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Chapter 0

Introduction

Motivation

We will describe some problems and results in order to whet your appetite. Some (or most) of the

statements below might leave you puzzled, do not worry, they will become clear later on. In fact one

of the goals of reading the book is to be able to understand what is written in the paragraphs below.
We start from the following well known indefinite integral:

J dx .
——— = arcsinz.
V1—2?
What if we ask

f dv ”

V=23

Note that one gets the first integral by writing out the formula for the length of arcs of a circle. Similarly,
one gets the second integral, or more generally integrals of functions p(:r)*l/ 2 where p is a polynomial
of degree 3 (or 4), if one sets out to compute the length of arcs of ellipses. There is no way to express
the second integral starting from elementary functions. What Fagnano discovered for similar integrals,
and what Euler amplified, is that, although we cannot express the integral via elementary functions,
there is a rational addition formula, i.e. there exists a rational function F' of four variables such that
for fixed Iy and varying a,b we have

+ const,

Ja do | Jb dv f dx
o V1—2a3 o V1— a3 lo V1— a3
¢ = F(a,b,\/1—a3,+/1—0b3).

Let us sketch a geometric explanation of the addition formula. First of all it is convenient to allow z, y to
be complex numbers. Since couples (z,4/1 — x3) are solutions of the equation 23 + y? = 1, we consider
the curve Cy = A%(C) whose equation is 22 + y? = 1, where A%(C) = C? is the standard complex affine
plane. Now Cj is a complex submanifold of A?(C), hence a 1-dimensional complex manifold. Since
it is not compact, we consider its closure C' = P?(C) in the projective complex plane. This means
adding a single point “at infinity”, namely [0, 0, 1] (we let [T, X,Y] be homogeneous coordinates, and
x=X/T,y=Y/T). Note that by integrating the 1-form dz/y on C (as we will do) we do not have to
pay attention to which of the two square roots of 1 — 2% we choose. A fundamental observation is that
dx/y is holomorphic on all of Cp, including the points (e>7™¥/3 0) where the denominator vanishes),
and moreover it extends to a holomorphic 1-form on all of C. In order to show that there is an
addition formula we fix a line Ry = P?(C) intersecting C' in 3 points Py, Dy, P3 and, given another line
R intersecting C' in 3 points p1, p2, p3, we let

fR dx fpl dx Jp dx JPS dx
— = —+| —+| —
Ro Y P ) Pa Y P3 Y

where



0. INTRODUCTION

Of course in order to make sense of the right hand side one needs to choose paths starting at p;
and ending at p; for ¢ € {1,2,3}. By Goursat’s Theorem the integrals do not vary if the paths are
homotopically equivalent. Hence if we let R move in a small open subset of P2(C)¥ we may choose
well defined homotopy classes of such paths and the integral above defines a well defined holomorphic
function on the open set. There is no way to define a holomorphic function
pa (" dr
Ry Y

on all of P?(C)": if we define it locally and then we move around, when we come back the value of the
function will change by an additive constant. Since it changes by an additive constant, the differential
d® is a well defined holomorphic 1-form w on all of P?(C)"¥ although @ is only well defined locally. Since
every holomorphic 1-form on a complex projective space is zero, we get that w = 0, i.e. the (locally
defined) function @ is constant. Now notice that the given points p1,ps € C there is a unique line R
containing p1, p2 (if p1 = p2 we let R be the tangent to C at p1), and that the coordinates of the third
point of intersection of R and C, i.e. p3, are rational functions of the coordinates of the first two points.
This gives the validity of the formula

Ja dx . Jb dx f dx . .
— —_— = ————— + const,
o V1—a3 o V1— a3 o V1— a3

where c is a rational function of (a, b, v1 — a3,4/1 — b3). With a little more work one gets from this the
addition formula as formulated above.
Next we ask more in general what can be said about integrals of the form

dx
V/D(x)’

where D(z) is a polynomial. For simplicity we assume that D(z) has no multiple roots. If D(z) has
degree 3, then the arguments above apply verbatim to give an addition formula. In general, the first
step is to consider the curve Cy = A?(C) whose equation is 4> = D(x). This is a 1-dimensional complex
submanifold of A%(C). Since it is not compact it is convenient to compactify. The closure of Cy in
P2(C) is compact, but if the degree of D(x) is greater than 3 then the closure of Cj is not a submanifold
of P?(C) at its unique “point at infinity”(i.e. [0,0,1]). Nonetheless there is 1-dimensional complex
manifold C containing Cy as an open dense subset, in fact C\Cy consists of a single point if D(x)
has odd degree, and consists of two points if D(x) has even degree. The qualitative behaviour of the
integral that we set out to study is determined by the topology of C. The C'*® manifold underlying C' is
connected, compact and orientable surface. By the classification compact surfaces it is homeomorphic
to a connected sum of g tori. In fact one show that

| degD -1
9=—5 |

(0.0.1)

(0.0.2)

For example, if D has degree 3 then g = 1, i.e. C' is a torus. Suppose that g > 1. Then there exists
an addition formula, but it involves the addition of vectors in CY obtained by integrating the g linearly

independent holomorphic 1-forms .
dv wdr i dr (0.0.3)
y oy Y
Lastly we discuss how the topological quantity g (the genus of C') controls the arithmetic of C'. Suppose
that the polynomial p(z) has integer coefficients. If p is a prime we let D(z) € F,[x] be the polynomial
whose coefficients are the equivalence classes of the coefficients of D - we say that D(z) is obtained
from D reducing modulo p. We suppose that D(z) has the same degree as D (i.e. p does not divide
the leading coefficient of D), and that D(z) does not have multiple roots in the algebraic closure of F,,.
We also assume that p & 2. For n > 1 let F,» be the finite field of cardinality p™, and let C(IF,n) be

4



the set of solutions in Fnof the equation y> = D(x). We view the points at infinity (there is one if
deg D is odd and two if deg D is even) as solutions “in F,»”. A convenient generating function for the
cardinalities |C(Fpn)| is given by Weil’s zeta function

Z(C,T) = exp (Z @

T”) . (0.0.4)
A famous theorem of Weil states that

29 —a;
Z(C,T) = (11_[—_1T()1(1—29TT)) (0.0.5)

where each a; is an algebraic integer of modulus p'/2 (the last statement is an analogue of Riemann’s
hypothesis). This shows that the topological genus g can be extracted from the number of solutions
(z,y) € A*(Fpn) of the equation y?> = D(z). We also see that there is an explicit formula giving
the cardinality |C(F,»)| for all n once we know the cardinalities |C(IF,)|,|C(Fp2)l, ..., |C(Fp2s)|. The
function of s obtained by making the substitution T = p~*%, i.e. Z(C,p~*%), is a precise analogue of
Riemann’s zeta function ((s), and the statement that each a; has modulus p'/2 is the analogue of the
Riemann Hypothesis. It is very compelling evidence in favour of the validity of the Riemann Hypothesis.






Chapter 1

Quasi projective varieties

Throughout the book K is an algebraically closed field, e.g. K = C or Q, the algebraic closure of the
rational field Q, or F,, the algebraic closure of the finite field F, where p is a prime. We are interested
in understanding the set of solutions (z1,...,2,) € K™ of a family of polynomial equations

filzi, ooy zn) =0, fr(z1,...,20) = 0.

“Polynomial equations” means each f; is an element of the polynomial ring K[z1, ..., z,].

In order to understand the geometry of a set of solutions of polynomial equations, it is convenient
to replace affine space A™(K) by projective space P*(K), and consider the set of points in P*(K) which
are solutions of homogeneous polynomial equations in the homogeneous coordinates. As motivation for
this step we recall that results in projective geometry are usually cleaner than in affine geometry - for
example two distinct lines in a projective plane have exactly one point of intersection, while two distinct
lines in an affine line may intersect in one point or be disjoint. If K = C we may guess that passing to
projective space makes life simpler because P*(C) with the classical topology is compact, while A™(C)
is not (unless n = 0).

Whenever there is no possibility of a misunderstanding we omit K from the notation for affine and
projective space, i.e. A” is A”(K) and P" is P"(K).

1.1 Zariski’s topology on affine space
If f1,..., fr €eKlz1,...,2n], we let

V(fi,o fy)={ze A" | fi(z2) =0 Yie{l,...,r}} (1.1.1)

More generally, if I < K[z1,. .., 2,] is an ideal (note: the inclusion sign < does not mean strict inclusion,

and similarly for o) we let
V(I)={zeA" | f(z) =0 V fel}. (1.1.2)

Unless n = 0 or I = 0 anideal I of K[z, ..., z,] has an infinite number of elements so that V' (I) is the set
of solutions of an infinite set of polynomial equations. However I has a finite set of generators f1,..., f»
by Hilbert’s basis Theorem A.3.6, and it follows that V(I) = V(f1,...,f). In fact it is clear that
V()< V(fi,..., fr). For the reverse inclusion V(fi,..., f.) € V(I) notice that if z € V(f1,..., f-) and
fel, then f=>7_, gif; for suitable g1,..., g, € K[z1,...,2,] and hence f(z) = >_, 9:(2)fi(z) = 0.

An elementary observation is that passing from ideals to their zero sets reverses inclusion, i.e. if
I,J < K|z,...,2,] are ideals then

I c J implies that V(I) > V(J). (1.1.3)

Proposition 1.1.1. The collection of subsets V(I) = A™, where I runs through the collection of ideals
of K[z1, ..., 2], satisfies the axioms for the closed subsets of a topological space.

7



1. QUASI PROJECTIVE VARIETIES

Proof. We have & = V((1)), A™ = V((0)).

Let I,J < K[z1,...,2,] be ideals. We claim that V/(I) u V(J) = V(I nJ). We have V(I),V(J) <
V(I nJ), because I,J > I nJ. Thus V(I) uV(J) < V(I nJ). Hence it suffices to show that if
ze V(I nJ)and z ¢ V(I), then z € V(J). Since x ¢ V(I), there exists f € I such that f(z) & 0. If
g€ J,then f-gelInJ, and thus (f - g)(z) = 0 because z € V(I n J). Since f(z) # 0, it follows that
g(z) = 0. This proves that z € V(J).

Lastly, let {I;}+cr be a family of ideals of K[z1,...,2,]. Then

(VL) = V({Li}er)),

teT

where ({I;}ie7) is the ideal generated by the collection of the I;’s. O

Definition 1.1.2. The Zariski topology of A™ is the topology whose closed sets are the sets V' (I), where
I runs through the collection of ideals of K[z1, ..., 2,]. The Zariski topology of a subset A < A™ is the
topology induced by the Zariski topology of A™.

Remark 1.1.3. If K = C, the Zariski topology is weaker than the classical topology of A™. In fact,
unless n = 0, the Zariski is much weaker than the classical topology, in particular it is not Hausdorff.

Ezample 1.1.4. A subset X < A™ is a hypersurface if it is equal to V(f), where f is a non constant
homogeneous polynomial.

A picture of a hypersurface in A? is in Figure 1.1. Notice that (z,y) are the affine coordinates -
in general, whenever we consider affine or projective space of small dimension, we will denore affine or
homogeneous coordinates by letters x,y, z,... and X, Y, Z, ... respectively.

What is the field K? The picture shows points with real coordinates. We can view the picture as a
“slice” of the corresponding hypersurface over C, or as the closure (either in the Zariski or the classical
topology) of the corresponding hypersurface over the algebriac closure of the rationals Q.

2

Figure 1.1: (22 +2y> = 1)(322 + 4 — 1) + 155 = 0

Given a subset X < A™, let
I(X):={feK[z,...,2n] | f(2) =0 for all ze X}. (1.1.4)

Clearly I(X) is an ideal of K[z1,...,2,] and X is contained in the closed set V(I(X)). Moreover
V(I(X)) is the closure of X in the Zariski topology. In fact suppose that V(J) < A" is a closed

8



1.2. Zariski’s topology on projective space

subset containing X. Then f(z) = 0 for all f € J and z € X, and hence J < I(X). This shows that
V(J) 2 V(I(X)) (recall (1.1.3)).

Remark 1.1.5. Let @ be a finite dimensional affine space over K of dimension n. Then the Zariski
topology on &7 may be defined by analogy with the case of A", simply replacing K[z1, ..., z,] by the K
algebra of polynomial functions on & (which is isomorphic to K[z1,...,2,]). Another way of putting
it is that an affine transformation of A™ is a homemorphism for the Zariski topology.

1.2 Zariski’s topology on projective space

Let F € K[Zy,...,Z,]a be homogeneous of degree d (to be correct we should say that F' belongs to
the homogeneous summand of degree d, because the degree of 0 is —0). Let © = [Z] € P". Then
F(Z) = 0 if and only if F(AZ) = 0 for every A € K*, because F'(A\Z) = A?F(Z). Hence, although F(x)
is not defined, it makes to state that F(z) = 0 or F(x) £ 0. Thus if Fy,...,F,. € K[Zy,...,Z,] are
homogeneous (of possibly different degrees) it makes sense to let

V(Fy,...,F.) = {zeP" | Fi(z) = ... = F.(z) = 0}. (1.2.1)

As in the case of affine space, it is convenient to consider the zero locus of ideals, but we need to consider
homogeneous ideals. An ideal I ¢ K[Zy, ..., Z,] is homogeneous if

e}
I=@1nK[Z,...,20]a, (1.2.2)
d=0

i.e. if it is generated by homogeneous elements. Let I < K[Zy, ..., Z,] be a homogeneous ideal; we let
V(I):={xeP"| F(x) =0 Y homogeneous F € I}.

By Hilbert’s basis Theorem A.3.6 I is generated by a finite set of homogeneous polynomials Fi, ..., F,
and hence V(I) = V(Fy,..., F.). Notice that if I < K[Zy,...,Z,] is a homogeneous ideal we have
two different meanings for V (1), namely the subset of P" defined above and the subset of A"*! defined
in (1.1.2). The context will indicate which of the two we mean.

Proceeding as in the proof of Proposition 1.1.1 one gets the following result.

Proposition 1.2.1. The collection of subsets V(I)  P™, where I runs through the collection of homo-
geneous ideals of K[ Zy, ..., Zy], satisfies the axioms for the closed subsets of a topological space.

Definition 1.2.2. The Zariski topology of P™ is the topology whose closed sets are the sets V(1) c P,
where I runs through the collection of homogeneous ideals of K[Z, ..., Z,]. The Zariski topology of a
subset A < P" is the topology induced by the Zariski topology of P".

Remark 1.2.3. Let 7: (K"*1\{0}) — P" be the map defined by 7(Z) = [Z], so that P" is identified as
the quotient of K"*1\{0} for the action by homotheties. The Zariski topology of P" is the quotient of
the Zariski topology on K"*1\{0}.

Remark 1.24. If F € K[Zy, ..., Z,] is homogeneous we let

B =PV (F). (1.2.3)
Thus P% is an open subset of P™.
From now on we make the identification
A" — P’ZLO
(21, ey2m)  —  [Liz1,...,20]

The Zariski topology of A™ induced by the Zariski topology on P" is the same as the Zariski topology
of Definition 1.1.2. In fact let X < A"™. Suppose first that X is closed for the topology induced

9



1. QUASI PROJECTIVE VARIETIES

from the Zariski topology of P", i.e. X = (P ) n V(Fy,..., F;), where each F; € K[Zy, Z1,...,Z,] is
homogeneous. Then X = V(f1,..., f.), where

filzi, ooy zn) == F(L, 21, .., 2n).

Next suppose that X is closed for the Zariski topology of Definition 1.1.2, i.e. X = V(f1,..., f») where
fi, ., freK[z1,...,2,]. We may assume that all f; are non zero because A™ is clearly closed for the
induced topology, and hence each f; has a well defined degree d; . For j € {1,...,r} let

d; . [ 1 Zn
Fi(Zyy....Zn) =2 f| =—,.... = |-
j( 0, ) ) 0 f (ZO ZO)
Then F} is a homogeneous polynomial of degree d; and hence V(Fi,...,F,) < P is a closed subset.
Since

V(fi,.. fr) = (Pg) n V(Fy,... . F),
we get that V' (f1,..., f.) is closed for the induced topology.

Ezample 1.2.5. A subset X < P" is a hypersurface if it is equal to V(F'), where F is a non constant
homogeneous polynomial. Notice that V(F') n A" is a hypersurface unless F' = cZg for some c € K*.

Given a subset A < P, let
I(A) :=(F eK[Zy,...,Z,] | F is homogeneous and F(p) = 0 for all p € A), (1.2.4)

where (,) means “the ideal generated by”. Clearly I(A) is a homogeneous ideal of K[Zy,..., Z,], and
V(I(A)) is the closure of A in the Zariski topology.

Definition 1.2.6. A quasi-projective variety is a Zariski locally closed subset of a projective space,
i.e. X cP"” such that X =U nY, where U,Y < P™ are Zariski open and Zariski closed respectively.

Ezample 1.2.7. By Remark 1.2.4, every closed subset of A" is a quasi projective variety.

Remark 1.2.8. If V is a finite dimensional complex vector space, the Zariski topology on P(V') is defined
by imitating what was done for P™: one associates to a homogeneous ideal I € Sym V'V the set of zeroes
V(I), etc. Everything that we do in the present chapter applies to this situation, but for the sake of
concreteness we formulate it for P™.

1.3 Decomposition into irreducibles

A proper closed subset X < P! (or X < Al!) is a finite set of points. In general, a quasi projective
variety is a finite union of closed subsets which are irreducible, i.e. are not the union of proper closed
subsets. In order to formulate the relevant result, we give a few definitions.

Definition 1.3.1. Let X be a topological space. We say that X is reducible if either X = ¢ or there
exist proper closed subsets Y, W < X such that X =Y u W. We say that X is irreducible if it is not
reducible.

Ezample 1.3.2. A subset A ¢ R™ with the euclidean (classical) topology is irreducible if and only if it
is a singleton.

Ezxample 1.3.3. Projective space P with the Zariski topology is irreducible. In fact suppose that
P = X uY with X and Y proper closed subsets. Then there exist homogeneous F € I(X) and
G € I(Y) such that F(y) & 0 for one (at least) y € Y and G(z) # 0 for one (at least) z € X. In
particular both F' and G are non zero, and hence FG # 0 because K[Zy, ..., Z,] is an integral domain.
On the other hand F'G = 0 because P =Y u W. This is a contradiction, and hence P™ is irreducible.

Remark 1.3.4. Since the field K is algebraically closed it is infinite, and hence there is no distinction
between the polynomial ring K[z1,..., z,] and the ring of polynomial functions in zy,..., z,. That is
implicit in the argument given in Example 1.3.3, and it will appear repeatedly.

10



1.3. Decomposition into irreducibles

Definition 1.3.5. Let X be a topological space. An irreducible decomposition of X consists of a
decomposition (possibly empty)
X=Xju---ulX, (1.3.1)

where each X; is a closed irreducible subset of X (irreducible with respect to the induced topology)
and moreover X; ¢ X; for all i # j.

We will prove the following result.

Theorem 1.3.6. Let A — P™ with the (induced) Zariski topology. Then A admits an irreducible
decomposition, and such a decomposition is unique up to reordering of components.

The key step in the proof of Theorem 1.3.6 is the following remarkable consequence of Hilbert’s
basis Theorem A.3.6.

Proposition 1.3.7. Let A c P", and let A > Xg D X1 D ... D X, D ... be a descending chain of
Zariski closed subsets of A, i.e X,y D Xpma1 for all m € N. Then the chain is stationary, i.e. there
exists mo € N such that X, = X, for m = my.

Proof. Let X; be the closure of X; in P*. Then X; = A n X;, because X, is closed in A. Hence we

may replace X; by X, or equivalently we may suppose that the X; are closed in P". Let I, = I(X,,).

Then Iy c Iy ¢ ... c I, — ... is an ascending chain of (homogeneous) ideals of K[Zy, ..., Z,]. By
Hilbert’s basis Theorem and Lemma A.3.3 the ascending chain of ideals is stationary, i.e. there exists
mo € N such that I,,, = I, for m = mg. Thus X,,, = V(Ip,) = V(1) = X, for m = my. O

Proof of Theorem 1.3.6. If A is empty, then it is the empty union (of irreducibles). . Next, suppose
that A is not empty and that it does not admit an irreducible decomposition; we will arrive at a
contradiction. First A in reducible, i.e. A = Xo u Wy with Xo, Wy < A proper closed subsets. If both
Xo and Wy have an irreducible decomposition, then A is the union of the irreducible components of X
and Wy, contradicting the assumption that A does not admit an irreducible decomposition. Hence one
of Xy, Wy, say Xg, does not have an irreducible decomposition. In particular X is reducible. Thus
Xo = X7 u Wy with X, Wy < X proper closed subsets, and arguing as above, one of X1, W7, say Xi,
does not admit a decomposition into irredicbles. Iterating, we get a strictly descending chain of closed
subsets
A2X02X12 2Xn2Xna 2

This contradicts Proposition 1.3.7. This proves that X has a decomposition into irreducibles X =
Xiu...uX,.

By discarding X;’s which are contained in X; with ¢ + j, we may assume that if ¢ + j, then Xj is
not contained in Xj;.

Lastly, let us prove that such a decomposition is unique up to reordering, by induction on r. The
case r = 1 is trivially true. Let » > 2. Suppose that X =Y; u ... U Y, where each Y} is Zariski closed
irreducible, and Y; ¢ Y} if j + k. Since Y is irreducible, there exists ¢ such that Yy < X;. We may
assume that i = r. By the same argument, there exists j such that X, c Y;. Thus Y, c X, c Y. It
follows that j = s, and hence Y; = X,.. It follows that X; u... U X,_1 = Y7 u... U Y, 1, and hence
the decomposition is unique up to reordering by the inductive hypothesis. O

Definition 1.3.8. Let X be a quasi projective variety, and let
X=Xju...uX,

be an irreducible decomposition of X. The X;’s are the irreducible components of X (this makes sense
because, by Theorem 1.3.6, the collection of the X;’s is uniquely determined by X).

We notice the following consequence of Proposition 1.3.7.

Corollary 1.3.9. A quasi projective variety X (with the Zariski topology) is quasi compact, i.e. every
open covering of X has a finite subcover.

11



1. QUASI PROJECTIVE VARIETIES

The following result makes a connection between irreducibility and algebra.
Proposition 1.3.10. A subset X < P" is irreducible if and only if I(X) is a prime ideal.

Proof. The proof has essentially been given in Example 1.3.3. Suppose that X is irreducible. In
particular X £ ¢ (by definition), and hence I(X) is a proper ideal of K[Zy, ..., Z,]. We must prove
that K[Zo, ..., Z,]/I(X) is an integral domain. Suppose the contrary. Then there exist

F.GeK|[Z,...,Z,), F¢I(X), G¢IX), (1.3.2)

such that
F-GelI(X). (1.3.3)

By (1.3.2) both X n V(F) and X n V(G) are proper closed subsets of X, and by (1.3.3) we have
X =(XnV(F))u (X nV(Q). This is a contradiction, hence I(X) is a prime ideal.

Next, assume that X is reducible; we must prove that I(X) is not prime. If X = ¢, then I(X) =
K[Zo,...,Z,] and hence I(X) is not prime. Thus we may assume that X £ (¥, and hence there
exist proper closed subset Y, W < X such that X =Y U W. Since Y ¢ W and W & Y, there exist
Fe(I(Y)\I(W))and Ge (I(WN\I(Y)). It follows that both (1.3.2) and (1.3.3) hold, and hence I(X)
is not prime. O

Remark 1.3.11. Let I := (Z2) < K[Zo, Z1]. Then V(I) = {[0, 1]} is irreducible although I is not prime.
Of course I(V (I)) is prime, it equals (Zp).

Remark 1.3.12. Let X < A™. Let I(X) < K[z1,...,2,] be the ideal of polynomials vanishing on X.
Then X is irreducible if and only if I(X) is a prime ideal. The proof is analogous to the proof of
Proposition 1.3.10. One may also directly relate I(X) with the ideal J < K[Zy, ..., Z,] generated by

homogeneous polynomials vanishing on X (as subset of P™), and argue that I(X) is prime if and only
if J is.

1.4 The Nullstellensatz

Let an ideal I in a ring R. The radical of I, denoted by /I, is the set of elements a € R such that
a™ € I for some m € N. As is easily checked, v/T is an ideal. Tt is clear that +/I < I(V(I)). The
Nullstellensatz states that we have equality.

Theorem 1.4.1 (Hilbert’s Nullstellensatz). Let I < K[z1,...,2,] be an ideal. Then I(V(I)) = +/I.

Before discussing the proof of the Nullstellensatz, we introduce some notation. For a = (aq,...,a,)
an element of A", let
My = (21 —a1,...,2n —an) = {f €K[z1,..., 2] | f(a1,...,an) =0}. (1.4.1)

Notice that m, is the kernel of the surjective homomorphism

K[z1,..., 2n] 2, K
f = f(ala"'van)v

and hence is a maximal ideal. The Nullstellensatz is a consequence of the following result.

Proposition 1.4.2. An ideal m < K[z1,..., z,] is mazimal if and only if there exists (ay,...,a,) € A"
such that m = m,.

Proof. We have shown that m, is maximal. Now suppose that m < K[zy,..., z,] is a maximal ideal. Let
F :=KJz1,...,2,]/m. Then F is an algebraic extension of K by Corollary A.5.2. Since K is algebraically
closed F' = K, and hence the quotient map is

K[z1,. .., 2] —2 K21, ..., za]/m = K.

12



1.5. Regular maps

Forie {1,...,n}let a; == ¢(z;). Then (z; —a;) € ker ¢. Since m, is generated by (21 —a1), ..., (zn —an)
it follows that m, < m. Since both m, and m are maximal it follows that m = m,. O

Corollary 1.4.3 (Weak Nullstellensatz). Let I < K[z1,...,2,] be an ideal. Then V(I) = & if and
only if I = (1).

