
Ad-nilpotent ideals of Borel subalgebras: combinatorics
and representation theory

Paolo Papi

Sapienza Università di Roma
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Lecture 1 Two combinatorial Problems

Introduction: two combinatorial problems

Consider the staircase shape Tn = (n, n − 1, . . . , 1)

Label the boxes as matrix entries with row (resp. column) indices
increasing from left to right (resp. from top to bottom).
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Lecture 1 Two combinatorial Problems

Two combinatorial problems

A subdiagram D of Tn, is a shape like

let hD denote the hook length of box (1, 1), i.e. the Upper-Left corner box.
In the example at hand, hD = 7.
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Lecture 1 Two combinatorial Problems

Two combinatorial problems

Problems

We want to count

1 the number Nadnilp of subdiagrams of Tn;

2 the number Nab of subdiagrams D of Tn such that hD ≤ n.

Answers

If Cn = 1
n+1

(2n
n

)
denotes the Catalan number, then

Nadnilp = Cn+1.

Moreover,
Nab = 2n.

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 6 / 116



Lecture 1 Two combinatorial Problems

Two combinatorial problems

Problems

We want to count

1 the number Nadnilp of subdiagrams of Tn;

2 the number Nab of subdiagrams D of Tn such that hD ≤ n.

Answers

If Cn = 1
n+1

(2n
n

)
denotes the Catalan number, then

Nadnilp = Cn+1.

Moreover,
Nab = 2n.
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Lecture 1 Two combinatorial Problems

Reformulation of Problem 1

It is clearly equivalent to count the following objects:

1 subdiagrams of Tn;

2 lattice paths from (0, n + 1) to (n + 1, 0) lying over the diagonal with
horizontal rightwards and vertical upwards steps;

3 Dyck paths of semilength n + 1;

4 (weak) Dyck words of length 2(n + 1)

The notions of Dyck path/word are best illustrated by an example:

��@@��
��@@

@@��
��@@��@@��@@

@@��
��@@

@@

abaabbaabababbaabb
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Lecture 1 Two combinatorial Problems

Counting Dyck words

Notation

Wa,b: set of words w in the alphabet {A,B} with NA(w) = a, NB(w) = b.
Wa,b(A): set of words in Wa,b starting with A
[w ]k : k-th prefix of w
∆A,B(w) = NA(w)− NB(w).

Definition

A weak (strong) Dyck word is a word w ∈ Wa,b such that ∆A,B([w ]k) ≥ 0
(resp. ∆A,B([w ]k) > 0) for all 1 ≤ k ≤ a + b.
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W2,2 = {aabb, abab, abba, bbaa, baba, baab}
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Lecture 1 Two combinatorial Problems

Counting Dyck words

We want first to to enumerate the set T of strong Dyck words in Wa,b .

Now remark that

T c = {w ∈ Wa,b(A) | ∆A,B([w ]k) = 0 for some k}.
Let w ∈ T c and k = 2m be the rightmost position such that
∆A,B([w ]k) = 0. Then w has the form

w = [w ]kα, NA(α) = a−m, NB(α) = b −m.

Replace now α by its complement α′ (i.e., make in α the switch a↔ b)
and consider the word

w ′ = [w ]kα
′

We have

NA(w ′) = m + (b −m) = b, NB(w ′) = m + (a−m) = a,

so that w ′ ∈ Wb,a, indeed w ′ ∈ Wb,a(A).
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Lecture 1 Two combinatorial Problems

Counting Dyck words

Claim

The map Φ : T c →Wb,a(A),Φ(w) = w ′ is a bijection.

Corollary

|T | = |Wa,b(A)| − |T c | =

(
a + b − 1

b

)
−
(

a + b − 1

a

)
=

a− b

a + b

(
a + b

b

)
.
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W2,3(A)
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Lecture 1 Two combinatorial Problems

Counting Dyck words

Now remark that

w ∈ Wa,b is weak Dyck iff Aw ∈ Wa+1,b is strong Dyck.

Hence

Proposition

The number of weak Dyck words in Wa,b is

a− b + 1

a + 1

(
a + b

a

)
.

In particular, for a = b = n + 1,

Nadnilp =
1

n + 2

(
2n + 2

n + 1

)
= Cn+1.
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Lecture 1 Two combinatorial Problems

Elementary combinatorial calculation of Nab

We claim that the number Nk of subdiagrams of Tn with hook lenght k is
2k−1, k ≥ 1.

Now simply remark that

Nab = 1 +
n∑

k=1

Nk = 1 +
n∑

k=1

2k−1 = 2n
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Fix a hook, and let A,B denote the end boxes in the leg and arm of cell
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Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 12 / 116



Lecture 1 Two combinatorial Problems

Elementary combinatorial calculation of Nab

We claim that the number Nk of subdiagrams of Tn with hook lenght k is
2k−1, k ≥ 1.

Fix a hook, and let A,B denote the end boxes in the leg and arm of cell
(1, 1). We have to count all lattice paths from A to B inside the small
rectangle. If the arm and leg length of the hook are h + 1, k − h, they are(k−1

h

)
. So

Nk =
k−1∑
h=0

(
k − 1

h

)
= 2k−1.

Now simply remark that

Nab = 1 +
n∑

k=1

Nk = 1 +
n∑

k=1

2k−1 = 2n
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Lecture 1 Two combinatorial Problems

Relationships between combinatorial and algebraic objects

The diagrams we have seen are instances (more precisely, combinatorial
encodings) of objects which make sense for any simple Lie algebra g, the
ad-nilpotent and abelian ideals of a Borel subalgebra.
We will now explain (in a rough way) several occurences of these algebraic
objects in theorems involving the following keywords

the Euler product
∏∞

n=1(1− xn);

the structure of
∧

g as a g-module;

u-cohomology;
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Lecture 1 Outline of the course: statement of results

Plan

In the following slides I shall state a number of theorems, basically
involving a simple Lie algebra and related algebraic objects.

The goal of my lectures is to gradually clarify all these statements and the
relationships among them, providing the necessary background setting.

The role of ad-nilpotent and abelian ideal of a Borel subalgebras, which
we have seem embodied in one special case, will naturally emerge. In
particular, the two combinatorial results we have proved will be part of a
more general and intrinsic theory.
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Lecture 1 Outline of the course: statement of results

Macdonald-Kostant Theorem

Notation

g complex simple finite dimensional Lie algebra; b Borel subalgebra, with
Cartan component h and nilradical n

∆ root system of (g, h), ∆+ set of positive roots with basis Π and
fundamental chamber C

ρ = 1/2
∑

α∈∆+ α Weyl vector, P+ dominant integral weights

W Weyl group of g, (·, ·) Killing form of g

Vλ irreducible g-module of highest weight λ, χλ character of Vλ

Cas(λ) = (λ, λ+ 2ρ), eigenvalue of the Casimir operator Ωg on Vλ
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Lecture 1 Outline of the course: statement of results

Standard Lie algebra notation

Euler product

Let

φ(x) =
∞∏
n=1

(1− xn) ∈ C[[x ]]

denote the Euler product.

Recall that

1

φ(x)
=
∑
n≥0

p(n)xn

where p(n) is the classical partition function.

Theorem

Let φ(x) =
∏∞

n=1(1− xn) ∈ C[[x ]] denote the Euler product. Then

φ(x)dim g =
∑
λ∈P+

χλ(e2π
√
−1 2ρ) dim Vλ xCas(λ).

Moreover χλ(e2π
√
−1 2ρ) ∈ {−1, 0, 1} for λ ∈ P+.

Problem 1

Single out the subset of P+ consisting of weights giving nonzero
contribution to the sum. Find the coefficients bk in

φ(x)dim g =
∞∑
k=0

bkxk .

