Advanced Topics in Geometry, Autumn 2024 - Kieran O'Grady

Problem set 2

In these exercises K is an algebraically closed field, and algebraic varieties are defined over K.

Exercise 1. Let X be an irreducible affine variety.

- (1) Let N be a $\mathbb{K}(X)$ vector space. Note that N is a $\mathbb{K}[X]$ -module (because $\mathbb{K}[X] \subset \mathbb{K}(X)$), and hence there is an associated sheaf of \mathscr{O}_X -modules \widetilde{N} . Show that if dim X > 0 and $N \neq 0$ then \widetilde{N} is not coherent (of course it is quasi-coherent by definition).
- (2) Let M be a $\mathbb{K}[X]$ -module, and let $N := M \otimes_{\mathbb{K}[X]} \mathbb{K}(X)$. Thus N is a $\mathbb{K}(X)$ vector space. We have a morphism of sheaves of \mathscr{O}_X -modules $\varphi^M \colon \widetilde{M} \to \widetilde{N}$ defined by

$$\widetilde{M}(U) \quad \xrightarrow{\varphi_U^M} \quad \widetilde{N}(U) s_x)_{x \in U} \quad \mapsto \quad (s_x \otimes 1)_{x \in U}$$

(Note that if $p \in X$ then $N_{\mathfrak{m}_p} \cong M_{\mathfrak{m}_p} \otimes \mathbb{K}(X)$.) Let $X = \mathbb{A}^1(\mathbb{K})$ with afffine coordinate t, and let $M = \mathbb{K}[t] \oplus \mathbb{K}[t]/(t)$. Describe ker (φ^M) .

Exercise 2. Let X be a topological space with a sheaf of rings \mathscr{R}_X . We assume that for each non empty open subset $U \subset X$ the ring $\mathscr{R}_X(U)$ is an integral domain. Let \mathscr{F} be a sheaf of \mathscr{R}_X -modules. For $U \subset X$ open let

 $T_{\rm pre}(\mathscr{F})(U) := \operatorname{Tors} \mathscr{F}(U) := \{ s \in \mathscr{F}(U) \mid \exists 0 \neq f \in \mathscr{R}_X(U) \text{ such that } fs = 0 \}.$

Note that $T_{\text{pre}}(\mathscr{F})(U)$ is a sub $\mathscr{R}_X(U)$ -module of $\mathscr{F}(U)$ (the torsion submodule of the $\mathscr{R}_X(U)$ -module $\mathscr{F}(U)$), and that $\rho_{U,V}^{\mathscr{F}}(T_{\text{pre}}(\mathscr{F})(U)) \subset T_{\text{pre}}(\mathscr{F})(V)$ for all open $V \subset U$ in X. Thus $T_{\text{pre}}(\mathscr{F})(U)$ is a presheaf of \mathscr{R}_X -modules. Let

$$T(\mathscr{F}) := T_{\mathrm{pre}}(\mathscr{F})^{+}$$

be the sheafification of $T_{\text{pre}}(\mathscr{F})$. (This is the *torsion subsheaf* of the sheaf of \mathscr{R}_X -modules \mathscr{F} .)

- (1) Give examples in which $T_{\text{pre}}(\mathscr{F})$ is not a sheaf.
- (2) Let X be an irreducible affine variety, and let M be a $\mathbb{K}[X]$ -module. Define an isomorphism

$$(\widetilde{\mathrm{Tors}\,M}) \cong T(\widetilde{M})$$

(3) Let X be an irreducible affine variety. Let M be a $\mathbb{K}[X]$ -module and let φ^M be as in Exercise 1. Prove that $\ker(\varphi^M) = T(\widetilde{M})$.

Let X be an affine variety, and let M be a $\mathbb{K}[X]$ -module. Recall (see (Quasi)Coherent-sheaves, p.8) that the fiber at p of \widetilde{M} is the K vector space

$$\widetilde{M}(p) := \widetilde{M}_p / \mathfrak{m}_p \widetilde{M} = M / \mathfrak{m}_p M.$$

For $\underline{a} = (a_1, \ldots, a_d) \in M^d$ let

 $\phi^{\underline{a}}\colon \mathscr{O}_X^{\oplus d} \longrightarrow \widetilde{M}$ be the morphism defined by setting (for $V \subset X$ open)

 $\phi_V^{\underline{a}}(\lambda_1,\ldots,\lambda_d) := \lambda_1(a_{1|V}) + \ldots + \lambda_d(a_{d|V}).$

Exercise 3. Let X and M be as above, with M a finitely generated $\mathbb{K}[X]$ -module. Let $p \in X$.

- (a) Suppose that the fiber $\widetilde{M}(p)$ is generated by $\overline{a}_1, \ldots, \overline{a}_d \in M/\mathfrak{m}_p M$. Prove that there exists an open $U \subset X$ containing p such that $\phi_{U}^{\underline{a}} : \mathscr{O}_U^{\oplus d} \to \widetilde{M}_{|U}$ is surjective.
- (b) Suppose that M(p) is a free $\mathscr{O}_{X,p}$ -module. Prove that there exists an open $U \subset X$ containing p such that $\widetilde{M}_{|U}$ is free.

Let X be an algebraic variety. A quasi-coherent sheaf \mathscr{F} on X is torsion free if $T(\mathscr{F}) = 0$.

Exercise 4. Let \mathscr{F} be a torsion free coherent sheaf on X.

- (a) Prove that if X is a smooth curve then \mathscr{F} is locally free.
- (b) Give an example of a singular curve X and an \mathscr{F} as above with \mathscr{F} not locally free. (c) Give an example of a smooth surface X and an \mathscr{F} as above with \mathscr{F} not locally free.