pP1qn´1, Am ˆ pP1qn´1 Ñ Am ˆ pP1qn´2 etc.

Let V be a K vector space of finite dimension, and let 0 § h § dimV . The Grassmannian

Gr ph, V q – tW Ä V | dimW “ hu .

is the set of subvector spaces of V of dimension h. The Zariski topology on Gr ph, V q is defined as follows. Let
Frph, V q be the set of ordered lists of linearly independent vectors v1, . . . , vh P V . We define the left action

GLhpKq ˆ Frph, V q ›Ñ Frph, V q
ppaijq, tv1, . . . , vhuq fiÑ t∞h

i“1 a1ivi,
∞h

i“1 a2ivi, . . . ,
∞h

i“1 ahiviu (2.6.38)
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The quotient for the equivalence relation defined by the above action is the map

Frph, V q ⇡›Ñ Gr ph, V q
v1, . . . , vh fiÑ spanpv1, . . . , vhq (2.6.39)

Since Frph, V q Ä V
h (as an open subset) it inherits a Zariski topology from V

h – Ah¨dimV . The Zariski topology

on Gr ph, V q is the quotient topology.

Exercise 2.6.3. The goal of the exercise is to provide Gr ph, V q with the structure of an algebraic variety.
Let U Ä V be a vector subspace of dimension dimV ´h, i.e. an element of Gr pdimV ´ h, V q. Let Gr ph, V qU Ä
Gr ph, V q be the subset of W which are transverse to U .

(a) Show that Gr ph, V qU is open.

(b) Show that the action of HompV {U,Uq on Gr ph, V qU defined by

HompV {U,Uq ›Ñ Gr ph, V qU
pf,W q fiÑ tw ` 'pwq | w P W u (2.6.40)

is simply transitive (w is the equivalence class of w in V {U), and hence it gives a bijection

'U : HompV {U,Uq Ñ Gr ph, V qU . (2.6.41)

To be precise there is one such bijection for each choice of W P Gr ph, V qU , but they are all equivalent
for what follows. Show that 'U is a homemomorphism, and that the collection of Gr ph, V qU ’s and
homemomorphisms 'U is an algebraic atlas of Gr ph, V q. Thus we have given Gr ph, V q the structure of
an algebraic prevariety.

(c) Prove that Gr ph, V q is an algebraic variety, i.e. that it is of finite type and separated. (It might help to
unwind the definitions above for V “ Kn, replacing tv1, . . . , vhu P Frph, V q by the h ˆ n matrix whose
rows are the vi’s.)

(d) Prove that Gr ph, V q is irreducible. (Recall that prevarieties of finite type have an irreducible decomposi-
tion.)

Exercise 2.6.4. The goal of the exercise is to show that Gr ph, V q, with the structure of algebraic variety
provided by Exercise 2.6.3, is a projective variety.

1. Let v1, . . . , va P V be linearly independent, and let ↵ P ôh
V . Prove that vi ^ ↵ “ 0 for all i P t1, . . . , au

if and only if there exists � P ôh´a
V such that ↵ “ v1 ^ . . . ^ va ^ �.

2. For ↵ P ôh
V , let m↵ be the linear map

V
m↵›Ñ ôh`1

V

v fiÑ v ^ ↵

Show that if ↵ �“ 0, then the kernel of m↵ has dimension at most h, and that dimkerpm↵q “ h if and
only if ↵ is decomposable, i.e. ↵ “ w1 ^ . . . ^ wh, where w1 ^ . . . ^ wh P V are linearly independent.

3. If W P Gr ph, V q then
ôh

W is a 1-dimensional subspace of
ôh

V , i.e. a point of Ppôh
V q. Hence we have

a well defined Plücker map

Gr ph, V q P›Ñ P
´ôh

V

¯

W fiÑ ôh
W.

Show that

impPq “
!

r↵s P P
´©h

V

¯
| dimpkerm↵q • h

)
, (2.6.42)

and if r↵s P impPq, then r↵s “ ôh kerpm↵q. Conclude that P is injective and that impPq is closed in
Ppôh

V q.
4. Prove that the Plücker map defines an isomorphism Gr ph, V q „›Ñ impPq between algebraic varieties, and

hence Gr ph, V q is a projective variety.
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Let
Grpk,PpV qq :“ tL Ä PpV q | L is a linear subspace, dimL “ ku. (2.6.43)

We have natural identification
Grpk ` 1, V q ›Ñ Grpk,PpV qq

W fiÑ PpW q (2.6.44)

Thus Grpk,PpV qq is a projective variety.

Exercise 2.6.5. Let V be a 4-dimensional K vector space and

Grp1,PpV qq P›Ñ Pp
2©

V q – P5

the Plücker map.

1. Prove that the image of P is a non degenerate quadric hypersurface, i.e. that the ideal of imP is generated
by a non degenerate quadratic polynomial F .

2. Let X Ä Grp1,PpV qq. Prove that PpXq is a line if and only if X is a pencil of lines, i.e. the set of lines
containing point p and belonging to a plane ⇤ containing p.

3. Let X Ä Grp1,PpV qq. Prove that PpXq is a plane if and only if one of the following holds:

a) X is the set of lines containing a point p.

b) X is the set of lines contained in a plane ⇤.

Exercise 2.6.6. 1. Let X Ä Pn be closed. Given 0 § k § n let

FkpXq :“ t⇤ P Grpk,Pnq | ⇤ Ä Xu. (2.6.45)

Prove that FkpXq is a closed subset of Grpk,Pnq.
2. Let X “ V pZ0Z3 ´ Z1Z2q Ä P3 be a non degenerate quadric surface. Describe F1pXq Ä Grp1,P3q Ä P5.

Exercise 2.6.7. Let L Ñ P1 be the tautological line bundle. Let E Ñ P1 be the trivial vector bundle
of rank 2, i.e. E “ P1

ˆ K2 with map the projection. We have an obvious injection of vector bundles
L ãÑ E, and therefore we may consider L as a subbundle of E. Prove that there is no algebraic subvector
bundle G Ä E such that for all rZs P P1 the map GprZsq Ñ EprZsq{LprZsq is an isomorphism. You
may find the following observations useful:

1. The quotient line bundle E{L has sections whose zero set is a point (see Remark 2.5.9 for zero
sets of sections of vector bundles).

2. Any section of G is constant (viewed as a section of V ).
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Chapter 3

Rational maps, dimension and degree

3.1 Introduction

3.2 Rational maps

Let X,Y be algebraic varieties. We define a relation on the set of couples pU,'q where U Ä X is open
dense and ' : U Ñ Y is a regular map as follows: pU,'q „ pV, q if the restrictions of ' and  to U XV

are equal. Then „ is an equivalence relation. In fact reflexivity and symmetry are trivially true. To
prove transitivity suppose that pU,'q „ pV, q and pV, q „ pW,µq. Then the restrictions of ' and µ to
U XV XW are equal. Since V is open dense in X, the intersection U XV XW is (open) dense in U XW .
Since X is separable it follows that the restrictions of ' and µ to U XW are equal, i.e. pU,'q „ pW,µq.

Definition 3.2.1. A rational map f : X 99K Y is a „-equivalence class of couples pU,'q where U Ä X

is open dense and ' : U Ñ Y is a regular map.

1. The map f is regular at x P X (equivalently x is a regular point of f), if there exists pU,'q in the
equivalence class of f such that x P U . We let Regpfq Ä X be the set of regular points of f . By
definition Regpfq is an open subset of X.

2. The indeterminancy set of f is Indpfq :“ XzRegpfq (notice that Indpfq is closed). A point x P X

is a point of indeterminancy if it belongs to Indpfq.

Example 3.2.2. If f : X Ñ Y is a regular map, we may consider f as a rational map represented by
pX, fq.

Example 3.2.3. Let X be an algebraic variety, and let U Ä X be open. Let ◆ : U ãÑ X be the inclusion
map. Then pU, ◆q represents a rational map f : X 99K U (note that f goes in the “wrong” direction).
Clearly Regpfq “ U .

Example 3.2.4. Let V be a finitely generated vector space and let rv0s P PpV q. Let U – pPpV qztrv0suq.
We assume that dimV • 2, and hence U is open dense in PpV q. The map

U
'99K PpV {xv0yq

rws fiÑ rws

where w is the equivalence class of w, is regular. Hence pU,'q represents a rational map f : PpV q 99K
PpV {xv0yq, which is called the projection from rv0s. If dimV “ 2 then ' is constant and hence ' is
regular. If dimV ° 2 then the regular locus of ' is equal to U .

From now on we will consider only rational maps between irreducible algebraic varieties. Let
f : X 99K Y and g : Y 99K W be rational maps between (irreducible) algebraic varieties. It might
happen that for all x P Regpfq the image fpxq does not belong to Regpgq, and hence the composi-
tion g ˝ f makes no sense. In order to deal with compositions of rational maps, we give the following
definition.
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Definition 3.2.5. A rational map f : X 99K Y between irreducible algebraic varieties is dominant if it
is represented by a couple pU,'q such that 'pUq is dense in Y .