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 16 / 116



Lecture 1 Outline of the course: statement of results

Standard Lie algebra notation

Euler product

Let

φ(x) =
∞∏
n=1

(1− xn) ∈ C[[x ]]

denote the Euler product.Recall that

1

φ(x)
=
∑
n≥0

p(n)xn

where p(n) is the classical partition function.

Theorem

Let φ(x) =
∏∞

n=1(1− xn) ∈ C[[x ]] denote the Euler product. Then

φ(x)dim g =
∑
λ∈P+

χλ(e2π
√
−1 2ρ) dim Vλ xCas(λ).

Moreover χλ(e2π
√
−1 2ρ) ∈ {−1, 0, 1} for λ ∈ P+.

Problem 1

Single out the subset of P+ consisting of weights giving nonzero
contribution to the sum. Find the coefficients bk in

φ(x)dim g =
∞∑
k=0

bkxk .
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n=1(1− xn) ∈ C[[x ]] denote the Euler product. Then

φ(x)dim g =
∑
λ∈P+

χλ(e2π
√
−1 2ρ) dim Vλ xCas(λ).

Moreover χλ(e2π
√
−1 2ρ) ∈ {−1, 0, 1} for λ ∈ P+.

Problem 1
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Lecture 1 Outline of the course: statement of results

First answer to problem 1

Q∨ coroot lattice, Ŵ ∼= W n Q∨ ≤ Aff (h∗R)

A1 fundamental alcove, Aw = wA1, w ∈ Ŵ .

Ŵ + = {w ∈ Ŵ | Aw ⊂ C},
λw = w(2ρ)/2− ρ,
D+ = {λw}

w∈Ŵ+ .

Theorem (Kostant, 2004)

χλ(e2π
√
−1 2ρ) =

{
(−1)`(w) λ = λw , w ∈ Ŵ +,

0 otherwise.

bk =
∑

w∈Ŵ+,Cas(λw )=k

(−1)`(w) dim Vλw .
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Lecture 1 Outline of the course: statement of results

Nilradical homology for affine algebras

Notation

ĝ = C[t, t−1]⊗ g⊕ CK ⊕ Cd affine Kac-Moody algebra attached to g

u = tg[t], u− = t−1g[t−1] opposite niradicals in ĝ.

Bigrading on
∧
u− ∧

u− =
⊕

(n,k)∈Z≥0×Z≥0

(
n∧
u−

)
k

.

where the subscript k denotes the subspace of t-degree −k . This grading
descends to homology.
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Lecture 1 Outline of the course: statement of results

Nilradical homology for affine algebras

Theorem

As a g-module
H∗(u) ∼= H∗(u

−) =
⊕

w∈Ŵ+

Vλw .

Moreover
Hn(u−)k =

⊕
w∈Ŵ+,`(w)=n,Cas(λw )=k

Vλw .
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Lecture 1 Outline of the course: statement of results

Interlude: ad-nilpotent and abelian ideals of Borel
subalgebras

Let i be an ideal of b contained in n. It consists of ad-nilpotent elements,
so we’ll call it an ad-nilpotent ideal and we’ll denote by I the set of
ad-nilpotent ideals.

It turns out that

i =
⊕
α∈Φi

gα

where Φi ⊂ ∆+ is dual order ideal of the root poset.
I contains the remarkable subset of abelian ideals of b:

Iab = {i ∈ I | [x , y ] = 0∀ x , y ∈ i}.
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Lecture 1 Outline of the course: statement of results

ad -nilpotent and abelian ideals of Borel subalgebras

Theorem

1 |Iab| = 2rk (g).

2 If h denotes the Coxeter number and mi are the exponents of g then

|I| =

∏rk g
i=1 (h + mi + 1)

|W |
.

Example

If g = sl(n + 1), then

rk g = n, |W | = |Sn+1| = (n + 1)!, h = n + 1, mi = i ,

so that
Nab = 2n, Nadnilp = Cn+1.
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Lecture 1 Outline of the course: statement of results

Relationships between I, Iab, Ŵ

The above theorem has a more significant formulation.

Let θ be the highest
root of ∆ and set, for i ∈ I

〈i〉 =
∑
α∈Φi

α, Ŵ +
2 = {w ∈ Ŵ | Aw ⊂ 2A1}.

Theorem

There are natural bijections

η : I → Q∨/(h + 1)Q∨, ζ : Iab → Ŵ +
2 .

Moreover, for i ∈ Iab
〈i〉 = λζ(i).

Next we’ll see some representation theoretic applications.
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Let θ be the highest root of ∆ and set, for i ∈ I

〈i〉 =
∑
α∈Φi

α, Ŵ +
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2 .

Moreover, for i ∈ Iab
〈i〉 = λζ(i).

Next we’ll see some representation theoretic applications.
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Lecture 1 Outline of the course: statement of results

The structure of
∧

g as a g-module

Notation

If a = ⊕k
i=1Cvi is an abelian subalgebra of g, set

va = v1 ∧ . . . ∧ vk ∈
k∧
g.

mk is the maximum eigenvalue of Ωg on
∧k g

Mk eigenspace of Ωg on
∧k g of eigenvalue k

Ck = Span(va | a abelian, dim(a) = k)

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 23 / 116



Lecture 1 Outline of the course: statement of results

The structure of
∧

g as a g-module

Notation

If a = ⊕k
i=1Cvi is an abelian subalgebra of g, set

va = v1 ∧ . . . ∧ vk ∈
k∧
g.

mk is the maximum eigenvalue of Ωg on
∧k g

Mk eigenspace of Ωg on
∧k g of eigenvalue k

Ck = Span(va | a abelian, dim(a) = k)
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Lecture 1 Outline of the course: statement of results

Kostant Theorems

mk is the maximum eigenvalue of Ωg on
∧k

g

Mk eigenspace of Ωg on
∧k

g of eigenvalue k

Ck = Span(va | a abelian, dim(a) = k), C =
⊕

k Ck

Theorem

1 mk ≤ k, and mk = k iff Ck 6= ∅. In such a case Mk = Ck .

2 C is a multiplicity-free g-module. Moreover

Ck =
⊕

i∈Iab, dim i=k

V〈i〉 =
⊕

w∈Ŵ+
2 , `(w)=k

Vλζ(i) .

3 If d is the Chevalley-Eilenberg differential affording Lie algebra
cohomology, then ∧

g = C⊕ 〈dg〉,

where 〈dg〉 denotes the ideal generated by dg under wedge multiplication.
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Lecture 1 Outline of the course: statement of results

Final results

Theorem

The following numbers are equal:

1 dimCk

2 dim Mk

3 dim Hk(u−)k

If moreover k ≤ h∨, the dual Coxeter number of g, they are also equal to

(−1)kbk
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Lecture 1 Outline of the course: statement of results
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Lecture 2 Background

A crash course in semisimple Lie algebras 1

Examples: the classical Lie algebras

sl(n,C) = {A ∈ Mn(C) | tr(A) = 0}

so(2n + 1,C ) = {

 A B v
C −At u
−v t −ut 0

 | B = −Bt ,C = −C t , u, v ∈ Cn}

sp(2n,C ) = {
(

A B
C −At

)
| B = Bt ,C = C t}

so(2n,C ) = {
(

A B
C −At

)
| B = −Bt ,C = −C t}
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Lecture 2 Background

A crash course in semisimple Lie algebras 2

General Definitions

A complex finite-dimensional Lie algebra g is said to be

1 simple if it is not abelian and has no nontrivial ideals

2 semisimple if has no solvable ideals

Characterization of semisimple Lie algebras

g is semisimple if and only if one of the following conditions is verified

1 g is a direct sum of simple ideals.

2 The Killing form of g, defined as

(x , y) = tr(ad(x) ad(y)),

is nondegenerate.
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Lecture 2 Background

Interlude

Why are semisimple Lie algebras important ?