Proof. If I = (1), then V(I) = . Assume that V(I) = . Suppose that I # (1). Then there exists a

maximal ideal m < K][z1, ..., 2z,] containing I. Since I < m, V(I) > V(m). By Proposition 1.4.2 there
exists @ € K such that m = m, and hence V(m) = V(m,) = {(a1,...,a,)}. Thus a € V(I) and hence
V(I) # . This is a contradiction, and hence I = (1). O

Proof of Hilbert’s Nullsetellensatz (Rabinowitz’s trick). Let f € I(V(I)). By Hilbert’s basis theorem
I=1(91,...,9s) for g1,...,9s € K[z1,...,2,]. Let J € K[z1,..., 2, w] be the ideal

Ji=(g1,-.-,9s, f-w—1).
Since f e I(V(I)) we have V(J) = & and hence by the Weak Nullstellensatz J = (1). Thus there exist
hi,...,hs,h € K[z1,..., 2y, y] such that

Dlhigi+h(f-w—1)=1.
=1

Replacing w by 1/f(z) in the above equality we get

;h <Z f(12>) gi(z) = L. (1.4.2)

Let d >> 0: multiplying both sides of (1.4.2) by f? we get that
D hi(2)giz) = f4(2), hieKla,... 2],
i=1

Thus f € V1. O

Ezample 1.4.4. Let V(F) < P™ be a hypersurface, and let Fi, ..., F, be the distinct prime factors of the
decomposition of F' into a products of primes (recall that K[Z, ..., Z,] is a UFD, by Corollary A.2.2).
The irreducible decomposition of V(F') is

V(F)=V(F))u...uV(F,).
In fact, each V(F}) is irreducible by Proposition 1.3.10. What is not obvious is that V(F;) ¢ V(Fj) if
F;, F; are non associated primes. This follows from Hilbert’s Nullstellensatz.
1.5 Regular maps

Let U < P™ be a locally closed subset. Suppose that Fy,...,F,, € K[Zy,...,Z,]qs are homogeneous
polynomials of the same degree, and that for all [Z] € U we have (Fo(Z),...,Fn(Z)) # (0,...,0). Let
[Z]1 € U. Then [Fy(Z),...,Fn(Z)] € P™ and if A € K* we have

[Fo(A\Z),...,Fn(AN2)] = [NFo(2),..., N F(2)] = [Fo(Z), ..., Fm(Z)].
Hence we may define

v — P

[Z2] —  [Fo(2),...,Fu(2)] (1.5.1)

Maps as above are the local models for regular maps between quasi projective varieties.
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1. QUASI PROJECTIVE VARIETIES

Definition 1.5.1. Let X < P" and Y < P™ be locally closed subsets (hence X and Y are quasi
projective varieties), and let p: X — Y be a map. Then ¢ is regular at a € X if there exist an open
U < X containing a such that the restriction of ¢ to U is described as in (1.5.1). (We assume that
(Fo(2),...,Fn(Z)) # (0,...,0) for all [Z] € U.) The map ¢ is regular if it is regular at each point of
X.

Remark 1.5.2. Let p: X — Y be a map between quasi projective varieties. Suppose that ¥ = | J,.; U;
is an open cover, that ¢ ~'U; is open in X for each i € I and that the restriction

e U) — U
r = ()

is regular for each ¢ € I. Then ¢ is regular. In other words regularity of a map is a local notion.

Proposition 1.5.3. A regular map of quasi projective varieties is Zariski continuous.

Proof. Let X < P® and Y < P™ be Zariski locally closed, and let ¢: X — Y be a regular map. We
must prove that if C < Y is Zariski closed, then ¢~1(C) is Zariski closed in X. Let U < W be an
open subset such that (1.5.1) holds. Let us show that ¢=*(C) n U is closed in U. Since C is closed
C=V({I)nY where I c K[Ty,...,Ty] is a homogeneous ideal. Thus

o HO) AU ={[Z] € U | P(Fo(Z),..., Fu(Z)) = 0VP e I}.

Since each P(Fy(Z),...,Fn(Z)) is a homogeneous polynomial, we get that ¢=1(C) n U is closed in U.

By definition of regular map X can be covered by Zariski open sets U, such that (1.5.1) holds with
U replaced by U,. We have proved that C, == ¢ 1(C) n U, is closed in U, for all a. It follows that
0~ 1(C) is closed. In fact let C, = X be the closure of C, and D, := X\U,. Since C, is closed in U,
we have

ConlUy=Cq=0 1 (C)NU,. (1.5.2)

Moreover D,, is closed in X because U, is open. By (1.5.2) we have

(€)= ()(Ca v Da).

[e%

Thus ¢~ 1(C) is an intersection of closed sets and hence is closed. O

It is convenient to unravel the condition of being regular for maps with domain a subset of an affine
space or both domain and codomain subsets of an affine space.

Ezample 1.5.4. Let X < A" (= P} ) and Y < P™ be locally closed subsets, and let p: X — Y be a

map. Then ¢ is a regular map if and only if, given any a € X, there exist fo, ..., fm € K[21,...,2,] (in
general not homogeneous) such that on an open subset U — X containing a we have
p(2) = [fo(2),. ., fm(2)]- (1.5.3)

(This includes the statement that V(f1,..., fm) nU = &.) In fact, if ¢ is regular there exist homo-
geneous Fy, ..., F, € K[Zy,...,Z,]a such that p([1,z]) = [Fo(1,2),..., Fn(l, 2)], and it suffices to let
fi(z) :== Fj(1, z). Conversley, if (1.5.3) holds, then

A Z 7 Z
ZosZhy e Zal) = (28, 784 (2L, 22 o zd (2L 2 1.5.4
90([ 0541, ) ]) [ 0> Ofl (Zoa 7ZO>’ ) Of Z07 ’Z() ]7 ( )

and for d is large enough, each of the rational functions appearing in (1.5.4) is actually a homogeneous
polynomial of degree d.
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1.5. Regular maps

FEzample 1.5.5. Let X < A™ and Y < A™ be locally closed subsets and let ¢: X — Y be a map.
Recall that A" = P and A™ =P . Then ¢ is regular if and only if locally there exist fo,..., fin €
K[z1,...,2n] (in general not homogeneous) such that

([ hiz) fm(2)
f(z) = (fo(z)""’ fo(z)>' (1.5.5)

Here it is understood that fo(z) & 0 for all z in the relevant open subset U of X. In fact this follows

from (1.5.3) if we divide the homogeneous coordinates of p(2) by fo(2) (by hypothesis it does not vanish
for z e U).

The identity map of a quasi projective variety is regular (choose F;(Z) = Z;). If ¢: X — Y and
1¥:Y — W are regular maps of quasi projective varieties, the composition ¥ o ¢: X — W is regular
because the composition of homogeneous polynomial functions is a homogeneous polynomial function.
Thus we have the category of quasi projective varieties. In particular we have the notion of isomorphism
between quasi projective varieties.

Definition 1.5.6. A quasi projective variety is
e an affine variety if it is isomorphic to a closed subset of an affine space (as usual A" = Py, < Py,
e a projective variety if it is isomorphic to a closed subset of a projective space.

Remark 1.5.7. Let X be an affine variety. If Y < X is closed then it is an affine variety. In fact
by hypothesis there exist a closed subset W < A™ and an isomorphism ¢: X —» W. Since ¢ is an
isomorphism it is a homeomorphism (see Proposition 1.5.3), and hence ¢(Y") is a closed subset of W.
Since W is closed in A", it follows that ¢(Y) is a closed subset of A™. The isomorphism ¥ — ¢(Y)
shows that Y is an affine variety. Similarly one shows that if X is a projective variety and Y < X is
closed, then Y is a projective variety.

The example below gives open (and non closed) subsets of an affine space which are affine varieties.

Ezample 1.5.8. Let f € K[z1,...,2,]. We let
i AMV(f). (1.5.6)
Let Y := V(f(21,...,2n) - w—1) € A" The regular map
A7 2 Y
1
(Z]_,...,Zn) Ld (Z]_,...,Zn,m)

is an isomorphism. In fact the inverse of ¢ is given by

Y N A7
(z1y. oy zmyw)  —  (21,...,2n)
FEzample 1.5.9. Let
_ d o & 0 Ca
Cd—{[go,...,ﬁd]e]? |1rk<£1 & £ > <1}. (1.5.7)

Since a matrix has rank at most 1 if and only if all the determinants of its 2 x 2 minors vanish it follows
that Cy4 is closed. We have a regular map

pt £ Ca

1.5.8
[s,t] +— [s% 8%, ... 19 ( )

Let us prove that o4 is an isomorphism. Let ¢4: Cg — P! be defined as follows:

[50751] if [507”'75(1] Ecdmpgo
[€a-1,€a] if [0, ... Ea] € Ca N PE,

Of course in order for this to make sense one has to check the following:

Ya ([€o, - - -, &al) ={
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1. QUASI PROJECTIVE VARIETIES

1. The subset €, is the union of the open subsets Cq N ]P>gO and Cy N ]P’gd.
2. The two expressions for ¥4 coincide for points in €y N IP’?O N Pgd.

To prove (1) suppose that [£] € €, and & = 0. By the equations defining % it follows that & = 0,
& = 0, etc. up to ... = &4_1. Hence if § = 0 then £; =+ 0, and this prove that Item (1) holds.
To prove Item (2) suppose that [{] € €4 N ]P’go N ]P’gd. By the equations defining % it follows that
& - & — &1&n—1 = 0 and hence [&p,&1] = [€4-1,&q]. This prove that Item (2) holds.

One checks easily that ¥4 0 ¢4 = Idp: and g 014 = Idg,. Thus ¢, is an isomorphism, as claimed.

Definition 1.5.10. The closed subset %; c P? defined in (1.5.7) or any X < PP? projectively equivalent
to €, (i.e. given by g(¢,) where g € PGL,(K)) is a rational normal curve in P2.

In the above definition “rational” refers to the fact that %, (and hence also any X projectively
equivalent to %) is isomorphic to P!, “curve” refers to the fact that P! (and hence also %) has
dimension 1 (we will define the dimension of a quasi projective variety later on), the attribute “normal”
will be explained later in the book.

The remark below shows that, in the definition of regular map, we cannot require that ¢ is given
globally by homogeneous polynomials.

Remark 1.5.11. Unless we are in the trivial case d = 1, it is not possible to define 14 globally as

Ya ([Sos -5 &al) = [P(&o,---,8a), Qo - - -, Ea)]s (1.5.9)

with P,Q € K[&,...,&4]e not vanishing simultaneously on %y. In fact suppose that (1.5.9) holds, and
let

pls,t) i= P(s,.. %), qls,t) i= Q(s7, .., 19),

The polynomials p(s,t), q(s,t) are homogeneous of degree de, they do not vanish simultaneously on a
non zero (so,to) € K2, and for all [s,t] € P! we have [p(s,t),q(s,t)] = [s,t]. The last equality means
that tp(s,t) = sq(s,t). It follows that p(s,t) = s-r(s,t) and q(s,t) = t-r(s,t) where r(s,t) has no non
trivial zeroes. Thus r(s,t) is constant. In particular de = degp = degq = 1, and hence d = 1.

The example below extends Example 1.5.9 to arbitrary dimension.

Example 1.5.12. We recall the formula

dimK[Zo, ..., Zp]a = (dzn). (1.5.10)

(See Exercise 1.9.9 for a proof.) Let N(n;d) := (d:") — 1. Let
P V_g) IP)N(n;d)

> (1.5.11)
[Z] — [Zg7Zg 1Z17~'~3Zg]

be defined by all homogeneous monomials of degree d - this is a Veronese map. Clearly v} is regular.
Note that for n = 1 we get back the map ¢4 in (1.5.8).

The homogeneous coordinates on PV ("4 appearing in (1.5.11) are indiced by length n + 1 multiin-
dices I = (ig,...,i,) € N**! such that deg I := ig + ...+ 4, = d; we denote them by [...,&;,...]. Let
V- PN () he the closed subset defined by

Vi =V &8¢k €L, ),

where I, J, L, K run through all multiindices such that I + J = K + L. Clearly v} (P") c #]'. Let us
show that v} is an isomorphism onto 7.
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1.5. Regular maps

Let s € {0,...,n}, and let H € N**! be a multiindex of degree (d — 1). We let e, € N**1 be the
element all of whose entries are equal to 0 except for the entry at place s + 1, which is equal to 1, and
H, = H + e,. Also let

/ydn\v(é-Ho’ R 7§H") ¢M) pn
[...,5[7...] — [EHm'-wa"]

Clearly ¢7(H) is regular. Moreover if [...,&r,...] € #* then there exist a multiindex H € N**! of
degree (d — 1) such that = belongs to ¥J\V (£my,...,Em,) for H € N" ! (there exists I € N"*1 of
degree d such that & 4 0 and I = H + e, where s is such that iy + 0). Moreover we claim that if
[...,&1,...] € ¥] belong both to the domain of ¢} (H) and to the domain of ¢%(H'), then

i (H)([- o8- ]) = (€m0 - 8m, ] = [Smgs -+ S ] = 0 (H')([2]).- (1.5.12)

In fact for s,t € {0,...,n} we have H, + H{ = H + H' + e; + e; = H; + H., thus £y, ~£H; —&m; &y =0
by the equations defining 7", and this proves that the equality in (1.5.12) holds. This shows that the
maps ¢ (H)’s define a regular map

yn i, pn, (1.5.13)

We claim that
piovy = Idpn (1.5.14)
vgopg = ldyp. (1.5.15)

The first equality is easily checked. In order to check the second equality it suffices to show that v} is
surjective. One may proceed as follows. Let z = [...,&7,...] € #;* be a point such that £z, + 0 for
some s € {0,...,n}. Thus z € (¥\V(&ny,---,&n,)) where H = (d — 1)eg. It is not difficult to show
that © = v ([my, - - -, €m,]). Hence it suffices to prove that if x = [...,&;,...] € ", then there exists
s € {0,...,n} such that 4., + 0. Equivalently, we must show that the following statement holds: if
&:=1(...,&,...)issuch that £z, =0 forall s€ {0,...,n} and & -&; = {x - &, whenever I +J = K+ L,
then &£ = 0 for all multiindices I. This is easily proved by “descending induction” on the maximum
of ig,...,in. If the maximum is d, then £; = 0 by hypothesis. Suppose that the maximum is at least
d/2, i.e. that there exists s € {0,...,n} be such that 2i; > d. Then 2I = des + J where J € N1 is
a multiindex of degree d and hence &7 = &4, - €5 = 0 by by the equations defining #;*. Thus &; = 0.
This proves that if the maximum is at least d/2 then &; = 0. Iterating the argument we get that if the
maximum is at least d/4 then £; = 0 etc.

The Veronese map allows us to show that the open affine subsets of a quasi projective variety form
a basis for the Zariski topology. First we need a definition.

Definition 1.5.13. Let X < P" be a closed subset. A principal open subset of X is an open U < X
which is equal to
Xp = X\V(F),

where F € K[ Zy, ..., Z,] is a homogeneous polynomial of strictly positive degree.

Claim 1.5.14. Let X < P™ be closed. A principal open subset of X is an affine variety.

Proof. First we prove the claim for X = P". Let F € K[Zy,...,Z,] be a homogeneous polyno-
mial of strictly positive degree d. In order to prove that P is affine we consider the Veronese map
v Pt — PN (m.d) "see (1.5.11). Let ¥ = im(v}) be the corresponding Veronese variety. As shown
in Example 1.5.12 the map P"* — 7" defined by v} is an isomorphism. Let F' =}, arZ', and let
H c PN(4) he the hyperplane H = V(3] ;ar&r. Then we have the isomorphism

Py — (V'\H)

U i (1.5.16)
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But PN\ [ is the affine space AN and hence (#*\H) is a closed subset of AN Hence the
map in (1.5.16) is an isomorphism between P% and closed subset of AN (n:d) " and therefore P?% is an
affine variety.

In general, let X < P™ be closed, and let F' be as above. Then X is a closed subset of the affine
variety P, and hence it is an affine variety, see Remark rmk:trapano. O

Proposition 1.5.15. The open affine subsets of a quasi projective variety form a basis of the Zariski
topology.

Proof. Since a quasi-projective variety is an open subset of a projective variety, it suffices to prove the
result for projective varieties. Let X < P™ be closed. Let U ¢ X be open. If U = X then

U=X=XZOUX21U...UXZ”, (1517)

and each of the Xz, ’s is an open affine subset by Claim 1.5.14.
Next asssume that U + X. Then U = X\V(Fi, ..., F,), where each Fj is a non constant homogen-
eous polynomial, and r > 1. Then
U=XF1 U...UXFT,

and each of the X, ’s is an open affine subset by Claim 1.5.14. O

1.6 Regular functions on affine varieties
Definition 1.6.1. A regular function on a quasi projective variety X is a regular map X — K.

Let X be a non empty quasi projective variety. The set of regular functions on X with pointwise
addition and multiplication is a K-algebra, named the ring of reqular functions of X. We denote it by
K[X].

If X is a projective variety, then it has few regular functions. In fact we will prove (see Corol-
lary 2.4.8) that every regular function on X is locally constant. On the other hand, affine varieties have
plenty of functions. In fact if X < A" is closed we have an inclusion

Klz1,. .., 2z0]/I(X) — K[X]. (1.6.1)

Theorem 1.6.2. Let X < A" be closed. Then the homomorphism in (1.6.1) is an isomorphism,
i.e. every reqular function on X is the restriction of a polynomial function on A™.

Theorem 1.6.2 follows from the Nullstellensatz. Before giving the proof we discusse a particular
instance of Theorem 1.6.2, which shows the relation with the Nullstellensatz. Let X < A™ be closed.
Suppose that g € K[z1,...,2,] and that g(a) # 0 for all @ € Z. Then 1/¢g € K[X] and hence The-
orem 1.6.2 predicts the existence of f € K[z1,...,2,] such that g~' = fix. Such an f exists by the
Nullstellensatz. In fact let X = V(g1,...,g,) where g1,...,9, € K[z1,...,2,]. By our hypothesis on ¢
we have V(¢1,...,9r,9) = &, and hence (g1,...,9r,9) = (1) by the Nullstellensatz. Hence there exist
fisoooy fry f €K[z1,. .., 2,] such that

f1'g1+,---7fr’9r+f'9=1~

Restricting to X we get that f(z) = g(z)~! for all x € X, as claimed.

Before proving Theorem 1.6.2, we notice that, if X < A™ is closed, the Nullstellensatz for K[z1, ..., z,]
implies a Nullstellensatz for K[z1, . .., 2,]/1(X). First a definition: given anideal J < (K[z1, ..., 2,]/1(X))
we let

V(IJ):={ae X | f(a) =0 VYfelJ}.

The following result follows at once from the Nullstellensatz.
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Proposition 1.6.3 (Nullstellensatz for a closed subset of A™). Let X < A™ be closed, and let J
(K[z1,-..,2,]/I(X)) be an ideal. Then

{f € (Kltse o 2l /ICO) | fivesy = 0} = V.
(The radical \/J is taken inside K[z1, ..., 2,]/1(X).) In particular V(J) = & if and only if J = (1).

We introduce notation that is useful in the proof of Theorem 1.6.2. Given a quasi projective variety
X, and f € K[X], let
X = X\V(f), (1.6.2)

where V(f) := {x € X | f(x) = 0}. Note the similarity with the notation for principal open subsets of
projective varieties.

Remark 1.6.4. Assume that X is affine, hence we may assume that X < A" is closed. The collection
of open subsets {X} is a basis for the Zariski topology of X. In fact let U be an open subset of
X. Then U = X\V(g1,...,9-) where g; € K[z1,...,2,] for i € {1,...,7}. Let f; = g;x. Then
U=X45 u...uX,.

Proof of Theorem 1.6.2. The proof is simpler if X is irreducible. We first give the proof under this
hypothesis. Let ¢ € K[X]. We claim that there exist f;,g; € K[21,...,2,] for 1 < i < d with g; ¢ I(X)
such that

(a) X = Ulginggm Le. V(gh- --agd) NX =,

_ fi(x)

(b) for all z € X, we have p(z) = 1575,

In fact by definition of regular function (see Example 1.5.5) there exist an open cover X = |J,c4 Ua

and fa,ga € K[21,...,2,] for each o € A such that U, ¢ X, and ¢(z) = gzgzg for each x € U,. Since

the Zariski topology is quasi compact (see Corollary 1.3.9) we may assume that index set A is finite,
say A = {1,...,d}. Of course we may asssume that g; & 0 for all i € {1,...,d}. Since X is irreducible
_ fi(=)
)
functions are Zariski continuous (see Proposition 1.5.3). This proves the claim. B

In the rest of the proof we adopt the following notation: for f € K[z1,...,2,] welet f = fx.

so is X4, and hence Uj; is dense in X,,. This imples that ¢(z)

on all of X, because regular

For i =1,...,d the equality g, = f; holds on X, by Item (2). Since X is irreducible and X, is a
non empty subset of X it is dense in X, and hence g,io = f, on all of X (this is where the hypothesis that
X is irreducible simplifies the proof). By Proposition 1.6.3 we have that (g;,...,9,) = (1), i.e. there
exist hy,...,hq € K[z1,..., 2z,] such that

1="higy + -+ hagy-
where h; 1= hi x . Multiplying by ¢ both sides of the above equality we get that
p= Elglcp + -+ ﬁdgdﬁp = 51?1 + ...+ El?d = (h1f1 + e+ hdfd)\X~ (163)
This shows that ¢ is the restriction to X of a polynomial function on A™.
Now we give the proof for arbitrary (closed) X. Let ¢ € K[X]. This time we claim that there exist

firgi € K[z1,...,2,] forie {1,... d} such that

1. X = U1<i<ngw ie. Vigr,...,9a) n X =,

2. for all a € X, we have p(a) =
3. for 1 <i < j we have (g;f; —¢9:fj)|x = 0.
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We start proving the claim as in the case of X irreducible. There is a finite open cover X = (J,c4 Ua

and fu, 9o € K[21,...,2,] for each a € A such that U, < X, and ¢(z) = gagg for each z € U,. We

may cover U, by open affine sets X,

@, 10

, X5, see Remark 1.6.4. Since V(g,,) ﬂ V(Fa,;) (recall

that g, and 7, ; are the restrictions to X of g, and 7a,; respectively), the Nullstellensatz for X gives
that, for each «,j, there exist N, ; > 0 and pio,; € K[z1,...,2,] such that 7a7j = Tla; - §o- Hence
() = paj (@) fa(®)/Va,;(@)Ned for all 2 € X, . Since V(ya,;) = V(Va 57) it follows that there exist
1 gi€K[z,...,2y] for i € {1,...,d} such that X = U?Zl Xy and o(z) = fi(z)/g;(z) for all z € X
Forie {l,...,d} let
fi = fig, 9i = (92)2-
Clearly Items (1) and (2) hold. In order to check Item (3) we write

(g:fi — 9ifi)x = (95 figi — (90 Fi95) |x = ((9ig)) (fig) — fi90)x

Since ¢(2) = fi(z)/gi(x) = fj(x)/g}(x) for all z € X, N X, the last term vanishes on Xy n Xy On
the other hand the last term vanishes also on (X\ X, N X, g;) = X nV(g;g;) because of the factor (g;g;).
This finishes the proof that there exist f;, g; € K[z1,...,2,] for i € {1,...,d} such that (1), (2) and (3)
hold.

Next, fori = 1,...,d let g, := g;x and fi= Jijx- Then

gip = fi- (1.6.4)
In fact by Item (1) it suffices to check that (1.6.4) holds on X for j = ,d. For j =1 it holds by
Ttem (2), for j + i it holds by Item (3). Given the equalities in (1 6.4), one ﬁmshes the proof proceeding
as in the case when X is irreducible. O

Ezample 1.6.5. Let X be an affine variety, thus we may assume that X < A" is closed. If f € K[X]
then Xy is a principal open subset of X. In fact by Theorem 1.6.2 there exists g € K[z1,...,2,] such

that f = gx. If d » 0 then
7 A
Zoy .o  Zy) =28
G( 0> 5 ) 09 (Z ZO)

is a homogeneous polynomial whose zero locus (in P™) is equal to the union of V(Zj) and V(g) (which
is contained in A"). Hence X¢ = (X\V(G)) = (X\V(g)) = Xy. An explicit isomorphism between Xy
and a closed subset of an affine space is obtained as follows. Let Y = V(J) < A""! where J is the
ideal generated by I(X) and the polynomial g(z1,...,25) - 2Zn+1 — 1. Then the map

Xy — Y
(Zl,...,Zn) —> (Zl,...,Zn,m)

is an isomorphism (see Example 1 5.8). Note that by Theorem 1.6.2 every regular function on X is

given by the restriction to Xy of fm, where h € K[X] and m € N.

1.7 Quasi-projective varieties defined over a subfield of K

Let F = K be a subfield, for example R = C, Q = C or F, = F, where ¢ = p" with p a prime.

Definition 1.7.1. A locally closed subset X < P™*(K) is defined over F if both the homogeneous
ideals I(X) < K[Zy,...,Z,] and I(X\X) < K[Zy,...,Z,] admit sets of generators belonging to
F[Zo,. ... Zn).

Trivially P*(K) and A™(K) = P"(K)g, are defined over the prime field, i.e. over Q if char K = 0 and
over I, if charK = p.
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Remark 1.7.2. A locally closed subset X < A"(K) = P"(K)_, is defined over F if both the ideals I(X)

K[z1,...,2,] and I(X\X) < K[z1, ..., 2z,] (in general non homogeneous) admit sets of generators which
belong to F[z1,...,2,]. This is so because a polynomial p € K[z1, ..., z,] of degree d vanishes on X if
and only if the homogeneous polynomial P := Z¢- f(Z,/Zy, ..., Zn/Z) vanishes on X, and conversely
a homogeneous P € K[Z, ..., Z,] vanishes on X if and only if P(1,z1,...,2,) € K[21,..., 2,] vanishes
on X.

Ezample 1.7.3. Let a = (ay,...,a,) € A™. If a; belongs to F for all i € {1,...,n} then {a} is defined
over F because its ideal is generated by (21 — a1,...,2, — a,). The converse is true if we make a

hypothesis on the field extension F' < K. Let Aut(K, F) be the group of automorphisms of K fixing
every element of F'. Assume that the field of elements of K fixed by Aut(K, F') is equal to F'. (Since K
is algebraically closed this holds if char K = 0 or, in case char K = p if F' is perfect, i.e. every element
of F has a p-th root in F' (necessarily unique).) With this hypothesis, suppose that {a} is defined over
F, and let py,...,p, € F[z1,...,2,] be generators of I({a}) < K[z1,...,2,]. For j € {1,...,r} let
pj = >, ¢j.rz! where ¢; 1 € F for each multiindex I. If o € Aut(K, F) we have

0=0(0) = a(pj(a)) =pj(o(ar),...,oan)) = ch_la(al)“ .olan)™ = pi(o(a)). (1.7.1)
T

(The third equality holds because p; has coefficients in F.) Since the above equality holds for generators
of the ideal of {a}, we get that (o(a1),...,0(an)) = (a1,...,a,) for all 0 € Aut(K, F'). By our hypothesis
on Aut(K, F) it follows that a; € F for all i.

Ezample 1.7.4. Let Q € R[Zy,...,Zy,]2 be a non zero quadratic form. Then Z = V(Q) < P*(C) is a
projective variety defined over R. In fact if ) has rank at least 2 then @ generates I(Z), and if @ has
rank 1, i.e. Q = L? for L € C[Zy, ..., Z,]1 then either L € R[Zy,...,Z,]1 or V=1L € R[Zy, ..., Zn]1.

Ezample 1.7.5. The Fermat hypersurface X = V(31" ; Z&) is defined over the prime field. In order to
check this one must show that I(X), i.e. the radical of (3, Z¢) is generated by a polynomial with
coefficients in the prime field. If charK does not divide d then the polynomial Y , Z¢ generates a
radical ideal in K[Zy, ..., Z,] (to see this take the formal partial derivative with respect to one of its
variables), and hence it generates I(X). Since the coefficients of Y\ ; Z¢ belong to the prime field we
are done. If char K = p > 0 write d = p’dy where p does not divide do. Then Y1, Z¢ = (37, Z&)P"
and hence I(X) is generated by > Zfo (see above). Since the coefficients of >, Zf“ belong to the
prime field we are done.