Remark 3.2.6. Let f : X 99K Y be a dominant rational map between irreducible algebraic varieties. If
pV, q is an arbitrary representative of f then  pV q is dense in Y . In fact by definition f is represented
by a couple pU,'q such that 'pUq is dense in Y . Replacing V by V XU (which is open dense in X) we
may assume that V Ä U , and hence  “ '|V . Suppose that  pV q is not dense in Y , i.e. there exists a
proper closed W à Y containing  pV q. Since '´1

pW q Ä U is closed and it contains the dense subset
V Ä U , it is equal to U . Thus 'pUq Ä W , and this is a contradiction.

Let X,Y,W be irreducible algebraic varieties. Let

X
g99K Y

f99K W (3.2.1)

be dominant rational maps, represented by pU,'q and pV, q respectively. Since 'pUq is dense in Y ,
'pUq X V is non empty and hence '´1

pV q is non empty. Since '´1
pV q is open and X is irreducible, it

follows that '´1
pV q is dense in X.

Definition 3.2.7. Keeping notation as above, the composition f ˝g is the rational mapX 99K W repres-
ented by p'

´1
pV q, ˝'q. (The equivalence class of p'

´1
pV q, ˝'q is independent of the representatives

pU,'q and pV, q.)

Definition 3.2.8. A dominant rational map f : X 99K Y between irreducible algebraic varieties is
birational if there exists a dominant rational map g : Y 99K X such that g ˝ f “ IdX and f ˝ g “ IdY .
An irreducible algebraic variety X is rational if it is birational to Pn for some n, it is unirational if
there exists a dominant rational map f : Pn 99K X.

Example 3.2.9. Of course isomorphic irreducible quasi projective varieties are birational. Example 3.2.3
is a slightly less trivial instance of birational map. The inclusion map ◆ : U ãÑ X has rational inverse
the map f : X 99K U of Example 3.2.3.

Example 3.2.10. Let V be a K vector space of dimension n` 1. Suppose that P : V Ñ K is a quadratic
form of rank at least 3, i.e. kerP has codimension at least 3 (recall that kerP Ä V is the subspace of
vectors u such that P pu ` vq “ P pvq for all v P V ). Then P is not the product of linear functions and
hence Q – V pP q Ä PpV q is an irreducible quadric. Let rv0s P pQzPpkerP qq. The restriction of the
projection from rv0s (see Example 3.2.4) is a rational map

Q
f99K PpV {xv0yq. (3.2.2)

We claim that f is birational, and hence Q is rational. The reason is the following. First note that by
associating to a line PpW q Ä PpV q containing rv0s the element W {xv0y of PpV {xv0yq we get a bijection
between the set of lines containing rv0s and PpV {xv0yq. Thus we view the latter as parametrizing lines
through rv0s. An open dense subset of lines through rv0s intersect Q in rv0s and another point (because
P has degree 2). Thus for an open dense U Ä PpV {xv0yq we may define a map U Ñ Q by associating to
the line ⇤ P U the unique point in ⇤XQ other than rv0s. This is a regular map U Ñ Q defining a rational
map g : PpV {xv0yq 99K Q which is the rational inverse of f . More explicitly: in suitable coordinates
Z0, . . . , Zn we have v0 “ p0, 0, . . . , 0, 1q and F “ Z0Zn ´ G, where 0 �“ G P KrZ0, . . . , Zn´1s2. Then

Q
f99K Pn´1

rZ0, . . . , Zns fiÑ rZ0, . . . , Zn´1s

and
Pn´1 g99K Q

n´1

rT0, . . . , Tn´1s fiÑ rT
2
0 , T0T1, . . . , T0Tn´1, GpT0, . . . , Tn´1qs

Notice that if n “ 2, then f and g are regular (see Example 1.5.9). If n • 3 then neither f nor g is
regular. Moreover the quadric Q is not isomorphic to Pn´1. We cannot prove this now in general. For
K “ C and n “ 3 you may show that Q Ä P3

pCq with the Euclidean topology is not homeomorphic to
P2

pCq with the Euclidean topology, and hence they are not isomorphic as algebraic varieties.
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Proposition 3.2.11. Irreducible algebraic varieties X, Y are birational if and only if there exist open
dense subsets U Ä X and V Ä Y that are isomorphic.

Proof. An isomorphism ' : U
„

›Ñ V clearly defines a birational map f : X 99K Y . To prove the converse,
let

X
g99K Y

f99K X (3.2.3)

be birational inverse maps. Let pU,'q represent g and pV, q represent f . Then '´1
pV q and  ´1

pUq

are open dense subsets of U and V respectively. By hypothesis the composition

 ˝
`
'|'´1pV q

˘
: '´1

pV q Ñ U

is equal to the identity on an open non-empty subset of '´1
pV q. By separability of X we get that

 ˝
`
'|'´1pV q

˘
“ Id'´1pV q. In particular  ˝ '

`
'

´1
pV q

˘
Ä U , i.e. '

`
'

´1
pV q

˘
Ä  

´1
pUq. Similarly

' ˝
`
 | ´1pUq

˘
“ Id ´1pUq,  

`
 

´1
pUq

˘
Ä '

´1
pV q.

Thus the restrictions of ' and  define regular maps '´1
pV q

„
›Ñ  

´1
pUq and  

´1
pUq

„
›Ñ '

´1
pV q

which are inverse of each other.

Example 3.2.12. Let f, g be the birational maps in Example 3.2.10. Assume that n • 3, so that both
non regular. Then

Regpfq “ Qztr0, 0, . . . , 0, 1su, Regpgq “ Pn´1
zV pT0, GpT0, . . . , Tn´1qq. (3.2.4)

On the other hand open dense subsets which are isomorphic are strictly smaller than the regular loci.
In fact f defines an isomorphism

QzV pZ0q
„

›Ñ Pn´1
zV pT0q. (3.2.5)

If X,Y are algebraic varieties defined over a subfield F Ä K, then one defines the notion of rational
map f : X 99K Y defined over F by considering equivalence classes of couples pU,'q where U Ä X is an
open subset defined over F and ' : U Ñ Y is defined over F . As a consequence we have the notion of
algebraic varieties defined over F which are birational over F . In particular we have the notion of an
algebraic varieties defined over F which is rational over F .

Example 3.2.13. Let V0 be an F vector space of dimension n ` 1, and let P0 : V0 Ñ F be a quadratic
form of rank at least 3. Let V – V0 bF K and let P : V Ñ K be the quadratic form obtained from
P0 by extending scalars. Then Q – V pP q is a quadric defined over F . We claim that Q is rational
over F if and only if QpF qzPpkerP0q is not empty. In fact suppose that there exists a birational map
from a projective Pm (for some m) space to Q, and hence a regular dominant map ' : U Ñ Q where
U Ä Pm is open dense. There are plenty of points in U defined over F and their images are points
in QpF q. Moreover not all of these rational points are contained in PpkerP0q because ' is dominant.
Hence QpF qzPpkerP0q is non empty. On the other hand, if there exists a point rv0s in pQpF qzPpkerP0qq,
then the procedure described in Example 3.2.10 gives a birational map f : Q 99K PpV {xv0yq defined over
F . In fact this holds because we can choose coordinates Z0, . . . , Zn for V0 such that v0 “ p0, 0, . . . , 0, 1q

and F “ Z0Zn ´ G, where 0 �“ G P F rZ0, . . . , Zn´1s2.

Many natural invariants of complete algebraic varieties do not separate between birational varieties.
This fact gives practical criteria that allow to establish that couples of complete varieties are not
birational. On the other hand, it leads one to approach the classification of isomorphism classes of
complete (or projective) varieties in two steps: first one classifies equivalence classes for birational
equivalence, then one distinguishes isomorphim classes within each birational equivalence class.
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3.3 The field of rational functions

If X is an a�ne variety then one can reconstruct X from the ring KrXs of regular functions on X.
Actually there is a contravariant equivalence between the category of a�ne varieties and the category
of finitely generated K algebras with no non zero nilpotents, see Section 1.8. On the other hand if X is
proper then, since every regular function is locally constant, the ring KrXs gives very little information
about X (unless X is a finite set, i.e. a�ne). One gets a rich algebraic object by associating to
an irreducible algebraic variety the field of rational functions. From this field one reconstructs the
algebraic variety modulo birational maps.

LetX be an irreducible algebraic variety. A rational function on X is a rational mapX 99K Kp“ A1
q.

We define addition and multiplication of rational functions on X by adding and multiplying regular
representatives. Let f, g : X 99K K be represented by pU,'q and pV, q respectively. Then

f ` g :“ r
`
U X V,'|UXV `  |UXV

˘
s,

f ¨ g :“ r
`
U X V,'|UXV ¨  |UXV

˘
s.

The definition makes sense because changing representatives of f and g we get equivalent couples. We
claim that with the above operations the set of rational functions on X is a field. It is obvious that it
is a ring. To check that every non zero element has a multiplicative inverse let f : X 99K K be a non
zero rational function. Then f “ rpU,'qs where ' �“ 0. Thus V p'q Ä U is a proper closed subset and
therefore U

0 – pUzV p'qq is open dense in X. Then g – rpU
0
,'

´1
qs is the multiplicative inverse of f .

Definition 3.3.1. Let X be an irreducible algebraic variety. The field of rational functions on X is
the set of rational functions on X with the above operations. It is denoted by KpXq.

Remark 3.3.2. Let X be an irreducible algebraic variety. We have a canonical embedding K ãÑ KpXq

as the subfield of constant functions.