Let G a Lie group (for instance a closed subgroup of GL(n)). Then

g = {c ′(0) | c : R→ G ,C∞ curve with c(0) = I}.

has a natural Lie algebra structure, which makes g a first-order
approximation of G .

Theorem

If G is compact then g is reductive, i.e. is a direct sum as Lie algebras of a
semisimple Lie algebra and an abelian one.

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 29 / 116



Lecture 2 Background

Interlude

Why are semisimple Lie algebras important ?

Let G a Lie group (for instance a closed subgroup of GL(n)). Then

g = {c ′(0) | c : R→ G ,C∞ curve with c(0) = I}.

has a natural Lie algebra structure, which makes g a first-order
approximation of G .

Theorem

If G is compact then g is reductive, i.e. is a direct sum as Lie algebras of a
semisimple Lie algebra and an abelian one.
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Lecture 2 Background

A crash course in semisimple Lie algebras 3

Structure Theory

Recall that and element x is said to be semisimple if ad(x) is
diagonalizable as an endomorphism of g.

By Engel’s theorem, if g is semisimple then there exist semisimple
elements, so we can consider subalgebras formed by semisimple
elements, and in turn subalgebras maximal w.r.t. this property, which
are called Cartan subalgebras.

A Cartan subalgebra h turns out to be abelian, hence is a set of
commuting diagonalizable operators on g. We can therefore consider
the corresponding eigenspace decomposition.

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 30 / 116



Lecture 2 Background

A crash course in semisimple Lie algebras 3

Structure Theory

Recall that and element x is said to be semisimple if ad(x) is
diagonalizable as an endomorphism of g.

By Engel’s theorem, if g is semisimple then there exist semisimple
elements, so we can consider subalgebras formed by semisimple
elements, and in turn subalgebras maximal w.r.t. this property, which
are called Cartan subalgebras.

A Cartan subalgebra h turns out to be abelian, hence is a set of
commuting diagonalizable operators on g. We can therefore consider
the corresponding eigenspace decomposition.
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Lecture 2 Background

A crash course in semisimple Lie algebras 4

Root Space decomposition

g =
⊕
α∈h∗

gα, gα = {x ∈ g | [h, x ] = α(h)x ∀h ∈ h}.

Since h is self-centralizing, we can rewrite the previous decomposition as

g = h⊕
⊕
α∈∆

gα

where ∆ ⊂ h∗ \ {0} is a certain finite set, called the root system of g
w.r.t. h.
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Lecture 2 Background

A crash course in semisimple Lie algebras 5

Basic Theorems

1 Root systems, as we shall see, can be studied and classified
combinatorially.

2 One proves that the classification of roots systems induces the
classification of semisimple Lie algebras, meaning that there is no
dependence, up to isomorphism, on the choice of the Cartan
subalgebra and other choices which should be done in classifying root
systems.

3 The final outcome is that there are the four infinite series we have
seen in a previous slide (named An,Bn,Cn,Dn) plus five exceptional
Lie algebras (named E6,E7,E8,G2,F4).
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Lecture 2 Background

Finite root systems

Reflections

Let E be an Euclidean space. If 0 6= α ∈ E , the reflection in α is the
orthogonal transformation defined by

sα(v) = v − 2(v , α)

(α, α)
α.

Definition

A finite set ∆ ⊂ E of nonzero vectors is a root system in E if

1 E = SpanR∆;

2 if α ∈ ∆ then cα ∈ ∆ ⇐⇒ c = ±1;

3 sα(∆) ⊂ ∆∀α ∈ ∆;

4 2 (β,α)
(α,α) ∈ Z∀α, β ∈ ∆
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Lecture 2 Background

Finite root systems: examples in rank 2
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Lecture 2 Background

Finite root systems: structure

Notice that to a root system we can associate

the central hyperplane arrangement in E given by the equations
(α, x) = 0, α ∈ ∆;

a reflection group, i.e. the subgroup W of O(E ) generated by
sα, α ∈ ∆.

The complement E = E \
⋃
α∈∆ α

⊥ is a union of convex cones acted on
by W . We say that a vector v ∈ E is regular.
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Lecture 2 Background

Example: central arrangement
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Lecture 2 Background

Example: affine arrangement
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Lecture 2 Background

Finite root systems: structure

Fix a regular vector γ and set ∆+ = {α ∈ ∆ | (γ, α) > 0}, so that
∆ = ∆+ ∪ −∆+.

Proposition

Let Π = {α1, . . . , αr} be the set of roots ∆+ which are not sum of two
roots from ∆+. Then

1 Π is a linear basis of E ;

2 ∆+ = {
∑r

i=1 aiαi ∈ ∆ | ai ≥ 0};
3 W acts simply transitively on chambers and bases.

Corollary

One associates to Π a graph with some combinatorial data, the Dynkin
diagram. The classification of the possible Dynkin diagrams, affords the
classification of root systems.
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Lecture 2 Background

Recollections from the theory of semisimple Lie algebras

Triangular decomposition

g semisimple, h Cartan, ∆ roots, ∆+ positive roots, Π simple roots.

g = h⊕ n+ ⊕ n−, n± =
⊕

α∈±∆+

gα

gα = {x ∈ g | [h, x ] = α(h)x ∀ h ∈ h} is one-dimensional.

gα ⊕ g−α ⊕ [gα, g−α] is a copy of sl(2,C).

b = h⊕ n+, a Borel subalgebra, is a maximal solvable subalgebra of g.

n+ is the nilradical of b.
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Lecture 2 Background

Weyl group action

Notation

Let V = hR.

A vector in E = V ∗ \
⋃
α∈∆ α

⊥ is said to be regular

The connected components of E are called chambers.

Proposition

W acts simply transitively on chambers and bases.

Corollary

Fixing a chamber C and labelling it by 1 ∈W , the map w 7→ Cw := w C1

is a bijection between W and the set of chambers.
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Lecture 2 Background

Weyl groups as Coxeter groups

Recall that W is generated by the reflections sα, α ∈ ∆.

It turns out that
it is generated just by the set S = {sα, α ∈ Π}.Moreover, the
corresponding relations have a particular nice form.

Coxeter relations

(sαsβ)mα,β = 1

where α, β ∈ Π mα,β ∈ N ∪ {∞}, mα,α = 1.

Remark

One has a natural length function ` on W .
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Lecture 2 Background

Example: sl(n)

Take g = sl(n). Then one can choose

h = diagonal traceless matrices.

Denote by eij the standard matrix unit. The basic computation is as
follows; if h = diag(h1, . . . , hn), and εi is the i-th coodinate function of h,
then

[h, eij ] = (hi − hj)eij

= (εi − εj)(h)eij .

Hence
∆ = {εi − εj | i 6= j}.
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Lecture 2 Background

Example: sl(n)

One can choose
∆+ = {εi − εj | i < j}.

so that
Π = {εi − εi+1 | 1 ≤ i ≤ n − 1}.

since εi − εj = (εi − εi+1) + (εi+1 − εi+2) + . . . ((εj−1 − εj)).

In turn

W ∼= Sn via sεi−εi+1 7→ (i , i + 1).

Note that the Coxeter relations read

(i , i + 1)2 = 1, (i , i + 1)(h, h + 1) = (h, h + 1)(i , i + 1) if i + 1 < h,

(i + 1, i + 2)(i , i + 1)(i + 1, i + 2) = (i , i + 1)(i + 1, i + 2)(i , i + 1)
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Lecture 2 Background

Example
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Lecture 2 Background

Interpretation of the length function

Definition

w ∈W
N(w) = {α ∈ ∆+ | w−1(α) ∈ −∆+}.

Proposition

1 `(w) = |N(w)| = # hyperplanes separating C1, Cw .
More precisely, α ∈ N(w) iff (α, x) = 0 separates C1,Cw .

