Advanced Topics in Geometry, Autumn 2024 - Kieran O'Grady

Problem set 3

In these exercises \mathbb{K} is an algebraically closed field, and algebraic varieties are defined over \mathbb{K} .

Exercise 1. An algebraic variety X is *locally factorial* if for every $p \in X$ the local ring $\mathcal{O}_{X,p}$ is a unique factorization domain¹ (note: in particular X is locally irreducible).

Prove that X is locally factorial if and only if the following holds: Given a closed subset $A \subset X$ of pure codimension 1 there exists an open affine covering $\mathscr{U} = \{U_i\}_{i \in I}$ of X and $f_i \in \mathbb{K}[U_i]$ for each $i \in I$ such that $I(A \cap U_i) = (f_i)$.

As you know, a sheaf of \mathscr{O}_X -modules \mathscr{F} on an algebraic variety X is (quasi)coherent if there exists an affine open covering $\mathscr{U} = \{U_i\}_{i \in I}$ of X such that for all $i \in I$ we have $\mathscr{F}_{|U_i} \cong \widetilde{M}_i$ for a suitable $\mathbb{K}[U_i]$ -module M_i (finitely generated if \mathscr{F} is coherent). Similarly, a sheaf of \mathscr{O}_X -modules \mathscr{F} is locally-free of rank r if there exists an open affine covering $\mathscr{U} = \{U_i\}_{i \in I}$ of X such that for all $i \in I$ we have $\mathscr{F}_{|U_i} \cong \widetilde{\mathbb{K}[U_i]}^{\oplus r}$. Now suppose that Xis an affine variety. As you know, any (quasi)coherent sheaf on X is isomorphic to \widetilde{M} for a suitable $\mathbb{K}[X]$ -module M (finitely generated if \mathscr{F} is coherent). On the other hand it is not true that any locally-free sheaf of rank ron X is isomorphic to $\widetilde{\mathbb{K}[U_i]}^{\oplus r}$ (i.e. to $\mathscr{O}_X^{\oplus r}$). The next two exercise illustrates this fact.

Exercise 2. Let X be an irreducible locally factorial affine variety.

- (a) Suppose that $\operatorname{Pic}(X)$ is trivial. Show that if $A \subset X$ is irreducible of codimension 1 then I(A) is a principal prime ideal (the coherent sheaf sheaf $\widetilde{I(D)}$ is locally-free of rank 1, hence...). From this deduce that if $f \in \mathbb{K}[X]^*$ is an irreducible non unit then I(V(f)) = (f), and that V(f) is irreducible. This implies that f is prime.
- (b) Suppose that $\mathbb{K}[X]$ is a UFD. Show that if $A \subset X$ is irreducible then I(A) is a principal prime ideal.

Exercise 3. Let $D \subset \mathbb{P}^n$ be an irreducible hypersurface of degree d, and let $X := \mathbb{P}^n \setminus D$. Note that X is a locally factorial irreducible affine variety.

- (a) Prove that $\operatorname{Pic}(X) \cong \mathbb{Z}/(d)$, in particular if $d \ge 2$ then $\operatorname{Pic}(X)$ is non trivial.
- (b) Suppose that $d \ge 2$. Exhibit a non unit $f \in \mathbb{K}[X]^*$ which is irreducible but not prime.

Exercise 4. Let $0 \longrightarrow \mathscr{E} \longrightarrow \mathscr{F} \longrightarrow \mathscr{G} \longrightarrow 0$ be an exact sequence of coherent sheaves on an algebraic variety X. Let \mathscr{H} be a coherent sheaf on X, and consider the complex of coherent sheaves on X

$$0 \longrightarrow \mathscr{E} \otimes \mathscr{H} \longrightarrow \mathscr{F} \otimes \mathscr{H} \longrightarrow \mathscr{G} \otimes \mathscr{H} \longrightarrow 0.$$

$$\tag{1}$$

- (a) Prove that if \mathscr{H} is locally-free then the complex in (1) is exact.
- (b) Give examples for which the complex in (1) is <u>not</u> exact (of course \mathscr{H} must be non locally-free).

An exact sequence

$$0 \longrightarrow \mathscr{E} \xrightarrow{\alpha} \mathscr{F} \xrightarrow{\beta} \mathscr{G} \longrightarrow 0 \tag{2}$$

of coherent sheaves on an algebraic variety X splits if there is a commutative diagram

where the vertical arrows are isomorphisms and ι , π are the standard inclusion and projection maps.

¹Recall the following non trivial result: a smooth variety is locally factorial.

Exercise 5. Suppose that we have an exact sequence as in (2), with \mathscr{G} locally-free. The exact sequence (see Exercise 4) $0 \longrightarrow \mathscr{G}^{\vee} \otimes \mathscr{E} \longrightarrow \mathscr{G}^{\vee} \otimes \mathscr{F} \longrightarrow \mathscr{G}^{\vee} \otimes \mathscr{G} \longrightarrow 0$ gives rise to a long exact sequence of cohomology groups

$$0 \longrightarrow H^0(X, \mathscr{G}^{\vee} \otimes \mathscr{E}) \longrightarrow H^0(X, \mathscr{G}^{\vee} \otimes \mathscr{F}) \longrightarrow H^0(X, \mathscr{G}^{\vee} \otimes \mathscr{G}) \xrightarrow{\partial} H^1(X, \mathscr{G}^{\vee} \otimes \mathscr{E}) \longrightarrow \cdots$$
(3)

The element $e := \partial(\mathrm{Id}_{\mathscr{G}}) \in H^1(X, \mathscr{G}^{\vee} \otimes \mathscr{E})$ is the *extension class* of the exact sequence in (2).

- (a) Prove that the exact sequence in (2) splits if and only if its extension class vanishes.
- (b) Give examples for which the extension class is non zero. Use this to prove that $H^1(\mathbb{P}^1, \mathscr{O}_{\mathbb{P}^1}(-2)) \neq 0$.