Remark 3.3.3. Let X be an irreducible algebraic variety. Let U Ä X be a dense open subset. The map

KpUq
↵

›Ñ KpXq

rpV,'qs fiÑ rpV,'qs
(3.3.6)

is an isomorphism of extensions of K, i.e. it is an isomorphism of fields and the composition K ãÑ
KpUq

↵
›Ñ KpXq, where the first map is the the canonical embedding, equals the canonical embedding

K ãÑ KpXq. In particular KpXq is isomorphic (as extension of K) to the field of rational functions of
any of its dense open a�ne subsets.

The field of rational functions of an irreducible a�ne variety is isomorphic to the field of fractions
of its ring of regular functions. To see this, first note that if X is an irreducible algebraic variety we
have an inclusion of K extensions:

(field of fractions of KrXs) ãÑ KpXq
↵

�
fiÑ rpXzV p�q,

↵

�
qs

(3.3.7)

Claim 3.3.4. Let X be an a�ne irreducible variety. Then (3.3.7) is an isomorphism.

.

Proof. We must prove that the map in (3.3.7) is surjective. Let f P KpXq, and let pU,'q represent f .
By Example 1.6.5, there exists 0 �“ � P KrXs such that the dense principal open subset X� is contained
in U . Moreover, by Example 1.6.5 and Theorem 1.6.2, KrXf s is generated as K-algebra by KrXs and
�

´1, hence � is represented by pX� ,
↵

�m q where ↵ P KrXs. Let � :“ �
m. Since X� “ X� , we have

proved that f belongs to the image of (3.3.7).

Example 3.3.5. By Claim 3.3.4 the field KpAn
q is the field of fractions of Krz1, . . . , zns, i.e. Kpz1, . . . , znq.

By Remark 3.3.3 we also have KpPn
q – Kpz1, . . . , znq.
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3.3. The field of rational functions

Remark 3.3.6. If X is an irreducible algebraic variety then KpXq is finitely generated over K. In fact
by Remark 3.3.3 we may replace X by a dense open a�ne Y Ä X. Then KpY q is the field of quotients
of KrY s by Claim 3.3.4. Let Y Ä An as a closed subset. By Theorem 1.6.2 the restriction of coordinate
functions z1|X , . . . , zn|X generate KrY s as K-algebra and hence they generate KpY q as extension of K.
In particular we can extract a transendence basis of KpY q from z1|X , . . . , zn|X .

Let f : X 99K Y be a dominant rational map of irreducible algebraic varieties. Since f is dominant
the pull-back map

KpY q
f

˚
›Ñ KpXq

' fiÑ ' ˝ f

is well defined. The map f
˚ is an inclusion of fields and if K ãÑ KpY q is the canonical inclusion then

the composition K ãÑ KpY q
'

˚
›Ñ KpXq is the canonical inclusion. Thus f˚ is a morphism of extensions

of K. Suppose that f : X 99K Y and g : Y 99K W are dominant rational maps of irreducible algebraic
varieties. Then g ˝ f : X 99K W is dominant and

f
˚

˝ g
˚

“ pg ˝ fq
˚
. (3.3.8)

Of course Id˚
X
: KpXq Ñ KpXq is the identity map. This gives a contravariant functor

RAT {K ›Ñ FGF {K
X fiÑ KpXq

X
f99K Y fiÑ f

˚
(3.3.9)

where RAT {K is the category whose objects are irreducible algebraic varieties and FGF {K is the
category of finitely generated field extensions of K (with morphisms the morphisms as extensions of K).

Proposition 3.3.7. The functor in (3.3.9) is an equivalence between the category of irreducible algeb-
raic varieties with homomorphisms dominant rational maps and the category of finitely generated field
extensions of K.

Proposition 3.3.7 follows from Proposition 3.3.8, which proves that the functor in (3.3.9) is essentially
surjective, and Proposition 3.3.10, which proves that the functor in (3.3.9) is fully faithful.

Proposition 3.3.8. Let E be a finitely generated field extension of K. There exist an irreducible
algebraic variety X and an isomorphisms of E

„
›Ñ KpXq of extensions of K.

Proof. Let m be the transcendenece degree of E over K. By Corollary A.4.8, there exist a prime
polynomial P P Kpz1, . . . , zmqrzm`1s and an isomorphism of extensions of K

E
„

›Ñ Kpz1, . . . , zmqrzm`1s{pP q. (3.3.10)

Write
P “ z

d

m`1 ` c1z
d´1
m`1 ` ¨ ¨ ¨ ` cd, ci P K pz1, . . . , zmq .

Then, for i P t1, . . . , du, we have ci “
ai
bi

where ai, bi P Krz1, . . . , zms and bi �“ 0. Let rP P Krz1, . . . , zm`1s

be obtained from P by clearing denominators, i.e. rP “ pb1 ¨ . . . ¨bdqP . Lastly, let Q P Krz1, . . . , zm`1s be
obtained from rP by factoring out the maximum common divisor of the coe�cients of rP as polynomial
in zm`1 (recall that Krz1, . . . , zms is a UFD). Notice that Q is irreducible and hence prime. Write

Q “ e0z
d

m`1 ` e1z
d´1
m`1 ` ¨ ¨ ¨ ` ed, ei P Krz1, . . . , zms, e0 �“ 0.

ThenX :“ V pQq Ä Am`1 is an irreducible hypersurface becauseQ is prime. Because of the isomorphism
in (3.3.10) it su�ces to prove that there is an isomorphism of extensions of K

Kpz1, . . . , zmqrzm`1s{pP q
„

›Ñ KpXq. (3.3.11)
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3. Rational maps, dimension and degree

Let zi :“ zi|X . We claim that the rational functions on X represented by tz1, . . . , zmu are algebra-
ically independent over K. In fact, suppose that R P Krt1, . . . , tms and Rpz1, . . . , znq “ 0. By the
fundamental Theorem of Algebra, for any p⇠1, . . . , ⇠mq P pAm

zV pe0qq there exists ⇠m`1 P K such that
p⇠1, . . . , ⇠m, ⇠m`1q P X. It follows that Rp⇠1, . . . , ⇠mq “ 0 for all p⇠1, . . . , ⇠mq P pAn

zV pe0qq, and hence
R ¨ e0 vanishes identically on Am. Thus R ¨ e0 “ 0, and since e0 �“ 0 it follows that R “ 0. This
proves that tz1, . . . , zmu are algebraically independent over K. On the other hand zm`1 is algebraic
over Kpz1, . . . , zmq and its minimal polynomial equals P . Thus by mapping zi to zi for i P t1, . . . , n`1u

(and mapping K to K by the identity map) we get an isomorphism of extensions of K as in (3.3.11).

Proposition 3.3.9. Let X and Y be irreducible algebraic varieties, and let ↵ : KpY q ãÑ KpXq is an
inclusion of extensions of K. There exists a unique dominant rational map f : X 99K Y such that
f

˚
“ ↵.

Proof. By remark 3.3.3 we may assume that X Ä An and Y Ä Am are closed. Hence by Claim 3.3.4
KpXq, KpY q are the fields of fractions of KrXs and KrY s respectively. By Theorem 1.6.2, KrXs “

Krz1, . . . , zns{IpXq and KrY s “ Krw1, . . . , wms{IpY q. Given p P Krz1, . . . , zns and q P Krw1, . . . , wms

we let p :“ p|X and q :“ q|Y . We have

↵ pwiq “
f
i

g
i

, fi, gi P Krz1, . . . , zns, g
i

‰ 0.

Let U :“ XzpV pg1q Y . . . Y V pgmqq. Then U is open and dense in X. Let

U
r'

›Ñ Am

a fiÑ

´
f1paq
g1paq , . . . ,

fmpaq
gmpaq

¯

We claim that r'pUq Ä Y . In fact let h P IpY q. Since ↵ is an inclusion of extensions of K,

hpf1{g1, . . . , fm
{g

m
q “ hp↵pw1q, . . . ,↵pwmqq “ ↵phpw1, . . . , wmqq “ ↵p0q “ 0.

This proves that if h P IpY q then h vanishes on r'pUq, i.e. r'pUq Ä Y . Thus r� induces a regular map
' : U Ñ Y . If b P KrY s Ä KpY q then

'
˚

pbq P KrU s Ä KpUq “ KpXq

is equal to ↵pbq. It follows that if b �“ 0 then '˚
pbq �“ 0. Thus ' is dominant. Let f : X 99K Y be the

equivalence class of pU,�q. Then f
˚

“ ↵.
Moreover it is clear from the above construction that f is the unique rational (dominant) map such

that f˚
“ ↵.

The result below follows at once from what has been proved above.

Corollary 3.3.10. Irreducible algebraic varieties are birational if and only if their fields of rational
functions are isomorphic as extensions of K.

Example 3.3.11. Let p P Krzs be free of square factors (and deg p • 1). Then t
2

´ ppzq is prime and
hence X :“ V

`
t
2

´ ppzq
˘

Ä A2 is irreducible. Thus we have the extensions of fields KpXq Å Kpzq Å K
where the top extension is algebraic of degree 2. Then X is rational if and only if KpXq is a purely
trascendental extension of K. If deg p “ 1 then KpXq is a purely trascendental extension of K because
it is generated (over K) by t. Similarly it is a purely trascendental extension of K if deg p “ 2 by
Example 1.5.9. If deg p • 3 then X is not rational (the proof of this fact this requires new ideas) and
hence KpXq is not a purely trascendental extension of K.