2 If w = si1 · · · sik is a reduced expression, then

N(w) = {αi1 , si1(αi2), . . . , si1 · · · sik−1
(αik )}.
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Lecture 2 Background

Interpretation of the length function

Proposition

1 `(w) = |N(w)| = # hyperplanes separating C1, Cw .
More precisely, α ∈ N(w) iff (α, x) = 0 separates C1,Cw .

2 If w = si1 · · · sik is a reduced expression, then

N(w) = {αi1 , si1(αi2), . . . , si1 · · · sik−1
(αik )}.

Example

If σ ∈ Sn, the N(σ) is the set of its inversions:

σ =

(
1 2 3 4 5 6
2 6 3 1 4 5

)
= s1s2s5s4s3s2

N(σ) = {ε1 − ε2, ε1 − ε3, ε5 − ε6, ε4 − ε6, ε1 − ε6, ε3 − ε6}
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Lecture 2 Background

An important technical Lemma

Definition

Say that L ⊂ ∆+ is root-closed if

α, β ∈ L, α + β ∈ ∆ =⇒ α + β ∈ L

Proposition

Given L ⊂ ∆+, there exists a (unique) w ∈W such that L = N(w) if and
only if both L and ∆+ \ L are root-closed.

Remark

The fact that ∆+ \ L is root-closed means that

α ∈ L, α = β + γ, β, γ ∈ ∆+ =⇒ β ∈ L or γ ∈ L.

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 46 / 116



Lecture 2 Background

An important technical Lemma

Definition

Say that L ⊂ ∆+ is root-closed if

α, β ∈ L, α + β ∈ ∆ =⇒ α + β ∈ L

Proposition

Given L ⊂ ∆+, there exists a (unique) w ∈W such that L = N(w) if and
only if both L and ∆+ \ L are root-closed.

Remark

The fact that ∆+ \ L is root-closed means that

α ∈ L, α = β + γ, β, γ ∈ ∆+ =⇒ β ∈ L or γ ∈ L.
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Lecture 2 Background

An important technical Lemma

Example-Algorithm

Given L biclosed, choose a simple root α ∈ L and iterate starting from
sα(L \ {α}).For instance, in type A5

L = {α1, α1 + α2, α1 + α2 + α3, α5, α1 + α2 + α3 + α4 + α5}.

s1 {α2, α2 + α3, α5, α2 + α3 + α4 + α5}
s1s2 {α3, α5, α3 + α4 + α5}
s1s2s3 {α3, α3 + α4}
s1s2s3s5 {α4}
s1s2s3s5s4 = w ∅
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Lecture 2 Background

Another technical Lemma

Definition – Weyl vector

ρ = 1/2
∑
α∈∆+

α.

Proposition

For w ∈W
ρ− w(ρ) =

∑
α∈N(w)

α.

Proof.

Now assume w = sαw ′, α ∈ Π, `(w ′) = `(w)− 1

ρ− sαw ′(ρ) = sα(ρ) + α− sαw ′(ρ) = sα(ρ− w ′(ρ)) + α

= sα(
∑

β∈N(w ′)

β) + α =
∑

β∈N(w)

β
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Lecture 2 Background

Another technical Lemma

Proposition

For w ∈W
ρ− w(ρ) =

∑
α∈N(w)

α.

Proof.

By induction on `(w). If w = sα, α ∈ Π, it is known that
sα(∆+ \ {α}) ⊂ ∆+ \ {α}, hence

ρ− sα(ρ) = ρ− (ρ− α) = α =
∑

β∈N(w)

β.
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Lecture 2 Background

Representations

Recall that a representation V of g is a Lie algebra homomorphism
g→ gl(V ).
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Lecture 2 Background

Representations

Basic theorems

For semisimple Lie algebras:

1 finite dimensional representations are completely reducible.

2 finite dimensional representations are in bijection with the set of
dominant weights

P+ =

{
λ ∈ h∗R |

2(λ, α)

(α, α)
∈ Z≥0 for any simple root α

}
.
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Lecture 2 Background

Representations

Abstract construction

For λ ∈ P+, the attached irreducible representation Vλ is the unique
irreducible quotient of

Mλ = U(g)⊗U(b) Cλ,

where Cλ is the b-module with basis vλ and action
x .vλ = 0, x ∈ b, h.vλ = λ(h)vλ and U(g) is the universal enveloping
algebra of g.

Any quotient of Mλ, in particular Vλ is a highest weight module, i.e. it is
generated under U(g) by a vector v such that

n+.v = 0, h.v = λ(h)v ∀ h ∈ h.
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Lecture 2 Background

Representations

Theorem (Weyl dimension formula)

If ν ∈ P+, then

dim Vν =

∏
β∈∆+ (ν + ρ, β)∏
β∈∆+ (ρ, β)
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Lecture 2 Background

Cohomology of Lie algebras

Definition

Let g be (any) Lie algebra and V be a representation of g. The Lie algebra
cohomology H∗(g,V ) is the cohomology of the complex

0→ C 0 d0−→ C 1 d1−→ C 2 . . .Cp dp−→ Cp+1 → . . .

where Cp = Hom(
∧p g,V ) and

(dpω)(x1 ∧ . . . ∧ xp+1) =∑
i<j

(−1)i+jω([xi , xj ] ∧ x1 ∧ . . . ∧ x̂i . . . ∧ x̂j . . . ∧ xp+1)

+
∑
i

(−1)i+1xi .ω(x1 ∧ . . . ∧ x̂i . . . ∧ xp+1)
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Lecture 2 Background

Cohomology of Lie algebras

General Facts

H0(g,V ) = V g

H1(g,V ) = Der(g,V )/InnDer(g,V )

H2(g,V ) = iso-classes of abelian extension of g by V

Proposition

Write H•(g) for cohomology with trivial coefficients.

If g is semisimple then H1(g,V ) = 0 (implies complete reducibility of
reps).

If g is semisimple then H2(g,V ) = 0 (implies Levi decomposiiton).

If G is compact H•DR(G ) = H•(g) = (
∧
g)g
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Lecture 2 Background

Dual version, homology

Complex

→ Λp
∂p−→ Λp−1

∂p−1−−−→ . . .Λ1
∂1−→ Λ0 → 0

where

Λp = Λp(g,V ) =

p∧
g⊗ V

and

∂p(x1 ∧ . . . ∧ xp ⊗ v) =
∑
i<j

[xi , xj ] ∧ x1 ∧ . . . ∧ x̂i . . . ∧ x̂j . . . ∧ xp ⊗ v

+
∑
i

(−1)ix1 ∧ . . . ∧ x̂i . . . ∧ xp ⊗ xi .v
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Lecture 2 Background

Computing homology

Kostant’s approach

One can put on C =
∧

g⊗ V a Hilbert space structure, and then one
defines a positive semidefinite operator LV on C by putting
LV = dd∗ + d∗d where d∗ is the Hermitian adjoint of d . One then has a
natural isomorphism

KerLV = H∗(g,V )

Kostant has a nice spectral resolution for LV for a class of subalgebras
which includes the parabolic subalgebras of semisimple Lie algebras (i.e.,
the subalgebras containing a Borel subalgebra).
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Lecture 2 Background

Kostant theorem on u-cohomology

Theorem

Let p be a parabolic subalgebra of a semisimple Lie algebra g with Levi
decomposition p = l⊕ u. Then, as l-modules,

Hp(u−,Vλ) =
⊕

w∈W ′, `(w)=p

V (w(λ+ ρ)− ρ)

where ρ is the Weyl vector and W ′ is the set of minimal length right coset
representatives for Wl\W .
Moreover, a representative for the highest weight vector is given by the
decomposable vector xβ1 ∧ . . . ∧ xβp ⊗ vwλ, where N(w) = {β1, . . . , βp}
and vw(λ) is a nonzero weight vector of weight w(λ).
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Lecture 3 Affine root systems and affine Weyl groups

Affine root systems

Affine root system

Let F be the space of affine-linear functions on V = hR = R⊗Z Q∨,
where Q∨ =

∑
α∈Π Zα∨ is the coroot lattice.