Remark 1.7.6. Let F < F' c K be an inclusion of fields, and let X < P"(K) be a locally closed subset
defined over F. Then X is also defined over F’. In particular if X is defined over the prime field it is
defined over every subfield of K.

Definition 1.7.7. Let X < P*(K) be a locally closed subset defined over F'. We let X(F) c X be the
set of points represented by (n + 1)-tuples (Zo, Z1, ..., Z,) € F*T\{(0,...,0)}.

Remark 1.7.8. Let X < A"(K) be a locally closed subset defined over F. Then X (F') c X is equal to
X nA™(F).

Remark 1.7.9. Let F < F' < K be an inclusion of fields, and let X < P"(K) be a locally closed subset
defined over F. Then X is also defined over F’ and hence X (F”) is also defined. In particular X (K) is
defined and equals X.

Remark 1.7.10. Let p be a prime, and suppose that F, € K where ¢ = p". Let X < P*(F,) be a locally
closed subset defined over F,. For each m € N there is a unique inclusion F, < F;m < K, and hence
we have X (Fym). Clearly X (F,m) is a finite set.

Definition 1.7.11. Let X < P"(F,) be a locally closed subset defined over F,, where ¢ = p". The
Weil Zeta function of X is defined to be formal power series in the variable T given by

Z(X,T) == exp ( i Mf;f”T"‘) (1.7.2)
m=1
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Definition 1.7.12. Let X < P*"(K) and ¥ < P"™(K) be locally closed subset, both defined over a
subfield F' < K. A map ¢ := X — Y is defined over F if for each a € X there exist an open U ¢ X
containing a and P; € F[Zy,...,Zy,]q for j € {0,...,m} (d depends on U), such that the restriction of
ptoUis

v — pm

21 — [R(2),..., Pu(2)]

(of course (Py(Z),...,Pn(Z)) # (0,...,0) for all [Z] € U).

(1.7.3)

Let F < K be a subfield. If X < P"(K) is a locally closed subset defined over F' then the identity
map Idy: X — X is clearly defined over F. If X < P*(K), and Y < P™(K), W < P{(K) are locally
closed subsets defined over F and ¢: X — Y, ¥: Y — W are regular maps defined over F' then the
composition 1) o p: X — W is also defined over F. In fact this holds because if P € F[Zy,...,Zmn]a4
and Qo,...,Qm € F[To,...,Tn]e then P(Qo,.. ,Qm) € F[To,...,Tn]de.

Hence we have the category of quasi projective varieties defined over F'. In particular we have the
notion of isomorphism over F' of varieties defined over F'.

Remark 1.7.13. Let X < P*(K) and Y < P™(K) be locally closed subsets defined over F. If p: X — Y is
a regular map defined over F' then ¢(X (F')) < Y (F) because the value of a polynomial with coefficients
in F at (Ay,...,A,) € F"*! belongs to F.

Ezample 1.7.14. Let Q1,Q2 € R[Zy, ..., Z,]2 be non degenerate quadratic forms, and let X; = V(Q;)
for i € {1,2}. Then X; < P"(C) is a projective variety defined over R. Since Q; is diagonalizable in
suitable coordinates, there exists a projectivity ¢: P"(C) — P™(C) whose restriction to X; defines an
isomorphism X; — X5. In particular X is isomorphic to X5 (over C). On the other hand X is not
necessarily isomorphic to Xp over R. In fact let Q1 = >}7_( Z7 and Q2 = Z5 — 37, Z7. Thus X;(R)
is empty while X5(R) is not empty. Since a regular map ¢: X; — X5 defined over R maps X;(R) to
Xo(R) it follows that X7 is not isomorphic to Xy over R (we assume that n > 1).

Under a suitable hypothesis we can avoid computing the radical of ideals if we wish to decide whether
a locally closed subset X < P"*(K) is defined over a subfield F < K. Let Aut(K/F') be the group of
automorphisms of K which are the identity on F.

Proposition 1.7.15. Suppose that the fized field of Aut(K/F) is equal to F. Let X < P"(K) be a
locally closed subset given by V(I)\V (J) where I,J < K[Zy, ..., Z,] are homogeneous ideals generated
by polynomials in F[Zy,...,Zy,]. Then X is defined over F.

Before proving Proposition 1.7.15 we go through a few preliminaries. The group Aut(K) of field
automorphisms of K acts on P” as follows: for o € Aut(K)
Aut(K) x P* —> P
(0,[Z0,y.--vZn)) +—  [0(Z0),...,0(Z,)]
Note that if X < A" (=P ) then o(z21,...,2,) = (0(21),...,0(2n))-

Remark 1.7.16. In general the map P — P™ that one gets by fixing a non trivial o € Aut(K) in (1.7.4)
is not regular. For example if F' = R < C and ¢ is complex conjugation the map is not regular.

(1.7.4)

Proposition 1.7.17. Let X < P*(K) be a locally closed subset given by V(I)\V(J) where I,J
K[Zo,...,Z,] are homogeneous ideals generated by polynomials in F|Zy,...,Z,]. If o € Aut(K/F)
then o(X) = X.

Proof. Tt suffices to prove that o(X) = X for X = V(I) < P*(K) where I < K[Zy,...,Z,] is a
homogeneous ideal generated by polynomials in F[Zy, ..., Z,]|. Let P € F[Zy,...,Z,] nI(X) be homo-
geneous. Thus P = Y, ¢;Z! where each c; belongs to F. If [Ag, ..., A,] € X then P(Ao,...,A4,) =0
and hence

0=0(P(Ag,...,An)) = Z o(er)o(Ag) .. .o(A,)" = Z cro(Ag) ... o(Ay)" = P(o(Ay),...,0(Ay)).
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This proves that o(X) < X because the ideal I(X) < K[Zy,...,Z,] is generated by homogeneous
elements in F[Zy, ..., Z,]. Thus we also have 0~!}(X) < X and hence X < o(X). O

Proof of Proposition 1.7.15. The group Aut(K/F) acts on K[Zy, ..., Z,] by acting on the coefficients of
polynomials. We claim that Aut(KK/F') maps I(X) to itself. In fact let 0 € Aut(K/F') and let P € I(X)
be a homogeneous polynomial, P = >, crZ. By Proposition 1.7.17 we have 0~ 1(X) = X, hence

o(P)(A) = ZO’(C[)AI =0 (Z cro (Ag) ... 0_1(An)i”'> =a(P(c(A)) = 0.
T

I

We have an obvious isomorphism K[Zy,...,Z,] = K®p F|[Zy,...,Z,] and the action of Aut(K/F)
that we have just defined matches the action considered in Section A.6. By Proposition A.6.3 it
follows that I(X) is generated (as K vector space by its intersection with F[Zy,...,Z,]. This proves
Proposition 1.7.15. O

Ezxample 1.7.18. Assume that charK = p > 0. Let F': K — K be the Frobenius automorphism:
F(a) = aP. Let r be a positive natural number. Of course F" is also an automorphism of K. Note that
F7(a) = a? and that F" € Aut(K/F,). There exists a unique embedding F, < K. Suppose that X < P
is a locally closed subset defined over F,. Proposition 1.7.17 gives that we have the bijective map

x = X
(Z] — [Z4,...,24].

This is the Frobenius map of X. Note the exceptional feature of the Frobenius map: it is regular (see
remark 1.7.16) and even defined over the prime field. Note also Note also that X (F,) is equal to the
fixed locus of

X (Fy) = Fix(m). (1.7.5)

1.8 Geometry and Algebra

Below is a remarkable consequences of Theorem 1.6.2.

Proposition 1.8.1. Let R be a finitely generated K algebra with no non zero nilpotents. There exists
an affine variety X such that K[X] = R (as K algebras).

Proof. Let aq,...,a, be generators (over K) of R, and let ¢: K[z1,...,2,] — R be the surjection of
algebras mapping z; to ;. The kernel of ¢ is an ideal I < K[zq,..., 2z,], which is radical because R
has no nilpotents. Let X := V(I) € A™. Then K[X] =~ R by Theorem 1.6.2. O

The Nullstellensatz allows one to construct X abstractly from the K algebra as follows. Let
Spec,,(R) := {m < R | m is a maximal ideal of R}
be the maximal spectrum of R. Hilbert’s Nullstellensatz gives a bijection

X o Spec,, (R)
p — {feR]|[f(p)=0}

Thus X may be identified with Spec,,,(R). Moreover f € R defines a function Spec,, (R) — K by setting
f(m) == f (mod m). This makes sense because the composition

K — R—> R/m (1.8.1)

is an isomorphism.
Actually we get a contravariant equivalence between the category of affine varieties over K with no
non zero nilpotents and that of finitely generated K-algebras. First we give a definition.
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Definition 1.8.2. Let ¢: X — Y be a regular map of non empty quasi projective varieties. The
pull-back ¢*: K[Y] — K[X] is the homomorphism of K algebras defined by

K[y] 2 K[x] (18.2)
f = foop

Proposition 1.8.3. Let Y be an affine variety, and let X be a quasi projective variety. The map

(X 5V | o requlary — {K[Y] -2 K[X] | « homom. of K-algebras}

. N o (1.8.3)

s a bijection.

Proof. We may assume that Y < A" is closed; for i € {1,...,n} let Z; == z;x. Suppose that f,g: X — Y
are regular maps, and that f* = ¢*. Then f*(z;) = ¢*(z;) for i € {1,...,n}, and hence f = g. This
proves injectivity of the map in (1.8.3).

In order to prove surjectivity, let a: K[Y] — K[X] be a homomorphism of K algebras. Let f; :=
a(Z;), and let ¢: X — A™ be the regular map defined by ¢(z) := (fi(x),..., fa(x)) for z € X. We
claim that p(z) € Y for all x € X. In fact, since Y is closed, it suffices to show that g(¢(z)) = 0 for all
g€ I(X). Now

9(p(x)) = g(fi(2), -, ful@)) = g(a(z1), ..., (Zn)) = alg(Z1), -, Zn) = a(0) = 0.

(The third equality holds because « is a homomorphism of K-algebras.) Thus ¢ is a regular map
f: X — Y such that ¢*(z;)) = a(z;) for i € {1,...,n}. By Theorem 1.6.2 the K-algebra K[Y] is
generated by Z1,...,Z,; it follows that ¢* = a. O

Corollary 1.8.4. In Proposition 1.8.1, the affine variety X such that K[X] = R is unique up to
isomorphism.

Proposition 1.8.3 shows that by associating to an affine variety over K the K-algebra of its regular
functions we get a contravariant equivalence between the category of affine varieties over K (with maps
the regular maps) and the category of finitely generated K-algebras with no non-zero nilpotent elements.
Note that if ¢: S — R is a morphism of finitely generated K-algebras with no non-zero nilpotent
elements the corresponding map (in the reverse direction) between the associated affine varieties is
given by

Spec,,(R) —>  Spec,,(S)
m - @7l(m) =m°

(notice that ¢~!(m) is maximal because ¢ is a morphism of K-algebras).

1.9 Exercises

Exercise 1.9.1. Which of the following subsets of A? are locally closed? Which are closed?
(a) X ={(z,y) | exp (2mv/—1z) = 1} = A?(C).
(b) Y = {(t,1?) | t e K} < A*(K).

@ W= {(Fo a) eV} < 220

2+ +1
(d) V= {(t tu) | (t,u) e K?} < A*(K).
Exercise 1.9.2. Compute I(Z) for
L. Z=V (2 +1) c AY(K),
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2. 7 =72 c A2(C),
3. Z =V (2% —y? 2% —ay) < A*(K).

Exercise 1.9.3. Let M3 2(C) be the complex vector-space of 2 x 2 complex matrices. Let n > 0 and
let U,, © M5 2(C) be the set of matrices T such that 7™ =1 (here 1 € M3 2(C) is the unit matrix).

1. Prove that U, is a closed subset (for the Zariski Topology) of Mz 2(C).
2. Describe the irreducible components of U,, and show that there are (”+1) of them.

2

Exercise 1.9.4. Let fi,..., f. € K[z, y] and suppose that
ng{fh .. ~7f7‘} =1.
Show that V (fi,..., fr) = A%(K) is finite.

Exercise 1.9.5. Let X < A?(K) be a proper closed irreducible subset. Show that Z is either a singleton
or an irreducible hypersurface.

Exercise 1.9.6. Let M, (K) be the vector-space of n x n matrices with entries in K, and let M,,(K)_ <
M, (K) be the subspace of skew-symmetric matrices. Let X € M, (K)_: then

0 x1,2 oo T1in
—T1,2 0 Z2.3 oo IT2n
X =| *13 —x13 0 ... X3,
—Tin —T2n 0
Thus {®1,2,...,%1,n, 2,3, - - -, Tn—1,n} i a basis of the dual of M,,(K)_, and hence K[1,2,. .., 1,0, T2,3, - - - s Tn—1,n]

is the K algebra of. polynomial functions on M, (K)_. Let A,, < M, (K)_ be the set of n x n singular
skew-symmetric matrices, and let d, be the polynomial on M, (K)_ given by d,(X) := det X. Then
A, is closed in M, (K)_ because A,, = V(4,). Prove the following:

(1.9.6a) If n is odd then A, = M, (K)_.
(1.9.6b) If n is even then A, is a hypersurface and I(A,,) # (6,).
Exercise 1.9.7. An affine map

A" — A"
A — A-Z+ B

(here Z, B are column vectors with n entries and A € GL,(K)) is an automorphism of A™.
(1.9.7a) Show that every automorphism of Al is an affine map.

(1.9.7b) Let n > 2. Show that if f € K[z1,...,2,-1] then

n 2y n
A — A (1.9.4)
z = (Zlv'“axnflvzn+f(zlv"'7zn71)

is an automorphism. Prove that ®; is an affine map if and only if deg f < 1.

Exercise 1.9.8. Show that one can prove the validity of Theorem 1.6.2 for A™ by invoking unique
factorization in K[z1,. .., 2, ], without using the Nullstellensatz.
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Exercise 1.9.9. Let K be a field. Given a finite-dimensional K-vector space V define the formal power series
pv € Z[[t]] as

MS

Pv (dlmk Sym V)

d

where Syde is the symmetric product of V. Thus if V = Kl[z1,...,2n]1 then Sd(K[xh...,xn]l) =
K[Ih...,l‘n]d.

1. Prove that if V. =U @ W then Py = Py - Pw.
2. Prove that if dimg V' = n then Py = (1 —¢)” " and hence the equality in (1.5.10) holds.

0

Exercise 1.9.10. The purpose of the present exercise is to give a different proof of the properties of the
Veronese map v, discussed in Example 1.5.12, valid if char K = 0, or more generally char K does not divide d!.
Let .

P(K[To,...,Tn]1) =% PK[To,...,Tnla) (1.9.5)

(L] = [L9]

and let #;' = im(uy). The above map can be identified with the Veronese map v}. In fact, writing L €
K[To,...,Ta]1 as L = 3", a;T;, we see that [ao, ..., an] are coordinates on P(K[Tp,...,Tn]1), and they give
an identification P* — P(K[Ty,...,Tn]1). Moreover, let

()t X PK[T,. .., Tala),
["'7517"'] e Z iol-.(%.!in!gITI

I=(ig,---yin)
Qo+ tin—d

where 77 = Tg° -...- T, By Newton’s formula (37 i T3)* = Y ﬁaITI, we see that, modulo the above
il in!

isomorphisms, the Veronese map v is identified with u}j, and hence ¥;* is identified with #,".
Now let us show that #," is closed. The key observation is that [F] € #;* if and only if ;; ey ;TF span

a 1-dimensional subspace of K[Zo, ..., Z,]. This may be proved by induction on deg F' and Euler s identity

i F
> Zja— = (deg F) - F, (1.9.6)
‘ 0Z;
j=0
valid for F' homogeneous. Now, the condition that az RN aaz span a 1-dimensional subspace of K[Zo, ..., Z,]

is equlvalent to the vanishing of determinants of all 2 x 2 minors of the matrix whose entries are the coordinates

of (j’;; . Z ; thus 7" is closed.
In order to show that pjj is an isomorphism, we notice that if F = L% where L € P(K[To,...,Tn ]1 is non
zero, then for each i € {0, ...,n} the partial derivative < oz7 If is a multiple of L (eventually equal to 0 1f =0),

and that one at least of such (n — 1)-th partial derivative is non zero. Thus, the inverse of uy is the regular
map 07 : #; — P(K[To,...,Tn]1) defined by

[anle] 1f 5"71F #07

. ozy ! ozy !
OF([F]) i={ e eninn (1.9.7)
An—1 .o on—1
[(oaz,g%] if az;% +0.

Exercise 1.9.11. Let X < P*(C) and Y < P™(C) be complex quasi projective varieties defined over
R, and let p: X — Y be a regular map defined over R. Note that the map X(R) — Y (R) defined by
the restriction of ¢ to X (RR) is continuous for the euclidean topologies of X (R) and Y (R). Using this
prove that the real quadrics

V(Z3 -7} - 73— 7Z3) < P*(C), V(Z3+ Z} —Z3 - Z3) < P3(C) (1.9.8)
are not isomorphic over R although they are isomorphic (actually projectively equivalent) over C.

Exercise 1.9.12. We recall that if ¢: B — A is a homomorphism of rings, and I < A, J < B are ideals, the
contraction I¢ — B and the extension J¢ c A are the ideals defined as follows:

I¢:= ¢~ (1), {2 i (bi) | i€ A, bieJVi=1,. } (1.9.9)
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(In other words, J¢ is the ideal of A generated by ¢(J).)
Let f: X — Y be a regular map between affine varieties and suppose that f*: K[Y] — K[X] is injective.

1. Let pe X. Prove that m; = my(,), in particular it is maximal.
2. Let ¢ € Y. Prove that
FHa) ={pe X |my >my},
and conclude, by the Nulstellensatz, that f~'(g) is not empty if and only if m¢ # K[X].
Exercise 1.9.13. The left action of GL,(K) on A™ defines a left action of GL,(K) on K[z1,...,2,] as
follows. Let ¢ € K[z1,...,2n] and g € GL,(K). Let z be the column vector with entries z1,...,2,: we define
g¢ € K[z1,...,2,] by letting
99(X) == (g~ - 2).
Now let G < GL,, (K) be a subgroup. The algebra of G-invariant polynomials is
K[z1,...,20]¢ := {¢K[z1,...,2n] €| gp = ¢ Vg € G}.

(it is clearly a K-algebra). Now suppose that G is finite. One identifies A" /G with an affine variety proceeding

as follows.

1. Define the Reynolds operator as

Prove the Reynolds identity
R(¢p) = ¢R (V) VoeK[z,...,2]°.

2. Let I < K[z1,...,2n] be the ideal generated by homogeneous ¢ € K[z1,...,2,]° of strictly positive
degree (i.e. non-constant). By Hilbert’s basis theorem there exists a finite basis {¢1,...,¢q} of I; we
may assume that each ¢; is homogeneous and G-invariant. Prove that K[z1,...,2,]% is generated as
K-algebra by ¢1,...,¢q. Since K[z, .. .,zn]G is an integral domain with no nilpotents it follows that
there exist an affine variety X (well-defined up to isomorphism) such that K[X] - K[z1,...,2,]°. One
sets A"/G =: X.

3. Let v: K[z1,...,2,]¢ < K[z1,...,2,] be the inclusion map. By Proposition 1.8.3, there exist a unique
regular map

A" T X = A"/G. (1.9.10)

such that ¢« = 7*. Prove that
m(p) =7(q) if and only if ¢ = gp for some g € G,

and that 7 is surjective. [Hint: Let J < K[z1,...,2,]¢ be an ideal. Show that J¢ n K[z1,...,2,]¢ = J
where J¢ is the extension relative to the inclusion ¢.]

Exercise 1.9.14. Keep notation and hypotheses as in Exercise 1.9.13. Describe explicitly A"/G and the
quotient map 7: A" — A"/G for the following groups G < GL,, (K):

1. n=2 G ={£1}.

2. n=2,G= <(“gC w91)> where wy, is a primitive k-th rooth of 1.
k

3. G = S, the group of permutation of n elements viewed in the obvious way as a subgroup of GL,, (K)
(group of permutations of coordinates).
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Chapter 2

Algebraic varieties

2.1 Introduction

The definition of quasi projective variety that we have given sounds very classical when compared to the
definition of smooth manifold that one learns in a first course in Differential Geometry. In the present
chapter we provide a definition of algebraic variety along the lines of the definition of smooth manifold.
Quasi projective varieties are examples of algebraic varieties, *¥¥#kiiork

2.2 Algebraic prevarieties

Definition of algebraic prevariety

Definition 2.2.1. Let X be a topological space. An algebraic atlas of X defined over K consists of
an open covering &/ = {A;},cr of X, and for each ¢ € I an affine variety V; defined over K (with the
Zariski topology) together with a homeomorphism ¢;: V; — A; (an affine chart), such that for each
1,7 € I the transition map

Vimgo;l(AimAj) LY ‘/}r\(p;l(Aiji)

p > ¢; ' (i(p) 221)

is a regular map of quasi projective varieties.

Ezample 2.2.2. Let X be a quasi projective variety. The collection &7 = {A;};cr of open affine subsets
of X is a basis for the Zariski topology of X, see Proposition 1.5.15. Choosing for every i € I the
identity affine chart Id,: A; — A; we get the canonical algebraic atlas of X.

Let (X, o) and (Y, %) be topological spaces with algebraic atlases over K. Thus o/ = {A;}icr
and % = {Bj}es are open coverings of X and Y respectively, and we are given homeomorphisms
;: Vi = A; and ¢;: W; — Bj for all i € I and j € J, where V; and W; are affine varieties.

Definition 2.2.3. A regular map (X, o) — (Y, B) of topological spaces with algebraic atlases defined
over K is a continuous map f: X — Y such that for all 4 € I and j € J the composition

e (A f7By) 2 A f B, s %, W, (2.2.2)

is a regular map of (quasi projective) varieties. As a matter of notation we denote the map by
(X, &) — (Y, %) or simply by f: X - Y.

Example 2.2.4. Let X,Y be quasi projective varieties and let &7, % be their canonical atlases, see
Example 2.2.2. If f: X — Y is a regular map, then it is a regular map of topological spaces with
atlases.
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Note that the composition of regular maps between topological spaces with algebraic atlases is
regular, and the identity map (X, &) — (X, &) is regular.

Definition 2.2.5. Let X be a topological space. An algebraic atlas &/ on X is equivalent to an
algebraic atlas # on X (both atlases defined over K) if the identity maps Idx = (X, &) — (X, #) and
Idx = (X, %) — (X, &) are both regular.

Note that &7 is equivalent to itself, &7 equivalent to % implies that £ equivalent to .«7, and that if
& is equivalent to Z and A is equivalent to €, then &7 is equivalent to ¥. This justifies the use of the
word “equivalent”.

Definition 2.2.6. An algebraic prevariety defined over K (or simply a prevariety) is a couple (X, [«/])
where X is a topological space and [«/] is an equivalence class of algebraic atlases. It is of finite type
it there exists a representative of the equivalence class of &7 with a finite set of indices. Let (X, [</])
and (Y,[4)]) be algebraic prevarieties over K; a map f: X — Y is regular if it is regular as map
(X, o) — (Y, %) (this makes sense because if it is regular for one choice of representative atlases then
it is regular for any choice).

Whenever the equivalence class of finite algebraic atlases [«/] is understood (or when we are too
lazy to write it out) we denote (X, [«]) by X. The topology of an algebraic prevariety (X, [</]) is
called (for obvious reasons) the Zariski topology of X.

Remark 2.2.7. A quasi projective variety with the equivalence class of its canonical atlas is a prevariety.
In fact it is a prevariety of finite type because the Zariski topology is quasi-compact, see Corollary 1.3.9.
Let X,Y be quasi projective varieties viewed as prevarieties (via their canonical atlases). A map
f: X — Y is regular (as map of prevarieties) if and only if it is a regular map of quasi projective
varieties.

Ezample 2.2.8. A finite algebraic atlas for P" is as follows. Let A; =P} = A" for i € {0,...,n}. Let
20(1), ..., zi—1(4), ziz1(2), ..., 2o (i) (there is no z(i)) be the affine coordinates on A; given by z,(i) =
Zs/Z;. We can think of the coordinates z4(i) as giving the map ¢;: A™ — A;. Thus 4,0;1(Ai NnA;) =
A™MV(z;(1)) and @;1(14]‘ N A;) = A"\V(2;(j)). The transition map ¢, ; is determined by the formulae

2i() e z,(3) ifs+i
so;-‘i(zsu))::{ﬂ” i) ifs (2.23)

P 0) ifs=i

Ezxample 2.2.9. Let X be a prevariety. An open subset U < X can be given the structure of a prevariety
so that the inclusion U < X is regular. In fact let {A;};c; be an algebraic atlas, with affine charts
w;: Vi —> A;. ForieIlet W; == 50;1(142» NU). Then W; is an open subset of V;, and it is the union of its
open affine subsets U; ; where j € J(i) for an index set J(i) which depends on ¢ € I. As algebraic atlas
of U we take the collection {p;(U; ;) }ier,jess) with affine charts oy, 1 Ui j — ¢i(U; ;). Similarly, a
closed subset Y < X can be given the structure of a prevariety so that the inclusion Y < X is regular.
We leave details to the reader. Lastly, if Y < X is a locally closed subset, say Y = U n W where U ¢ X
is open and W < X is closed, then Y is a closed subset of the prevariety U, and hence it inherits a
structure of prevariety.

Prevarieties of finite type have an irreducible decomposition. First we prove the following result.
Lemma 2.2.10. Let X be a prevariety of finite type, and let
XoXogoXyo...o0X, 2 X1 (2.2.4)

be a descending chain of closed subsets indexed by N. Then the chain is stationary, i.e. there exists
m € N such that X,, = Xy, 11 for alln = m.
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Proof. Let {A;}icr be a finite algebraic atlas, with affine charts p;: V; — A;. For each i € I the
descending chain of closed subsets

Vioei(Xo) Dl (X1) 2... 29l (Xn) D@} (Xng1) ... (2.2.5)

3

is stationary by Proposition 1.3.7. Thus there exists m; € N such that X,, = X,, 41 for all n = m;. The
proposition holds with m = max{m;};c; (which exists because I is finite). O

Proposition 2.2.11. If X is a prevariety of finite type it has an irreducible decomposition.