The result below follows from the above corollary and the proof of Proposition ??.

Proposition 3.3.12. Let X be an irreducible algebraic variety and let m :“ Tr. degK KpXq. Then X

is birational to an irreducible hypersurface in Am`1.
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3.4. Dimension

3.4 Dimension

Definition 3.4.1. 1. The dimension of an irreducible algebraic variety X is the transcendence de-
gree of KpXq over K.

2. Let X be an arbitrary quasi projective variety, and let X “ X1Y¨ ¨ ¨YXr be its irreducible decom-
position. The dimension of X is the maximum of the dimensions of its irreducible components.
We say that X has pure dimension n if every irreducible component of X has dimension n.

3. Let p P X. The dimension of X at p is the maximum of the dimensions of the irreducible
components of X containing p.

Remark 3.4.2. The dimension of an irreducible algebraic variety X is equal to the dimension of any
open dense subset U Ä X. In fact, by definition it su�ces to prove it for irreducible X, and in that
case it holds because the fields of rational functions KpXq and KpUq are isomorphic extensions of K.

Example 3.4.3. The dimension of An and of Pn is equal to n. In fact KpAn
q “ KpPn

q “ Kpz1, . . . , znq,
and tz1, . . . , znu is a transcendence basis of Kpz1, . . . , znq over K.

Example 3.4.4. The dimension of Grph, V q is equal to h ¨ pdimV ´ hq, because it is irreducible and it
contains an open dense subset isomorphic to an a�ne space of dimension h ¨ pdimV ´hq (actually many
such subsets), see Exercise 2.6.3.

Example 3.4.5. Let X Ä An`1 be a hypersurface. We claim that X has pure dimension n. Since the
irreducible components of X are hypersurfaces, in fact the zero loci of the prime factors of f , it su�ces
to show that if X is an irreducible hypersurface then it has dimensjon n. Let IpXq “ pfq. Reordering
the coordinates pz1, . . . , zn, zn`1q we may assume that

f “ c0z
d

n`1 ` c1z
d´1
n`1 ` ¨ ¨ ¨ ` cd, ci P Krz1, . . . , zns, c0 ‰ 0, d ° 0. (3.4.1)

For i P t1, . . . , n ` 1u let zi – zi|X . In the proof of Proposition 3.3.8 we showed that z1, . . . , zn are
algebraically independent in KpXq. Since KpXq is generated over K by z1, . . . , zn, zn`1 and since zn`1

is algebraic over the subfield generated by z1, . . . , zn it follows that z1, . . . , zn is transcendence basis
of KpXq over K. Similarly, a hypersurface in Pn`1 has pure dimension n. (Intersect with Pn

Zi
for

i P t0, 1, . . . , n ` 1u.)

Remark 3.4.6. An algebraic variety has dimension 0 if and only if it is a finite set.

Remark 3.4.7. If f : X 99K Y is a dominant map of irreducible algebraic varieties then dimX • dimX

because we have the inclusion f
˚ : KpY q ãÑ KpXq of field extensions of K.

Proposition 3.4.8. Let X be an irreducible algebraic variety and let Y Ä X be a proper closed subset.
Then dimY † dimX.

Proof. We may assume that Y is irreducible. Since X is covered by open a�ne varieties, we may assume
that X is a�ne. Thus we may assume that X Ä An. Thus Y is also closed in An. We may choose a
transcendence basis tf1, . . . , fdu of KpY q, where each fi is a regular function on Y , see Remark 3.3.6.

Let f̃1, . . . , f̃d P KrXs such that f̃i|W “ fi. Since Y is a proper closed subset of X, there exists a

non zero g P KrXs such that g|Y “ 0. It su�ces to prove that f̃1, . . . , f̃d, g are algebraically independent
over. We argue by contradiction. Suppose that there exists 0 ‰ P P KrS1, . . . , Sd, T s such that
P pf̃1, . . . , f̃d, gq “ 0. Since X is irreducible we may assume that P is irreducible. Restricting to Y

the equality P pf̃1, . . . , f̃d, gq “ 0, we get that P pf1, . . . , fd, 0q “ 0. Thus P pS1, . . . , Sd, 0q “ 0, because
f1, . . . , fd are algebraically independent. This means that T divides P . Since P is irreducible P “ cT ,
c P K˚. Thus P pf̃1, . . . , f̃d, gq “ 0 reads g “ 0, and that is a contradiction.

Corollary 3.4.9. A (non empty) closed subset X Ä An`1 has pure dimension n if and only if it
is a hypersurface. Similarly, a closed subset X Ä Pn`1 has pure dimension n if and only if it is a
hypersurface.
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3. Rational maps, dimension and degree

Proof. If X Ä An`1 is a hypersurface then it has pure dimension n, see Eaxmple 3.4.1.
In order to prove the converse, suppose that X Ä An`1 is a closed subset of pure dimension n.

Thus every irreducible component of X is a closed subset of An`1 of dimension n. Since the union of
hypersurfaces in An`1 is a hypersurface in An`1, it su�ces to prove that each irreducible component of
X is a hypersurface. Thus we may assume that X is irreducible. Since dimX “ n † dimAn`1, there
exists a non zero f P IpXq Ä Krz1, . . . , zn`1s. Since X is irreducible, the ideal IpXq is prime, and hence
there exists a prime factor g of f which vanishes on X. Thus X Ä V pgq and V pgq is irreducible. By
Example 3.4.1 we have dimV pgq “ n, and hence dimX “ dimV pgq. Since X is closed it follows from
Proposition 3.4.8 that X “ V pgq. This finishes the proof for closed subsets of An`1.

The result for closed subsets of Pn`1 follows by a smilar proof, or by intersecting with the standard
open a�ne subsets Pn

Zi
for i P t0, . . . , n ` 1u.

Proposition 3.4.10. Let X, Y be algebraic varieties. Then dimpX ˆ Y q “ dimX ` dimY .

Proof. We may assume that X and Y are irreducible a�ne varieties. There exist transcendence bases
tf1, . . . , fdu, tg1, . . . , geu of KpXq and KpY q respectively given by regular functions. Let ⇡X : XˆY Ñ X

and ⇡Y : X ˆ Y Ñ Y be the projections. We claim that t⇡
˚
X

pf1q, . . . ,⇡
˚
X

pfdq,⇡
˚
Y

pg1q, . . . ,⇡
˚
Y

pgequ is a
transcendence basis of KpX ˆ Y q.

First, by Proposition 2.3.6KrXˆY s is algebraic over the subring generated (overK) by ⇡˚
X

pf1q, . . . ,⇡
˚
Y

pgeq.
Secondly, let us show that ⇡˚

X
pf1q, . . . ,⇡

˚
Y

pgeq are algebraically independent. Suppose that there is
a polynomial relation

ÿ

0§m1,...,me§N

Pm1,...,mep⇡
˚
X

pf1q, . . . ,⇡
˚
X

pfdqq ¨ ⇡
˚
Y

pg1q
m1 ¨ . . . ¨ ⇡

˚
Y

pgeq
me “ 0,

where each Pm1,...,me is a polynomial. Since g1, . . . , ge are algebraically independent we get that
Pm1,...,mepf1paq, . . . , fdpaqq “ 0 for every a P X. Since f1, . . . , fd are algebraically independent, it
follows that Pm1,...,me “ 0 for every 0 § m1, . . . ,me § N , and hence P “ 0. This proves that
⇡

˚
X

pf1q, . . . ,⇡
˚
Y

pgeq are algebraically independent.

3.5 Dimension and intersection

Closed subsets of Pn
: dimension and intersection with linear subspaces

Let X Ä Pn be a hypersurface. Thus X “ V pF q where F P KrZ0, . . . , Znsd with d ° 0 and F �“ 0. Let
⇤ “ PpUq be a linear subspace of Pn, i.e. U Ä Kn`1 is a K vector subspace. Then ⇤ X X “ V pF|U q. It
follows that if dim⇤ • 1 then ⇤ has non empty intersection with X. If, on the other hand, dim⇤ “ 0
i.e. ⇤ is a point, then ⇤ X X is empty for all points in the dense open subset Pn

zX. An analogous
characterization of the dimension of a closed subset of Pn holds in general. In order to formulate the
relevant result we introduce a definition and a classical piece of terminology.

Definition 3.5.1. Let X be an irreducible algebraic variety, and let Y Ä X be a closed subset. The
codimension of Y in X is equal to dimX ´ dimY , and is denoted by codpY,Xq.

Terminology 3.5.2. Let X be an algebraic variety, and let P be a property that each point of X
might or might not have (formally “the subset of points of X having the property P”). Then a general
point of X has property P if there is a dense open subset of X of points having property P.

Proposition 3.5.3. Let X Ä Pn be closed.

(a) Let k † codpX,Pn
q. Then for a general ⇤ P Grpk,Pn

q we have ⇤ X X “ H (i.e. there exists a
dense open U Ä Grpk,Pn

q such that ⇤ X X “ H for all ⇤ P U).

(b) Let ⇤ Ä Pn be a linear subspace such that dim⇤ • codpX,Pn

Cq. Then ⇤ X X ‰ H.

