LA TRASFORMATA DI FOURIER

1. Definizione della trasformata di Fourier

Definizione 1.1. Sia u in $L^1(\mathbb{R})$ e sia ξ in \mathbb{R} . La trasformata di Fourier di u è la funzione

(1.1)
$$\mathcal{F}(u)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} u(x) dx.$$

Ovviamente, non è detto a priori che $\mathcal{F}(u)$ sia ben definita per ogni ξ in \mathbb{R} . Osservando però che se u è in $L^1(\mathbb{R})$ allora sono in $L^1(\mathbb{R})$ anche le funzioni $\cos(\xi x) u(x) = \Re(e^{-i\xi x} u(x))$ e $\sin(\xi x) u(x) = -\Im(e^{-i\xi x} u(x))$, sono ben definite le quantità

$$r(\xi) = \int_{\mathbb{R}} \cos(\xi x) u(x) dx, \qquad i(\xi) = \int_{\mathbb{R}} \operatorname{sen}(\xi x) u(x) dx,$$

dove gli integrali sono integrali secondo Lebesgue, e quindi è ben definita $\mathcal{F}(u)$. Dal momento che, per il Teorema di Lebesgue,

$$r(\xi) = \lim_{R \to +\infty} \int_{-R}^{R} \cos(\xi x) u(x) dx,$$

е

$$i(\xi) = \lim_{R \to +\infty} \int_{-R}^{R} \operatorname{sen}(\xi \, x) \, u(x) \, dx \,,$$

 $\mathcal{F}(u)$ può essere definita anche tramite il valore principale:

$$\mathcal{F}(u)(\xi) = \mathbf{vp} \int_{-\infty}^{+\infty} e^{-i\xi x} u(x) dx.$$

Nel seguito useremo indifferentemente i due valori.

Esempio 1.2. Sia $u(x) = \chi_{[-1,1]}(x)$. Allora, se $\xi \neq 0$,

$$\mathcal{F}(u)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} \chi_{[-1,1]}(x) dx = \int_{-1}^{1} e^{-i\xi x} dx = \frac{2\mathrm{sen}(\xi)}{\xi}.$$

Ovviamente, $\mathcal{F}(u)(0) = 2$. Osserviamo che $\mathcal{F}(u)$ è continua (mentre u non lo è), ed infinitesima all'infinito.

Sia $u(x) = \chi_{[a,b]}(x)$. Allora gli stessi calcoli di prima portano a

$$\mathcal{F}(u)(\xi) = i \frac{e^{-ib\xi} - e^{-ia\xi}}{\xi},$$

se $\xi \neq 0$, mentre $\mathcal{F}(u)(0) = b - a$. Anche in questo caso $\mathcal{F}(u)$ è continua ed infinitesima per $|\xi|$ tendente ad infinito.

Sia
$$u(x) = \frac{1}{1+x^2}$$
. Allora

$$\mathcal{F}(u)(\xi) = \int_{\mathbb{R}} \frac{e^{-i\xi x}}{1+x^2} dx,$$

e questo integrale può essere calcolato con i residui (si rimanda a libri di analisi complessa), e si ottiene

$$\mathcal{F}(u)(\xi) = \pi e^{-|\xi|}.$$

Anche in questo caso $\mathcal{F}(u)$ è una funzione continua che tende a zero ad infinito.

Sia
$$u(x) = e^{-|x|}$$
. Allora

$$\mathcal{F}(u)(\xi) = \int_{\mathbb{R}} e^{-i\xi |x-x|} dx = \int_{-\infty}^{0} e^{(1-i\xi)x} dx + \int_{0}^{+\infty} e^{-(1+i\xi)x} dx.$$

Pertanto,

$$\mathcal{F}(u)(\xi) = \frac{e^{(1-i\xi)x}}{1-i\xi} \Big|_{-\infty}^{0} + -\frac{e^{-(1+i\xi)x}}{1+i\xi} \Big|_{0}^{+\infty} = \frac{1}{1-i\xi} + \frac{1}{1+i\xi} = \frac{2}{1+\xi^2}.$$

2. Proprietà della trasformata di Fourier

In tutti gli esempi precedenti $\mathcal{F}(u)$ è una funzione limitata, continua, ed infinitesima per $|\xi|$ tendente ad infinito. Questa è una proprietà generale.