Proof. Since Lemma 2.2.10 holds, one can repeat word-by-word the proof of Theorem 1.3.6. O

Prevarieties defined over a subfield

Let FF < K be a subfield. Then one can repeat all the definitions above restricting to affine varieties
and regular maps defined over F' in order to define prevarieties defined over F. An algebraic atlas
o = {A;}ier on a topological space X with affine charts p;: V; — A; is defined over F if

1. for all ¢ € I the affine variety V; is defined over F,

2. for all 4, 5 € I the quasi projective variety V; n gpi_l(Al- N A;) is defined over F' and the transition
map in (2.2.1) is regular.

Let (X, [«/]) and (Y, [4]) be topological spaces X with algebraic atlases defined over F. A regular map
(X, [#]) = (Y,[#4)]) is defined over F if the maps in (2.2.2) are defined over F for every ¢,j. This
said it is clear how to mimick the definitions that we have given in order to define what are prevarieties
defined over F' and what are regular maps defined over F'. Note that if (X, [&/]) is a prevariety defined
over F' then X (F') makes sense, it consists of all the points p;(a) where a € V;(F'). This makes sense
because if p;(a) € A; then ;(a) = ¢; (wgl(wi(a))) and since the map appearing in (2.2.1) is defined
over F' we have w;l(cpi(a)) e V;(F). Moreover if f: (X,[</]) — (Y,[£]) is is a regular map defined
over F' then f(X(F)) c Y(F).

Gluing affine varieties

A method for producing a topological space with an algebraic atlas is to glue affine varieties along
open subsets via regular maps. The simplest case is the following: let V, W be affine varieties, with
isomorphic open subsets A = V and B < W, and let f: A —> B be an isomorphism. Let ~ be the
equivalence relation on V 1 W generated by letting p ~ f(p) forpe AV (and f(p) € B < W). Let

X =VuW/~

be the quotient topological space. Let 7: (V uW) — X be the quotient map. The associated algebraic
atlas of X is given by the open covering {m(V), (W)} and the homeomorphisms V — 7(V), W —
7 (W) obtained by restricting .

Ezample 2.2.12. Let V =W = Al, A = B = A"\{0}, and let

Ao anhfor L Al\{o}lc B (2.2.6)

z = z

and
A>AN{0} L& AN{0}c B

z = z

(2.2.7)
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2. ALGEBRAIC VARIETIES

Let X be the quotient topological space for the identification in (2.2.6), and let o/ be the corresponding
atlas. The prevariety (X,[</]) is isomorphic to P! with its canonical algebraic atlas. In fact let
$: V. uW — P! be the map defined by

oy ) Lz] ifzeV,
Pe) = {[z, 1] ifzeW. (2.2.8)

Then @ descends to a regular map ¢ = (X,.o/) —> P! which is an isomorphism. We will come back
later to the prevariety corresponding to the identification in (2.2.7).

A more general version of the gluing construction is as follows. Suppose that we are given

e a family of affine varieties {V;}cr,

o for all 4, j € I open subsets A; ; = V; and B; ; < V; and a (gluing) regular map ¢, ;: A; j — B, ;,
subject to the following conditions:
Hypothesis 2.2.13. 1. For allie I we have A;; = B;; = V; and ¢, ; = 1dy;.

2. For alli,j € I we have Aj; = B;; (and of course Bj; = A; ;) pij = <pj_zl

3. For alli,j, kel andpe A;; such that @;;(p) € Aji we have

P, (©5(P) = Pri(p)- (2.2.9)

Gluing Construction 2.2.14. Let ~ be the relation on | |,_; Vi defined as follows. Let p € V; and ¢ € V;
for i,j e I: thenp ~qif pe A; j, g€ B; ;, and ¢ = ¢;;(p). Then ~ is an equivalence relation. In fact
the relation is reflexive by Item (1), it is symmetric by Item (2), and it is transitive by Item (3). Let

Xo=| |Vi/~
iel

be the quotient topological space. Let 7: | |,.; Vi — X be the quotient map. The associated algebraic
atlas of X is given by the open covering {7 (V;)}ie; and the homeomorphisms V; — 7 (V;) obtained by
restricting 7.
Ezample 2.2.15. Let I :={0,1,...,n} and let V; = A" foralli € I. Let (20(4),...,2i—1(7), zi+1(%), .- ., 2, (%))
be affine coordinates on V; (note that there is no coordinate z;(i)). Let A;; := A™\V(z;(i)) and
Bi,j = An\V(Z,(j)) We define Pji- A’L',j — BiJ‘ by lettlng

zi(@)7 25(i) if s

zj_l(z) its=1

¢ i(2:(5)) == { (2.2.10)

One checks that Items (1), (2) and (3) above hold. The corresponding prevariety (X, [¢]) is isomorphic
to P", see Example 2.2.8. Explicitely, let @: Vo u ... u V,, —> P™ be the map defined by setting

Vi — P

(@), s 211 (D 21 @D r @) > [20(i)s szt (D L ziga (D), zn(@D)] 22D

Then @ descends to a regular map ¢ = (X, /) — P™ which is an isomorphism.

Ezample 2.2.16. Let (Y,[</]) be a prevariety, with affine charts ¢; = V; — A;. For i,5 € I let
Ai,j = 1/)2_1<A1 (@) AJ) and Bi,j = wj_l(AJ @) Al) Let
Pj,i
Aig = Bi; (2.2.12)
p = 9 (pip)

Then Hypothesis 2.2.13 holds, hence there is a corresponding prevariety (X,[#]), where £ is the
algebraic atlas {m(V;)}ier. Clearly (X,[4]) is isomorphic to (Y, .2/]) - this generalizes Example 2.2.15.
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As shown by the example above, the gluing construction is at the heart of the definition of prevariety.
In fact they are two different point of views of the same objects. In the definition of a prevariety we
are given a topological space and a collection of affine charts, in the gluing construction we are given a
collection of affine varieties and gluing data ¢;; and we define a topological space.

2.3 Products, algebraic varieties

Let X be a prevariety. The Zarisky Topology of X is not Hausdorff unless X is finite. Nonethless X
might share key properties of Hausdorff topological spaces. In fact suppose that X is an affine variety.
Thus we may assume that X < A" is closed. The square X x X < A" x A" = A?" is closed, so it
is an affine variety. Moreover the diagonal Ax < X x X is closed in the Zariski topology. In fact let
(1,..,Tn,Y1,---,Yn) be the obvious affine coordinates on A™ x A™: then Ax is the intersection of
X x X and the closed subset V(z1 — y1,22 — ¥2,...,Zn — Yn). Recall that a topological space X is
Hausdorff if and only if the diagonal in X x X (wuth the product topology) is closed. So apparently
we have a contradiction: if X is an affine variety which is not finite then it is not Hausdorff but its
diagonal is closed in X x X. In fact this is not a contradiction because if X is not finite the Zarsiki
topology on X x X si much finer that the product topology. The conclusion is that the right version
of Hausdorfness for an algebraic prevariety X is that the diagonal be closed in X x X. Thus our first
step is to define the product of prevarieties.

Products in a category

We start by recalling the definition of product of two objects in a category.

Definition 2.3.1. Let € be a category, and let X,Y € Ob(%) be objects of €. A product of X and Y
consists of an object Z € Ob(%) and morphisms px: Z — X and py: Z — Y (the projections) which
have the following universal property. Assume that W € Ob(%) and that f: W — X, g: W — Y are
morphisms. Then there exists a unique morphism h: W — Z such that the following is a commutative
diagram

(2.3.1)

Suppose that a product W of X and Y exists. If W' is another product of X and Y (with projections
Px: W' — X and pf,: W — Y), then there exists a unique morphism h: W — W’ commuting with
the projections, i.e. p’y o 8 = px and p} o 8 = py. Of course we also have the corresponding morphism
h': W' — W. By the unicity requirement in the definition of product the compositions A’ o h and ho b’
are equal to the identities of W and W’. Thus we have a well defined isomorphism between any two
products of X and Y (assuming a product exists). Since the product is well defined up to (unique)
isomorphism it makes sense to talk of “the” product of X and Y. One denotes it by X x Y. We denote
by (f,g) the unique morphism h appearing in (2.3.1).

Ezample 2.3.2. Let Sets be the category of sets (one has to be careful with definitions or one runs
into Russell’s paradox, but we ignore this point here). If XY € Ob(Sets) i.e. X,Y are sets, then the
Cartesian product X x Y with projections px (z,y) == « and py (z,y) = y is the product of X and Y
in the category Sets.

Ezample 2.3.3. Let Grps be the category of groups. If G, H € Ob(Grps) i.e. G, H are groups, then
the direct product G x H with projections pg(g,h) == g and pg(g,h) = h is the product of G and H
in the category Grps. Sets.
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Ezample 2.3.4. Let S be a set, and let Sets /S be the category whose objects are maps f: X — S from
a set X to S, and morphisms from a map f: X — S to a map g: Y — S are morphisms ¢: X — Y
which commute with f and g, i.e. a commutative diagram

xX—*% Ly (2.3.2)
\‘ /
S
The product of f: X — S and g: Y — S in the category Sets /S is given by the object
X xsY = {(:C,y)EXXY|f(£E):g(y)} - S (233)
(z,y) = f@)(=9)

(the fiber product of X and Y over S) with projections given by the restrictions of the projections
XxY—->Xand X xY —-Y.

Products of affine varieties

Let X, Y be affine varieties. Thus, we may assume that X < A™ and Y < A" are closed subsets. Then
X xY c A™x A" >~ A™*" is a closed subset, and the projections px: X xY — X andpy: X xY —» Y
given by the two projections are regular.

Proposition 2.3.5. Keeping notation as above, X xY with projections px,py is the product of X and
Y in the category of prevarieties.

Proof. Let W be a prevariety and let f: W — X, g: W — Y be regular maps. We must prove that
there exists a regular map h: W — X x Y such that px oh = f, p,oh = g, and that h is unique. Since
prevarieties are sets (with extra structure) and regular maps between prevarieties are maps between
the underlying sets (satisfying suitable conditions), if h exists it is necessarily given by

wo Y9 x

xY
p — (f(p),gp)

Thus all we need to prove is that (f,g) is regular. As we showed (see Example 2.2.16) any prevariety
is obtained by the gluing construction in 2.2.14. Thus W is obtained by gluing affine varieties {V;};es
as in 2.2.14. To simplify notation denote w(V;) = W by V;. It suffices to show that the restriction of
(f,g) to V; is regular. Since f and g are regular both the restrictions of f and g to V; are regular. It
follows at once that the restriction of (f,g) to V; is regular. O

(2.3.4)

The K algebra of regular functions of X x Y is constructed from K[X] and K[Y] as follows. Let
mx: X xY — X and my: X XY — Y be the projections. The K-bilinear map
KX]xK[Y] — K[X xY]

(fo) = 7)) (23.5)

induces a linear map

K[X] ®x K[Y] — K[X x Y]. (2.3.6)
Proposition 2.3.6. The map in (2.3.6) is an isomorphism.

Proof. We may assume that X < A™ and Y < A™ are closed subsets. Since X x Y < A™™" is
closed the map in (2.3.6) is surjective by Theorem 1.6.2. It remains to prove injectivity, i.e. the
following: if A < K[X] and B < K[Y] are finite-dimensional complex vector subspaces, then the
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map A® B — K[X x Y] obtained by restriction of (2.3.6) is injective. Let {f1,..., fa}, {91,--., 9} be
bases of A and B. By considering the maps

X — K® Yy — K®

2.3.7
2o (@S 2 o @) a(e) (237)
we get that there exist pi,...,p, € X and ¢i,...,q € Y such that the square matrices (f;(p;)) and
(9i(gj)) are non-singular. By change of bases, we may assume that f;(p;) = d;; and gix(qn) = Okn-
Computing the values of 7% (fi) - 7¥(g;) on (ps,q) for 1 < i,s < a and 1 < j,t < b we get that the
functions ..., 7% (f;) - 7§ (g;), ... are linearly independent. Thus A® B — K[W x Z] is injective. [

Products of prevarieties

Proposition 2.3.7. Let X,Y be prevarieties. There exists a product of X and Y in the category of
prevarieties.

Proof. By Example 2.2.16 X is obtained by gluing affine varieties {V;};cr as in 2.2.14, and Y is obtained
by gluing affine varieties {W;};c;. More precisely for each iy, i € I we have regular maps gpf;il : Aff@

Bi)f’iz, where Affﬂé c V;, and Bff’i2 c V,, are open subsets, and they are the gluings defining X.
Analogously, for each ji,j2 € J we have regular maps cpjyml : A}/l s B};jQ, where A}/l j» © Wj, and
B}i’ j, © Wj, are open subsets, and they are the gluings defining Y. Then we can glue the collection of
affine varieties {V; x Wj}(; jyerx. as follows. For (i1, j1), (i2,j2) € I x J let

=B, xBY . cVi,xW;, (23.8)

1,12 J1,J2

e X Y . . . . . . b
A(ihjl),(iz,jz) — Ail,iz x Aj17j2 < Vi, x le, B(’Llyjl),(7427J2) :

These are open subsets of V;; x W;, and V;, x W}, respectively. We let

Pi1,91),(i2,42)
Ao g T Blir.ji).ig.d2) (2.3.9)
(p,q) - (0 i (), 2%, 5, (0)

This collection of affine varieties and gluing maps satisfy the conditions in Hypothesis 2.2.13. Let Z be
the prevariety obtained by gluing the {V; x Wj}(; jjerxs’s as specified above. We have obvious maps
px:Z — X and py: Z — Y. In fact let z € Z. Then z = (p,q) € V; x W; for some (i,7) € I x J
(by no means unique). Here, in order to simplify notation, we denote 7% (V;) = X and n¥ (W;) € YV
by Vi and W; respectively. Then we let px(p,¢) = p and py (p,q) = g. As is easily checked the maps
px,py are regular. We claim that Z with the regular maps px and py is the categorical product of X
and Y. First note that the map of sets (px,pw): Z — X x Y is bijective. Hence, given regular maps
f:U— X and g: U — Y, there is a unique map h: U — Z of sets commuting with the projections.
In fact if uw € U we let h(u) be the unique z € Z such that px(z) = f(u) and py (z) = g(u). Arguing as
in the proof of Proposition 2.3.5 one shows that h is a regular map. O

Remark 2.3.8. We stress that the categorical product of prevarieties X,Y is canonically identified, as
a set, with the Cartesian product of X and Y.

Remark 2.3.9. Let X,Y be prevarieties, and let Xg < X, Yy < Y be locally colsed subsets. Then
Xo xYy © X xY is a locally closed subset. The restrictions of the projections X x Y — X and
X xY =Y to Xo x Yy define regular maps px,: Xo x Yo — Xo and py,: Xo x Yp — Yy. As is easily
checked, Xy x Yy with the regular maps px, and py, is the product of Xy and Yj.

Remark 2.3.10. If F' < K is a subfield and X,Y are prevarieties over F', then X x Y is defined over F.
We leave the reader check this fact.
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Separated prevarieties

Let X be a prevariety. The diagonal Ax < X x X is defined to be
Ax = {(z,x) |z e X}. (2.3.10)

This makes sense because as a set X x X is identified with the Cartesian square of X.

Ezample 2.3.11. Let X be an affine variety. Thus we may assume that X < A™ is closed. Then
X x X < A is closed. Letting (z1,...,Zn,¥1,-..,Yn) be the standard affine coordinates on A?", we
have

Axn(X xX)=V(x1 —y1,22 — Y2,y T — Yn) N (X x X). (2.3.11)

hence the diagonal of an affine variety is closed.

Remark 2.3.12. Let X be an algebraic prevariety. The diagonal Ax is a locally closed subset of X x X.
In fact by Example 2.2.16 X is obtained by gluing affine varieties {V;};cs as in 2.2.14. The open subsets
Vi x V; for (¢,7) € I cover X (to simplify notation we denote w(V;), m(A;;) and w(B;;) by Vi, A;; and
B;; respectively). Thus it suffices to show that the intersection of Ax with each open subset V; x V; is
locally closed in V; x V;. We have

Ax n (Vi x V) ={(z,y) € Aij x Bij | y = pji(z)}. (2.3.12)

Arguing as in Example 2.3.11 we get that Ax n (V; x V;) is a closed subset of the open set A;; x B;j,
and hence Ay is a closed subset of the open subset of X x X given by the union of all the A;; x B;j’s.

Ezample 2.3.13. Let (Y, [%]) be the prevariety defined by the second atlas (given by the regular map g)
in Example 2.2.12. Then the diagonal is not closed in Y x Y. In fact denote by V, W the open subsets
7(V), m(W) respectively. Then V x W =~ A? and

Ay n(V x W) ={(z,2) e A% | z + 0}, (2.3.13)
which is not closed.
Definition 2.3.14. An algebraic prevariety X is separated if the diagonal Ax < X x X is closed.

Ezample 2.3.15. By Example 2.3.11 an affine variety X with its canonical structure of prevariety is
separated.

Remark 2.3.16. Let X be a prevariety. We may assume that X is obtained by gluing affine varieties
{Vitier as in 2.2.14. As usual we denote 7(V;), m(A;;) and 7(B;;) by Vi, A;; and B;; respectively.
Since {V; x Vj}(; jyerz is an open covering of X x X the diagonal Ax is closed in X x X if and only if
Ax n(V; x V) is closed for all (i, j) € I2. Since Ax N (V; x V;) is closed, see Example 2.3.15, it suffices to
check that Ax n (V; x V}) is closed for all couples ¢ & j. We can halve the verifications needed because
Ax n (V; x Vj) is closed if and only if Ax n (V; x V;) is closed. Moreover, since Ax n (A;; x B;j) is
closed (see Remark 2.3.12), in order to show that Ax n (V; x V) is closed it suffices to show that there
exists a subset C' < A;; x B;; containing Ay n (V; x V;) which is closed in V; x Vj.

Ezample 2.3.17. Let (X, [<7]) be the prevariety defined by the first atlas (given by the regular map f)
in Example 2.2.12. Then (X, [«/]) is separated. In fact denote by V, W the open subsets 7(V'), (W)
respectively. Then V x W =~ A? and

Ay n(Vx W) =V(wz—1). (2.3.14)

Since (X, [</]) is isomorphic to P!, we get that P' is separated.

Ezample 2.3.18. Let (Y, [#]) be the prevariety defined by the second atlas (given by the regular map
g) in Example 2.2.12. The diagonal Ay is not closed in Y x Y, see Example 2.3.13. Hence (Y, [4]) is
not separated.
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The following result shows that separated prevarieties enjoy a key property of Hausdorff topological
spaces.

Proposition 2.3.19. Let X,Y be prevarieties, and assume that Y is separated. If f,g: X — Y are
regular maps, then the subset of X defined by

{re X | fz) = g(x)} (2.3.15)

is closed in X.

Proof. By the universal property of the product Y x Y (we let p1,p2 be the projections to Y') we have
the regular map (f,g): X — Y x Y such that p; o (f,g) = f and py o (f,g) = g. Let W be the subset
of X appearing in (2.3.15). Then W = (f,g) '(Ay). Since Y is separated Ay is closed and hence W
is closed. O

A useful result valid for separated varieties is the following.

Proposition 2.3.20. Let X be a separated prevariety. If U,V < X are open affine subsets then the
intersection U n'V is affine.

Proof. The map
UnV — (UxV)nAx

AR (o.0) (2.3.16)

is an isomorphism. Since U x V is affine and Ax is closed in X x X, it follows that U NV is isomorphic
to a closed subset of an affine variety, and hence is affine. O

Algebraic varieties
Definition 2.3.21. An algebraic prevariety is an algebraic variety if it is of finite type and separated.

An affine variety is an algebraic variety by Remark 2.2.7 and Example 2.3.15. Also P! is an algebraic
variety by Remark 2.2.7 and Example 2.3.17. More generally, a quasi projective variety is an algebraic
variety.

Proposition 2.3.22. A quasi projective variety (with its canonical structure of prevariety) is an algeb-
raic variety.

Proof. We have already noticed that a quasi projective variety is of finite type, see Remark 2.2.7. It
remains to show that it is separated. First we consider P" (the key case). Following Example 2.2.15, P™
is obtained by gluing (n + 1) copies {Vj,...,V,} of affine space A™. As usual we use the same symbol
Vi to denote m(V;). It suffices to check that Apn N (V; x V;) is closed in (V; x V;) for all ¢ + j. By the
formulae for the gluing maps in (2.2.10) we get that Apn N (V; x V;) is contained in the closed subset
V(z;(i) - 2:(j) — 1) < (V; x V;). Since this closed subset is contained in A;; x B;; we are done, see the
last sentence of Remark 2.3.16. Now let X < P" be a locally closed subset. Then X x X is a locally
closed subset of P x P and Apn n (X x X) = Ax. Since Apn is closed in P x P™, it follows that Ax
is closed in X x X. O

Next we consider constructions which, starting from an algebraic variety (or algebraic varieties)
produce another algebraic variety.

Let X be an algebraic prevariety, with algebraic atlas & = {4, }ic; and affine charts ¢;: V; — A;.
If U € X is an open subset then we define an algebraic atlas on U as follows. For ¢ € I the open subset
gp;l(Vi N U) < V; is the union of its open affine subsets. The restriction of ¢; to an open affine subset
Wik C gai_l(Vi N U) defines a homeomorphism v; . : Wix, — ;(W; ), and ¢;(W; 1) is open in U. Thus
U is covered by the open subsets ¢;(W; ;) and the maps 9, ;, give affine charts. If the algebraic atlas
4/ is replaced by an equivalent one we get an equivalent atlas of U. Thus we have equipped U with a
canonical structure of prevariety. Note that the inclusion map U — X is regular.
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Proposition 2.3.23. Let X be an algebraic variety. If U < X is an open subset with its canonical
structure of algebraic prevariety (see Example 2.2.9), then U is an algebraic variety.

Proof. We must prove that U is of finite type and separated. Since X is of finite type there exists a
finite algebraic atlas &/ = {A;,...,a,} with affine charts ¢;: V; — A;. The open subset gai_l(Vl- nU)
is the union of its affine open subsets, and since the Zariski topology of a quasi projective variety is
quasi compact it is the union of a finite family of open subsets. From this it follows that U has a finite
algebraic atlas, and hence is of finite type. The subset (U x U) < (X x X) is the (categorical) square
of U, this follows from the universal property of the product X x X and the fact that the ninclusion
U — X is regular. Since the diagonal Ay is equal to the intersection (U x U) n Ax in X x X and Ax
is closed in X x X, it follows that Ay is closed in U x U, and hence U is separated. O

Arguing as above one proves the following result.

Proposition 2.3.24. Let X be an algebraic variety. If Y < X is a locally closed subset with its
canonical structure of algebraic prevariety (see Example 2.2.9), then Y is an algebraic variety.

Proposition 2.3.25. If X, Y are algebraic varieties, then the product X x Y is an algebraic variety.

Proof. By hypothesis there exists finite algebraic atlases & = {A;}icr, & = {Bj}jes of X and Y
respectively, with affine charts ¢;: Vi — A; and o;: W; — B;. Then & x % = {A; x Bj}(; j)erx, With
affine charts ¢; x 9;: V; x W; — A; x B; is a finite algebraic atlas of X x Y. Thus X x Y is of finite
type. The projection maps f: (X xY)x (X xY) > X x X andtoY xY
(XxY)x (XxY) 5 XxX (XxY)x(XxY) 5 YxY (2.3.17)
((x1,01), (T2,92)) > (z1,22) (@190), (22,92)) = (y1,92) o

are regular (by the universal property of products) and hence continuous. Thus Axyy = f~1(Ax) N

g~ (Ay) is closed. This proves that X x Y is separated. O

Products of quasi projective varieties
In the present subsubsection we prove the following result.
Proposition 2.3.26. If X andY are quasi projective varieties, then X XY is a quasi projective variety.

Before proving Proposition 2.3.26 we go through a few preliminary results. A polynomial F(W; Z) €
K[Wo, .-, Wi, Zo, ..., Zn] is bihomogeneous of degree (d,e) if F(A\W;uZ) = MNu¢F(W; Z) for all \, u €
K. Let F; € K[Wy,...,Wm,Zo,...,Zy,] for i € {1,...,7} be a bihomogeneous polynomial of degree
(d;, e;). Then it makes sense to let

V(FL, ..., F) = {([W],[Z]) e P" x P" | F{(W; Z) = ... = F,(W;Z) = 0}. (2.3.18)

Claim 2.3.27. A subset X < P™ x P is closed if and only if there exist bihomogeneous polynomials
Fi,....,F. e K[Wo,...,.Wn,Zo,...,Zy] such that X =V (Fy,..., F.).

Proof. We have

P"x P = | ) Py, x Py (2.3.19)
0<i<m
0<j<sn
and each of the open subsets Py x IP”ZLJ, is isomorphic to A™*". If Fy,...,F, are as above, then

V(F1,.. ) 0 Py x P?% is clearly closed. It follows that V' (Fy,...,F,) is closed. Now suppose
that X < P™ x P" is closed. Then X n ISHARS P%j is closed for every i, j, and hence there exists

1i,j’_“7f8i,jEK[%,,,_7VV‘{2,%,...,?J?] such that
X APy, x Py = V( B ), (2.3.20)
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0J . d e 0,5 ( W, Wy Z Z :
If d » 0 and e » 0 are natural numbers then F;* = W . Z% - f; (W[j” W’?,Z—‘;,...,Z—?) is

bihomogeneous of degree (d,e) and V(Fl”) =V( l”) v V(W;) uV(Z;). Thus X is the zero locus of
all the bihomogeneous polynomials F}’s.
O

Remark 2.3.28. In the statement of Claim 2.3.27 we may require, if we wish, that all the Fj’s are
bihomogeneous of degrees (d;, d;), i.e. of the same degrees in both variables.

Next we introduce Segre varieties and Segre maps. Let M, 41 541 (K) be the K vector space of
complex (m + 1) x (n + 1) matrices. Row and column indices for matrices in M, 41,,+1(K) start from
0. Thus we denote them by

r—| T Tu oo T (2.3.21)
To Tmi oo Tom

Let
Yon = {[T] € P(Mp+1,n+1(K)) | 1k T < 1}.

Then %, ,, is a projective variety in P(M,41,n41(K)) = P47 In fact [T] € P(My41,n+1(K))
belongs to X, , if and only if the determinants of all 2 x 2 minors of 1" vanish. This is the Segre variety
in P(My11,n+1(K)).

If [W] € P™ and [Z] € P", viewed as column matrices, then W - Z* € M, 41 n,+1(K) and the rank of
W - Ztis 1. If we rescale W or Z then W - Z* gets rescaled. Thus we have a well defined Segre map

Prx Pt T S, (2.3.22)
(wzh) - [w-z'
Explicitly
Wo-Z0 Wo-Z1 ... Wo-Zo
oW L2 = || 20 A e T (2:3.23)
Wi Zo W20 oo W Zn

Proposition 2.3.29. The Segre map in (2.3.22) is an isomorphism of algebraic varieties.