Endow F ∼= V ∗ ⊕ R with a
symmetric bilinear form induced by (·, ·) on the linear part and extended by
zero on the affine part. For α ∈ ∆, j ∈ Z define aα,j(v) = α(v) + j and set

∆̂ = {aα,j | α ∈ ∆, j ∈ Z}

Affine Weyl group

For α ∈ ∆, j ∈ Z let sα,j be the affine reflection around α(x) = j :

sα,j(v) = v − aα,−j(v)α∨.

Let Ŵ be the subgroup of Isom(V ) generated by {sα,j | aα,j ∈ ∆̂}
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Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 57 / 116



Lecture 3 Affine root systems and affine Weyl groups

Affine root systems

Affine root system

Let F be the space of affine-linear functions on V = hR = R⊗Z Q∨,
where Q∨ =

∑
α∈Π Zα∨ is the coroot lattice. Endow F ∼= V ∗ ⊕ R with a

symmetric bilinear form induced by (·, ·) on the linear part and extended by
zero on the affine part. For α ∈ ∆, j ∈ Z define aα,j(v) = α(v) + j and set

∆̂ = {aα,j | α ∈ ∆, j ∈ Z}

Affine Weyl group

For α ∈ ∆, j ∈ Z let sα,j be the affine reflection around α(x) = j :

sα,j(v) = v − aα,−j(v)α∨.
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Lecture 3 Affine root systems and affine Weyl groups

Affine Weyl groups

Proposition

Let tv be the translation by v.

1

Ŵ = W n Q∨

where Q∨ is viewed inside Ŵ via α∨ 7→ tα∨

2 Ŵ is a Coxeter group with generating set

s0 = sθ,1 = tθ∨sθ,0, si = sαi ,0, i = 1, . . . , n.

Here θ =
∑n

i=1 ciαi is the highest root of ∆.

3 A fundamental domain for the action of Ŵ on V is given by

{v ∈ V | α(v) ≥ 0 ∀α ∈ ∆+, θ(v) ≤ 1}.
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Lecture 3 Affine root systems and affine Weyl groups

Alcoves

Identifying V and V ∗ by means of (·, ·), we can also define an action of Ŵ
on V ∗;

then

Ā1 = {λ ∈ V ∗ | (α, λ) ≥ 0∀α ∈ ∆+, (θ, λ) ≤ 1}

is a fundamental domain for this action, called the fundamental alcove.
We will refer to the alcoves as the Ŵ -translates of A1 (i.e., Aw = wA1).
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Lecture 3 Affine root systems and affine Weyl groups

Example

Disclaimer

Although I kept the Killing form since the beginning (and this will be important in the sequel), in many of the following pictures
I use the more usual normalization (θ, θ) = 2).
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Lecture 3 Affine root systems and affine Weyl groups

Positive systems

The set
∆̂+ = {aα,j | α ∈ ∆, j > 0} ∪ {aα,0 | α ∈ ∆+}

can be shown to be a set of positive roots in ∆̂ and the corresponding set
of simple roots is Π̂ = {α0, . . . , αn}, where α0 = a−θ,1 and we identify αi

with aαi ,0, i = 1, . . . , n.

Ŵ acts on F (as functions on V ) and this action

preserves ∆̂ and fixes δ, the constant function 1.
If we set c0 = 1 we have δ =

∑n
i=0 ciαi , so that we might write

∆̂+ = {α + nδ | α ∈ ∆, n > 0} ∪∆+
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Lecture 3 Affine root systems and affine Weyl groups

Algebraic intepretation

The elements of ∆̂ can be regarded as (part of the) roots of an infinite
dimensional Lie algebra. Here is a sketch of its construction.

Start with a fd-simple Lie algebra g and form the loop algebra

g̃ = g⊗ C[t, t−1], [x ⊗ p(t), y ⊗ q(t)] = [x , y ]⊗ p(t)q(t).

One shows that

H2(g̃) = Cψ, ψ(x ⊗ p(t), y ⊗ q(t)) = (x , y)Rest(
d p(t)

dt
q(t)).

One can therefore form an infinite dimensional Lie algebra

ĝ = g⊗ C[t, t−1]⊕ CK ⊕ Cd

where the (canonical) central extension is determined by ψ, K is central
and d acts as the Euler operator t d

dt .
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Lecture 3 Affine root systems and affine Weyl groups

Algebraic intepretation

Facts

If h ⊂ g is a Cartan subalgebra, the subalgebra of ĝ is
ĥ = h⊕ CK ⊕ Cd ⊂ ĝ is maximal commutative adĝ-diagonalizable.

ĝ has an invariant nondegenerate bilinear form

If δ ∈ ĥ∗ is defined by δ(h) = δ(d) = 0, δ(K ) = 1, then δ generates
the kernel of the restriction of the bilinear form to [ĝ, ĝ].

One has a root space decomposition w.r.t. ĥ; the root system is

∆̂ = ∆̂re ∪ ±Nδ, ∆̂re = {α + nδ | α ∈ ∆}.

Note that ∆̂re is our previous ∆̂.

the simple systems Π̂ give rise to the extended Dynkin diagrams of g,
i.e. ordinary Dynkin diagrams to which −θ is added as an
independent simple root.
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

ad -nilpotent of Borel subalgebras

Let g be a simple Lie algebra and b be a Borel subalgebra. Let h be the
Cartan component and ∆+ the positive system.

Definition

Let i be an ideal of b contained in n. It consists of ad-nilpotent elements,
so we’ll call it an ad-nilpotent ideal and we denote by I the set of
ad-nilpotent ideals.

If i ∈ I, then i is h-stable, hence it admits a decomposition

i =
⊕
α∈Φi

gα

where as usual gα = {x ∈ g | [h, x ] = α(h)x ∀ h ∈ h} and Φi ⊂ ∆+ is dual
order ideal of the root poset.
More precisely, recall the partial order on Q defined by

α ≤ β ⇐⇒ = β − α ∈
∑
γ∈∆+

Z≥0γ

Then it is clear that

i ∈ I ⇐⇒ α ∈ Φi, β ∈ ∆+, α + β ∈ ∆+ =⇒ α + β ∈ Φi.
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

Encoding ad -nilpotent ideals

Definition

For i ∈ I set Φ1
i = Φi, Φi

i = (Φi−1
i + Φi ) ∩∆+ and

Li =
⋃
k≥1

(−Φk
i + kδ) ⊂ ∆̂+.

Theorem

1 Li is biclosed in ∆̂+, hence there exists a unique wi ∈ Ŵ such that
Li = N(wi).

2 Given w ∈ Ŵ , there exists i ∈ I such that w = wi if and only if

w−1(α) > 0∀, α ∈ Π (i.e., wi ∈ Ŵ +);

If w(α) < 0 for α ∈ Π̂, then there exists β ∈ ∆+ such that
w(α) = β − δ.
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

Abelian ideals

Definition

We denote by Iab the set of abelian ideals of b. Clearly Iab ⊂ I.

Theorem

The following statements are equivalent

1 i ∈ Iab
2 Li = −Φi + δ is biclosed, hence there exists a unique wi ∈ Ŵ such

that Li = N(wi).

3 wi(A1) ⊂ 2A1 (i.e. wi ∈ Ŵ +
2 ).