Teorema 2.1. Sia u in $L^1(\mathbb{R})$. Allora $\mathcal{F}(u)(\xi)$ è una funzione limitata, continua, ed infinitesima per $|\xi|$ tendente ad infinito.

Dimostrazione. Si ha

$$|\Re(\mathcal{F}(u)(\xi))| = \left| \int_{\mathbb{R}} \cos(\xi \, x) \, u(x) \, dx \right| \le \int_{\mathbb{R}} |u(x)| \, dx \,,$$

ed analogamente per $|\Im(\mathcal{F}(u)(\xi))|$; pertanto $\mathcal{F}(u)$ è limitata, e si ha

(2.1)
$$|\mathcal{F}(u)(\xi)| \le \int_{\mathbb{R}} |u(x)| \, dx \,, \quad \forall \xi \in \mathbb{R} \,.$$

Sia ora ξ_n convergente a ξ . Allora $e^{-i\xi_n x} u(x)$ converge quasi ovunque a $e^{-i\xi x} u(x)$ (la convergenza è ovunque, tranne dove $|u(x)| = +\infty$, che è un insieme di misura nulla, essendo u in $L^1(\mathbb{R})$). Inoltre,

$$|e^{-i\xi_n x} u(x)| \le |u(x)|,$$

che è in $L^1(\mathbb{R})$. Per il Teorema di Lebesgue,

$$\mathcal{F}(u)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} u(x) dx = \lim_{n \to +\infty} \int_{\mathbb{R}} e^{-i\xi_n x} u(x) dx$$
$$= \lim_{n \to +\infty} \mathcal{F}(u)(\xi_n),$$

e quindi $\mathcal{F}(u)(\xi)$ è continua.

Infine, abbiamo già osservato che se $u = \chi_{[a,b]}$ allora $\mathcal{F}(u)$ tende a zero per $|\xi|$ tendente ad infinito. Essendo \mathcal{F} un'applicazione lineare, se φ è una funzione semplice, allora $\mathcal{F}(\varphi)$ tende a zero per $|\xi|$ tendente ad infinito. Sia $\varepsilon > 0$, e sia φ_{ε} una funzione semplice tale che

$$\int_{\mathbb{R}} |u(x) - \varphi_{\varepsilon}(x)| \, dx \le \frac{\varepsilon}{2} \, .$$

Una tale funzione esiste per la densità delle funzioni semplici in $L^1(\mathbb{R})$. Sia $R_{\varepsilon} > 0$ tale che $|\mathcal{F}(\varphi_{\varepsilon})(\xi)| \leq \frac{\varepsilon}{2}$ se $|\xi| \geq R_{\varepsilon}$. Allora, per (2.1), se $|\xi| \geq R_{\varepsilon}$,

$$|\mathcal{F}(u)(\xi)| \leq |\mathcal{F}(u - \varphi_{\varepsilon})(\xi)| + |\mathcal{F}(\varphi_{\varepsilon})(\xi)| \leq \int_{\mathbb{R}} |u(x) - \varphi_{\varepsilon}(x)| \, dx + \frac{\varepsilon}{2} \leq \varepsilon \,,$$
da cui la tesi.

La trasformata di Fourier, dunque, prende una funzione $L^1(\mathbb{R})$ e "restituisce" una funzione continua, limitata, e tendente a zero ad infinito. Inoltre, per la (2.1), l'applicazione $\mathcal{F}: L^1(\mathbb{R}) \to C^0(\mathbb{R})$ è una funzione continua: se u_n converge ad u in $L^1(\mathbb{R})$ (rispetto alla distanza d_1), allora $\mathcal{F}(u_n)$ converge uniformemente a $\mathcal{F}(u)$ in \mathbb{R} (quindi nella distanza d_{∞}).