Proof. First we prove that the Segre map is bijective. Let [T] € X,,, ,,. Then T has rank 1 because T' # 0.
Hence the associated linear map Lp: K*™1 — K™*! (given by Lp(U) = T - U, where U is a column
matrix) can be factored as Ly = Ly o Lz where Lyt : K"+l — K is surjective and Ly : K — Km+!
is injective. This gives that T'= W - Z*. We also get that ker(L7) = ker(Lz¢) and im(Lr) = im(Ly).
Thus W and Z are determined by [T] up to a scalar factor, and hence o, ,, is injective.

Next we prove that the Segre map is a homeomorphism. Let C' < X, ,, be a closed subset, i.e. C' =
me N Vr(Pl7 e ,Pr) where Pz € K[Too, T()l, Ce aTmn]d'- Then

i

ol (C) = V(PL(Wo - Zo,Wo - Z1,- .. W= Z)s e Pe(Wo - ZosWo - Z1, ..., W - Zy)). (2.3.24)

m,n

Since P;(Wy-Zo, Wo-Z1, ..., Wy,-Zy,) fori e {1,...,r} is a bihomogeneous polynomial (of degree (d;, d;)),
it follows that o, (C) is closed in P™ x P, se Claim 2.3.27. This shows that oy, is continuous.
Now suppose that D < P™ x P" is closed. By Claim 2.3.27 there exist bihomogeneous polynomials
Fy,...,F. e K[Wy,...,.Wp, Zo,...,Zy,] such that X =V (Fy,..., F,.). As noticed in Remark 2.3.28 we
may assume that F; is bihomogeneous polynomial of degree (d;,d;) for each ¢ € {1,...,r}, and hence
there exists P; € K[Tpo, o1, - - - s Tmn]a, such that

P(Wo - Zo,Wo - Z1,....Win - Zn) = F;(Wo, .., Win; Zo,- .., Zn). (2.3.25)

This implies that oy, (D) = Zpp "V (P4, ..., P) and hence o4, (D) is closed. Thus also the inverse
of the Segre map is continuous and hence oy, , is a homemomorphism.

39



2. ALGEBRAIC VARIETIES

It remains to show that the Segre map is an isomorphism of algebraic varieties. Recall that we have
the open covering in (2.3.19). Now oy, maps the affine space Py, x P, to the open set X, n\V (T5;)
and, as is easily checked the map

w, X PZ, — X n\V(T3) (2.3.26)
is an isomorphism (of affine spaces). It follows that oy, , is an isomorphism of algebraic varieties. [

Proof of Proposition 2.3.26. We may assume that X < P™ and Y < P” are locally closed. Then
X xY < P™ xP™ is locally closed, and it is the product of X and Y, see Remark 2.3.9. Since the Segre
map o P™ x P* — X, ,, is an isomorphism, it restricts to an isomorphism between X x Y and the
locally closed subset 0, (X x Y) < &, ,. Since X,,, is a projective variety, oy, (X x Y) is a quasi
projective variety.

O

2.4 Complete varieties

In the present section we introduce the notion of complete varieties, which are the analogues of compact
topological space in the category of prevarieties. The prime example of complete varieties are projective
varieties. We note that a complex quasi projective variety is complete if and only if, equipped with the
Euclidean topology, it is compact. Since every quasi projective variety is quasi compact (and also every
prevariety of finite type), one defines “compactness” for algebraic varieties by relying on a different
characterization of compact topological spaces.

Let M be a topological space. Then M is quasi compact, i.e. every open covering has a finite
subcovering, if and only if M is universally closed, i.e. for any topological space T, the projection map
T x M — T is closed, i.e. it maps closed sets to closed sets. (See tag/005M in [?].) A quasi projective
variety X is quasi compact, but it is not generally true that, for a variety 7', the projection T'x X — T
is closed. In fact, let X < P™ be locally closed; then Ax, the diagonal of X, is closed in X x P,
because it is the intersection of X x X < P™ x P™ with the diagonal Apn < P™ x P™, which is closed.
The projection X x P* — P™ maps X to X, hence if X is not closed in P", then X is not universally
closed. This does not contradict the result in topology quoted above, because the Zariski topology of
the product of quasi projective varieties is not the product topology.

Definition 2.4.1. An algebraic prevariety X is complete (or proper over K) if X is an algebraic variety
and it is universally closed, i.e. for any prevariety T, the projection map 7' x X — T is closed.

As noticed above, if X < P™ is not closed (e.g. Py ifn> 0), then it is not universally closed, and
hence X is not complete.
The following is a key result.

Theorem 2.4.2 (Main Theorem of Elimination Theory). Projective varieties are complete.

Proof. Let X be projective variety. Since X is an algebraic variety we must prove that X is universally
closed.

By hypothesis we may assume that X < P" is closed. We claim that it suffices to prove that P"
is universally closed. In fact assume that that P™ is universally closed. Let T be a prevariety and let
7 T x X — T be the projection. Let C = T x X be closed. Since T x X < T x P" is closed, C is
closed also in T x P™. Let 7k : T x P — T be the projection. Then 75X (C) = 75 (C'), and hence it
is closed because by assumption P" is universally closed. Since T is covered by open affine subsets, we
may assume that T is affine, i.e. T is (isomorphic to) a closed subset of A™ for some m. Lastly, we may
as well assume that T = A™.

To sum up: it suffices to prove that if C < A™ x P™ is closed, then m(C) is closed in A™, where
m: A™ x P — A™ is the projection. We will show that (A™\7(C)) is open. By Claim 2.3.27 there
exist F; € K[t1,...,tm, Zo,--.,2n] fori =1,... 7, homogeneous as polynomial in Zy, ..., Z, such that

C={t[2])]|0=Fi(t,Z) = ... = F.(t, Z)}.
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Suppose that F; € K[t1,...,tm][Zos-- -, Zn]4; 1-e. F; is homogeneous of degree d; in Zy,...,Z,. Let
t e (A™\n(C)). By Hilbert’s Nullstellensatz, there exists N = 0 such that

(F\(E 2), ..., Fo(£,2)) o K[Zo, ..., Zn]n. (2.4.1)

We may assume that N > d; for 1 <i<r. For t € A™ let

d(t
K[Zos .. Zolndy % oo % [Zos. s Zolnea, B K[Zo...., 2Zn]n
(Gl,...7GT) — Z;:l Gl Fl

Thus ®(¢) is a linear map: choose bases of domain and codomain and let M(t) be the matrix associated
to ®(t). Clearly the entries of M (t) are elements of K[t1,...,t,]. By hypothesis ®(¢) is surjective
and hence there exists a maximal minor of M(t), say M ;(t), such that det M; ;(¢) + 0. The open
(A™\V (det My, ;)) is contained in (T\m(C')). This finishes the proof of Theorem 2.4.2. O

Next give a few general results on complete algebraic varieties.
Proposition 2.4.3. Let X,Y be complete (algebraic) varieties.

1. If W < X is closed then (with its canonical structure of variety, see Proposition 2.8.24) W s
complete.

2. The product X x'Y 1is complete.

Proof. (1): We must check that W is universally closed. One argues as in the second paragraph of the
proof of Theorem 2.4.2. (2): By Proposition 2.3.25 X x Y is an algebraic variety. Hence it remains
to check that X x Y is universally closed. Let T be a prevariety, and let C < T x (X x Y) be closed.
Factoring the projection 7: T x (X x Y) — T as the composition of f: T x (X xY) - T x Y followed
by g: T xY — T, we get that f(C) € T x Y is closed because X is universally closed, and g(f(C),
i.e. m(C), is closed because Y is universally closed. O

If f: X — Y is a regular map between prevarieties, the graph of f is the subset I'y of X x Y defined
by
I'y:={(z, f(x))] ze X} (2.4.2)

Lemma 2.4.4. Let f: X —> Y be a reqular map between algebraic prevarieties, and suppose that'Y is
separated. Then the graph of f is closed in X X Y.

Proof. The map

(@y) = (f)y)
is regular, and hence continuous. Since I'y = (f x Idx) ' (Ay) and Ay is closed in Y x Y (because Y’
is separated) it follows that I'y is closed. 0

Proposition 2.4.5. Let X,Y be algebraic varieties, with X complete and Y separated. If f: X - Y
is a reqular map then it is closed.

Proof. Since, by Proposition 2.4.3, closed subsets of X are complete varieties, it suffices to prove that
f(X)isclosedin Y. Let 7: X xY — Y be the projection map. By Lemma 2.4.4 T'¢ is closed in X x Y,
and hence 7(I'y) is closed in ¥ because X is complete. Since f(X) = n(I'y) we are done. O

Corollary 2.4.6. Let X be a complete algebraic variety and let Y < X be a locally closed subset (with
its canonical structure of algebraic variety, see Proposition 2.3.24). Then'Y is complete if and only if

Y is closed.
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Proof. If Y is closed then it is complete by Proposition 2.4.3. Conversely, suppose that Y is com-
plete. Since the inclusion map i: ¥ — X is regular and X is separated, Y = i(Y") is closed in X by
Proposition 2.4.5. O

Remark 2.4.7. In particular a locally closed of a projective space is projective only if it is closed. By
way of contrast, notice that it is not true that a locally-closed subset of A™ is affine if and only if it is
closed. In fact the complement of a hypersurface V(f) < A” is affine but not closed.

Corollary 2.4.8. Let X be a complete algebraic variety. A reqular map f: X — K is locally constant.
If X is irreducible (recall Proposition 2.2.11) then f is constant.

Proof. Composing f with the inclusion j: K < P!
K < P!
z o~ [l7]
we get the regular map j o f: X — P'. By Proposition 2.4.5 j o f(X) is closed, i.e. j o f(X) = V(I)
for some homogeneous ideal I < K[Zy, Z1]. Since [0,1] ¢ j o f(X) there exists a non zero polynomial

P e I and hence jo f(X) = f(X) is contained in the finite set V(P). The second statement follows at
once from the first. O

(2.4.4)

2.5 Algebraic vector bundles

Definitions and first examples

A very important notion in Topology and in Differential Geometry is that of continuous and C'* vector
bundle respectively. One defines an analogous notion in the context of algebraic varieties.

Definition 2.5.1. Let X be an algebraic variety defined over K. A rank r algebraic vector bundle over
X (we call it a line bundle if r = 1)consists of the following data:

1. A regular map 7: E — X of algebraic varieties.
2. For each x € X a structure of K vector space of dimension 7 on the fiber E(z) := 7~ 1(x).
These data are subject to the following conditions.

(a) There exist an open cover X = [J,.4Us and for each a € A an isomorphism of varieties
Yo: ™ HUy) —> U, x K" such that the diagram

) —— 2 U, xK" (2.5.1)

where pr, is the projection. (This is a trivialization of E over Uy.)
(b) For each o € A and z € U, the restriction of ¢, to E(z), which is an isomorphism
Ya(z): E(z) — {7} x K" = K" (2.5.2)
by Item (a), is a K-linear map (and hence an isomorphism of K vector spaces)

Example 2.5.2. Let X be an algebraic variety. Then E = X x K" with n: E — X given by the
projection map is clearly a rank r algebraic vector bundle on X.

42



2.5.  Algebraic vector bundles

An algebraic vector bundle is always of a fixed rank, even if we do not mention explicitly the value
of the rank. From now on by vector bundle on an algebraic variety X we mean an algebraic vector
bundle on X.

Definition 2.5.3. Let X be an algebraic variety, and let 7: E — X be a vector bundle of rank r on X.
If Y = X is a locally closed subset with its canonical structure of algebraic variety, then 771(Y) — Y
is a vector bundle of rank 7 on Y. We denote it by Ey.

Definition 2.5.4. Let X be an algebraic variety (defined over K), and let 7: E — X, p: F' — X be
vector bundles on X. A morphism of vector bundles E — F consists of a regular map of algebraic
varieties g: ' — F' such that the diagram

E%F
X

is commutative, and such that for every x € X the restriction of g to E(x) is a linear map g(z): E(z) —
F(x) of K vector spaces.

(2.5.3)

The identity map Idg: E — FE of a vector bundle is a morphism of vector bundles, and the com-
position of morphisms of vector bundles on X is a morphism of vector bundles on X. Hence vector
bundles on X form a category. In particular we have the notion of isomorphic vector bundles on X.

Definition 2.5.5. Let X be an algebraic variety. A vector bundle E of rank r on X is trivial if it is
isomorphic to the vector bundle in Example 2.5.2.

Next we define a fundamental line bundle on projective space. Let V be a finite dimensional K
vector space. We view points of P(V') as 1 dimensional (vector) subspaces £ < V. Let L c P(V) x V
be defined by

L={{,v)eP(V)xV |vel}] (2.5.4)

We claim that L is a closed subset of P(V) x V', and hence an algebraic variety. In fact choose a basis
of V so that V and P(V) are identified with K"*! and P" respectively. Then

L={[Zo,..., Zn], (Wo, ..., W) € P" x K1 |xk [ 20 =+ Zn ) <y, (2.5.5)
Wo ... W,

This shows that L is closed in P(V) x V. Let w: L — P(V) be the restriction of the projection
P(V)xV - P(V). If £e P(V) then L(f) = 7—1(¢) = ¢ and this gives the structure of 1 dimensional K
vector space to L(£). Let i € {0,...,n}. We define @;: 7~ (P} ) — P% x K as follows:

T (Py) S5 Py xK (2.5.6)

(ZLw) - (21, W)
This shows that L — P(V) is a line bundle. It is called the tautological line bundle on P(V). If n > 0
then L is not trivial. Before showing this we introduce sections of a vector bundle.

Definition 2.5.6. Let X be an algebraic variety, and let 7: E — X be a vector bundle on X. A
section of E is a map o: X — E such that m o 0 = Idy, i.e. such that o(z) € E(x) for every z € X.
The section o is regular if it is regular as map of algebraic varieties.

FEzample 2.5.7. Let X be an algebraic variety, and let £ = X x K" with 7: E — X the projection.
A regular section o: X — FE is equivalent to the r-tuple of regular maps f;: X — K that one gets
by projecting to factors of K. Let o; for i € {1,...,r} be the section corresponding to the r-tuple
0,...,0,1,0,...,0) with 1 is in the ¢-th place. Then for every z € X the vectors o1(x),...,0.(z) € E(x)
form a basis of E(z).
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Ezample 2.5.8. Let X be an algebraic variety, and let 7: F — X be an algebraic vector bundle. The
zero section of E is defined by setting o(x) :== 0 € E(x) for every z € X. This is a regular section.

We let
I'(X,E) ={0: X — E| o is a section of E}. (2.5.7)

The sum of regular sections is a regular section, and the product of an element of K by a regular section
is a regular section. With these operations I'(X, E') acquires the structure of a K vector space. The
zero of the vector space is the zero section.

Remark 2.5.9. Let X be an algebraic variety, and let 7: E — X be an algebraic vector bundle. Let o
be a section of E. If x € X then it makes sense to state that o(z) € E(x) is zero or not. The notation
o(x) = 0 means that o(x) is zero. The zero-set of o is the subset of X defined by

Z(0) = {ze X | o(z) = 0}. (2.5.8)

As is easily checked Z(0) is a closed subset of X.

Let E — X and F — X be vector bundles on X, and suppose that ¢: E — F is a morphism of
vector bundles. If ¢ is a regular section of £ — X then poo: X — F'is a regular section of F. Usually
one denotes ¢ o o by ¢(c). As is easily checked the map

I(X,E) — I(X,F)

o . () (2.5.9)
is K linear. In particular if F and F' are isomorphic, then their spaces of global sections are isomorphic.

Remark 2.5.10. Let E — X be a vector bundle of rank r on X. Then F is trivial if and only if there
exist 0; e I'(X, E) for i € {1,...,r} such that for every x € X the vectors o1(z),...,0.(x) € E(z) form
a basis of E(z). In fact if F is trivial then o4,..., 0, exist by Example 2.5.7. Conversely, suppose that
there exist such o1, ...,0,. Then the map

X xK" — E

is an isomorphism of vector bundles.

Proposition 2.5.11. Let V be a finitely generated K vector space of dimension at least 2, and let L be
the tautological line bundle on P(V'). Then T'(P(V), L) = {0} and L is non trivial.

Proof. Let o € T(P(V), L). The composition
PV)- S L—>PV)xV —V KT (2.5.11)

is regular and hence constant by Corollary 2.4.8. The unique element in the image is a vector which
belongs to every 1 dimensional (vector) subspace of V. Since dimV > 2 it follows that it is the zero
vector. Since there are no nonzero sections of L it follows that L is non trivial, see Example 2.5.7. [

Vector bundles and 1-cocycles

Let m: E — X be a rank r vector bundle. We assume that it is trivial on each open set of a covering
{Uqs}aca as in Definition 2.5.1. For a, 8 € A we define the corresponding transition map as follows:

Uy nUs 25 GL,(K)

r o el oy (@) (25.12)

Note that gag is a regular map between algebraic varieties (GL, (K) = M, ,.(K)\V (Det,.) where Det,.(g) =
Det(g) is the determinant of g € M, (K), and hence GL,(K) is an affine variety).

Remark 2.5.12. Let {gop} be as above. Then the following hold:
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1. For a € A we have gyo(z) = 1, for all z € U, (1, is the unit 7 x r matrix).

2. For a, 8 € A we have ggo(z) = gap(z) L.

3. For o, 8,7 € A we have go3() - ggy () = gary(x) for all x € Uy, n Ug N U,.

Example 2.5.13. Let m: L — P™ be the tautological line bundle. Then we have the trivialization ¢; of
L over P}, given by (2.5.6). Thus we have

Py xK -5 w—l(JP’%i) (2.5.13)
([z}.t)  — (2]t 2;77) 2)

It follows that g;; = ¢; o 90;1 is given by
9i([2]) = =, [Z]e Py APy, (2.5.14)

Here we identify GL; (K) with K*.

Definition 2.5.14. Let X be an algebraic variety and {U, }aea an open covering of X. A 1-cochain with
values in GL,(K) (relative to the given open covering) consists of the assignment of a regular function
gap: Us 0 Ug — GL,(K) to each couple (a, ) € A%2. We denote it by g = {gas}. The l-cochain g is a
1-cocycle if Ttems (1), (2) and (3) hold.

Thus we have assigned a 1-cocycle with values in GL,.(K) to every rank r vector bundle 7: £ — X
with local trivializations.

Remark 2.5.15. Let m: E — X be a rank r vector bundle with local trivializations as in Definition 2.5.1.
For a € A let hy: Uy, — GL.(K) be a regular map. Then also hy, - @o: Uy — GL,(K) is a trivialization
of n=Y(U,) — U, and conversely, every trivialization of 7=1(U,) — U, is obtained in this way. The
1-cocycle Gop: Uy n Ug — GL,(K) corresponding to this new local trivialization is given by Gog =
ha - gag - hlgl. In particular a moment’s thought shows that F is trivial if and only if there exists
{ha}aeca as above such that g.p = hgl - hg, or equivalently such that gng = hq - hgl. Beware that the
last formula is formally the same as the formula in (2.5.22) defining the 1-cocycle g,g, but in (2.5.22)
we compose two linear maps with inverted domains and codomains, while h,, - hgl is the composition
(or product) of two automorphisms of K.

Remark 2.5.16. Let m: E — X be a rank r vector bundle with trivializations as in Definition 2.5.1 with
corresponding 1-cocycle g = {gag}(a,p)ca2- Let {Va}rea be an open covering of X with a refinement
map p: A — A, i.e. such that V) < Uy, for each A € A. Then we get an induced 1-cocycle {hx,}(x uyen>
by setting hy, = (gP(A)P(M))|VAf\Vu' Let us denote {hk,u}()\,p)eAz by p(g)-

Now let m: F — X and v: F — X be rank r vector bundles on X with local trivializations over
the sets of open coverings {Ua}aca and {Vataea. Let g = {gas}(a,p)caz and b = {hy,}(x pyenr2 be the
corresponding 1-cocycles. There exists a common refinement, i.e. an open covering {W¢}¢e= and maps
p:E— A w: Z— Asuch that We < U,y n V(¢ for each € € = (e.g. consider the open sets given by
intersections of an open set U, and an open set V)). Thus 7: E — X and v: F' — X have also associated
1-cocycles {p(g))ec}(e,crez2 and {w(h))e¢}(¢,c)ez2 relative to the same open covering {We}ec=. It follows
from Remark 2.5.15 that the vector bundles 7: E — X and v: F' — X are isomorphic if and only if
there exists a collection of regular maps mg : We — GL,.(K) for £ € Z such that p(g)ec = me-w(h)ec -mgl

for all (¢,¢) e 22

Above we have associated to a vector bundle with local trivializations a 1-cocycle. One can invert
this construction. Let X be an algebraic variety and {Ux}xea an open covering of X, and let g = {gx,}
be a 1-cocycle with values in GL,.(K) relative to the given open covering. Then we can define a vector
bundle £ — X as follows. First, since open affine subsets of an algebraic are a basis of the Zariski
topology, we may refine the open covering, see Remark 2.5.16, and get an induced 1-cocycle relative to
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an open covering by affine sets. The construction that we give does not depend (up to isomorphism)
on the refinement, so we assume from the beginning that the open subsets Uy are affine. For A\, e A
let
(UxnU,) x K™ 25 (UynU,) x K
(l‘,§) — (x’g)\u ’ g)

If welet Ay, = (UxnU,)xK" c Uy xK" and By, = (UxnU,) xK" < U, x K" then Hypothesis 2.2.13
are satisfied, and hence we may glue the affine varieties Uy x K" via the ¢y, see the Gluing Construc-
tion 2.2.14. Let E be the prevariety that we get. The regular maps Uy x K" — Uy — X glue to give a
regular map 7: £ — X.

(2.5.15)

Claim 2.5.17. The prevariety E is an algebraic variety.

Proof. We must check that E is of finite type and separated. Since X is of finite type it has a finite

cover X = V3 u...uV,, by open affine sets. Since V; is quasi compact the covering V; = U)\eA(Vi N Uy)

has a finite subcover. Each V; n Uy is an open affine set by Proposition 2.3.20. We have 7= 1(V; nU,) =

Vi n Uy x K", and hence F is a finite union of open affine subsets. This proves that F is of finite type.
In order to prove that F is separated we notice that if \, 4 € A then

(UxxK") x (U, xK")nAg = (Ux x Uy) n Ax) n (Ux x Uy) x Agr. (2.5.16)

This shows that (Uy x K") x (U, x K") n Ag is closed. Since E x E is the union of the open subsets
(Ux xK") x (U, x K"), it follows that Ag is closed in E x E, i.e. E is separated. O

Linear algebra constructions on vector bundles

One can produce vector bundles from given vector bundles by lifting linear algebra constructions.

Direct sum of vector bundles

Let 7: F— X and p: F' — X be algebraic vector bundles. Let
E@F=ExxF={(e,f)e ExF|m(e) =p(f)} (2.5.17)

The map p: E®F — X defined by setting u(e, f) = n(e) = p(f) is regular. If z € X the fiber p=1(x) is
identified with E(z) @ F(x) and hence it has a structure of K vector space of dimension rk(FE) + rk(F).
Lastly, by choosing an open cover of X which trivializes both E and F we get that u: E® F — X has
a local trivialization. Thus E @ F' is an algebraic vector bundle over X. This is the direct sum of E
and F.

Functorial constructions

Let E — X be an algebraic vector bundles. Then one constructs a vector bundle £Y — X whose
fiber over x € X is identified with the dual vector space E(z)". Analogously one constructs a vector
bundle £ ® F — X whose fiber over € X is identified with the tensor square E(x) ® E(z). More
generally let A be a functor (possibly contravariant) from the category of K vector spaces to itself.
Then one can construct a vector bundle A(E) — X whose fiber over z € X is identified with the vector
space A(E(z)). In fact let g := {gap} be the 1-cocycle corresponding to local trivializations of E as in
Definition 2.5.1. Then A(g) == {A(gag)} is a 1-cocycle which defines by gluing a vector bundle F' — X.
If we change local trivializations of F the vector bundle obtained from the new 1-cocycle is isomorphic
to F' by Remark 2.5.16. Thus we have produced a vector bundle well determined up to isomorphism,
that we denote by A(FE). In order to define an isomorphism between A(E)(z) and A(FE(z)) one proceeds
as follows. The vector bundle A(E) is obtained by gluing the affine varieties U, x A(K") (by refining the
open covering {U,} we may assume that U, is affine for every a € A) via the maps (Idy, ~v,, A(gas))-
Thus for x € U, we have the isomorphism of vector spaces ¥, (z): A(E)(x) — A(K"). If x € U,, then
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we also have the isomorphism A(pq(2)): A(E(z)) — A(K"). The composition gives the isomorphism
of vector spaces

Apa(2)) ™ otpe(2): AE)(z) = A(E(x)). (2.5.18)
By functoriality the above isomorphism is independent of the open set U, containing .

Ezample 2.5.18. If {gap} is a 1-cocycle representing F — X, then EV — X is represented by the
1-cocycle {(g!,5)7"}-
Ezxample 2.5.19. Let L — P™ be the tautological line bundle. In Example 2.5.13 we have show that L

is represented by the 1-cocycle g = {g;;} relative to the open cover {P} }I given by g;([Z]) = Zi/Z;
for [Z] € P, 0Py . 1t follows that the dual LY — P" is represented by the 1-cocycle h = {h;;} relative

to the open cover {P’; }i' o given by h;([Z]) = Z;/Z; for [Z] e Py, NP .
Remark 2.5.20. Let L — P™ be the tautological line bundle and let LY — P” be its dual. Let f: V — K
be a linear map. We associate a section oy: P(V) — LY by mapping [Z] € P™ to the linear function

on L([Z]) = span(Z) given by the restriction of f to span(Z). The section oy is regular. In fact the
trivialization of LV considered in Example 2.5.19 gives a generator ; of LﬁP’" characterized by the fact
Zi

that ¢, takes the value W; on ([Z], W). We have the equality

ofpy, = / — i (2.5.19)

This show that o is regular. As an exercise one should check that the local sections on the right hand
side of the above equation do indeed glue to give a global section of LY.

Ezample 2.5.21. Let L — X be a line bundle, represented by the 1-cocycle g = {gns} relative to an open
cover {Ua}. The tensor power L®™ — X is represented by the 1-cocycle h = {hag} where hag = gl
Note that if we set m = —1 we get a l-cocycle representing L~!. This is one reason for using L~*
as alternative notation for the dual LY. Of course L=™ is used to denote (L®™)~!. Note also that
the 1-cocycle gJ 4 represents the trivial line bundle. This justifies setting L®0 equal to the trivial line
bundle.

Tensor product of vector bundles

Let m: F — X and p: ' — X be algebraic vector bundles. One constructs a tensor product vector
bundle E ® F — X whose fiber over x € X is identified with the tensor square E(x) ® F(z) by a
procedure which is analogous to what was done in the previous subsubsection. We leave details to the
reader. Of course if £ = F then the tensor product vector bundle is the square tensor vector bundle of
the previous subsubsection.