In particular, |Iab| = 2rk g (Peterson’s abelian ideal Theorem)
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

Example
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

Abelian ideals

Proof

(1) ⇐⇒ (2). If i is abelian, it is clear that if α, β ∈ Φi, then
−(α + β) + 2δ /∈ ∆̂+; now assume −α + δ = ξ + η, α ∈ Φi, ξ, η ∈ ∆̂+.
Then ξ = ξ0 + δ, η ∈ ∆+, so that −α = ξ0 + η; in particular ξ0 ∈ ∆− and
since Φi is a dual order ideal, −ξ0 = α+ η ∈ Φi, as required. The converse
is easy.

(2) ⇐⇒ (3). It is obvious that Aw ⊂ 2A1, otherwise the hyperplane
θ = 2 separates A1 and Aw , and −θ+ 2δ ∈ N(w), against the assumption.
Conversely, if Aw ⊂ 2A1, then each hyperplane which separates A1 and Aw

intersects 2A1. Now −α + kδ ∈ N(w) iff α = k separates A1,Aw But for
each x ∈ 2A1 and for each α ∈ ∆+ we have 0 < (x , α) < (x , θ) < 2.
Therefore if a bounding hyperplane α = k intersects 2A1, we have
0 < k < 2.
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

Another encoding of ad-nilpotent ideals

Recall that Ŵ ∼= Q∨ o W .

Proposition

1 The map φ : i 7→ v−1
i (τi), where wi = tτivi is a bijection

I → D = {τ ∈ Q∨ | (τ, α) ≤ 1 ∀α ∈ Π, (τ, θ) ≥ −2}.

2 The map φ restricts to a bijection

Iab → Dab = {τ ∈ Q∨ | (τ, α) ∈ {1, 0,−1,−2} ∀α ∈ ∆+}.

Corollary

If h denotes the Coxeter number, and mi the exponents, then

|I| =

∏rk g
i=1 (mi + 1 + h)

|W |
.
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

Proof of the proposition

Let tτivi = wi, tτjvj = wj for some i and j in I. Assume v−1
i (τi) = v−1

j (τj).
Since τi, τj ∈ C 1, which is a fundamental domain for W , we have τi = τj
and viv

−1
j (τi) = τi. Hence tτivi(A1) = tτiviv

−1
j vj(A1) =

viv
−1
j (tτivj(A1)) = viv

−1
j (tτjvj(A1)) ⊂ viv

−1
j (C1). But tτivi(A1) ⊂ C1,

hence viv
−1
j = 1. Thus F is injective. Next let σ ∈ D. We first see that

there exists v ∈W such that tv(σ)v(A1) ⊂ C1: simply take the unique
v ∈W such that v(σ + A1) ⊂ C1. Now it is immediate that, since σ ∈ D,
tv(σ)v also satisfies the second condition of part 2 in our characterization
Theorem, hence tv(σ)v = wi for some i in I. It is obvious that F maps
tv(σ)v to σ, thus F is surjective.
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

Proof of the Corollary

Let

X = {x ∈ V | (x , αi ) ≤ 1 for each i ∈ {1, . . . , n} and (x , θ) ≥ −2}
= tρ∨w0(Ah+1).

where ρ∨ = ω∨1 + · · ·+ ω∨n . One can show that there exists w ∈ Ŵ such
that X = w(Ah+1). Such a w gives a bijection from

Ah+1 ∩ Q∨ → D = X ∩ Q∨.

If i ∈ I and wi = tτivi, with τi ∈ Q∨ and vi ∈W , then we obtain that
w−1v−1

i (τi) belongs to Ah+1 ∩ Q∨ and

i 7→ w−1v−1
i (τi), I → Ah+1 ∩ Q∨

is a bijection. Since elements in Ah+1 ∩ Q∨ are a natural set of
representatives of the W -orbits of Q∨/(h + 1)Q∨, we are done. The
combinatorial enumeration is due to Haiman.
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

ρ-points

Definitions

Take as invariant form on h the Killing form

1 The ρ-points are the Ŵ -orbit of 2ρ.

2 The weight of i ∈ Iab is 〈i〉 =
∑

gα⊂i α.

Then 2ρ ∈ A1, and
2(λw + ρ) = w(2ρ).

Introducing a linear version of Ŵ as a subgroup of O(ĥ∗), one can prove
that

λwi = 〈i〉.

Proposition

The following sets are in bijection with Iab:

1 the set of abelian dual order ideals in ∆+;

2 the set Ŵ +
2 in Ŵ (the minuscule elements);

3 the set of alcoves in 2A1;

4 the set of ρ-points in 2A1;

5 the set of weights of abelian ideals.

6 the set Dab = {η ∈ Q∨ | η(α) ∈ {−2− 1, 0, 1} ∀α ∈ ∆+};
7 the set of antichains A ⊂ ∆+ such that for any α, β ∈ A we have
α + β 6≤ θ.
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

ρ-points

Recall that an antichain A in a poset P is a set of mutually
non-comparable elements
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Lecture 3 ad-nilpotent ideals of Borel subalgebras

Afterwords

Lemma (Kostant)

Let i1, i2 ∈ I be such that 〈i1〉 = 〈i2〉. Then i1 = i2.

Proof.

Set Φi = Φii , Φ := Φ1 ∩ Φ2. Assume by contradiction that Φ1 6= Φ2.
Then since 〈Φ1〉 = 〈Φ2〉 both Φ1 − Φ and Φ2 − Φ are nonempty. Pick
ϕi ∈ Φi − Φ (i = 1, 2). We must have (ϕ1|ϕ2) 6 0. Otherwise ϕ1 − ϕ2

would be a root which can be assumed positive by possibly interchanging
the indices 1 and 2. By the ideal property Φi+∆+ ⊆ Φi we then have
ϕ1 = ϕ2 + (ϕ1 − ϕ2) ∈ Φ2, a contradiction. Thus (ϕ1|ϕ2) 6 0. Hence
since 〈Φ1 − Φ〉 = 〈Φ2 − Φ〉 we obtain

0 6
∥∥〈Φi − Φ〉

∥∥2
=
(
〈Φ1 − Φ〉

∣∣ 〈Φ2 − Φ〉
)
6 0

and so Φ = Φ1 = Φ2.
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Lecture 4 Panyushev’s theory of rootlets

Panyushev’s theory of rootlets

For α ∈ ∆+
` define

Iab(α) = {i ∈ I | w−1
i (−θ + 2δ) = α},

Ŵα = 〈sβ | β ∈ Π̂, β ⊥ α〉 ≤ Ŵ ,

Wα = 〈sβ | β ∈ Π, β ⊥ α〉 ≤ Ŵ .

Theorem

1 The set I ′ab of nonzero abelian ideals of b decomposes as

I ′ab =
⊔

α∈∆+
`

Iab(α)

2 There an explicit poset isomorphism M : Iab(α)→ Ŵα/Wα. In
particular Iab(α) has minimum and maximum.

3 M gives rise to a natural bijection maximal abelian ideals of b and Π`.
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Lecture 4 Panyushev’s theory of rootlets
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Lecture 4 Panyushev’s theory of rootlets

Maximal dimension

Proposition (Suter)

For α ∈ Π`

dim max Iab(α) = h∨ − 1 + |∆+(Ŵα)| − |∆+(Wα)|.

Remark

(P.)

M = max dim{a | a abelian subalgebra of g } = dim max Iab(β)

where β is a simple roots having maximum distance from α0 in Π̂.

Example

M(E6) = dim max Iab(α1) = 11+|∆+(A5)|−|∆+(A4)| = 11+15−10 = 16.

Malcev determined M in the 50-s on a case by case basis.
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Lecture 4 Panyushev’s theory of rootlets

Comments of the proof - (1)

We show that if w is a non-trivial minuscule element, then
w−1(−θ + 2δ) ∈ ∆+

` .
Since w−1(−θ + δ) is negative, we can write w−1(−θ + δ) = −kδ − γ0,
where k ∈ {0, 1, 2, . . . } and γ0 ∈ ∆.
a) Assume k ≥ 2. Then w−1(2δ − θ) = −(k − 1)δ − γ0 < 0. This
contradicts the fact that w is minuscule.
b) Assume k = 0. Then w−1(δ − θ) = −γ0 and γ0 ∈ ∆+. It is clear that

w ∈ Ŵ \W . Write the expression of θ through the simple roots:
θ =

∑p
i=1 ciαi and set γi = w−1(αi ).