Prima di provare altre proprietà della trasformata di Fourier, ricordiamo il concetto di convoluzione tra due funzioni.

Definizione 2.2. Siano $f \in g$ in $L^1(\mathbb{R})$. La **convoluzione** tra $f \in g$ è la funzione definita da

$$(f * g)(x) = \int_{\mathbb{R}} f(x - y) g(y) dy = \int_{\mathbb{R}} f(y) g(x - y) dy.$$

Se f e g appartengono ad $L^1(\mathbb{R})$, allora anche f*g vi appartiene. Infatti,

$$|(f * g)(x)| \le \int_{\mathbb{R}} |f(x - y)| |g(y)| dy,$$

da cui, integrando ed usando il Teorema di Fubini,

$$\begin{split} \int_{\mathbb{R}} |(f * g)(x)| \, dx &\leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x - y)| \, |g(y)| \, dy \right) \, dx \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x - y)| \, |g(y)| \, dx \right) \, dy \\ &= \left(\int_{\mathbb{R}} |f(x)| \, dx \right) \left(\int_{\mathbb{R}} |g(x)| \, dx \right) \, . \end{split}$$

Teorema 2.3. Valgono le seguenti proprietà:

1) sia u in $L^1(\mathbb{R}) \cap C^1(\mathbb{R})$, e sia u' in $L^1(\mathbb{R})$. Allora

(2.2)
$$\mathcal{F}(u')(\xi) = i \, \xi \, \mathcal{F}(u) \,;$$

2) sia u in $L^1(\mathbb{R})$ tale che xu(x) è in $L^1(\mathbb{R})$. Allora

(2.3)
$$\mathcal{F}(x u(x))(\xi) = i \left[\mathcal{F}(u)(\xi) \right]';$$

3) se $u \in v$ sono in $L^1(\mathbb{R})$, allora

(2.4)
$$\mathcal{F}(u * v)(\xi) = \mathcal{F}(u)(\xi) \mathcal{F}(v)(\xi).$$

Dimostrazione. Sia R > 0. Allora, integrando per parti,

$$\int_{-R}^{R} e^{-i\xi x} u'(x) dx = e^{-i\xi x} u(x) \Big|_{-R}^{R} + i \xi \int_{-R}^{R} e^{-i\xi x} u(x) dx$$
$$= \left(e^{-iR\xi} u(R) - e^{iR\xi} u(-R) \right) + i \xi \int_{-R}^{R} e^{-i\xi x} u(x) dx.$$

Essendo u in $C^1(\mathbb{R})$, si ha

$$u(R) = u(0) + \int_0^R u'(t) dt$$
,

e dal momento che

$$\left|\lim_{R\to+\infty}\int_0^R u'(t)\,dt\right| = \left|\int_0^{+\infty} u'(t)\,dt\right| \le \int_0^{+\infty} |u'(t)|\,dt < +\infty\,,$$

ne segue che u(R) converge ad un limite finito quando R tende ad infinito. Essendo u in $L^1(\mathbb{R})$, tale limite non può essere che zero. Ragionamento analogo si può fare per u(-R). Pertanto, essendo sia $e^{-iR\xi}$ che $e^{iR\xi}$ limitate (avendo modulo 1), si ha

$$\mathcal{F}(u')(\xi) = \lim_{R \to +\infty} \int_{-R}^{R} e^{-i\xi x} u'(x) dx$$
$$= i \xi \lim_{R \to +\infty} \int_{-R}^{R} e^{-i\xi x} u(x) dx = i \xi \mathcal{F}(u)(\xi).$$

Si ha poi

$$\frac{\mathcal{F}(u)(\xi+h) - \mathcal{F}(u)(\xi)}{h} = \int_{\mathbb{D}} \frac{e^{-i(\xi+h)x} - e^{-i\xi x}}{h} u(x) dx.$$

