Compito di Analisi Reale — 17 gennaio 2005

1) Sia

$$x_k^{(n)} = \begin{cases} 1 - \cos\left(\frac{1}{\sqrt[3]{k}}\right) & \text{se } k \ge n \\ 0 & \text{se } k < n \end{cases}$$

Studiare la convergenza della successione $\{x_k^{(n)}\}$ in ℓ^p , $1 \le p \le +\infty$.

2) Sia

$$g_k(x) = \frac{x^{2k+1}}{(2k+1)!} e^{-x}.$$

Calcolare, motivando la risposta,

$$\sum_{k=0}^{+\infty} \int_0^1 g_k(x) \, dx \, .$$

3) Sia

$$f(x) = \sum_{k=0}^{+\infty} \frac{2^k}{k+1} \chi_{\left(\frac{1}{3^{k+1}}, \frac{1}{3^k}\right)}(x).$$

Per quali $p, 1 \le p \le +\infty$, f appartiene a $L^p((0,1))$?

4) Sia

$$f_n(x) = \frac{x^n}{1 + x^{n+1}}, \quad x \ge 0.$$

Studiare la convergenza di f_n in $L^p((0,1))$ e in $L^p((1,+\infty))$, $1 \le p \le +\infty$.

5) Sia

$$f(x) = \sum_{k=1}^{+\infty} \frac{\text{sen}(kx)}{k^2}, \quad x \in [0, 2\pi].$$

Dopo aver dimostrato che f appartiene a $L^2((0,2\pi))$, calcolare

$$\int_0^{\pi} f(x) \, dx \, .$$

Inoltre, detta

$$g(x) = \sum_{k=1}^{+\infty} \frac{\cos(kx)}{k}, \quad x \in [0, 2\pi],$$

dimostrare che

$$f(x) = \int_0^x g(t) dt, \qquad \forall x \in [0, 2\pi].$$