Then
∑p

i=1 ciγi = γ0 + δ. Since γi ’s are positive and γ0 ∈ ∆, there exists a
unique i0 ∈ {1, . . . , p} such that ci0 = 1, γi0 ∈ δ+ ∆ and γi ∈ ∆ for i 6= i0.
It follows that the elements −γ0, γj (j ≥ 1, j 6= i0) form a basis for ∆.
Hence there is w ′ ∈W which takes −γ0, γj (j 6= i0) to α1, . . . , αp.
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Lecture 4 Panyushev’s theory of rootlets

Sketch of proof - (1)

Because w ′(γi0) ∈ δ + ∆ and the elements w ′(γi ) (i = 0, 1, . . . , p) form a

basis for ∆̂, we see that w ′(γi0) = −θ + δ.

Thus, w ′w−1 takes Π̂ to itself and hence w ′ = w .

This is however impossible, since w 6∈W .

Thus, k = 1 and µ := w−1(δ − θ) + δ = w−1(2δ − θ) ∈ ∆.

Since δ is isotropic and θ is long, µ is long as well.

Finally, since w is minuscule, 2δ − θ 6∈ N̂(w). Hence µ is positive.
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Lecture 4 Panyushev’s theory of rootlets

Sketch of proof - (2)

One shows that, if i ∈ I(α), α ∈ ∆+
`

wi = s0vαṽi,α

where

vα = element of minimal length in W s.t. vα(α) = θ

vi,α ∈ Ŵα/Wα.

Proposition

wi 7→ ṽi,α is a bijection Iab(α)→ Ŵα/Wα

Examples

Iab(θ) = {s0}; if ᾱ ∈ Π is such that (ᾱ, θ) 6= 0, then

Iab(ᾱ) = {s0vᾱ}.
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Lecture 4 Panyushev’s theory of rootlets

Sketch of proof - (3)

Proposition

i ∈ Iab is maximal if and only if wi(Π̂) ∩ (−∆+ + δ) = ∅. In this case
−θ + 2δ ∈ wi(Π`)

Proof.
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Lecture 4 Panyushev’s theory of rootlets

Sketch of proof - (3)

Proposition

i ∈ Iab is maximal if and only if wi(Π̂) ∩ (−∆+ + δ) = ∅. In this case
−θ + 2δ ∈ wi(Π`)

Proof.

The abelian ideal i is maximal in Iab if and only if, for all w ∈ Ŵ such
that wi ≤ w in the weak order, w 6∈ Ŵ +

2 .

But u ∈ Ŵ +
2 , u

′ ≤ u =⇒ u′ ∈ Ŵ +
2 . This implies that i is maximal in Iab

if and only if, for all α ∈ Π̂ such that wi(α) > 0, we have that wisα 6∈ Ŵ +
2 .

Since for wi(α) > 0 we have N(wisα) = N(wi) ∪ {wi(α)}, this happens if
and only if wi(α) 6∈ −∆+ + δ. This proves the first statement.
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Lecture 4 Panyushev’s theory of rootlets

Sketch of proof - (3)

Proposition

i ∈ Iab is maximal if and only if wi(Π̂) ∩ (−∆+ + δ) = ∅. In this case
−θ + 2δ ∈ wi(Π`)

Proof.

Now if wi(Π̂) ∩ (−∆+ + δ) = ∅, we have in particular that wi is not the

identity of Ŵ . Since no translation may correspond to some non zero
abelian ideal, if wi = tτv , then v is not the identity; therefore v(α) < 0 for
at least one α ∈ Π. tτv(Π̂) ⊆ ∆+ − δ ∪ Π ∪ {−θ + 2δ}, hence for such an
α, v(α) = −θ and wi (α) = −θ + 2δ. Moreover, since θ is long, α is long
too.
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Lecture 4 Panyushev’s theory of rootlets

A result on dominant elements in Ŵ

Theorem

If w ∈ Ŵ + \ Ŵ +
2 , then `(w) ≥ h∨. Here h∨ = 1 +

∑
i di if θ∨ =

∑
i diα

∨
i

Proof.

Recall that there are exactly h∨ − 2 decompositions of θ as a sum of two
positive roots θ = α1 +β1 = . . . = αh∨−2 +βh∨−2. By assuption (θ, x) = 2
separates Aw and A1. This implies that −θ + 2δ ∈ N(w). If we consider

−θ + 2δ = (−α1 + δ) + (−β1 + δ) = . . . = (−θ + δ) + δ

we deduce that |N(w)| ≥ h∨ − 1. Since w /∈ Ŵ +
2 there exist

−ξ + δ,−η + δ ∈ N(w) such that γ = ξ + η ∈ ∆+. Hence the
decomposition −γ + 2δ = (−ξ + δ) + (−η + δ) afford at least one more
element in N(w), which has therefore at least h∨ elements, as desired.
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Lecture 4 Panyushev’s theory of rootlets

Preliminaries on affine algebras

Denote by hR the real span of α∨0 , . . . , α
∨
n and let ĝR be the real algebra

generated by hR ⊕ Rd together with the Chevalley generators
e0 = t−1 ⊗ eθ, f0 = t ⊗ fθ, ei , fi , 1 ≤ i ≤ n for ĝ.
Let conj be the conjugation of ĝ corresponding to the real form ĝR and
define the conjugate linear antiautomorphism σo of ĝ by setting
σo(h) = conj(h), σo(ei ) = fi , and σo(fi ) = ei . We extend the form (·, ·) to
ĝ by setting (xr = tr ⊗ x)

(xr , ys) = δr ,−s(x , y), (g̃, d) = (g̃,K ) = (d , d) = 0, (K , d) = 1.
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Lecture 4 Panyushev’s theory of rootlets

Preliminaries on affine algebras

Since (·, ·) is real on hR, we have that (gR, gR) ⊂ R. Following Kumar, we
can define a contravariant (i.e. {[a, x ], y} = −{x , [σo(a), y ]}) Hermitian
form {·, ·} on ĝ by setting

{x , y} = (x , σo(y)).
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Lecture 4 Abelian ideals and
∧

g

u-homology

If α = α0 + kδ set ĝα = tk ⊗ gα0 ; if α = kδ set ĝα = tk ⊗ h. We also set

m = g + ĥ,

u =
∑

α(d)>0

ĝα = tg[t],

q = m⊕ u.

We also set u− =
∑

α(d)<0

ĝα = t−1g[t−1], q− = m⊕ u−; note that

σo(u) = u−. Since (u, q) = 0 and the form (·, ·) is nondegenerate on ĝ, it
follows that {·, ·} defines a nondegenerate hermitian form on u−, which is
known to be positive definite.

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 83 / 116



Lecture 4 Abelian ideals and
∧

g

u-homology

Extend {·, ·} to ∧u− in the usual way: elements in ∧ru− are orthogonal to
elements of ∧su− if r 6= s whereas

{X1 ∧ · · · ∧ Xr ,Y1 ∧ · · · ∧ Yr} = det ( {Xi ,Yj} ) .

Similarly, we can extend (·, ·) to define a symmetric bilinear form on
∧
ĝ.