The proof of Proposition 3.5.3 is given after a few preliminary results.
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Definition 3.5.4. Let X Ä Pn be closed. For k P t0, . . . , nu let �Xpkq Ä X ˆ Grpk,Pn
q be given by

�Xpkq “ tpp,⇤q P X ˆ Grpk,Pn
q | p P ⇤u .

Proposition 3.5.5. Let X Ä Pn be closed and irreducible. Then �Xpkq is closed in X ˆ Grpk,Pn
q,

irreducible, and
dim�Xpkq “ dimX ` kpn ´ kq. (3.5.1)

Proof. Let us show that �Xpkq is closed if X “ Pn. Let A – pai,jq P Mk`1,n`1pKq be a matrix
of maximal rank, i.e. of rank k ` 1. Thus the rows of A span a subspace UA Ä Kn`1 of dimension
k ` 1, and hence PpUAq P Grpk,Pn

q. Let rZs P Pn. Then prZs,PpUAqq P �Pnpkq if and only if the
pk ` 2q ˆ pn ` 1q matrix obtained by adding the row Z to A has rank less than k ` 2, i.e. if and only if
for all 0 § j0 † j1 † . . . † jk`1 § pn ` 1q we have

Det

»

—————–

Xj0 Xj1 . . . . . . Xjk`1

a0,j0 a0,j1 . . . . . . a0,jk`1

a1,j0 a1,j1 . . . . . . a1,jk`1

...
...

...
. . .

...
ak,j0 ak,j1 . . . . . . ak,jk`1

fi

�����fl
“ 0

Expanding the determinant on the left hand side we get that prZs,PpUAqq P �Pnpkq if and only if

k`1ÿ

s“0

pj0,j1,...,jk`1Xjs “ 0 (3.5.2)

for all 0 § j0 † j1 † . . . † jk`1 § pn ` 1q, where r. . . , pj0,j1,...,jk`1 , . . .s are the Plücker coordinates of

PpUAq (see Exercise 2.6.4) with respect to the basis of
ô

k`1 Kn`1 associated to the standard basis of
Kn`1. This shows that �Pnpkq is closed.

Now we show that �Xpkq is closed for X Ä Pn closed. Let ⇡ : Pn
ˆGrpk,Pn

q Ñ Pn be the projection.
Then �Xpkq “ ⇡

´1
pXq X �Pnpkq. Since X is closed in Pn and ⇡ is regular ⇡´1

pXq is closed in Pn
ˆ

Grpk,Pn
q and hence �Xpkq is closed in Pn

ˆ Grpk,Pn
q because �Pnpkq is closed. Of course this gives

that �Xpkq is closed in X ˆ Grpk,Pn
q.

Next we prove that �Xpkq is irreducible of dimension as claimed. For i P t0, . . . , nu we have the
isomorphism

XZi ˆ Grpk, nq
↵i

›Ñ �Xpkq X pPn

Zi
ˆ Grpk,Pn

qq

pp,W q fiÑ pp, p ` W q
(3.5.3)

where W P Grpk, nq, i.e. W is a k-dimensional vector subspace of Kn viewed as the vector space
acting on the a�ne space Pn

Zi
» An and p ` W denotes the closure in Pn of the a�ne subspace

p ` W Ä Pn

Zi
» An. Suppose that �Xpkq X pPn

Zi
ˆ Grpk,Pn

qq is non empty. Then by the isomorphism
in (3.5.3) it is irreducible, and

dim
`
�Xpkq X pPn

Zi
ˆ Grpk,Pn

qq
˘

“ dimXZi ˆ Grpk, nq “ dimX ` dimGrpk, nq “ dimX ` kpn ´ kq.

Since �Xpkq is covered by the open non empty subsets �Xpkq X pPn

Zi
ˆ Grpk,Pn

qq, any such open
subset is irreducible, and any two (non empty) such subsets have non empty intersection (because X is
irreducible), it follows that �Xpkq is is irreducible of dimension given by (3.5.1).

Corollary 3.5.6. Let X Ä Pn be closed. Then �Xpkq is closed of dimension given by

dim�Xpkq “ dimX ` kpn ´ kq. (3.5.4)

If k § codpX,Pn
q then

dim�Xpkq § dimGrpk,Pn
q (3.5.5)

with equality if and only if k “ codpX,Pn
q.
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Proof. Let X “ X1 Y ¨ ¨ ¨ Y Xr be the irreducible decomposition of X. Then

�Xpkq “ �X1pkq Y ¨ ¨ ¨ Y �Xr pkq.

Thus the equality in (3.5.4) follows from Proposition 3.5.5. Let’s prove (3.5.5). Let c :“ codpX,Pn
q

and let i P t1, . . . , ru be such that c “ n ´ dimXi. Then

dim�Xipcq “ n ´ c ` cpn ´ cq “ pc ` 1qpn ´ cq “ dimGrpc,Pn
q.

This proves that the inequality in (3.5.5) holds and also the last statement.

Proposition 3.5.7. Let X Ä Pn be closed. Suppose that p P Pn
zX and that H Ä Pn is a hyperplane

not containing p. Let

pPn
ztpuq

⇡p
›Ñ H

q fiÑ xp, qy X H

be projection from p. Then ⇡ppXq is a closed subset of H and dim⇡ppXq “ dimX.

Proof. We may assume that X is irreducible. Since ⇡p|X is regular and X is projective ⇡ppXq is closed.
It remains to prove that dim⇡ppXq “ dimX. We may assume that p “ r0, . . . , 0, 1s and H “ V pXnq.
We have

⇡pprZ0, . . . , Znsq “ rZ0, . . . , Zn´1s.

Let Y :“ ⇡ppXq. The map ⇡p defines a regular surjective map ⇢ : X Ñ Y between irreducible (pro-
jective) varieties. We have the injection of fields ⇢˚ : KpY q ãÑ KpXq. It su�ces to prove that KpXq is
algebraic over ⇢˚KpY q.

One of V pZ0q, . . . , V pZn´1q does not contain Y , say V pZ0q, and hence KpY q is generated over K by

pZ1{Z0q|Y , . . . , pZn´1{Z0q|Y .

On the other hand KpXq is generated by

pZ1{Z0q|X “ ⇢
˚

ppZ1{Z0q|Y q , . . . , pZn´1{Z0q|X “ ⇢
˚

ppZn´1{Z0q|Y q

and pZn{Z0q|X . There exists F P IpXq such that F ppq ‰ 0 because p R X. Since p “ r0, . . . , 0, 1s we
get that

F “ a0Z
d

n
` a1Z

d´1
n

` ¨ ¨ ¨ ` ad, ai P KrZ0, . . . , Zn´1si, a0 ‰ 0. (3.5.6)

Dividing by Z
d

0 and restricting to X we get that

a0 ¨ ppZn{Z0q|Xq
d

` a1 ¨ ppZn{Z0q|Xq
d´1

` ¨ ¨ ¨ ` ad “ 0

where for 0 § j § d

aj :“ paj{Z
j

0q|X P K p⇢
˚

ppZ1{Z0q|Y q , . . . , ⇢
˚

ppZn´1{Z0q|Y qq . (3.5.7)

Since a0 ‰ 0 this proves that pZn{Z0q|X is algebraic over ⇢˚KpY q.

Proof of Proposition 3.5.3. By considering an irreducible component of X of maximum dimension we
may assume that X is irreducible. Let ⇢ : �Xpkq Ñ Grpk,Pn

q be the restriction of the projection map
Pn

ˆ Grpk,Pn
q Ñ Grpk,Pn

q. Then ⇤ P Grpk,Pn
q has non empty intersection with X if and only if it

belongs to imp⇢q. The map ⇢ is closed because �Xpkq is projective, hence imp⇢q is closed. Moreover
imp⇢q is irreducible because X is irreducible. Thus ⇢ defines a dominant map �Xpkq Ñ imp⇢q of
irreducible varieties. It follows that dimpimp⇢qq § �Xpkq. Now suppose that k † codpX,Pn

q. By
Corollary 3.5.6 we get that dimpimp⇢qq † dimGrpk,Pn

q and hence Grpk,Pn
qz imp⇢q is an open dense

subset of dimGrpk,Pn
q. Item (a) follows because any ⇤ P pGrpk,Pn

qz imp⇢qq does not intersect X.
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Next we prove (b). The proof is by induction on codpX,Pn
q. If codpX,Pn

q “ 0 the result is
trivial (if you don’t like to start from codpX,Pn

q “ 0 you may begin from codpX,Pn
q “ 1, i.e. X is a

hypersurface). Let’s prove the inductive step. Let p P ⇤. If p P X there is nothing to prove; thus we
may assume that p R X. Choose a hyperplane H Ä Pn not containing p and let ⇡ be projection from p

to H as in (3.6.8). Then ⇡pXq Ä H » Pn´1 is closed because X is projective, and dim⇡pXq “ dimX

by Proposition 3.5.7. Thus
codp⇡pXq,Pn´1

q “ codpX,Pn
q ´ 1. (3.5.8)

Let ⌦ :“ ⇡p⇤z tpuq. Then ⌦ Ä H is a linear subspace and dim⌦ “ pdim⇤ ´ 1q. By the equality
in (3.5.8) it follows that dim⌦ • codp⇡pXq,Pn´1

q. Hence ⌦ X ⇡pXq is non empty by the inductive
hypothesis. Let q P ⌦X⇡pXq. Since q P ⇡pXq there exists q̃ P X such that ⇡pq̃q “ q. But q̃ P ⇤ because
q P ⌦. Thus q̃ P X X ⇤.

