Advanced Topics in Geometry, Autumn 2024 - Kieran O'Grady

Problem set 1

Exercise 1. Let X be a topological space. For $U \subset X$ open let

$$\mathscr{F}(U) := \{ f \colon U \to \mathbb{R} \mid f \text{ is cosntant} \},\$$

and for $V \subset U$ with V open let $\rho_{U,V}^{\mathscr{F}} \colon \mathscr{F}(U) \to \mathscr{F}(V)$ be the restriction map.

- (1) Check that \mathscr{F} is a presheaf of abelian groups.
- (2) Determine under which hypotheses ${\mathscr F}$ is a sheaf.
- (3) Describe explicitly the sheafification \mathscr{F}^+ of \mathscr{F} .

Exercise 2. Let $d \in \mathbb{N}$, and let $P \in \mathbb{K}[Z_0, \ldots, Z_n]_d$. The section $s_P \in \Gamma(\mathbb{P}^n, \mathscr{O}_{\mathbb{P}^n}(d))$ is defines as follows. Given $\ell \in \mathbb{P}^n$, i.e. a 1-dimensional vector subspace $\ell \subset \mathbb{K}^{n+1}$ the value $s_P(\ell)$ is the restriction to ℓ of P. (Recall that the fiber of $\mathscr{O}_{\mathbb{P}^n}(d)$ at ℓ is the dual of $\ell^{\otimes d}$ i.e. the vector space of homogeneous degree-d maps $\ell \to \mathbb{K}$.) Prove that the map

$$\mathbb{K}[Z_0,\ldots,Z_n]_d \longrightarrow \Gamma(\mathbb{P}^n,\mathscr{O}_{\mathbb{P}^n}(d)) \\
P \mapsto s_P$$

is an isomorphism of K-vector spaces.

Let \mathscr{R} be a sheaf of rings on a topological space X, and let \mathscr{F}, \mathscr{G} be sheaves of \mathscr{R} -modules. The *direct sum* $\mathscr{F} \oplus \mathscr{G}$ is the sheaf of \mathscr{R} modules defined by

$$(\mathscr{F} \oplus \mathscr{G})(U) := \mathscr{F}(U) \oplus \mathscr{G}(U)$$

for $U \subset X$ open, with restriction maps given by $\rho_{U,V}^{\mathscr{F}} \oplus \rho_{U,V}^{\mathscr{G}}$ for $V \subset U$ open.

Exercise 3. Let $d \in \mathbb{N}$. The sections $Z_i^d \in \Gamma(\mathbb{P}^1, \mathscr{O}_{\mathbb{P}^1}(d))$ for $i \in \{0, 1\}$ define morphisms of sheaves

$$\mathscr{O}_{\mathbb{P}^1}(-d) \xrightarrow{Z_i^a} \mathscr{O}_{\mathbb{P}^1},$$

hence letting $\alpha := (Z_0^d, Z_1^d)$ we have a morphism

$$\mathscr{O}_{\mathbb{P}^1}(-d) \stackrel{lpha}{\longrightarrow} \mathscr{O}_{\mathbb{P}^1} \oplus \mathscr{O}_{\mathbb{P}^1}.$$

- (1) Show that φ is injective, and hence it defines an inclusion of sheaves $\alpha \colon \mathscr{O}_{\mathbb{P}^1}(-d) \hookrightarrow \mathscr{O}_{\mathbb{P}^1} \oplus \mathscr{O}_{\mathbb{P}^1}$.
- (2) Show that we have an isomorphism

$$\mathscr{O}_{\mathbb{P}^1} \oplus \mathscr{O}_{\mathbb{P}^1} / \operatorname{im}(\alpha) \cong \mathscr{O}_{\mathbb{P}^1}(d).$$

(3) Let

$$0 \longrightarrow \mathscr{O}_{\mathbb{P}^1}(-d) \xrightarrow{\alpha} \mathscr{O}_{\mathbb{P}^1} \oplus \mathscr{O}_{\mathbb{P}^1} \xrightarrow{\beta} \mathscr{O}_{\mathbb{P}^1}(d) \longrightarrow 0$$

$$\tag{1}$$

be the short exact sequence one gets from (1)-(2). Show that if $d \ge 2$ then the map

$$\Gamma(\mathbb{P}^1, \mathscr{O}_{\mathbb{P}^1} \oplus \mathscr{O}_{\mathbb{P}^1}) \stackrel{\Gamma(\beta)}{\longrightarrow} \Gamma(\mathbb{P}^1, \mathscr{O}_{\mathbb{P}^1}(d))$$

is not surjective (and hence β is not surjective as morphism of preasheaves).