La successione

$$\frac{e^{-i(\xi+h)x} - e^{-i\xi x}}{h}$$

converge puntualmente a $-i\,x\,{\rm e}^{-i\xi\,x}$ quando htende a zero; inoltre, per il Teorema di Lagrange,

$$\left| \frac{e^{-i(\xi+h)x} - e^{-i\xi x}}{h} \right| \le |ix e^{-i(\xi+\eta)x}| = |x|,$$

con η tra 0 e h. Pertanto,

$$\left| \frac{e^{-i(\xi+h)x} - e^{-i\xi x}}{h} u(x) \right| \le |x u(x)|,$$

che appartiene ad $L^1(\mathbb{R})$ per ipotesi. Per il Teorema di Lebesgue,

$$\lim_{h\to 0} \frac{\mathcal{F}(u)(\xi+h) - \mathcal{F}(u)(\xi)}{h} = -i \int_{\mathbb{R}} e^{-i\xi x} x u(x) dx = -i \mathcal{F}(x u)(\xi),$$

e quindi (2.3) è dimostrata ricordando che $-\frac{1}{i} = i$.

Infine, osservando che u * v è in $L^1(\mathbb{R})$, e quindi $\mathcal{F}(u * v)$ è ben definita, dal Teorema di Fubini segue che

$$\mathcal{F}(u * v)(\xi) = \int_{\mathbb{R}} e^{-i\xi x} \left(\int_{\mathbb{R}} u(x - y) v(y) dy \right) dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-i\xi (x - y)} u(x - y) e^{-i\xi y} v(y) dx dy$$

$$= \left(\int_{\mathbb{R}} e^{-i\xi (x - y)} u(x - y) dx \right) \left(\int_{\mathbb{R}} e^{-i\xi x} v(x) dx \right)$$

$$= \mathcal{F}(u)(\xi) \mathcal{F}(v)(\xi),$$

e quindi (2.4).

Esempio 2.4. Il teorema precedente permette, in alcuni casi, di calcolare la trasformata di Fourier. Ad esempio, sia t > 0, e sia

(2.5)
$$G(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}.$$

Come funzione della x, G è in $L^1(\mathbb{R}) \cap C^1(\mathbb{R})$. Inoltre,

$$G_x(x,t) = -\frac{x}{2t} \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}} = -\frac{x}{2t} G(x,t),$$

appartiene a $L^1(\mathbb{R})$ anche essa. Pertanto, per la (2.2), si ha

$$\mathcal{F}(G_x)(\xi) = i \xi \mathcal{F}(G)(\xi)$$
.

D'altra parte, per la (2.3)

$$\mathcal{F}(G_x)(\xi) = -\frac{1}{2t} \mathcal{F}(x G(x,t)) = -\frac{i}{2t} \left[\mathcal{F}(G)(\xi) \right]'.$$

Pertanto,

$$[\mathcal{F}(G)(\xi)]' = -2t \, \xi \, \mathcal{F}(G)(\xi) \,,$$

ovvero

$$\mathcal{F}(G)(\xi) = \mathcal{F}(G)(0) e^{-t\xi^2}.$$

Essendo

$$\mathcal{F}(G)(0) = \int_{\mathbb{R}} \frac{e^{-\frac{x^2}{4t}}}{\sqrt{4\pi t}} dx = \begin{bmatrix} y = \frac{x}{2\sqrt{t}} \\ dy = \frac{dx}{2\sqrt{t}} \end{bmatrix} = \frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-y^2} dy = 1,$$

si ha

(2.6)
$$\mathcal{F}(G)(\xi) = e^{-t\xi^2}.$$

Esempio 2.5. Calcoliamo la trasformata di Fourier di $u(x) = \frac{1}{(1+x^2)^2}$. Innanzitutto,