Dimension of intersections

The result below is a remarkable generalization of the well-known result in linear algebra stating that
the set of solutions of a system of m homogeneous linear equations in n • m unknowns has dimension
at least n ´ m.

Proposition 3.5.8. Let X,Y Ä Pn be closed and suppose that pdimX ` dimY q • n. Then X X Y is
non empty and each of its irreducible components has dimension at least dimX ` dimY ´ n.

Remark 3.5.9. It is clear that one needs the hypothesis that X,Y be closed for the thesis of Proposi-
tion 3.5.8 to hold. The hypothesis that the ambient algebraic variety is Pn is also a key hypothesis. As
soon as one replaces Pn by other complete algebraic varieties the thesis fails to hold. As a test consider
replacing Pn by a product of projective spaces, or by a Grassmannian.

We prove Proposition 3.5.8 after going through a series of preliminary results.
Let X,Y Ä PN be two closed subsets. Let xXy Ä PN and xY y Ä PN be the linear subspaces

generated by X and Y respectively.

Definition 3.5.10. Suppose that
xXy X xY y “ H. (3.5.9)

The join JpX,Y q of X and Y is the subset of PN swept out by the lines joining a point of X to a point
of Y , i.e.

JpX,Y q :“
§

pPX,qPY
xp, qy. (3.5.10)

Claim 3.5.11. Let X,Y Ä PN be closed and assume that (3.5.9) holds.

1. JpX,Y q is closed.

2. If X and Y are irreducible then JpX,Y q is irreducible.

3. dim JpX,Y q “ dimX ` dimY ` 1.

Proof. Let m :“ dimxXy and n :“ dimxY y. There exist homogeneous coordinates

rS0, . . . , Sm, T0, . . . , Tn, U0, . . . , Ups

on PN such that xXy “ trS0, . . . , Sm, 0, . . . , 0su and xY y “ tr0, . . . , 0, T0, . . . , Tn, 0, . . . , 0su. Then

JpX,Y q “ trS0, . . . , Sm, T0, . . . , Tn, 0, . . . , 0s | rS0, . . . , Sms P X, rT0, . . . , Tns P Y u. (3.5.11)

Item (1) follows at once.
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3. Rational maps, dimension and degree

Let r P pJpX,Y qzXzY q. By (3.5.9) there is unique couple p'1prq,'2prqq P X ˆ Y such that
r P x'1prq,'2prqy. Thus we have a map

pJpX,Y qzXzY q
'

›Ñ X ˆ Y

r fiÑ p'1prq,'2prqq
(3.5.12)

As is easily checked ' is regular. The fibers of ' are isomorphic to Kˆ. Moreover for any i P t0, . . . ,mu

and j P t0, . . . , nu we have
'

´1
pXSi ˆ YTj q – XSi ˆ YTj ˆ Kˆ

. (3.5.13)

Items (2) and (3) follow from this.

The result below is the special case of Proposition 3.5.8 one gets by letting Y be a hyperplane.

Proposition 3.5.12. Let X Ä Pn be closed, irreducible of strictly positive dimension. Let H Ä Pn a
hyperplane not containing X. Then X XH is non empty and it has pure dimension equal to dimX ´1.

Proof. Since X X H à X we have dimX X H † dimX by Proposition 3.4.8. Let c :“ codpX,Pn
q. Let

⇤ Ä H be a linear subspace such that dim⇤ “ c. Note that such subspaces exist because by hypothesis
c § pn ´ 1q “ dimH. By Proposition 3.5.3 applied to X Ä Pn we have ⇤ X X ‰ H, and since ⇤ Ä H

we have ⇤ X X Ä ⇤ X pX X Hq. This proves that X X H is non empty and also, by Proposition 3.5.3,
that codpX X H,Hq § c. The latter inequality gives that

dimpX X Hq • dimH ´ c “ n ´ 1 ´ c “ dimX ´ 1. (3.5.14)

This proves that X X H is non empty and dimpX X Hq “ dimX ´ 1. It does not su�ce because the
proposition states a stronger result namely that X X H has pure dimension equal to dimX ´ 1.

The proof of the stronger statement is by induction on codpX,Pn
q. If codpX,Pn

q “ 0 then X “ Pn

and the statement of the proposition is trivially true. If codpX,Pn
q “ 1 then X is a hypersurface by

Corollary 3.4.9, hence XXH is a hypersurface in H and hence every irreducible component of XXH has
codimension one in H by Corollary 3.4.9. This proves the validity of the proposition if codpX,Pn

q “ 1.
Now we prove the inductive step. Assume that codpX,Pn

q “ c • 2. Let Y be an irreducible component
of X X H. Pick a point p P HzX and a hyperplane L not containing p and di↵erent from H. Let

Pn
ztpu

⇡p
›Ñ L

q fiÑ xp, qy X L

be the projection from p. Let H0 – ⇡ppHztpuq. Note that H0 Ä L is a hyperplane. We consider
⇡ppXq X H0. Let X X H “ Y Y Y1 Y ¨ ¨ ¨ Y Yr be the irreducible decomposition of X X H. We have

⇡ppXq X H0 “ ⇡ppY q Y ⇡ppY1q Y . . . Y ⇡ppYrq,

and, since p R X, each of ⇡ppY q,⇡ppY1q, . . . ,⇡ppYrq is closed by Proposition 3.5.7. We claim that there
exists p such that

⇡ppY q Ç ⇡ppYiq @i P t1, . . . , ru. (3.5.15)

In fact let q P Y z
î

r

i“1 Yi. By Claim 3.5.11 Jpq, Yiq is closed, irreducible, and

dim Jpq, Yiq “ dimYi ` 1. (3.5.16)

Since dimYi § dimX ´ 1 and since codpX,Pn
q • 2 we have dimYi § dimH ´ 2. Thus (3.5.16) gives

that Jpq, Yiq ‰ H. Hence there exists

p P Hz

r§

i“1

Jpq, Yiq. (3.5.17)

For such a p the statement in (3.5.15) holds, and hence ⇡ppY q is an irreducible component of ⇡ppXqXH0.
By the inductive hypothesis we get that dim⇡ppY q “ dim⇡ppXq ´ 1. Since dim⇡ppY q “ dimY and

dim⇡ppXq “ dimX (by Proposition 3.5.7) we are done.
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Proof of Proposition 3.5.8. Let rS0, . . . , Sn, T0, . . . , Tns be homogeneous coordinates on P2n`1. We have
the two embeddings

Pn i
›Ñ P2n`1

rZ0, . . . , Zns fiÑ rZ0, . . . , Zn, 0, . . . , 0s

Pn j
›Ñ P2n`1

rZ0, . . . , Zns fiÑ r0, . . . , 0, Z0, . . . , Zns
(3.5.18)

Since the images of i and j are disjoint linear subspaces of P2n`1 the join JpipY q, jpW qq is defined. Let
⇤ Ä P2n`1 be the linear subspace given by

⇤ :“ V pS0 ´ T0, . . . , Sn ´ Tnq. (3.5.19)

We have the isomorphism

X X Y
„

›Ñ ⇤ X JpipXq, jpY qq

rZ0, . . . , Zns fiÑ rZ0, . . . , Zn, Z0, . . . , Zns
(3.5.20)

By Claim 3.5.11 the closed subset JpipXq, jpY qq Ä P2n`1 has dimension equal to dimX ` dimY ` 1.
On the other hand ⇤ is a codimension-pn`1q linear subspace of P2n`1, hence by repeated application of
Proposition 3.5.12 we get that ⇤ X JpipXq, jppY qq is non empty and each of its irreducible components
has dimension at least equal to pdimX ` dimY ´ nq. By the isomorphism in (3.5.20) the proposition
follows.

Dimension of fibers

Theorem 3.5.13. Let X be an irreducible algebraic variety. Let f : X Ñ K be a non zero regular
function, and let V pfq – f

´1
p0q. Every irreducible component of V pfq has dimension equal to dimX´1.

Proof. Since X is a (finite) union of open a�ne subsets we may assume that X is a�ne. Thus X Ä An

is a closed subset. By Theorem 1.6.2 there exists f̃ P Krz1, . . . , zns such that f “ f̃|X . Let Y :“ V pf̃q,
and let W be an irreducible component of X X Y . We must prove that dimW “ dimX ´ 1. We have
An

“ Pn

Z0
Ä Pn as open dense subset. Let X,Y ,W Ä Pn be the closures of X, Y and W respectively.

Then Y Ä Pn is a hypersurface. Let P P KrZ0, . . . , Zns be a homogeneous polynomial such that
Y “ V pP q, and let d be its degree. Let N :“

`
d`n

n

˘
´ 1, and let

Pn
⌫
n
d

›Ñ PN

rZ0, . . . , Zns fiÑ rZ
d

0 , Z
d´1
0 X1, . . . , Z

d

n
s

be the Veronese map. Since Y “ V pP q and P has degree d, there exists a hyperplane H Ä PN such that
p⌫

n

d
q

´1
pHq “ Y . Thus ⌫n

d
defines an isomorphism X X Y

„
›Ñ ⌫

n

d
pXq X H, and ⌫n

d
pW q is an irreducible

component of ⌫n
d

pXq X H. By Proposition 3.5.12 we have

dimW “ dimW “ dim ⌫
n

d
pW q “ dim ⌫

n

d
pXq ´ 1 “ dimX ´ 1 “ dimX ´ 1.