Quotient of a vector bundle by a subbundle

Let 7: E — X and p: G — X be algebraic vector bundles. A morphism §: G — E of vector bundles, see
Definition 2.5.4, is an injection of vector bundles if for every x € X the linear map 6(x): G(x) — E(x)
is injective. If this is the case then the image im(#) is a closed subset of E.

Definition 2.5.22. Let 7: E — X be an algebraic vector bundle. A closed subset F' < FE is a subvector
bundle of rank s if there exists an injection of vector bundles §: G — E, where G has rank s, such that
F =im(0).

Note that, by definition, a subvector bundle of rank s of 7: E — X is a vector bundle of rank s on
X.

Let m: E — X be an algebraic vector bundle r and let FF < E be a subvector bundle of rank s.
One defines a vector bundle with fiber over x € X identified with E(x)/F (x) proceeding as follows. For
x € X let u(x): E(x) —» E(x)/F(z) be the quotient map. Let {U,}aeca be an open covering of X which
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trivializes F, as in Definition 2.5.1. Let a € A. Let 1), : K"=% — K" be an injection of vector spaces,
and for z € U, let

K “%) B(2)/F(z) (2.5.20)
be the composition
r—s Yo () r ‘Poz(x)71 u(x)
K= 25 K" "= FE(x) — E(z)/F(x). (2.5.21)

By refining the covering {U,} and choosing appropriately the injections ¢, we may assume that pq ()
is an isomorphism for all « € A and all z € U,,. For «, § € A we define the map U, n Ug — GL,.(K) as
follows:

Uy nUs 25 GL,(K)

r o @ on; @) (2522

Then {gap}a,pea is a 1-cocycle with values in GL,_(K), and hence there is an associated vector bundle.
Up to isomorphism the vector bundle does not depend on the choices that we made: this the quotient
vector bundle E/F. Let x € X: proceeding as has been done for previous constructions one defines an
isomorphism between the fiber (E/F)(z) and the quotient E(x)/F(z).

Note that the map pu: E — E/F defined by setting g,y = p(x) for all 2 € X is a (regular) map
of vector bundles. Suppose that G — FE is a subvector bundle such that for all z € X the restriction of
p(z) to G(z) is an isomorphism. Then the composition G < E % E/F is an isomorphism of vector
bundles. One could hope to define the quotient vector bundle as being isomorphic to any subvector
bundle G < E with the above property. This would not be an acceptable definition because in general
there is no such subvector bundle, see Exercise 2.6.7.

Sheaves

There is a different way of viewing a vector bundle, namely as a particular kind of sheaf. First we
introduce sheaves.

Definition 2.5.23. Let X be a topological space. A sheaf of sets # on X consists of the following
data:

1. for each open U c X a set Z(U), and
2. for each inclusion U < V of open subsets of X a restriction map pyy: F(V) — F(U),

such that the following hold:

(a) puv = ldgzw).
(b) If U ¢ V < W are inclusions of open subset of X then py.y o pw,v = pw,u-

(c) Let V < X be open and suppose that V' = | J,.; Vi where each V; is open.

iel
(cl) fo,7e Z(U) and pv,v,(c) = pv,v;(7) for all i € I then o = 7.

(c2) If there exists a collection of o; € .F (V;) for every i € I such that py, v, ~v,(0i) = pv; vinv; (05)
for all 4, j € I then there exists o € % (V) such that py v, (o) = py,v;(7) for all i e I.

If each of the sets .#(U) has a structure of group, and py,y is a homomorphism of groups, then we say
that . is a sheaf of groups. If each of the sets .# (U) has a structure of ring, and py, 7 is a homomorphism
of groups, then we say that % is a sheaf of groups.

Ezample 2.5.24. Let X, Y be topological space. For U ¢ X open let % (U) be the set whose elements are
the continuous maps f: U — Y. If U < V is an inclusion of open subsets of X let py.i: ZF (V) — F(U)
be defined by setting pv,y(f) == fijy. Then # is a sheaf of sets on X. Suppose that Y is a topological
group, i.e. that multiplication and inverse are continuos maps. Then pointwise multiplication defines a
structure of group on .7 (U), and we get a sheaf of groups.
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Ezample 2.5.25. Let X be a prevariety. For U < X open let #(U) be the ring whose elements are
the regular maps f: U — K with addition and multiplication defined pointwise. If U < V is an
inclusion of open subsets of X let pyy: #(V) — %#(U) be the homomorphism of rings defined by
setting pv,u(f) = fju. Then .7 is a sheaf of rings on X. This is the structure sheaf of X and is denoted
byﬁk.

Definition 2.5.26. Let X be a topological space, and let # be a sheaf of rings on X. A sheaf of
A-modules is a sheaf of sets .# on X with the extra datum of a structure of Z(U)-module on % (U)
for every opne U ¢ X. We require that for every inclusion U < V of open subsets of X and o € #(V),
feZ(V) we have

pru(f o) = oo (f) - piu(o), (2.5.23)

where p“%: v and p‘v? u are the restriction maps of .# and % respectively.

Definition 2.5.27. Let X be a topological space, and let .# be a sheaf of sets on X. If V < X is
open then we get a sheaf of sets on V' by assigning to U < V open the set % (U), and by defining, for
U c W c V open, the restriction map equal to the restriction map pw.; of #. This sheaf of sets on V
is the restriction of # to V and is denoted by .#|y,. If 7 is a sheaf of (groups)/(rings)/(modules over a
sheaf of rings) then .7y is a sheaf of (groups)/(rings)/(modules over a sheaf of rings) in a natural way.

Remark 2.5.28. Let X be a topological space, and let .# be a sheaf of (sets)/(groups)/(rings)/(modules
over a sheaf of rings) over X. If U < X is open then .# (U) is the set/group/ring/module of sections of
Z over U, and is denoted also by I'(U, #|i7).

Ezample 2.5.29. Let X be an algebraic prevariety. If U < X is open it has a canonical structure of
algebraic prevariety. Restriction of regular functions defines an identification between Ox |y and Oy .
The ring of sections Ox (U) = T'(U, Zy) is equal to K[U].

Definition 2.5.30. Let .#,¥ be sheaves of (sets)/(groups)/(rings)/(modules over a sheaf of rings) on
a topological space X. A morphism ¢: .F — ¢ counsists of the assignment of a morphism ¢y € Z(U) —
4 (U) (i.e. respectively a (map of sets) /(homomorphism of groups)/(homomorphism of rings) /(homomorphism
of modules)) such that the following holds. If U — V are open subsets of X then the following diagram

is commutative:

FV)—2 s q(V) (2.5.24)

F 4
PuUl p%UJ

FU)—2 5 4(U)

If .7 is a sheaf as above on X the identity map Idy € .#(U) — #(U) defines a morphism of .%#:
this is the Identity morphism. If F# 94 7 are sheaves as above on X, and ¢: F —> ¥, : 4 — I are
morphisms of sheaves, one gets a morphism of sheaves 1) o p: F — J by setting (¥ o p)y = Yy o py.
Thus we have the category of sheaves of (sets)/(groups)/(rings)/(modules over a sheaf of rings) on X.
In particular we have the notion of isomorphism of sheaves.

Vector bundles and locally free sheaves

Let m: E — X be a vector bundle on an algebraic variety X. For U ¢ X open (in the Zariski topology)
let
S (E)U) ={0o:U — E|oisregular and 7 oo = Idy} = ['(U, Ep). (2.5.25)

If o,7 € /(E)(U) then the map (¢ + 7): U — Ejy mapping = to o(z) + 7(z) is a regular section
of Ejy. If f € Ox(U) then the map fo: U — Ejy mapping = to f(x) - o(r) is a regular section of
Ej;. With these operations .7 (E)(U) is an Ox(U)-module. Let U < V be open subsets of X and
let 0 € (E)(V). Then the restriction of o to U is a regular section of Ej;. Thus we have a map
Py L (E)(V) — S (E)(U). One easily checks that this gives a sheaf of &x-modules.
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Definition 2.5.31. Let 7: E — X be a vector bundle on an algebraic variety X. The sheaf of germs
of sections of E is the sheaf .#(FE) of &x-modules defined above.

FEzxzample 2.5.32. Let m: L — X be the trivial line bundle, i.e. L = X x K and 7 is the projection. Then
(L) is isomorphic to Ox. In fact if U < X is open then

L(L)U) ={f: U—->K]| f isregular} = Ox(U). (2.5.26)
Definition 2.5.33. Let L — P" be the tautological line bundle. Then
1. Opn(—1) is the sheaf of germs of sections of L, i.e. Opn(—1) = S (L).
2. Opn(1) is the sheaf of germs of sections of LY, i.e. Opn(1) = Z(LV).

3. If d e N then Opx (d) is the sheaf of germs of sections of (LY)®? and Opn(—d) is the sheaf of germs
of sections of (L)®¢. Note that Opx(0) = Oy, see Example 2.5.21.

Suppose that 7: F — X, p: FF — X are vector bundles on an algebraic variety X, and that
f: E — F is a morphism of vector bundles. If U < X is open let .7 (f)y: L (E)(U) — Z(F)(U) be
defined by .7 (f)(c) = f o 0. The collection of the maps .7 (f)y defines a morphism of &x-modules
S (E) — L (F). Thus we have defines a functor from the category of vector bundles over X to the
category of Ox-modules.

The sheaf of germs of sections of a vector bundle is a very particular kind of sheaf of &'x-modules,
i.e. the image of the functor that we have defined is far from being the whole category of &x-modules
(unless X is a finite set). In order to give a precise characterization of the image we need to go through
a few (more) definitions. Let X be a topological space, let Z be a sheaf of rings on X, and let .#,¥ be
sheaf of Z-modules on X. By associating to U < X open the direct sum .% (U) @Y (U) we get an Z(U)-
module. If U < V are open the restriction maps p“’aij and pg‘?U define maps p“%:U: (F(V)Y®dY(V)) —
(Z(U)®Y(U)). As is easily checked this defines a sheaf of Z-modules on X.

Definition 2.5.34. Let X be a topological space, let Z be a sheaf of rings on X, and let .%#,¥4 be
sheaf of Z-modules on X. The direct sum of F and ¢ is the sheaf of Z-modules on X defined above,
and is denoted by % @ Y.

Example 2.5.35. Let m: E — X and p: F' — X be vector bundles on the algebraic variety X. Then
S (E@®F), i.e. the sheaf of germs of sections of E@® F, is isomorphic to the direct sum . (E) @ .7 (F).

Definition 2.5.36. Let X be a topological space, and let Z be a sheaf of rings on X. A sheaf % of
Z-modules is locally free of rank r if there exists an open covering {U,}aeca of X such that for every
a € A the restriction .# |y, is isomorphic to %%T , i.e. the direct sum of 7 copies of %y, .

Claim 2.5.37. Let 7: E — X be a vector bundle of rank r on an algebraic variety X. Then /(E),
i.e. the sheaf of germs of sections of E, is locally free of rank r.

Proof. By definition there exists an open covering {Us }aea of X such that Ejy, is trivial of rank r. By
Examples 2.5.32 and 2.5.35 it follows that Ejy, is isomorphic to @’%TU . O
The following result gives that vector bundles and locally free sheaves are equivalent notions.

Proposition 2.5.38. Let X be an algebraic variety. By assigning to a vector bundle E on X its sheaf
of germs of sections Z(E) and to a morphism f: E — F of vector bundles on X the morphism of
Ox-modules #(f): L (E) — S(F) we get an equivalence between the functor of vector bundles (of
constant rank) on X and the functor of locally free sheaves of Ox-modules (of constant rank).

50



2.6. Exercises

Proof. Let % be a locally free sheaf of &x-modules of rank r. By hypothesis there exists an open
covering {Uqs }aeca and for each o € A an isomorphism

Ya: Fu, — O - (2.5.27)

From this we produce a 1-cocycle with values in GL,(K) as follows. For «, 8 € A the composition

-1

®r PBl... o Pal.. SPr
ﬁX\UQmUﬁ > P, nUs ﬁX‘UamUB (2.5.28)
is an isomorphism
. 7Pr ~ ®r
Yap: ﬁX‘UwUﬁ — ﬁxwamUﬁ- (2.5.29)

There exist ngB € Ox(Uy nUg) for i,5 € {1,...,r} such that
Yap(ed?) = D gl (w)es”. (2.5.30)
i=1

The r x r matrix gog = (ngﬁ) with values in Ox (U, nUp) is invertible because 1a 01, is the identity.
Thus we have the 1-cochain g = {gng} with values in GL,(K). One checks that g is a 1-cocycle. Let
7m: E — X be the associated rank r vector bundle. The sheaf of germs of sections .7 (E) is isomorphic
to Z. Moreover if p: & — % is a morphism of locally free sheaves, and F, F' are vector bundles such
that /(FE) =~ &, ./(F) =~ %, then there exists a morphism of vector bundles f: E — F such that
L (f) = ¢. We leave details of the proofs to the reader. O

Because of the above result one does not distinguish between vector bundles and locally free sheaves.
For example Opr(d) (see Definition 2.5.33), which strictly speaking is a locally free sheaf of rank 1,
denotes also the corresponding line bundle on P", e.g. the dual of the tautological line bundle if d = 1.
Line bundles and regular maps to projective spaces

2.6 Exercises

Exercise 2.6.1. Let R be an integral domain, and let (m,n) € (N*\{0}). Let F € R[X,Y]m and G € R[X, Y.
The resultant Z(F,G) is the element of R defined as follows. Consider the map of free R-modules

RIX, Y] ® RIX, Y]ma "2 RIX, Y]mins (2.6.31)
(D, ) - ®-F4+VU.QG
and let S(F,G) be the matrix of L(F,G) relative to the basis
(X"10), (X"7?Y,0), ..., (Y"L0), (0,X™7"), (0,X™7%Y), ..., (0,Y™ 1) (2.6.32)
of the domain and the basis
Xl xmEn Tty L, Xy ymanet (2.6.33)
of the codomain. Then Z(F,G) is defined by
Z(F,G) =det S(F, Q). (2.6.34)
Explicitly: if
F= i XY, G = i by X" Y (2.6.35)

i=0 §=0
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then
ao 0 0 b 0 o0
al ao L 0 bl bo e 0
ao P
Z(F,G) =det | am am-1 -+ = bp bpa -+ | (2.6.36)
0 Am 0 bn,
0 0 0 0
0 0 B T 0 S by

Now let K be a field and K < K be an algebraic closure of K. Let F € K[X,Y],, and G € K[X,Y ],.

(a) Prove that Z(F,G) = 0 if and only if there exists H € K[X,Y]q with d > 0 which divides both F and G
(in K[X,Y)).

(b) Prove that Zm.n(F,G) = 0 if and only if there exists a common non-trivial root of F and G in K2,
i.e. [Xo,Yo] € P*(K) such that F(Xo,Yo) = G(Xo,Yo) = 0.

(c) Let f(t,x) € K[t1,-..,tm][z] and g(¢t,z) € K[t1,...,tm][z] (here t = ¢1,...,tm) be polynomials of degrees
m and n in x respectively, i.e.

fltx) =Dl ai®)z™ ", gt,x) = Y bi®)a" 7 ai(t),b(t) € K[tr,...,tm], ao(t) + 0+ bo(t).

i=1 i=1
We let
D(f,g) = {t € A"(K) | 3z € K such that f({,z) = g(¢;z) = 0}.

Using the properties of the resultant proved above show that if f, g are both monic, i.e. ao(t) = bo(t) = 1,
then there exists ¢ € K[t1,...,tm] such that D(f,g) = V(y).

(d) Give examples of f(t,x) € K[t1,...,tm][z] and g(¢,z) € K[t1,...,tm]|[z] for which there exists no ¢ €
Klti,...,tm] such that D(f, g) = V(¢).
Exercise 2.6.2. The goal of the exercise is to prove the Main Theorem of Elimination Theory, i.e. The-

orem 2.4.2, without invoking the Nullstellensatz.

(a) Let m: A™ x P — A™ be the projection. Prove that if X < A™ x P! is closed then 7(X) is closed in A™
by using Item (b) of Exercise 2.6.1.

(b) Let fin: (P')™ — P™ be the map defined by

(PH" N P(K[X,Y],) = P

([ao,bol, [a1, b1l [amsbu]) > [(@0X —boY) -+ (a1 X —byY ) -+ (anX —bpy) (2037

Prove that u, is regular.

(c) Let m: A™ x P™ — A™ be the projection. Let X < A™ x P! be closed. Prove that 7(X) is closed in A™
by considering the closed subset p,*(X) < (P')™ (see Item (b)), and applying Item (a) to the projections
A™ x (PH™ - A™ x (PH)™71 A™ x (P! — A™ x (P12 etc.

Let V' be a K vector space of finite dimension, and let 0 < h < dim V. The Grassmannian
Gr(h,V)={WcV |dmW = h}.

is the set of subvector spaces of V' of dimension h. The Zariski topology on Gr (h, V) is defined as follows. Let
Fr(h, V) be the set of ordered lists of linearly independent vectors v1,...,v, € V. We define the left action
GLn(K) x Fr(h,V) —> Fr(h,V)

2.6.38
((aij)7{’U1,...,’Uh}) = {2?:1 a1;Vi, Z?:l A2;Viy « v .y Z?:l ahivi} ( )
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The quotient for the equivalence relation defined by the above action is the map

Fr(h,V) - Gr (h,V)

2.6.
Vi,...,0n > span(vi,...,vs) (2.6.39)

Since Fr(h, V) c V" (as an open subset) it inherits a Zariski topology from V" =~ A"4mV  The Zariski topology
on Gr (h, V) is the quotient topology.

Exercise 2.6.3. The goal of the exercise is to provide Gr (h,V) with the structure of an algebraic variety.
Let U < V be a vector subspace of dimension dim V' — h, i.e. an element of Gr (dimV — h, V). Let Gr (h,V),,
Gr (h, V) be the subset of W which are transverse to U.

(a) Show that Gr (h, V), is open.
(b) Show that the action of Hom(V/U,U) on Gr (h,V),, defined by

Hom(V/U,U) —> Gr (h, V),
(2 2.6.40
W) o @) [we W) (26.40)
is simply transitive (W is the equivalence class of w in V/U), and hence it gives a bijection
pv: Hom(V/U,U) — Gr (h,V),,. (2.6.41)

To be precise there is one such bijection for each choice of W € Gr (h,V),;, but they are all equivalent
for what follows. Show that ¢y is a homemomorphism, and that the collection of Gr(h,V),’s and
homemomorphisms ¢y is an algebraic atlas of Gr (h, V). Thus we have given Gr (h, V) the structure of
an algebraic prevariety.

(c) Prove that Gr (h,V) is an algebraic variety, i.e. that it is of finite type and separated. (It might help to
unwind the definitions above for V' = K", replacing {v1,...,vn} € Fr(h,V) by the h x n matrix whose
rows are the v;’s.)

(d) Prove that Gr (h, V) is irreducible. (Recall that prevarieties of finite type have an irreducible decomposi-
tion.)

Exercise 2.6.4. The goal of the exercise is to show that Gr (h,V), with the structure of algebraic variety
provided by Exercise 2.6.3, is a projective variety.

1. Let v1,...,vq € V be linearly independent, and let o e A"V. Prove that v; A o = 0 for all i € {1,...,a}
if and only if there exists 3 € /\h_a V such that « = v1 A ... A v A B.

2. For a € \"V, let m, be the linear map

v M /\h+1V

v = VANANQ

Show that if a # 0, then the kernel of mo has dimension at most h, and that dimker(ma) = h if and
only if « is decomposable, i.e. « = w1 A ... A wp, where w1 A ... A wp € V are linearly independent.

3. If W € Gr (h, V) then A"W is a 1-dimensional subspace of A"V, i.e. a point of P(A"V). Hence we have
a well defined Plicker map

Gr(h,V) 2 P (/\hv)
w - A'w
Show that N
im(2) = {[a] eP (/\ v) | dim(ker ma) = h}, (2.6.42)
and if [a] € im(2), then [a] = A" ker(m,). Conclude that 2 is injective and that im(2) is closed in
P(A"V).

4. Prove that the Pliicker map defines an isomorphism Gr (h, V) — im(Z?) between algebraic varieties, and
hence Gr (h, V) is a projective variety.
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Let
Gr(k,P(V)) :={L <cP(V)| L is a linear subspace, dim L = k}. (2.6.43)

‘We have natural identification
Gr(k+1,V) — Gr(k,P(V))

W - BOW) (2.6.44)
Thus Gr(k,P(V)) is a projective variety.

Exercise 2.6.5. Let V be a 4-dimensional K vector space and

Gr(1,P(V)) -2 P(/2\ V) =~ P°

the Pliicker map.

1. Prove that the image of & is a non degenerate quadric hypersurface, i.e. that the ideal of im &2 is generated
by a non degenerate quadratic polynomial F'.

2. Let X < Gr(1,P(V)). Prove that #2(X) is a line if and only if X is a pencil of lines, i.e. the set of lines
containing point p and belonging to a plane A containing p.

3. Let X < Gr(1,P(V)). Prove that #(X) is a plane if and only if one of the following holds:

a) X is the set of lines containing a point p.

b) X is the set of lines contained in a plane A.
Exercise 2.6.6. 1. Let X < P" be closed. Given 0 < k < n let
Fr(X) := {AeGr(k,P") | A c X}. (2.6.45)

Prove that Fi(X) is a closed subset of Gr(k,P").

2. Let X = V(ZoZ3 — Z1Z2) < P? be a non degenerate quadric surface. Describe F;(X) < Gr(1,P?) c P°.
Exercise 2.6.7. Let L — P! be the tautological line bundle. Let E — P! be the trivial vector bundle
of rank 2, i.e. E = P! x K2 with map the projection. We have an obvious injection of vector bundles
L — FE, and therefore we may consider L as a subbundle of E. Prove that there is no algebraic subvector

bundle G = E such that for all [Z] € P! the map G([Z]) — E([Z])/L([Z]) is an isomorphism. You
may find the following observations useful:

1. The quotient line bundle E/L has sections whose zero set is a point (see Remark 2.5.9 for zero
sets of sections of vector bundles).

2. Any section of G is constant (viewed as a section of V).
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Chapter 3

Rational maps, dimension and degree

3.1 Introduction

3.2 Rational maps

Let X,Y be algebraic varieties. We define a relation on the set of couples (U, ¢) where U — X is open
dense and ¢: U — Y is a regular map as follows: (U, ¢) ~ (V,4) if the restrictions of ¢ and ¢ to U nV
are equal. Then ~ is an equivalence relation. In fact reflexivity and symmetry are trivially true. To
prove transitivity suppose that (U, ¢) ~ (V,4) and (V,¢) ~ (W, u). Then the restrictions of ¢ and u to
UnV AW are equal. Since V is open dense in X, the intersection U nV n W is (open) dense in U n .
Since X is separable it follows that the restrictions of ¢ and p to U n W are equal, i.e. (U, ¢) ~ (W, ).

Definition 3.2.1. A rational map f: X --+ Y is a ~-equivalence class of couples (U, ¢) where U < X
is open dense and ¢: U — Y is a regular map.

1. The map f is regular at x € X (equivalently x is a regular point of f), if there exists (U, ¢) in the
equivalence class of f such that € U. We let Reg(f) < X be the set of regular points of f. By
definition Reg(f) is an open subset of X.

2. The indeterminancy set of f is Ind(f) := X\ Reg(f) (notice that Ind(f) is closed). A point z € X
is a point of indeterminancy if it belongs to Ind(f).

Ezample 3.2.2. If f: X — Y is a regular map, we may consider f as a rational map represented by
(X, f).
Ezxample 3.2.3. Let X be an algebraic variety, and let U < X be open. Let ¢: U <— X be the inclusion

map. Then (U, () represents a rational map f: X --+» U (note that f goes in the “wrong” direction).
Clearly Reg(f) =U.

Ezample 3.2.4. Let V be a finitely generated vector space and let [vg] € P(V). Let U = (P(V)\{[vo]})-
We assume that dim V' > 2, and hence U is open dense in P(V). The map

v % P(V /(o))

[w] - [@]

where W is the equivalence class of w, is regular. Hence (U, ) represents a rational map f: P(V) --»
P(V /{vg)), which is called the projection from [vo]. If dimV = 2 then ¢ is constant and hence ¢ is
regular. If dim V' > 2 then the regular locus of ¢ is equal to U.

From now on we will consider only rational maps between irreducible algebraic varieties. Let
fi: X --» Y and g: Y --» W be rational maps between (irreducible) algebraic varieties. It might
happen that for all € Reg(f) the image f(x) does not belong to Reg(g), and hence the composi-
tion g o f makes no sense. In order to deal with compositions of rational maps, we give the following
definition.
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Definition 3.2.5. A rational map f: X --» Y between irreducible algebraic varieties is dominant if it
is represented by a couple (U, ¢) such that ¢(U) is dense in Y.

Remark 3.2.6. Let f: X --» Y be a dominant rational map between irreducible algebraic varieties. If
(V, %) is an arbitrary representative of f then ¢(V') is dense in Y. In fact by definition f is represented
by a couple (U, ¢) such that ¢(U) is dense in Y. Replacing V by V n U (which is open dense in X) we
may assume that V' < U, and hence ¢ = ¢y Suppose that (V) is not dense in Y, i.e. there exists a
proper closed W < Y containing ¢(V). Since o~ 1(W) < U is closed and it contains the dense subset
V c U, it is equal to U. Thus ¢(U) W, and this is a contradiction.

Let X, Y, W be irreducible algebraic varieties. Let

x-LyLw (3.2.1)

be dominant rational maps, represented by (U, ) and (V) respectively. Since ¢(U) is dense in Y,
©(U) NV is non empty and hence »~(V) is non empty. Since ¢~1(V) is open and X is irreducible, it
follows that p~1(V) is dense in X.

Definition 3.2.7. Keeping notation as above, the composition fog is the rational map X --» W repres-
ented by (o~ 1(V),10¢p). (The equivalence class of (p~(V),10¢p) is independent of the representatives

(U, ¢) and (V,¢).)

Definition 3.2.8. A dominant rational map f: X --» Y between irreducible algebraic varieties is
birational if there exists a dominant rational map ¢g: Y --+ X such that go f = Idx and fog = Idy.
An irreducible algebraic variety X is rational if it is birational to P™ for some n, it is unirational if
there exists a dominant rational map f: P"* --» X.

Ezample 3.2.9. Of course isomorphic irreducible quasi projective varieties are birational. Example 3.2.3
is a slightly less trivial instance of birational map. The inclusion map ¢: U < X has rational inverse
the map f: X --» U of Example 3.2.3.