$$\frac{2x}{(1+x^2)^2} = \left(-\frac{1}{1+x^2}\right)'.$$

Pertanto,

$$2i \left[\mathcal{F}(u)(\xi) \right]' = 2\mathcal{F}(x \, u(x))(\xi) = -i\xi \, \mathcal{F}\left(\frac{1}{1+x^2}\right)(\xi) = -i \, \xi \, \pi \, e^{-|\xi|},$$

da cui

$$[\mathcal{F}(u)(\xi)]' = -\frac{\pi}{2} \, \xi \, e^{-|\xi|} \,.$$

Tenuto conto che

$$\int_{\mathbb{R}} \frac{dx}{(1+x^2)^2} = \frac{\pi}{2} \,,$$

come si vede usando i residui, si ha

$$\mathcal{F}(u)(\xi) = \frac{\pi}{2} (1 + |\xi|) e^{-|\xi|}.$$

Supponiamo ora che sia nota $\mathcal{F}(u)(\xi)$; è possibile risalire alla funzione u di cui è la trasformata; in altre parole, è possibile invertire la trasformazione, o "antitrasformare" $\mathcal{F}(u)$? La risposta è positiva in alcuni casi.

Esempio 2.6. Sia $w(\xi) = \pi e^{-|\xi|}$. Già sappiamo che w è la trasformata di Fourier di $u(x) = \frac{1}{1+x^2}$; cerchiamo pertanto di "recuperare" questa informazione. Consideriamo

$$v(x) = \int_{\mathbb{R}} e^{i\xi x} e^{-|\xi|} d\xi,$$

e proviamo a calcolare l'integrale. Si ha ovviamente

$$\int_{\mathbb{R}} e^{i\xi x} e^{-|\xi|} d\xi = \int_{0}^{+\infty} e^{i\xi x} e^{-\xi} d\xi + \int_{-\infty}^{0} e^{i\xi x} e^{\xi} d\xi$$
$$= \frac{e^{(ix-1)\xi}}{ix-1} \Big|_{0}^{+\infty} + \frac{e^{(ix+1)\xi}}{ix+1} \Big|_{-\infty}^{0}$$
$$= -\frac{1}{ix-1} + \frac{1}{ix+1} = \frac{2}{1+x^{2}},$$

e quindi

$$u(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi x} \mathcal{F}(u)(\xi) d\xi.$$

3. Antitrasformata di Fourier

Prima di dimostrare che sotto condizioni "naturali" sulla funzione u e sulla sua trasformata si può recuperare u da $\mathcal{F}(u)$, enunciamo e dimostriamo il seguente teorema.

Teorema 3.1. Sia w una funzione in $L^1(\mathbb{R})$ tale che

$$\int_{\mathbb{R}} w(x) \, dx = 1 \,,$$

e definiamo, per n in \mathbb{N} , $w_n(x) = n w(n x)$. Allora, per ogni funzione u continua e limitata su \mathbb{R} si ha

$$\lim_{n \to +\infty} (w_n * u)(x) = \lim_{n \to +\infty} \int_{\mathbb{R}} w_n(x - y) u(y) dy = u(x), \quad \forall x \in \mathbb{R}.$$

Dimostrazione. Si ha, ponendo z = n(x - y), da cui dz = -n dy e $y = x - \frac{z}{n}$,

$$\int_{\mathbb{R}} w_n(x-y) u(y) dy = n \int_{\mathbb{R}} w(n(x-y)) u(y) dy$$
$$= \int_{\mathbb{R}} w(z) u\left(x - \frac{z}{n}\right) dz.$$

La successione $u\left(x-\frac{z}{n}\right)$ converge a u(x) (perché u è continua). Inoltre,

$$\left| w(z) u\left(x - \frac{z}{n}\right) \right| \le M \left| w(z) \right| \in L^1(\mathbb{R}),$$

dal momento che u è limitata. Per il Teorema di Lebesgue,

$$\lim_{n \to +\infty} \int_{\mathbb{R}} w_n(x-y) u(y) dy = \int_{\mathbb{R}} w(z) u(x) dz = u(x),$$

poiché l'integrale di w vale 1.