Corollary 3.5.14. Let f : X Ñ Y be a regular map of algebraic varieties. Let p P X. Every irreducible
component of f´1

pfppqq has dimension at least equal to dimX ´ dimfppq Y .

Proof. Since X and Y are covered by open a�ne subsets, we may assume that X and Y are a�ne.
Let q – fppq and let m – dimq Y . We claim that there exist '1, . . . ,'m P KrY s such that q is an
irreducible component of V p'1, . . . ,'mq. In fact one may argue by induction on m. If m “ 0 the
statement is trivially true. Let m ° 0 and assume that the claim holds for lower values of m. Since
dimq Y ° 0 there exists 'm P KrY s vanishing at q and not vanishing on any irreducible component of Y
containing q. Then V p'mq contains q, and by Theorem 3.5.13 its dimension at q is equal to m ´ 1. By
the inductive hypothesis there exist  1, . . . , m´1 P KrV p'1qs such that q is an irreducible component
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of V p 1, . . . , m´1q Ä V p'1q. Since V p'1q is a closed a�ne subset of the a�ne variety Y , there exist
'1, . . . ,'m´1 P KrY s whose restrictions to V p'1q are equal to  1, . . . , m´1 respectively. Then q is an
irreducible component of V p'1, . . . ,'mq. Thus we have

V pf
˚

p'1q, . . . , f
˚

p'mqq “ f
´1

pqq \ W,

where W is closed in X, i.e. f´1
pqq is a union of irreducible components of V pf

˚
p'1q, . . . , f

˚
p'mqq.

By repeated application of Theorem 3.5.13 every irreducible component of V pf
˚

p'1q, . . . , f
˚

p'mqq has
dimension at least equal to dimX ´ m “ dimX ´ dimY .

3.6 Degree

Degree of a map

Definition 3.6.1. Let f : X Ñ Y be a regular map of irreducible algebraic varieties. The degree of f ,
denoted by deg f , is given by

deg f –
#
0 if f is not dominant,

rKpXq : f˚KpY qs if f is dominant.

The separable degree of f , denoted by deg
s
f , is given by

deg
s
f –

#
0 if f is not dominant,

rKpXq
s : f˚KpY qs if f is dominant,

where KpXq
s

Ä KpXq is the maximal separable extension of f˚KpY q.

Thus 0 † deg f † 8 if and only if f is dominant and dimW “ dimZ. Note that deg
s
f divides

deg f , and that if K has characteristic 0 then deg
s
f “ deg f .

Example 3.6.2. Let pz1, . . . , zn, wq be a�ne coordinates on An`1. Let X Ä An`1 be an irreducible
hypersurface and let IpXq “ P . Write

P “ a0w
d

` a1w
d´1

` ¨ ¨ ¨ ` ad, ai P Krz1, . . . , zns, a0 ‰ 0

Let Y “ An and let

X
f

›Ñ Y

pz1, . . . , zn, wq fiÑ pz1, . . . , znq

Then deg f “ d. In fact if d “ 0 then im f “ V pa0q à An and hence f is not dominant. If d ° 0 then

KpXq “ Kpz1, . . . , znqrws{pP q

and hence rKpXq : Kpz1, . . . , znqs “ d.
If K has characteristic 0 then deg

s
f “ deg f . Suppose that charK “ p ° 0. Let m be the maximum

integer such that pm ⌫ pd ´ iq for all i P t0, . . . , du such that ai �“ 0. Then deg
s
f “ d{p

m.

Below is the main result of the present section.

Proposition 3.6.3. Let f : X Ñ Y be a regular map of irreducible algebraic varieties such that deg f †

8. Then there exists an open dense Y
0

Ä Y such that

|f
´1

pqq| “ deg
s
f @q P Y

0
. (3.6.1)
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Example 3.6.4. Let us check the statement of Proposition 3.6.3 for the map f : X Ñ An of Example 3.6.2.
Let P P Krz1, . . . , zn, ws be as in that example. Let Q P Krz1, . . . , zn, ws be defined as follows: Q “ P

if charK “ 0, and

Qpz1, . . . , zn, w
p
m

q “ P pz1, . . . , zn, wq,
BQ

Bw
�“ 0.

In particular m is the maximum integer such that p
m

⌫ pd ´ iq for all i P t0, . . . , du such that ai �“ 0,
and hence deg

s
f is the degree in w of Q. Let Y – V pQq Ä An`1. Let g : X Ñ Y be defined by

gpz, wq – w
p
m

q, and let h : Y Ñ An be defined by hpz, wq – z. The regular map f : X Ñ An factorizes
as the composition

X
g

›Ñ Y
h

›Ñ An
. (3.6.2)

Clearly the map g is bijective, hence it su�ces to check that |h
´1

pzq| “ d for a general z P An. Since
BQ
Bw �“ 0, closed subset of Y defined by V pQ, BQ{Bwq is a proper subset and hence it has dimension

strictly smaller than dimY “ n. Thus � :“ hpV pQ, BQ{Bwqq is contained in a proper closed subset of
An and hence pAn

z�zV pa0qq contains an open dense subset U Ä An. Let z P U . Then Qpz, wq P Krws

is a polynomial with simple roots of degree deg
s
f and hence |h

´1
pzq| “ deg

s
f .

Example 3.6.5. We consider a more general version of Example 3.6.2. Let Y be an a�ne variety. Let
P P KpY qrts be an irreducible polynomial:

P “ t
d

` a1t
d´1

` ¨ ¨ ¨ ` ad, ai P f
˚

pKpY qq.

Since Y is a�ne KpY q is the field of fractions of KrY s. Thus there exists 0 ‰ b P KrY s such that
b ¨ ai P f

˚
pKrY sq for all 1 § i § d. Let c0 :“ b, ci :“ b ¨ ai, 1 § i § d and

Q :“ c0y
d

` c1y
d´1

` ¨ ¨ ¨ ` cd P KrY srws. (3.6.3)

If KrY s is a UFD we may factor out the gcd tc0, . . . , cdu and hence by renaming the ci’s we may assume
that gcd tc0, . . . , cdu “ 1. It follows that V pQq is irreducible (the proof is the same as the one for
hypersurfaces in An). In general KrY s is not a UFD and hence there might be no way of “reducing”
the polynomial of (3.6.5) in order to get that V pQq is irreducible. An example of this phenomenon is
the following: Y :“ V pz1z2 ´ z3z4q and V :“ V pz1y ´ z3q.

Let hypotheses and notation be as in Example 3.6.5, and let ⇡ : X ˆA1
Ñ X be the projection map.

An irreducible component Vi of V pQq dominates X if ⇡pViq “ X.

Claim 3.6.6. Keep hypotheses and notation as in Example 3.6.5. There is one and only one irreducible
component of V pQq which dominates Y , call it V˚. Let ⇡˚ : V˚ Ñ Y be the restriction of ⇡. There is
an open dense U Ä Y such that |⇡

´1
˚ pqq| “ deg

s
⇡˚ for every q P U .

Proof. We have ⇡pV pQqq Å Y zV pc0q. Then Y zV pc0q is dense in Y because c0 ‰ 0. It follows that there
exists at least one irreducible component V˚ of V such that ¯⇡pV˚q “ Y . Let V˚ be such an irreducible
component. Let g P IpV˚q. We claim that

Q|g in KpY qrws. (3.6.4)

(Notice: we do not claim that Q|g in KrY srws.) In fact suppose that Q � |g. Then Q and g are coprime
(in KpY qrws) because Q is prime, and hence there exist ↵,� P KpY qrws such that

↵ ¨ Q ` � ¨ g “ 1.

Multiplying by 0 ‰ � P KrY srws such that ↵ ¨ �,� ¨ � P KrY srws we get that

p↵ ¨ �qQ ` p� ¨ �qg “ �.

It follows that if q P V˚ then �pqq “ 0. Since � ‰ 0 we get that ¯⇡pV˚q ‰ Y : that is a contradiction.
This proves (3.6.4). Let IpV˚q “ pg1, . . . , grq. From (3.6.4) we get that there exist h1, . . . , hr P KrY srws

and m1, . . . ,mr P KrY s such that

mi ¨ gi “ Q ¨ hi, mi ‰ 0, i “ 1, . . . , r.
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Set m “ m1 ¨ ¨ ¨ ¨ ¨ mr. Then V˚zV pmq “ V zV pmq and it follows that V˚ is the unique irreducible
component of V pQq dominating Y . Now let

**********

Q
1 :“ dc0y

d´1
` pd ´ 1qc1y

d´2
` ¨ ¨ ¨ ` cd´1 P KrY srws. (3.6.5)

be the derivetive of Q with respect to y. Then Q
1

�“ 0 and degQ1
† degQ. Thus Q and Q

1 are coprime
in KpY qrws and hence there exist µ, ⌫ P KpY qrws such that

µ ¨ Q ` ⌫ ¨ Q
1

“ 1.