Ezample 3.2.10. Let V be a K vector space of dimension n + 1. Suppose that P: V' — K is a quadratic
form of rank at least 3, i.e. ker P has codimension at least 3 (recall that ker P < V' is the subspace of
vectors u such that P(u + v) = P(v) for all v € V). Then P is not the product of linear functions and
hence @ = V(P) c P(V) is an irreducible quadric. Let [vg] € (Q\P(ker P)). The restriction of the
projection from [vg] (see Example 3.2.4) is a rational map

Q -Ls POV (uo)). (3.2.2)

We claim that f is birational, and hence @ is rational. The reason is the following. First note that by
associating to a line P(W) c P(V') containing [vg] the element W /{vg) of P(V /{vy)) we get a bijection
between the set of lines containing [vg] and P(V /{vp)). Thus we view the latter as parametrizing lines
through [vp]. An open dense subset of lines through [vg] intersect @ in [vp] and another point (because
P has degree 2). Thus for an open dense U < P(V /{vy)) we may define a map U — @ by associating to
the line A € U the unique point in An@ other than [vg]. This is a regular map U — @ defining a rational
map g: P(V/{vp)) --+ @Q which is the rational inverse of f. More explicitly: in suitable coordinates
29y .-y Zyn we have vg = (0,0,...,0,1) and F = ZyZ,, — G, where 0 + G € K[Zy, ..., Zp—_1]2. Then
Q _J_: ]mel
[Z(),...,Zn] [and [Zo,...,Zn_l]
and
Pn_l _L Qn—l
[To,....To1] — [T2.ToTh,...,ToTuor,G(To, ..., Tn1)]

Notice that if n = 2, then f and ¢ are regular (see Example 1.5.9). If n > 3 then neither f nor g is
regular. Moreover the quadric @ is not isomorphic to P"~!. We cannot prove this now in general. For

K = C and n = 3 you may show that Q < P3(C) with the Euclidean topology is not homeomorphic to
P?(C) with the Euclidean topology, and hence they are not isomorphic as algebraic varieties.
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Proposition 3.2.11. Irreducible algebraic varieties X, Y are birational if and only if there exist open
dense subsets U < X and V 'Y that are isomorphic.

Proof. An isomorphism ¢: U — V clearly defines a birational map f: X --» Y. To prove the converse,
let

x-LHy-Lix (3.2.3)

be birational inverse maps. Let (U, ) represent g and (V) represent f. Then ¢~ }(V) and ¥~ 1(U)
are open dense subsets of U and V respectively. By hypothesis the composition

bo (1)) 9 (V) > U

is equal to the identity on an open non-empty subset of ¢~ *(V). By separability of X we get that
o (Sﬁ‘w—l(v)> = Id,-1(y). In particular ¢ o ¢ (go*l(V)) cU,ie ¢ (go’l(V)) < ¢~ HU). Similarly

po (Vy-1)) =y, ¥ (7HU)) = ¢ H(V).
Thus the restrictions of ¢ and 9 define regular maps ¢~ (V) — ¢~ 1(U) and =1 (U) — p~1(V)
which are inverse of each other. O

Example 3.2.12. Let f,g be the birational maps in Example 3.2.10. Assume that n > 3, so that both
non regular. Then

Reg(f) = Q\{[0,0,...,0,1]},  Reg(g) = P" " "\V(To, G(Tp, ..., Tu_1)). (3.2.4)

On the other hand open dense subsets which are isomorphic are strictly smaller than the regular loci.
In fact f defines an isomorphism

Q\V(Zy) = P N\V(Tp). (3.2.5)

If XY are algebraic varieties defined over a subfield F' < K, then one defines the notion of rational
map f: X --+Y defined over F by considering equivalence classes of couples (U, ¢) where U < X is an
open subset defined over F' and ¢: U — Y is defined over F. As a consequence we have the notion of
algebraic varieties defined over F' which are birational over F. In particular we have the notion of an
algebraic varieties defined over F' which is rational over F'.

Example 3.2.13. Let Vj be an F' vector space of dimension n + 1, and let Py: Vyj — F be a quadratic
form of rank at least 3. Let V := Vj ®r K and let P: V — K be the quadratic form obtained from
Py by extending scalars. Then @ = V(P) is a quadric defined over F. We claim that @ is rational
over F if and only if Q(F)\P(ker Py) is not empty. In fact suppose that there exists a birational map
from a projective P™ (for some m) space to @, and hence a regular dominant map ¢: U — @ where
U < P™ is open dense. There are plenty of points in U defined over F' and their images are points
in Q(F). Moreover not all of these rational points are contained in P(ker Py) because ¢ is dominant.
Hence Q(F)\P(ker Pp) is non empty. On the other hand, if there exists a point [vg] in (Q(F)\P(ker P)),
then the procedure described in Example 3.2.10 gives a birational map f: @ --+ P(V /{vg)) defined over
F. In fact this holds because we can choose coordinates Zy, .. ., Z, for V; such that vy = (0,0,...,0,1)
and F = ZyZ,, — G, where 0 = G € F[Zy,...,Zp—1]2.

Many natural invariants of complete algebraic varieties do not separate between birational varieties.
This fact gives practical criteria that allow to establish that couples of complete varieties are not
birational. On the other hand, it leads one to approach the classification of isomorphism classes of
complete (or projective) varieties in two steps: first one classifies equivalence classes for birational
equivalence, then one distinguishes isomorphim classes within each birational equivalence class.
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3. RATIONAL MAPS, DIMENSION AND DEGREE

3.3 The field of rational functions

If X is an affine variety then one can reconstruct X from the ring K[X] of regular functions on X.
Actually there is a contravariant equivalence between the category of affine varieties and the category
of finitely generated K algebras with no non zero nilpotents, see Section 1.8. On the other hand if X is
proper then, since every regular function is locally constant, the ring K[X] gives very little information
about X (unless X is a finite set, i.e. affine). One gets a rich algebraic object by associating to
an irreducible algebraic variety the field of rational functions. From this field one reconstructs the
algebraic variety modulo birational maps.

Let X be an irreducible algebraic variety. A rational function on X is arational map X --» K(= Al).
We define addition and multiplication of rational functions on X by adding and multiplying regular
representatives. Let f,g: X --» K be represented by (U, ¢) and (V, ) respectively. Then

f+9 = [UnV,ouav +duav)l,
fr9 = [UnVouav - Yuav)l

The definition makes sense because changing representatives of f and g we get equivalent couples. We
claim that with the above operations the set of rational functions on X is a field. It is obvious that it
is a ring. To check that every non zero element has a multiplicative inverse let f: X --» K be a non
zero rational function. Then f = [(U, ¢)] where ¢ £ 0. Thus V(¢) < U is a proper closed subset and
therefore UY :== (U\V (¢)) is open dense in X. Then g == [(U°, ¢~1)] is the multiplicative inverse of f.

Definition 3.3.1. Let X be an irreducible algebraic variety. The field of rational functions on X is
the set of rational functions on X with the above operations. It is denoted by K(X).

Remark 3.3.2. Let X be an irreducible algebraic variety. We have a canonical embedding K — K(X)
as the subfield of constant functions.

Remark 3.3.3. Let X be an irreducible algebraic variety. Let U < X be a dense open subset. The map

KU) —— K(X)
(Vi) = (Vi)

is an isomorphism of extensions of K, i.e. it is an isomorphism of fields and the composition K «—
K(U) - K(X), where the first map is the the canonical embedding, equals the canonical embedding
K — K(X). In particular K(X) is isomorphic (as extension of K) to the field of rational functions of
any of its dense open affine subsets.

(3.3.6)

The field of rational functions of an irreducible affine variety is isomorphic to the field of fractions
of its ring of regular functions. To see this, first note that if X is an irreducible algebraic variety we
have an inclusion of K extensions:

(field of fractions of K[X]) < K(X)
5 = [(X\V(8), 5)]

Claim 3.3.4. Let X be an affine irreducible variety. Then (3.3.7) is an isomorphism.

(3.3.7)

Proof. We must prove that the map in (3.3.7) is surjective. Let f € K(X), and let (U, ¢) represent f.
By Example 1.6.5, there exists 0 + v € K[X] such that the dense principal open subset X, is contained
in U. Moreover, by Example 1.6.5 and Theorem 1.6.2, K[X ] is generated as K-algebra by K[X] and
771, hence ¢ is represented by (X, 7%) where o € K[X]. Let 8 := ™. Since X, = Xpg, we have
proved that f belongs to the image of (3.3.7). O
Ezample 3.3.5. By Claim 3.3.4 the field K(A™) is the field of fractions of K[z1, ..., z,], i.e. K(z1,. .., 2pn).
By Remark 3.3.3 we also have K(P") = K(z1,...,2x).
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Remark 3.3.6. If X is an irreducible algebraic variety then K(X) is finitely generated over K. In fact
by Remark 3.3.3 we may replace X by a dense open affine Y ¢ X. Then K(Y) is the field of quotients
of K[Y] by Claim 3.3.4. Let Y < A™ as a closed subset. By Theorem 1.6.2 the restriction of coordinate
functions 21|x,..., 2z, x generate K[Y] as K-algebra and hence they generate K(Y') as extension of K.
In particular we can extract a transendence basis of K(Y') from 21X -5 Zn|X-

Let f: X --» Y be a dominant rational map of irreducible algebraic varieties. Since f is dominant
the pull-back map

f*
KY) — KX)
= pof
is well defined. The map f* is an inclusion of fields and if K < K(Y') is the canonical inclusion then

*
the composition K < K(Y) £- K(X) is the canonical inclusion. Thus f* is a morphism of extensions
of K. Suppose that f: X --+ Y and g: Y --» W are dominant rational maps of irreducible algebraic
varieties. Then go f: X --» W is dominant and

fFogt=(g0). (3.3.8)
Of course Id% : K(X) — K(X) is the identity map. This gives a contravariant functor

RAT/K — FGF/K
X - K(X) (3.3.9)
X —J—c~) Y — f*

where RAT /K is the category whose objects are irreducible algebraic varieties and FGF /K is the
category of finitely generated field extensions of K (with morphisms the morphisms as extensions of K).

Proposition 3.3.7. The functor in (3.3.9) is an equivalence between the category of irreducible algeb-
raic varieties with homomorphisms dominant rational maps and the category of finitely generated field
extensions of K.

Proposition 3.3.7 follows from Proposition 3.3.8, which proves that the functor in (3.3.9) is essentially
surjective, and Proposition 3.3.10, which proves that the functor in (3.3.9) is fully faithful.

Proposition 3.3.8. Let E be a finitely generated field extension of K. There exist an irreducible
algebraic variety X and an isomorphisms of E — K(X) of extensions of K.

Proof. Let m be the transcendenece degree of E over K. By Corollary A.4.8, there exist a prime

polynomial P € K(z1,. .., 2m)[#m+1] and an isomorphism of extensions of K
B Koz lzmen]/(P). (3:3.10)
Write
P = Zg@+1 +clzg;11 +-+eq, i eK(z1,..0,2m).

Then, fori e {1,...,d}, we have ¢; = §* where a;,b; € K[z1,..., 2] and b; # 0. Let Pe K[z1, .-y 2m+1]
be obtained from P by clearing denominators, i.e. P = (by-...-bg)P. Lastly, let Q € K[z1,...,2m+1] be

obtained from P by factoring out the maximum common divisor of the coefficients of P as polynomial
in zpy1 (recall that K[z1,...,2y] is a UFD). Notice that @ is irreducible and hence prime. Write

d—1
Q:eozgﬁl—kelzmﬂ + -+ eq, e; €Klz1,...,2m], eo=+0.

Then X := V(Q) = A™*!is an irreducible hypersurface because @ is prime. Because of the isomorphism
in (3.3.10) it suffices to prove that there is an isomorphism of extensions of K

K(z1, .., 2)[2mar]/(P) = K(X). (3.3.11)
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Let Z; := z;x. We claim that the rational functions on X represented by {Z1,...,Zn} are algebra-
ically independent over K. In fact, suppose that R € K[ty,...,t,] and R(Z1,...,Z,) = 0. By the
fundamental Theorem of Algebra, for any (£1,...,&n,) € (A™\V(eg)) there exists &,,+1 € K such that
(&1, &m, Em+1) € X. It follows that R(&q1,...,&m) = 0 for all (&1,...,&,) € (A™\V(ep)), and hence
R - eg vanishes identically on A™. Thus R - ey = 0, and since ey # 0 it follows that R = 0. This
proves that {Z1,...,Z;} are algebraically independent over K. On the other hand Z,,,1 is algebraic
over K(Z1,...,Zy) and its minimal polynomial equals P. Thus by mapping z; to z; fori € {1,...,n+1}
(and mapping K to K by the identity map) we get an isomorphism of extensions of K as in (3.3.11). O

Proposition 3.3.9. Let X and Y be irreducible algebraic varieties, and let a: K(Y) — K(X) is an
inclusion of extensions of K. There exists a unique dominant rational map f: X --+ Y such that
f*=a.

Proof. By remark 3.3.3 we may assume that X < A™ and Y < A™ are closed. Hence by Claim 3.3.4
K(X), K(Y) are the fields of fractions of K[X] and K[Y] respectively. By Theorem 1.6.2, K[X] =
Klz1, ..., 2n]/I1(X) and K[Y] = K[wy, ...,wn]/I(Y). Given p € K[z1,...,2,] and ¢ € K[wy, ..., wn]
we let p:= p|x and 7 := ¢|y. We have

a(wi): s fivgieK[Zla"'azn]v gzsﬁo

Q||

7 ‘s.

Let U := X\(V(g1) u... U V(gm)). Then U is open and dense in X. Let

U 2 A
. o (ma) fm(a))

g1(a)’ """ gm(a)

We claim that ¢(U) c Y. In fact let h € I(Y). Since « is an inclusion of extensions of K|
h(F1 /g0 Fon/Gm) = Ba(@1), ... a(@m)) = a(h(@1, ..., Tn)) = a(0) = 0.

This proves that if h € I(Y) then h vanishes on @(U), i.e. $(U) ¢ Y. Thus ¢ induces a regular map
0:U—->Y. IfbeK[Y] c K(Y) then

o*(b) e K[U] < K(U) = K(X)

is equal to «a(b). It follows that if b & 0 then ¢*(b) £ 0. Thus ¢ is dominant. Let f: X --+ Y be the
equivalence class of (U, ¢). Then f* = a.

Moreover it is clear from the above construction that f is the unique rational (dominant) map such
that f* = a. O

The result below follows at once from what has been proved above.

Corollary 3.3.10. Irreducible algebraic varieties are birational if and only if their fields of rational
functions are isomorphic as extensions of K.

Ezample 3.3.11. Let p € K[z] be free of square factors (and degp > 1). Then t?> — p(z) is prime and
hence X := V (¢* — p(z)) < A? is irreducible. Thus we have the extensions of fields K(X) > K(z) o K
where the top extension is algebraic of degree 2. Then X is rational if and only if K(X) is a purely
trascendental extension of K. If degp = 1 then K(X) is a purely trascendental extension of K because
it is generated (over K) by ¢. Similarly it is a purely trascendental extension of K if degp = 2 by
Example 1.5.9. If degp > 3 then X is not rational (the proof of this fact this requires new ideas) and
hence K(X) is not a purely trascendental extension of K.

The result below follows from the above corollary and the proof of Proposition 77.

Proposition 3.3.12. Let X be an irreducible algebraic variety and let m := Tr.degy K(X). Then X
is birational to an irreducible hypersurface in A™+1.
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3.4 Dimension

Definition 3.4.1. 1. The dimension of an irreducible algebraic variety X is the transcendence de-
gree of K(X) over K.

2. Let X be an arbitrary quasi projective variety, and let X = X; u---u X, be its irreducible decom-
position. The dimension of X is the maximum of the dimensions of its irreducible components.
We say that X has pure dimension n if every irreducible component of X has dimension n.

3. Let p € X. The dimension of X at p is the maximum of the dimensions of the irreducible
components of X containing p.

Remark 3.4.2. The dimension of an irreducible algebraic variety X is equal to the dimension of any
open dense subset U < X. In fact, by definition it suffices to prove it for irreducible X, and in that
case it holds because the fields of rational functions K(X) and K(U) are isomorphic extensions of K.

Ezample 3.4.3. The dimension of A™ and of P™ is equal to n. In fact K(A") = K(P") = K(z1,...,2n),
and {z1,...,2,} is a transcendence basis of K(z1,...,z2,) over K.

Ezample 3.4.4. The dimension of Gr(h,V) is equal to h - (dimV — h), because it is irreducible and it
contains an open dense subset isomorphic to an affine space of dimension k- (dim V' — h) (actually many
such subsets), see Exercise 2.6.3.

Ezample 3.4.5. Let X < A"*! be a hypersurface. We claim that X has pure dimension n. Since the
irreducible components of X are hypersurfaces, in fact the zero loci of the prime factors of f, it suffices
to show that if X is an irreducible hypersurface then it has dimensjon n. Let I(X) = (f). Reordering
the coordinates (z1,. .., 2n, Zn+1) We may assume that

f= cozle_l + clzﬁﬂ +-+eq, ci€K[z,..2n], c0#0, d>0. (3.4.1)

For i € {1,...,n 4 1} let Z; == 2;x. In the proof of Proposition 3.3.8 we showed that Zi,...,%, are
algebraically independent in K(X). Since K(X) is generated over K by Z1,...,Zn,Zn+1 and since Z, 41
is algebraic over the subfield generated by Z1,...,%Z, it follows that Zi,...,Z, is transcendence basis
of K(X) over K. Similarly, a hypersurface in P**! has pure dimension n. (Intersect with P, for
i€{0,1,...,n+1}.)

Remark 3.4.6. An algebraic variety has dimension 0 if and only if it is a finite set.

Remark 3.4.7. If f: X --+ Y is a dominant map of irreducible algebraic varieties then dim X > dim X
because we have the inclusion f*: K(Y) — K(X) of field extensions of K.

Proposition 3.4.8. Let X be an irreducible algebraic variety and let Y < X be a proper closed subset.
Then dimY < dim X.

Proof. We may assume that Y is irreducible. Since X is covered by open affine varieties, we may assume
that X is affine. Thus we may assume that X < A™. Thus Y is also closed in A”. We may choose a
transcendence basis {f1,..., fa} of K(Y), where each f; is a regular function on Y, see Remark 3.3.6.

Let fi,..., fa € K[X] such that fiyyW = fi. Since Y is a proper closed subset of X, there exists a
non zero g € K[X] such that gy = 0. It suffices to prove that fl, ceey fd, g are algebraically independent
over. We argue by contradiction. Suppose that there exists 0 # P € K[Si,...,84,T] such that
P(fi,...,fa,9) = 0. Since X is irreducible we may assume that P is irreducible. Restricting to Y’
the equality P(f1,...,fa,9) = 0, we get that P(f1,..., fq,0) = 0. Thus P(Sy,...,S54,0) = 0, because
fi,..., fa are algebraically independent. This means that T" divides P. Since P is irreducible P = ¢T,
c e K*. Thus P(fl, ceey fd,g) = 0 reads g = 0, and that is a contradiction. O

Corollary 3.4.9. A (non empty) closed subset X < A"*! has pure dimension n if and only if it
is a hypersurface. Similarly, a closed subset X < P™*! has pure dimension n if and only if it is a
hypersurface.
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Proof. If X < A™*! is a hypersurface then it has pure dimension n, see Eaxmple 3.4.1.

In order to prove the converse, suppose that X — A”*! is a closed subset of pure dimension 7.
Thus every irreducible component of X is a closed subset of A"*! of dimension n. Since the union of
hypersurfaces in A”*! is a hypersurface in AT, it suffices to prove that each irreducible component of
X is a hypersurface. Thus we may assume that X is irreducible. Since dim X = n < dim A"*!, there
exists a non zero f € I(X) < K[z1,...,2p4+1]. Since X is irreducible, the ideal I(X) is prime, and hence
there exists a prime factor g of f which vanishes on X. Thus X < V(g) and V(g) is irreducible. By
Example 3.4.1 we have dim V' (g) = n, and hence dim X = dim V' (g). Since X is closed it follows from
Proposition 3.4.8 that X = V(g). This finishes the proof for closed subsets of A"+

The result for closed subsets of P**! follows by a smilar proof, or by intersecting with the standard
open affine subsets P, for i e {0,...,n + 1}. O

Proposition 3.4.10. Let X, Y be algebraic varieties. Then dim(X xY) =dim X + dimY.

Proof. We may assume that X and Y are irreducible affine varieties. There exist transcendence bases
{f1,--s fats {91, - ge} of K(X) and K(Y) respectively given by regular functions. Let 7x: X xY — X
and my: X x Y — Y be the projections. We claim that {7% (f1),..., 7% (fa), 75 (91),..., 75 (ge)} is a
transcendence basis of K(X x Y).
First, by Proposition 2.3.6 K[ X x Y] is algebraic over the subring generated (over K) by 7% (f1),..., 75 (ge)-
Secondly, let us show that 7% (f1),..., 7 (ge) are algebraically independent. Suppose that there is
a polynomial relation

Pml,---,me (WBk((fl)v cee 77r3k((fd)) ' ﬂ;k’(gl)ml Tt W;k/(ge)me = 07
0<mi,...,me<N
where each P, . m,. is a polynomial. Since gi,...,g. are algebraically independent we get that
Po,....m.(f1(a),..., fa(a)) = 0 for every a € X. Since fi,..., fq are algebraically independent, it
follows that P, .. m, = 0 for every 0 < mq,...,m, < N, and hence P = 0. This proves that
7% (f1),..., 75 (ge) are algebraically independent. O

3.5 Dimension and intersection

Closed subsets of P": dimension and intersection with linear subspaces

Let X < P™ be a hypersurface. Thus X = V(F) where F € K[Zy,..., Z,]q with d > 0 and F £ 0. Let
A =P(U) be a linear subspace of P", i.e. U < K"*! is a K vector subspace. Then A n X = V(Fy). It
follows that if dim A > 1 then A has non empty intersection with X. If, on the other hand, dim A = 0
i.e. A is a point, then A n X is empty for all points in the dense open subset P"\X. An analogous
characterization of the dimension of a closed subset of P" holds in general. In order to formulate the
relevant result we introduce a definition and a classical piece of terminology.

Definition 3.5.1. Let X be an irreducible algebraic variety, and let Y < X be a closed subset. The
codimension of Y in X is equal to dim X — dimY’, and is denoted by cod(Y, X).

Terminology 3.5.2. Let X be an algebraic variety, and let &2 be a property that each point of X
might or might not have (formally “the subset of points of X having the property 4?”). Then a general
point of X has property &2 if there is a dense open subset of X of points having property &2.

Proposition 3.5.3. Let X < P" be closed.

(a) Let k < cod(X,P™). Then for a general A € Gr(k,P") we have A~ X = & (i.e. there exists a
dense open U < Gr(k,P™) such that An X = & for all A€ U).

(b) Let A < P" be a linear subspace such that dim A > cod(X,Pg). Then An X # .

The proof of Proposition 3.5.3 is given after a few preliminary results.
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Definition 3.5.4. Let X < P™ be closed. For k € {0,...,n} let 'x (k) € X x Gr(k,P") be given by
Ix(k) ={(p,A) € X x Gr(k,P") | pe A}.

Proposition 3.5.5. Let X < P be closed and irreducible. Then Tx (k) is closed in X x Gr(k,P"),
irreducible, and
dimTx (k) = dim X + k(n — k). (3.5.1)

Proof. Let us show that I'x (k) is closed if X = P". Let A = (a;;) € Mi41,n+1(K) be a matrix
of maximal rank, i.e. of rank k + 1. Thus the rows of A span a subspace U4 < K"*! of dimension
k + 1, and hence P(Uy) € Gr(k,P"). Let [Z] € P™. Then ([Z],P(Ua)) € T'pn(k) if and only if the
(k +2) x (n+ 1) matrix obtained by adding the row Z to A has rank less than k + 2, i.e. if and only if
forall 0 < jo <j1 <...<Jr+1 < (n+1) we have

Xj Xj e Xjk+1
ao,jo @051 -+ o0 A0gkgs

Det | @150 Q1,57 -+ - Qljpy, =0
Ak,jo Ok, oo oor Ak,

Expanding the determinant on the left hand side we get that ([Z],P(Ua)) € T'pn (k) if and only if

k+1
Z pjo,jl,»--,ijst =0 (3.5.2)
s=0

for all 0 < jo < j1 < ... < ji+1 < (n+ 1), where [...,Dj; j....jns1»-- -] are the Pliicker coordinates of

P(U,) (see Exercise 2.6.4) with respect to the basis of A" K"t! associated to the standard basis of
K"*1. This shows that I'p« (k) is closed.

Now we show that I'x (k) is closed for X < P™ closed. Let 7: P x Gr(k, P™) — P™ be the projection.
Then I'y (k) = 77 1(X) n Tpn (k). Since X is closed in P" and 7 is regular 7—1(X) is closed in P" x
Gr(k,P™) and hence I'x (k) is closed in P" x Gr(k,P™) because I'pn (k) is closed. Of course this gives
that Tx (k) is closed in X x Gr(k,P™).

Next we prove that I'x (k) is irreducible of dimension as claimed. For i € {0,...,n} we have the
isomorphism

Xz, x Gr(k,n) =% Tx(k)n (P x Gr(k,P"))
(p, W) — (p,p+W)

where W € Gr(k,n), i.e. W is a k-dimensional vector subspace of K" viewed as the vector space
acting on the affine space P =~ A™ and p+ W denotes the closure in P™ of the affine subspace
p+ W c Py ~ A" Suppose that I'x (k) n (P}, x Gr(k,P")) is non empty. Then by the isomorphism
in (3.5.3) it is irreducible, and

(3.5.3)

dim (T'x (k) n (P}, x Gr(k,P"))) = dim Xz, x Gr(k,n) = dim X + dim Gr(k,n) = dim X + k(n — k).

Since I'x (k) is covered by the open non empty subsets I'x(k) n (P} x Gr(k,P")), any such open
subset is irreducible, and any two (non empty) such subsets have non empty intersection (because X is
irreducible), it follows that I'x (k) is is irreducible of dimension given by (3.5.1). O

Corollary 3.5.6. Let X < P™ be closed. Then T'x (k) is closed of dimension given by
dimTx (k) = dim X + k(n — k). (3.5.4)

If k < cod(X,P™) then
dimI'y (k) < dim Gr(k,P"™) (3.5.5)

with equality if and only if k = cod(X,P").
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Proof. Let X = X7 U ---u X, be the irreducible decomposition of X. Then
FX(]C) = FXl(k) U-es v FXT(k)~

Thus the equality in (3.5.4) follows from Proposition 3.5.5. Let’s prove (3.5.5). Let ¢ := cod(X,P™)
and let i € {1,...,r} be such that ¢ = n — dim X;. Then

dimTx,(c) =n—c+ec(n—c)=(c+1)(n—c) =dimGr(c, P").
This proves that the inequality in (3.5.5) holds and also the last statement. O

Proposition 3.5.7. Let X < P™ be closed. Suppose that p € P"\X and that H < P" is a hyperplane
not containing p. Let

(P"\{p}) - H
q - pgnH

be projection from p. Then m,(X) is a closed subset of H and dimm,(X) = dim X.