Teorema 3.2. Sia u una funzione in $L^1(\mathbb{R}) \cap C^0(\mathbb{R})$ e supponiamo che u sia limitata e $\mathcal{F}(u)$ sia in $L^1(\mathbb{R})$. Allora

(3.1)
$$u(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi x} \mathcal{F}(u)(\xi) d\xi.$$

Dimostrazione. Sia $w(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. Allora w è in $L^1(\mathbb{R})$ ed ha integrale uguale ad 1 su \mathbb{R} . Inoltre, come verificato nell'Esempio 2.6, detta $v(\xi) = \mathcal{F}(w)(\xi) = \mathrm{e}^{-|\xi|}$ si ha

$$w(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi x} v(\xi) dx = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi x} \mathcal{F}(w)(\xi) d\xi,$$

cosicché w soddisfa (3.1). Sia n in \mathbb{N} e $v_n(\xi) = v(\frac{\xi}{n}) = e^{-\frac{|\xi|}{n}}$. Allora v_n converge puntualmente ad 1, ed è minore di 1 su tutto \mathbb{R} . Per il Teorema di Lebesgue, dato che $e^{i\xi x} \mathcal{F}(u)(\xi)$ è in $L^1(\mathbb{R})$ per ipotesi,

$$\frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi x} \mathcal{F}(u)(\xi) d\xi = \lim_{n \to +\infty} \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi x} v_n(\xi) \mathcal{F}(u)(\xi) d\xi.$$

Ricordando la definizione di $\mathcal{F}(u)(\xi)$ si ha, per il Teorema di Fubini, e per (3.1) applicata a w,

$$\int_{\mathbb{R}} e^{i\xi x} v_n(\xi) \mathcal{F}(u)(\xi) d\xi = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} e^{-i\xi y} u(y) dy \right) e^{i\xi x} v_n(\xi) d\xi,$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} e^{i\xi (x-y)} v_n(\xi) d\xi \right) u(y) dy$$

$$= \int_{\mathbb{R}} \left(n \int_{\mathbb{R}} e^{in\xi (x-y)} v(\xi) d\xi \right) u(y) dy$$

$$= 2\pi \int_{\mathbb{R}} w_n(x-y) u(y) dy.$$

Per il Teorema 3.1 si ha allora

$$u(x) = \lim_{n \to +\infty} \frac{1}{2\pi} \int_{\mathbb{R}} w_n(x - y) u(y) dy$$
$$= \lim_{n \to +\infty} \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi x} v_n(\xi) \mathcal{F}(u)(\xi) d\xi = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi x} \mathcal{F}(u)(\xi) d\xi,$$

come volevasi dimostrare.

Come conseguenza del teorema precedente, se u e v sono due funzioni che hanno la stessa trasformata di Fourier $w(\xi) = \mathcal{F}(u)(\xi) = \mathcal{F}(v)(\xi)$, allora u = v.

4. Applicazioni della trasformata di Fourier

Esempio 4.1. Sia f una funzione in $L^1(\mathbb{R})$ e consideriamo l'equazione differenziale

$$u''(x) - u(x) = f(x).$$

Supponendo u in $L^1(\mathbb{R})$ e tale che u''(x) appartiene anche essa ad $L^1(\mathbb{R})$, possiamo applicare la trasformata di Fourier, ottenendo

$$\mathcal{F}(u'')(\xi) - \mathcal{F}(u)(\xi) = \mathcal{F}(f)(\xi),$$

da cui, per la (2.2),

$$-\xi^2 \mathcal{F}(u)(\xi) - \mathcal{F}(u)(\xi) = \mathcal{F}(f)(\xi),$$

ovvero, per l'Esempio 1.2,

$$\mathcal{F}(u)(\xi) = -\frac{\mathcal{F}(f)(\xi)}{1+\xi^2} = -\frac{1}{2}\,\mathcal{F}(f)(\xi)\,\mathcal{F}(e^{-|x|})(\xi).$$

Pertanto, per (2.4), dal momento che u e la convoluzione di f con $-\frac{1}{2}e^{-|x|}$ hanno la stessa trasformata di Fourier,

$$u(x) = -\frac{1}{2} \int_{\mathbb{R}} f(y) e^{-|x-y|} dy$$

= $-\frac{1}{2} \int_{-\infty}^{x} f(y) e^{y-x} dy - \frac{1}{2} \int_{x}^{+\infty} f(y) e^{x-y} dy$.