Arguing as above we get that there exists a proper closed W Ä Y such that

⇡
´1

pY zW q X V pQq X V pQ
1
q “ H. (3.6.6)

Now let U :“ pY zW zV pc0qzV pmqq: then |⇡
´1
˚ pqq| “ d for every q P U .

Proof of Proposition 3.6.3. Suppose that deg f “ 0. Then fpXq ‰ Y and Y
0 :“ Y z ¯fpXq does the job.

Now suppose that d :“ deg f ° 0. Since Y is covered by open a�ne sets we may assume that Y itself is
a�ne. By definition we have an inclusion f

˚ : KpY q ãÑ KpXq and KpXq as vector space over KpY q has
dimension d. Since we are in characteristic zero there exists ⇠ P KpXq primitive over f˚

pKpY qq. Let

P “ t
d

` a1t
d´1

` ¨ ¨ ¨ ` ad, ai P f
˚

pKpY qq

be the minimal polynomial of ⇠. Let V p rP q Ä Y ˆ A1 - notation as in Claim 3.6.6. Let V˚ Ä V p rP q be
the unique irreducible component dominating Y . We have a commutative diagram

W
�

//

f
  

V˚

⇡˚
~~

Y

with � birational. By Proposition 3.2.11 there exist open dense subsets X
1

Ä X and V
1

˚ Ä V˚ fitting
into a commutative diagram

X
1  

//

f
1:“f|X1

��

V
1

˚

⇡
1
˚:“⇡˚|V 1˚��

Z

(3.6.7)

with  an isomorphism. Since XzX
1

‰ X and dimX “ dimY we have

fpXzX 1q ‰ Y.

On the other hand

f
´1

tqu “ pf
1
q

´1
tqu if q P Y zfpXzX 1q.

By commutativity of (3.6.7) and the fact that  is an isomorphism we get that

|pf
1
q

´1
tqu | “ |p⇡

1
˚q

´1
tqu |, q P Y.

Hence the proposition follows from ******.
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3.7. Exercises

Degree of a closed subset of a projective space

Let X Ä Pn be closed, and let c be its codimension. Suppose that X is irreducible and let ⇡ be the
forgetful regular map

�Xpcq
⇡

›Ñ Grpc,Pn
q

pp,⇤q fiÑ ⇤
(3.6.8)

Since �Xpcq and Grpc,Pn
q are irreducible we have a well-defined deg ⇡. By Corollary 3.5.6 we have

dim�Xpcq “ dimGrpc,Pn
q. Thus deg ⇡ † 8. The degree of X is defined to be the separable degree

degX – deg
s
p�Xpcq

⇡
›Ñ Grpc,Pn

qq. (3.6.9)

In general let X “ X1 Y ¨ ¨ ¨ Y Xr be the irreducible decomposition of X. The degree of X is defined to
be the sum of the degrees of irreducible components of X which realize the dimension of X:

degX :“
ÿ

dimXi“dimX

degXi. (3.6.10)

Proposition 3.6.7. Let X Ä Pn be closed of codimension c. There exists an open dense U Ä Grpc,Pn
q

with the following property: if ⇤ P U then X X⇤ is finite of cardinality equal to degX. Moreover degX
is positive.

Proof. If X is irreducible the first statement follows from Proposition 3.6.3 applied to the map ⇡

in (3.6.8), and the positivity of degX follows from Proposition 3.5.3. In general let X “ X1 Y ¨ ¨ ¨ Y Xr

be the irreducible decomposition of X. If ⇤ P Grpc,Pn
q is general then by Proposition 3.5.3

⇤ X Xi “ H if dimXi † dimX, ⇤ X pXi X Xjq “ H if i ‰ j. (3.6.11)

It follows that if ⇤ P Grpc,Pn
q is general then

⇤ X X “

ß

dimXi“dimX

⇤ X Xi, (3.6.12)

and hence the claim follows from the case when X is irreducible.

Example 3.6.8. Let X Ä Pn be a hypersurface and let IpZq “ pF q. Then degX “ degF . In fact
*******

Example 3.6.9. Let Cd Ä Pd be the rational normal curve, i.e. the image of the Veronese map

P1 ⌫
1
d

›Ñ Ñ Pd

rS, T s fiÑ rS
d
, S

d´1
T, . . . , T

d
s

(3.6.13)

Then deg Cd “ d. ********

3.7 Exercises

Exercise 3.7.1. The Veronese map is

P2 f99K P2

rZ0, Z1, Z2s fiÑ rZ1Z2, Z0Z2, Z0Z1s (3.7.14)

1. Prove that f is a birational map.

2. Determine Regpfq.
3. Describe maximal open sets U, V Ä P2 such that f induecs an isomorphism U

„›Ñ V .
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3. Rational maps, dimension and degree

Exercise 3.7.2. An algebraic group is an algebraic variety G equipped with a group structure such that the
map

G ˆ G ›Ñ G.

px, yq fiÑ xy
´1 (3.7.15)

is regular. For example GLnpKq with matrix multiplication is an algebraic group. Prove that the irreducible
components of an algebraic groups are pairwise disjoint and they all have the same dimension.

Exercise 3.7.3. Let Mn,npKq be the vector-space of n ˆ n matrices with entries in K. If charK �“ 2 define
OnpKq and SOnpKq as usual:

OnpKq – tA P Mn,npKq | At ¨ A “ 1nu, SOnpKq – tA P OnpKq | DetA “ 1u, (3.7.16)

where 1n P Mn,npKq is the unit matrix.

1. Let Q – V pz21 ` z
2
2 ` . . . ` z

2
n ´ 1q Ä An, and let f : SOnpKq Ñ Q be the map associating to A P SOnpKq

its first column. Prove that f´1pzq is isomorphic to SOn´1pKq for every z P Q.

2. Let X be an irreducible component of SOnpKq. Prove that fpXq is dense in Q. Prove that if X is the
irreducible component containing 1n then fpXq contains an open dense subset of Q.

3. Prove by induction on n that SOnpKq is irreducible.

4. Prove that OnpKq has two irreducible components.

Exercise 3.7.4. Let , and
UnpKq :“ tZ P Mn,npKq | Detp1n ´ Zq �“ 0u.

The Cayley map is given by

UnpKq '›Ñ Mn,npKq
Z fiÑ p1n ` Zq ¨ p1n ´ Zq´1 (3.7.17)

1. Prove that ' defines a birational map f : Mn,npKq 99K Mn,npKq. Determine the rational inverse f´1 : Mn,npKq 99K
Mn,npKq

2. Assume that charK �“ 2. Let onpKq Ä Mn,npKq be the subspace of anti-symmetric matrices and let
SOnpKq Ä Mn,npKq be the group of special orthogonal matrices. Prove that if Z P onpKq X UnpKq then
'pZq P SOnpKq. Let  : onpKq X UnpKq Ñ SOnpKq be the restriction of '.

3. Prove that the image of  is dense in SOnpKq, and hence  defines a dominant rational map g : onpKq 99K
SOnpKq.

4. Prove that Regpf´1q contains an open dense subset of SOnpKq and hence g is a birational map.

5. Notice that g is defined over the prime field. Produce many matrices in SO3pQq.

Exercise 3.7.5. Let Un
d Ä PpKrZ0, . . . , Znsdq be the set of points rF s such that F is a prime polynomial.

1. Prove that if n • 2 then U
n
d is a dense open subset of PpKrZ0, . . . , Znsdq.

2. Prove that if d • 2 then the codimension of the complement of Un
d in PpKrZ0, . . . , Znsdq is equal to

˜
d ` n ´ 1
n ´ 1

¸
´ n. (3.7.18)

Let DivpPnq be the abelian group with generators the irreducible hypersurfaces in Pn. Thus an element of
DivpPnq is a formal finite sum D “ ∞

iPI miDi, where each mi is an integer, and the Di’s are pairwise distinct
irreducible hypersurface in Pn. The degree of D is defined to be

∞
iPI mi degDi. The divisor

∞
iPI miDi is

e↵ective if mi ° 0 for all i P I.

Let F P KrZ0, . . . , Znsd be non zero, and let F “
r±

i“1
F

mi
i be the decomposition into prime factors, where

for i �“ j the factors Fi and Fj are not associated. The divisor of F is the element of DivpPnq defined by

divpF q –
rÿ

i“1

miV pFiq. (3.7.19)
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3.7. Exercises

Let Divd
`pPnq Ä DivpPnq be the subset of e↵ective divisors of degree d. The map

PpKrZ0, . . . , Znsdq div›Ñ Divd
`pPnq

rF s fiÑ divpF q (3.7.20)

is a bijection. This gives a geometric interpretation of PpKrZ0, . . . , Znsdq. From now on we identify Divd
`pPnq

with PpKrZ0, . . . , Znsdq via the bijection in (3.7.20). If D “ ∞
iPI miDi is an e↵ective divisor, i.e. mi ° 0 for

each i P I, the support of D is the union of the Di’s and is denoted by suppD.

Exercise 3.7.6. Let Rd Ä Divd
`pPnq be the subset defined as follows:

Rd – tD P Divd
`pPnq | there exists a line ⇤ Ä suppD u. (3.7.21)

1. Prove that Rd is closed in Divd
`pPnq.

2. Prove that if d • 4 then Rd ‰ Divd
`pP3q.
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