Proof. We may assume that X is irreducible. Since |y is regular and X is projective m,(X) is closed.
It remains to prove that dimm,(X) = dim X. We may assume that p = [0,...,0,1] and H = V(X,,).
We have

7Tp<[Z0, ey Zn]) = [Zo, ooy Zn71]~

Let Y := mp(X). The map m, defines a regular surjective map p: X — Y between irreducible (pro-
jective) varieties. We have the injection of fields p*: K(Y) — K(X). It suffices to prove that K(X) is
algebraic over p*K(Y').

One of V(Zy), ...,V (Z,—1) does not contain Y, say V(Zj), and hence K(Y) is generated over K by

(Z1/Z0)ys- -y (Zn-1/Z0)|y-

On the other hand K(X) is generated by

(Z1/Z0)|x = p* (Z1/Z0)ly) s - -+ (Zn-1/Z0)|x = p* (Zn-1/Z0)|v)

and (Z,/Zy)|x. There exists F' € I(X) such that F(p) # 0 because p ¢ X. Since p = [0,...,0,1] we
get that
F = atof + a,]_Zg_l +---+aq, a;€ K[ZQ, ey anl]iz ag # 0. (356)

Dividing by Zg and restricting to X we get that
Qo ((Zn)Zo)1x)* + @1+ (Zn)/Z0))x)" '+ +8q =0
where for 0 < j <d

a;j = (a;/Z)1x € K(p* ((Z1/20)ly) -+ 0" ((Znmr/ Zo)I¥)) - (3.5.7)

Since @y # 0 this proves that (Z,/Zy)|x is algebraic over p*K(Y).
O

Proof of Proposition 3.5.3. By considering an irreducible component of X of maximum dimension we
may assume that X is irreducible. Let p: I'x (k) — Gr(k,P™) be the restriction of the projection map
P™ x Gr(k,P") — Gr(k,P™). Then A € Gr(k,P") has non empty intersection with X if and only if it
belongs to im(p). The map p is closed because I'x (k) is projective, hence im(p) is closed. Moreover
im(p) is irreducible because X is irreducible. Thus p defines a dominant map I'x (k) — im(p) of
irreducible varieties. It follows that dim(im(p)) < I'x(k). Now suppose that k < cod(X,P"). By
Corollary 3.5.6 we get that dim(im(p)) < dim Gr(k,P") and hence Gr(k,P™)\im(p) is an open dense
subset of dim Gr(k,P"). Item (a) follows because any A € (Gr(k,P™)\im(p)) does not intersect X.
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Next we prove (b). The proof is by induction on cod(X,P"). If cod(X,P™) = 0 the result is
trivial (if you don’t like to start from cod(X,P") = 0 you may begin from cod(X,P") =1, i.e. X is a
hypersurface). Let’s prove the inductive step. Let p € A. If p € X there is nothing to prove; thus we
may assume that p ¢ X. Choose a hyperplane H c P™ not containing p and let m be projection from p
to H as in (3.6.8). Then 7(X) < H ~ P"! is closed because X is projective, and dim7(X) = dim X
by Proposition 3.5.7. Thus

cod(m(X),P"!) = cod(X,P") — 1. (3.5.8)

Let © := 7w(A\{p}). Then Q c H is a linear subspace and dim = (dim A — 1). By the equality
in (3.5.8) it follows that dimQ > cod(m(X),P""1). Hence Q n 7(X) is non empty by the inductive
hypothesis. Let ¢ € Q@ n7(X). Since ¢ € m(X) there exists ¢ € X such that 7(§) = ¢g. But ¢ € A because
qe Q. Thus ge X n A. O

Dimension of intersections

The result below is a remarkable generalization of the well-known result in linear algebra stating that
the set of solutions of a system of m homogeneous linear equations in n > m unknowns has dimension
at least n —m.

Proposition 3.5.8. Let X, Y < P™ be closed and suppose that (dim X +dimY) = n. Then X nY s
non empty and each of its irreducible components has dimension at least dim X + dimY — n.

Remark 3.5.9. It is clear that one needs the hypothesis that X,Y be closed for the thesis of Proposi-
tion 3.5.8 to hold. The hypothesis that the ambient algebraic variety is P" is also a key hypothesis. As
soon as one replaces P by other complete algebraic varieties the thesis fails to hold. As a test consider
replacing P™ by a product of projective spaces, or by a Grassmannian.

We prove Proposition 3.5.8 after going through a series of preliminary results.
Let X,Y < PV be two closed subsets. Let (X) < PV and (Y) < PV be the linear subspaces
generated by X and Y respectively.

Definition 3.5.10. Suppose that
(XH)nY)y=. (3.5.9)

The join J(X,Y) of X and Y is the subset of PV swept out by the lines joining a point of X to a point
of Y, ie.

JIxy)= | e (3.5.10)

peX,qeY

Claim 3.5.11. Let X,Y < PV be closed and assume that (3.5.9) holds.

1. J(X,Y) is closed.

2. If X and Y are irreducible then J(X,Y) is irreducible.

3. dimJ(X,Y)=dimX +dimY + 1.
Proof. Let m := dim(X) and n := dim{(Y"). There exist homogeneous coordinates

S0,y Sm:Tos -, T, Vo, ..., Up]
on PV such that (X) = {[So,...,Sm,0,...,0]} and (Y = {[0,...,0,Tp,...,T},0,...,0]}. Then
J(X,Y) ={[So,---ySm:T0s--, T, 0,...,0] | [Soy---,Sm] € X, [To,...,Tn]€Y}. (3.5.11)

Item (1) follows at once.
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Let r € (J(X,Y)\X\Y). By (3.5.9) there is unique couple (p1(r),p2(r)) € X x Y such that
r € {p1(r), v2(r)). Thus we have a map

(J(X,Y)\X\Y) % XxY

3.5.12

. = (i) ealr) (3012

As is easily checked ¢ is regular. The fibers of ¢ are isomorphic to K*. Moreover for any i € {0,...,m}
and j € {0,...,n} we have

¢ ' (Xs, x Yr,) = Xg, x Yp, x K*. (3.5.13)

Items (2) and (3) follow from this. O

The result below is the special case of Proposition 3.5.8 one gets by letting Y be a hyperplane.

Proposition 3.5.12. Let X < P” be closed, irreducible of strictly positive dimension. Let H < P" a
hyperplane not containing X. Then X n H is non empty and it has pure dimension equal to dim X — 1.

Proof. Since X n H & X we have dim X n H < dim X by Proposition 3.4.8. Let ¢ := cod(X,P"). Let
A < H be a linear subspace such that dim A = ¢. Note that such subspaces exist because by hypothesis
¢ < (n—1) =dim H. By Proposition 3.5.3 applied to X < P™ we have A n X # ¢J, and since A ¢ H
we have An X c A n (X n H). This proves that X n H is non empty and also, by Proposition 3.5.3,
that cod(X n H, H) < ¢. The latter inequality gives that

dm(X nH)>2dmH -c=n—1—-c=dimX — 1. (3.5.14)

This proves that X n H is non empty and dim(X n H) = dim X — 1. It does not suffice because the
proposition states a stronger result namely that X n H has pure dimension equal to dim X — 1.

The proof of the stronger statement is by induction on cod(X,P"). If cod(X,P™) = 0 then X = P"
and the statement of the proposition is trivially true. If cod(X,P™) = 1 then X is a hypersurface by
Corollary 3.4.9, hence X n H is a hypersurface in H and hence every irreducible component of X n H has
codimension one in H by Corollary 3.4.9. This proves the validity of the proposition if cod(X,P") = 1.
Now we prove the inductive step. Assume that cod(X,P") = ¢ > 2. Let Y be an irreducible component
of X n H. Pick a point p e H\X and a hyperplane L not containing p and different from H. Let

Tp

P"\{p} — L
q - p,nL

be the projection from p. Let Hy = m,(H\{p}). Note that Hy < L is a hyperplane. We consider
Tp(X) " Hp. Let X nH =Y uY; u---UY, be the irreducible decomposition of X n H. We have

mp(X) N Hy =mp(Y) ump(Y1) u ... ump(Ys),

and, since p ¢ X, each of m,(Y), 7, (Y1), ..., mp(Y;) is closed by Proposition 3.5.7. We claim that there
exists p such that
mp(Y) & mp(Y;) Vie{l,...,r}. (3.5.15)

In fact let ¢ € Y\|J;_, ¥;. By Claim 3.5.11 J(q,Y;) is closed, irreducible, and
dim J(q,Y;) = dimY; + 1. (3.5.16)

Since dimY; < dim X — 1 and since cod(X,P™) > 2 we have dimY; < dim H — 2. Thus (3.5.16) gives
that J(q,Y;) # H. Hence there exists

pE H\LTJ J(q,Y:). (3.5.17)
i=1

For such a p the statement in (3.5.15) holds, and hence 7,(Y") is an irreducible component of m,(X) N H.
By the inductive hypothesis we get that dimm,(Y") = dimm,(X) — 1. Since dimm,(Y") = dimY and
dim7,(X) = dim X (by Proposition 3.5.7) we are done. O
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Proof of Proposition 3.5.8. Let [So,...,Sn,To,---,Tn] be homogeneous coordinates on P?"*1. We have
the two embeddings

P" _l> p2n+1 P~ L Pp2n+1 (3 5 18)
[Zo-. s Zn] = [Zove-sZn,0,....0]  [Zov.osZn] +— [0,...,0,Z0,..., 2]
Since the images of i and j are disjoint linear subspaces of P?"*1 the join J(i(Y), j(W)) is defined. Let
A < P?"*1 be the linear subspace given by

A= V(So—To,,Sn—Tn) (3519)

We have the isomorphism

~

XnY = AnJE(X),5(Y))

’ 3.5.20
(Zo,.- v Zn]l —  [Zoy. s Zn, 20y Zn) ( )
By Claim 3.5.11 the closed subset J(i(X),5(Y)) < P?"*! has dimension equal to dim X + dimY + 1.
On the other hand A is a codimension-(n + 1) linear subspace of P?"*! hence by repeated application of
Proposition 3.5.12 we get that A n J(#(X), j((Y)) is non empty and each of its irreducible components
has dimension at least equal to (dim X + dimY — n). By the isomorphism in (3.5.20) the proposition
follows. O

Dimension of fibers

Theorem 3.5.13. Let X be an irreducible algebraic variety. Let f: X — K be a non zero regular
function, and let V(f) == f~1(0). Every irreducible component of V(f) has dimension equal to dim X —1.

Proof. Since X is a (finite) union of open affine subsets we may assume that X is affine. Thus X < A"
is a closed subset. By Theorem 1.6.2 there exists f € K[z1,..., z,] such that f = fix. Let Y := V(f),
and let W be an irreducible component of X n'Y. We must prove that dim W = dim X — 1. We have

A" =P7 < P" as open dense subset. Let X,Y, W < P" be the closures of X, Y and W respectively.
Then Y < P" is a hypersurface. Let P € K[Z,...,Z,] be a homogeneous polynomial such that
Y = V(P), and let d be its degree. Let N := (d:;”) —1, and let
Pn ”_;lL> PN
(Zo,.. Zn] = [28,2§7'Xy,..., 2%

be the Veronese map. Since Y = V(P) and P has degree d, there exists a hyperplane H < PV such that
(vj)~'(H) =Y. Thus v} defines an isomorphism X nY — v} (X) n H, and vj(W) is an irreducible

component of v} (X) n H. By Proposition 3.5.12 we have
dimW = dim W = dim v} (W) = dimv}(X) =1 =dim X — 1 = dim X — 1.
O

Corollary 3.5.14. Let f: X — Y be a reqular map of algebraic varieties. Let p e X. Every irreducible
component of f~(f(p)) has dimension at least equal to dim X — dimy, Y.

Proof. Since X and Y are covered by open affine subsets, we may assume that X and Y are affine.
Let ¢ == f(p) and let m = dim,Y. We claim that there exist ¢1,..., @, € K[Y] such that ¢ is an
irreducible component of V(p1,...,p,). In fact one may argue by induction on m. If m = 0 the
statement is trivially true. Let m > 0 and assume that the claim holds for lower values of m. Since
dimg Y > 0 there exists ¢, € K[Y] vanishing at ¢ and not vanishing on any irreducible component of ¥’
containing ¢. Then V(p,,) contains ¢, and by Theorem 3.5.13 its dimension at ¢ is equal to m — 1. By
the inductive hypothesis there exist ¢1,...,%,—1 € K[V (¢1)] such that ¢ is an irreducible component
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of V(¢1,...,%m—1) < V(p1). Since V(¢1) is a closed affine subset of the affine variety Y, there exist
©1, - om—1 € K[Y] whose restrictions to V' (¢1) are equal to 91, ..., 1¥,—_1 respectively. Then ¢ is an
irreducible component of V(p1, ..., ¥.;). Thus we have

V(f*(e1),- - [*om)) = f @) u W,

where W is closed in X, i.e. f~1(q) is a union of irreducible components of V (f*(¢1),..., f*(om))-
By repeated application of Theorem 3.5.13 every irreducible component of V(f*(¢1),..., f*(¢vm)) has
dimension at least equal to dim X —m = dim X —dim Y. O

3.6 Degree

Degree of a map

Definition 3.6.1. Let f: X — Y be a regular map of irreducible algebraic varieties. The degree of f,
denoted by deg f, is given by

deg f = 0 if f is not dominant,
SITVIR(X) : fROY)] if £ s dominant.

The separable degree of f, denoted by deg, f, is given by

deg. f 0 if f is not dominant,
€ =
&s [K(X)*: f*K(Y)] if f is dominant,

where K(X)*® < K(X) is the maximal separable extension of f*K(Y).

Thus 0 < deg f < oo if and only if f is dominant and dim W = dim Z. Note that deg, f divides
deg f, and that if K has characteristic 0 then deg, f = deg f.
Example 3.6.2. Let (z1,...,2n,w) be affine coordinates on A"*1. Let X < A"*! be an irreducible
hypersurface and let I(X) = P. Write

P =aqow? + ayw®t + - 4+ ay, a; €K[z1,...,2n], a9 #0

Let Y = A™ and let
X S, Y
(21, oy zmyw) > (21,...,20)

Then deg f = d. In fact if d = 0 then im f = V(ap) & A™ and hence f is not dominant. If d > 0 then
K(X) =K(z1,...,2n)[w]/(P)
and hence [K(X) : K(z1,...,2,)] = d.

If K has characteristic 0 then deg, f = deg f. Suppose that char K = p > 0. Let m be the maximum
integer such that p™ | (d — i) for all i € {0,...,d} such that a; 0. Then deg, f = d/p™.

Below is the main result of the present section.

Proposition 3.6.3. Let f: X — Y be a reqular map of irreducible algebraic varieties such that deg f <
w. Then there exists an open dense Y° 'Y such that

[f7Hq)| =deg, f  VgeY". (3.6.1)
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FEzample 3.6.4. Let us check the statement of Proposition 3.6.3 for the map f: X — A" of Example 3.6.2.
Let P € K[z1,...,2n, w] be as in that example. Let Q € K[z, ..., 2,,w] be defined as follows: @ = P
if char K = 0, and

m oQ
IR R (%] P =P PR R (2] ’ A 0.
Q(z Zn, WP ) (=1 Zn, W) e +
In particular m is the maximum integer such that p™ | (d —4) for all ¢ € {0,...,d} such that a; # 0,

and hence deg, f is the degree in w of Q. Let Y = V(Q) < A"™. Let g: X — Y be defined by
g(z,w) = wP"), and let h: Y — A" be defined by h(z,w) = z. The regular map f: X — A" factorizes
as the composition

XLy -boan (3.6.2)
Clearly the map g is bijective, hence it suffices to check that |h=1(Z)| = d for a general Z € A". Since
% #+ 0, closed subset of Y defined by V(Q,0Q/dw) is a proper subset and hence it has dimension
strictly smaller than dimY = n. Thus A := h(V(Q, 0Q/0w)) is contained in a proper closed subset of
A™ and hence (A™\A\V (ap)) contains an open dense subset U < A™. Let Z € U. Then Q(z,w) € K[w]
is a polynomial with simple roots of degree deg, f and hence |h~1(%)| = deg, f.

Ezample 3.6.5. We consider a more general version of Example 3.6.2. Let Y be an affine variety. Let
P e K(Y)[t] be an irreducible polynomial:

P=t'+at"™ 4+ tag, a; e fHEKY)).

Since Y is affine K(Y) is the field of fractions of K[Y]. Thus there exists 0 # b € K[Y] such that
b-a; e f*(K[Y]) forall 1 <i<d. Let ¢g:=b, ¢;:=b-a;, 1 <i<dand

Q:=coy’ + ary? + - 4 g e K[Y][w]. (3.6.3)

If K[Y] is a UFD we may factor out the ged {co, ..., cq} and hence by renaming the ¢;’s we may assume
that ged {cp,...,cq} = 1. Tt follows that V(Q) is irreducible (the proof is the same as the one for
hypersurfaces in A™). In general K[Y] is not a UFD and hence there might be no way of “reducing”
the polynomial of (3.6.5) in order to get that V(Q) is irreducible. An example of this phenomenon is
the following: Y := V(2122 — 2324) and V := V(z1y — 23).

Let hypotheses and notation be as in Example 3.6.5, and let 7: X x A! — X be the projection map.
An irreducible component V; of V(Q) dominates X if n(V;) = X.

Claim 3.6.6. Keep hypotheses and notation as in Example 3.6.5. There is one and only one irreducible
component of V(Q) which dominates Y, call it Vy. Let my: Vi — Y be the restriction of w. There is
an open dense U <Y such that |15 (q)| = deg, 7y for every qe U.

Proof. We have 7(V(Q)) > Y\V(cp). Then Y\V(co) is dense in Y because co # 0. It follows that there
exists at least one irreducible component V; of V' such that m(V,) =Y. Let V, be such an irreducible
component. Let g € I(V,). We claim that

Qlg in K(Y)[w]. (3.6.4)

(Notice: we do not claim that Q|g in K[Y][w].) In fact suppose that @ |g. Then @Q and g are coprime
(in K(Y)[w]) because @ is prime, and hence there exist «, 8 € K(Y')[w] such that

a-Q+p-g=1
Multiplying by 0 # v € K[Y][w] such that a - v, - v € K[Y][w] we get that
(@-7Q+(B-7)g =1

It follows that if ¢ € Vi then ~(q) = 0. Since v # 0 we get that 7(Vi) # Y: that is a contradiction.
This proves (3.6.4). Let I(Vy) = (¢1,...,9r). From (3.6.4) we get that there exist hq, ..., h, € K[Y][w]
and my,...,m, € K[Y] such that

mi-g;=Q -h;y, m;#0, 1=1,...,7.
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Set m = my -« -+ - m,. Then V,\V(m) = V\V(m) and it follows that V, is the unique irreducible
component of V(Q) dominating Y. Now let
kkoskoskokokoskoskokok
Q' :=deoy™ + (d—Very? 2 + -+ g1 € K[Y][w]. (3.6.5)

be the derivetive of () with respect to y. Then Q' # 0 and deg Q' < deg ). Thus Q and @’ are coprime
in K(Y)[w] and hence there exist u, v € K(Y)[w] such that

w-Q+v-Q =1.
Arguing as above we get that there exists a proper closed W < Y such that
TY\W)nV(Q) nV(Q) = 2. (3.6.6)

Now let U := (Y\W\V (co)\V (m)): then |75 (¢q)| = d for every q € U. O

Proof of Proposition 3.6.3. Suppose that deg f = 0. Then m #Y and YV := Y\f(X) does the job.
Now suppose that d := deg f > 0. Since Y is covered by open affine sets we may assume that Y itself is
affine. By definition we have an inclusion f*: K(Y) — K(X) and K(X) as vector space over K(Y') has
dimension d. Since we are in characteristic zero there exists £ € K(X) primitive over f*(K(Y)). Let

P=t'+ait™ ' +. +aq, a e fHEKY))

be the minimal polynomial of £. Let V(P) < Y x Al - notation as in Claim 3.6.6. Let Vi < V(P) be
the unique irreducible component dominating Y. We have a commutative diagram

W---2-_5v
\N A
Y

with ¢ birational. By Proposition 3.2.11 there exist open dense subsets X’ < X and V, < V, fitting
into a commutative diagram

X' —) V. (3.6.7)
ik fx A =R |y

with ¢ an isomorphism. Since X\X’ # X and dim X = dimY we have
FXA\X") #Y.
On the other hand
FFHa =) ey i ge Y\F(X\X).
By commutativity of (3.6.7) and the fact that v is an isomorphism we get that
()" Ha = 1(x) " Had |, qeY.

Hence the proposition follows from ****** O
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Degree of a closed subset of a projective space

Let X < P™ be closed, and let ¢ be its codimension. Suppose that X is irreducible and let m be the
forgetful regular map
Lx(c) — Gr(c,Pm)

N 3 (3.6.8)

Since I'x (¢) and Gr(c,P™) are irreducible we have a well-defined degw. By Corollary 3.5.6 we have
dimT'x(¢) = dim Gr(c,P"). Thus degm < oo0. The degree of X is defined to be the separable degree

deg X = deg,('x(c) - Gr(c,P™)). (3.6.9)

In general let X = X3 u---u X, be the irreducible decomposition of X. The degree of X is defined to
be the sum of the degrees of irreducible components of X which realize the dimension of X:

deg X := Z deg Xj;. (3.6.10)
dim X;=dim X

Proposition 3.6.7. Let X < P™ be closed of codimension c. There exists an open dense U < Gr(c, P™)
with the following property: if A € U then X n A is finite of cardinality equal to deg X. Moreover deg X
s positive.

Proof. If X is irreducible the first statement follows from Proposition 3.6.3 applied to the map =
in (3.6.8), and the positivity of deg X follows from Proposition 3.5.3. In general let X = X; u--- U X,
be the irreducible decomposition of X. If A € Gr(c,P™) is general then by Proposition 3.5.3

AnX; =@ if dimX; <dimX, An(X;nX;) =g ifi#j. (3.6.11)
It follows that if A € Gr(c,P™) is general then

AnX = || AnXs (3.6.12)
dim X;=dim X

and hence the claim follows from the case when X is irreducible. O

Ezample 3.6.8. Let X < P™ be a hypersurface and let I(Z) = (F). Then degX = degF. In fact

Kok skok koK

Example 3.6.9. Let Cq < P? be the rational normal curve, i.e. the image of the Veronese map

1
Vq

Pl N N ]P>d
3.6.13
[S,T] +— [S9,847iT,. . 79 (3.6.13)

Then degCy = d. **¥xktk

3.7 Exercises

Exercise 3.7.1. The Veronese map is
f

P - P (3.7.14)
[Z0,21,2Z2] — [Z1Z2,Z022, Z0Z:]

1. Prove that f is a birational map.
2. Determine Reg(f).

3. Describe maximal open sets U, V < P? such that f induecs an isomorphism U — V.
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Exercise 3.7.2. An algebraic group is an algebraic variety G equipped with a group structure such that the

map

GxG — G.
) ozt (3.7.15)

is regular. For example GL,(K) with matrix multiplication is an algebraic group. Prove that the irreducible
components of an algebraic groups are pairwise disjoint and they all have the same dimension.

Exercise 3.7.3. Let M, »,(K) be the vector-space of n x n matrices with entries in K. If char K # 2 define
0,(K) and SO, (K) as usual:

On(K) = {A€ M, ,(K) | A" A=1,},  SO.(K) = {A€ 0,(K) | Det A = 1}, (3.7.16)

where 1,, € My, »(K) is the unit matrix.

1.

3.
4.

Let Q =V (2 +25+...+ 22 —1) c A", and let f: SO,(K) — Q be the map associating to A € SO, (K)
its first column. Prove that f~!(z) is isomorphic to SO,—1(K) for every z € Q.

Let X be an irreducible component of SO, (K). Prove that f(X) is dense in Q. Prove that if X is the
irreducible component containing 1,, then f(X) contains an open dense subset of Q.

Prove by induction on n that SO, (K) is irreducible.

Prove that O, (K) has two irreducible components.

Exercise 3.7.4. Let , and

Un(K) := {Z € M, .(K) | Det(1, — Z) + 0}.

The Cayley map is given by

4.
5.

Un(K) 2 M, (K)

Z > (la+2)-(1,—2)" (3.7.17)

. Prove that ¢ defines a birational map f: M, ,(K) --» M, ,(K). Determine the rational inverse f~: M, ,(K) --»

My (K)

. Assume that charK £ 2. Let 0,(K) ¢ M, »(K) be the subspace of anti-symmetric matrices and let

SO, (K) € My »(K) be the group of special orthogonal matrices. Prove that if Z € 0, (K) n U, (K) then
©(Z2) € SOL(K). Let ¢: 0,(K) n Up(K) = SO, (K) be the restriction of ¢.

Prove that the image of ¢ is dense in SO, (K), and hence ¢ defines a dominant rational map g: 0, (K) --»
SO, (K).

Prove that Reg(f™") contains an open dense subset of SO, (K) and hence g is a birational map.

Notice that g is defined over the prime field. Produce many matrices in SO3(Q).

Exercise 3.7.5. Let U} < P(K[Zo,...,Zn]a) be the set of points [F] such that F' is a prime polynomial.

1.
2.

Prove that if n > 2 then U} is a dense open subset of P(K[Zo, ..., Zn]a).
Prove that if d > 2 then the codimension of the complement of Uy in P(K[Zo, ..., Zn]a) is equal to

(d tn- 1) _n. (3.7.18)

n—1

Let Div(IP™) be the abelian group with generators the irreducible hypersurfaces in P". Thus an element of

Div(P") is a formal finite sum D = ]
irreducible hypersurface in P". The degree of D is defined to be ),

m;D;, where each m; is an integer, and the D;’s are pairwise distinct
m; deg D;. The divisor Y, _, m;D; is

iel

el el

effective if m; > 0 for all 5 € I.

Let F € K[Zo,...,Zn]a be non zero, and let F = [] F/"* be the decomposition into prime factors, where

i=1

for ¢ + j the factors F; and F} are not associated. The divisor of F is the element of Div(P™) defined by

72

diV(F) = ZT: le(F,) (3,7.19)



3.7. Exercises

Let Dive (P™) < Div(P") be the subset of effective divisors of degree d. The map

div . n
P(K[Zo,...,Zn]a) —> Divi(P") (3.7.20)
[F] — div(F)
is a bijection. This gives a geometric interpretation of P(K[Zo, ..., Zn]4). From now on we identify Dive (P™)

with P(K([Zo, ..., Zn]a) via the bijection in (3.7.20). If D = 3. _;
each i € I, the support of D is the union of the D;’s and is denoted by supp D.

m;D; is an effective divisor, i.e. m; > 0 for

Exercise 3.7.6. Let Ry c Divl (P") be the subset defined as follows:
Ry = {D € Divi (P") | there exists a line A  supp D }. (3.7.21)

1. Prove that Ry is closed in Dive (P™).
2. Prove that if d > 4 then Ry # Divi (IP’S).
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