Derivando due volte rispetto ad x, si verifica facilmente che u''(x) - u(x) = f(x) per ogni x in \mathbb{R} .

Esempio 4.2. Consideriamo ora la cosiddetta equazione del calore:

$$u_t(x,t) - u_{xx}(x,t) = 0,$$

con condizione iniziale $u(x,0) = u_0(x)$, che supponiamo una funzione in $L^1(\mathbb{R})$, continua e limitata. Fisicamente, la soluzione u rappresenta la temperatura al tempo t di una sbarra omogenea ed isolata, di lunghezza infinita, che al tempo iniziale abbia temperatura data da $u_0(x)$. Supponendo che tutto quello che stiamo facendo sia lecito, trasformiamo l'equazione in:

$$\mathcal{F}(u_t)(\xi) + \xi^2 \mathcal{F}(u)(\xi) = 0,$$

e quindi, essendo $\mathcal{F}(u_t)(\xi) = [\mathcal{F}(u)(\xi)]_t$ per i teoremi di derivazione degli integrali dipendenti da un parametro, si ha

$$[\mathcal{F}(u)(\xi)]_t = -\xi^2 \mathcal{F}(u)(\xi),$$

da cui

$$\mathcal{F}(u)(\xi) = \mathcal{F}(u_0)(\xi) e^{-t\xi^2}$$
.

Ricordando (dall'Esempio 2.4) che se G è la funzione definita in (2.5),

$$e^{-t\xi^2} = \mathcal{F}(G(x,t))(\xi),$$

si ha, per (2.4),

$$\mathcal{F}(u)(\xi) = \mathcal{F}(u_0)(\xi) \,\mathcal{F}(G(x,t))(\xi) = \mathcal{F}(G(x,t) * u_0(x))(\xi) \,.$$

Pertanto, per il Teorema 3.2

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} u_0(x) e^{-\frac{(x-y)^2}{4t}} dx,$$

è la soluzione dell'equazione del calore.

Si noti che non è lecito prendere t = 0 nella formula appena scritta: il fatto che u(x, 0) sia uguale ad $u_0(x)$ va inteso nel seguente modo:

$$\lim_{t \to 0^+} \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} u_0(x) e^{-\frac{(x-y)^2}{4t}} dx = u_0(x).$$

Infatti, se definiamo

$$w(z) = \frac{e^{-z^2}}{\sqrt{\pi}},$$

allora $w \in L^1(\mathbb{R})$ ed il suo integrale vale 1. Pertanto,

$$u(x) = \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} u_0(x) e^{-\frac{(x-y)^2}{4t}} = \int_{\mathbb{R}} u_0(y) \left(\frac{1}{\sqrt{4t}} w \left(\frac{x-y}{\sqrt{4t}} \right) \right) dy,$$

converge ad $u_0(x)$ quando t tende a zero per il Teorema 3.1.

Si noti poi che se $u_0(x) \geq 0$, allora $u(x,t) \geq 0$ per ogni t > 0, e che se $u_0(x) > 0$ anche in un insieme "piccolo", si ha istantaneamente u(x,t) > 0 per ogni t > 0 e per ogni x in \mathbb{R} (velocità infinita di propagazione del calore). Infine anche se u_0 è solo in $L^1(\mathbb{R})$, la soluzione è derivabile infinite volte con continuità, sia rispetto a x, che rispetto a t (se t > 0).