If we extend σo to
∧k ĝ by setting

σo(x1 ∧ · · · ∧ xk) = σo(x1) ∧ · · · ∧ σo(xk),

then obviously relation {x , y} = (x , σo(y)) still holds with x , y ∈ ∧u−.
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Lecture 4 Abelian ideals and
∧

g

u-homology

Set ∂p : ∧pu− → ∧p−1u− to be the usual Chevalley-Eilenberg boundary
operator defined by

∂p(X1 ∧ . . . ∧ Xp) =
∑
i<j

(−1)i+j [Xi ,Xj ] ∧ X1 . . . X̂i . . . X̂j · · · ∧ Xp

if p > 1 and ∂1 = ∂0 = 0 and let Hp(u−,C) be its homology.

Let Lp : ∧pu− → ∧pu− be the corresponding Laplacian:

Lp = ∂p+1∂
∗
p+1 + ∂∗p∂p.

where ∂∗p denotes the adjoint of ∂p with respect to {·, ·}.
We shall use the following two basic properties of Lp

Ker Lp
∼= Hp(u−),

(Ker Lp)⊥ = Im ∂∗p + Im ∂p+1.
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Lecture 4 Abelian ideals and
∧

g

u-homology

Since u− is stable under ad(m) we have an action of m on u−. Restricting
this action to g we get an action of g on u−. Notice also that, since K is a
central element, the action of K on u− is trivial.
Recall that the Casimir operator Ωg of g is the element of the universal

enveloping algebra of g defined by setting Ωg =
∑N

i=1 bib
′
i , where

{b1, . . . , bN}, {b′1, . . . , b′N} are dual bases of g with respect to (·, ·).
Set {u1, . . . , un} and {u1, . . . , un} to be bases of h dual to each other with
respect to (·, ·). If ρ0 denotes the Weyl vector of g, it is well known that
Ωg can be rewritten as

Ωg =
n∑

i=1

uiu
i + 2ρ0 +

∑
α∈∆+

x−αxα.

Define Λ0 ∈ ĥ∗ by setting Λ0(h0) = Λ0(d) = 0 and Λ0(K ) = 1. Set

ρ =
1

2
Λ0 + ρ0

Fact
ρ(α∨i ) = 1, i = 0, . . . , n, ρ(d) = 0
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Lecture 4 Abelian ideals and
∧

g

Casimir element vs Laplacian

Proposition

Lp(x) = −(d + Ωg)(x) (x ∈ ∧u−).

Proof.

Note that {u1, . . . , un, c , d} and {u1, . . . , un, d , c} are bases of ĥ dual to
each other with respect to (·, ·). Then, following Kumar, we set

Ω =
n∑

i=1

uiu
i + 2K d + 2ρ+

∑
α∈∆+

x−αxα.

By what observed before about ρ, we have that

Ω = Ωg + d + 2d K .

By a Laplacian calculation due to Kumar applied to ∧u− ' C⊗ ∧u− we
have that if x ∈ ∧u−, then Lp(x) = −Ω(x). Hence, by observing that K
acts trivially on ∧u−, the result follows.
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Lecture 4 Abelian ideals and
∧

g

Garland-Lepowsky generalization of Kostant’s theorem

Notation

If λ ∈ ĥ∗ is such that λ = π(λ) (π : ĥ→ h projection) is dominant integral
for ∆+, let V (λ) denote the irreducible m-module of highest weight λ.

Theorem

Hp

(
u−
)

=
⊕

w∈Ŵ+

`(w)=p

V (w(ρ)− ρ) .

Moreover a representative of the highest weight vector of V (w(ρ)− ρ) is
given by

X−β1 ∧ · · · ∧ X−βp

where N(w) = {β1, . . . , βp} and the X−βi are root vectors in ĝ.
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Lecture 4 Abelian ideals and
∧

g

A natural bigrading

For x i ∈ g, set x i
j = t j ⊗ xi and define

∧(r ,s)u− = Span

{
x1
i1 ∧ x2

i2 ∧ · · · ∧ x r
ir | −

r∑
i=1

ij = s

}
.

Note that the map x1
−1 ∧ . . . ∧ x r

−1 7→ x1 ∧ . . . ∧ x r affords a canonical
identification

Z : ∧(r ,r)u−
∼=−→ ∧rg

that intertwines the adjoint action of g.
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Lecture 4 Abelian ideals and
∧

g

Abelian subspaces as cycles

Lemma

Given linearly independent elements x1, . . . , xp of g, set
v = x1

−1 ∧ . . . ∧ xp
−1. Then ∂p(v) = 0 if and only if [x i , x j ] = 0 for all i , j .

Proof.

This follows readily from the definition of ∂p:

∂p(v) =
∑

(−1)i+j [x i , x j ]−2 ∧ x1
−1 . . . x̂

i
−1 . . . ∧ x̂ j

−1 . . . ∧ xp
−1.
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Lecture 4 Abelian ideals and
∧

g

Notation

For a p-dimensional subspace a =
p⊕

i=1
Cv i of g define

va = v 1 ∧ . . . ∧ vp ∈ ∧pg,
v̂a = v 1

−1 ∧ . . . ∧ vp
−1 ∈ ∧

(p,p)u−.

Theorem

The maximal eigenvalue for the action of Ωg on ∧pg is at most p. Equality
holds if and only if there exists a commutative subspace a of g of
dimension p. In such a case, va is an eigevector for Ωg relative to the
eigenvalue p.
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Lecture 4 Abelian ideals and
∧

g

Proof.

To prove that the maximal eigenvalue is at most p, remark that Lp is
self-adjoint and positive semidefinite on ∧u− with respect to { , }. Since
Ωg = −d − Lp, the claim follows.

Suppose that a is an abelian subspace of g of dimension p. Then, by the
Lemma ∂p(v̂a) = 0. Since v̂a ∈ ∧(p,p)u−, we have that ∂∗p+1(v̂a) = 0,
hence Lp(v̂a) = (∂p+1∂

∗
p+1 + ∂∗p∂p)(v̂a) = 0. We have then Ωg(va) = p va.

Conversely, if Ωg has eigenvalue p on ∧pg, then Ker Lp ∩∧(p,p)u− 6= 0. By
GL-theorem we know that Ker Lp decomposes with multiplicity one. Since
∧(p,p)u− is m-stable, we deduce that one of the highest weight vectors, say
x1
−1 ∧ · · · ∧ xp

−1, must belong to Ker Lp ∩ ∧(p,p)u−. Since ∂∗p∂p = 0 implies
that ∂p = 0, the above Lemma gives that Span(x1, . . . , xp) is the required
abelian subspace.
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Lecture 4 Abelian ideals and
∧

g∧
g and Ŵ .

We now relate the vectors va to distinguished elements of Ŵ . Suppose
that i is a h-stable subspace of g. Set

Φi = {α ∈ ∆+ | gα ⊂ i}, Φ̂i = {δ − α | α ∈ Φi}.

Theorem (*)

The following statements are equivalent

1 i is an abelian b-stable subspace of g.

2 There is an element wi ∈ Ŵ such that N(wi) = Φ̂i.

3 i is a b-stable subspace of g and Ωgvi = (dim i)vi.
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3 i is a b-stable subspace of g and Ωgvi = (dim i)vi.

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 92 / 116



Lecture 4 Abelian ideals and
∧

g

Proof of the Theorem

Proof.

1) =⇒ 2). Set p = dim i. Then, since i is abelian, ∂p(v̂i) = 0. Notice
that v̂i ∈ ∧(p,p)u−, so ∂∗p(v̂i) = 0. It follows that Lp(v̂i) = 0. Since i is
b-stable, v̂i is a maximal vector for m in ∧u−. By GL-Theorem, there is an
element wi ∈ Ŵ such that ∧α∈N(wi)X−α = v̂i and this implies that

N(wi) = Φ̂i.
2) =⇒ 3). By GL-Theorem, we have that v̂i is a maximal vector for the
action of m on ∧u−, hence i is a b-stable subspace of g. Moreover
Lp(v̂i) = 0 therefore

Ωg(v̂i) = −(Lp + d)(v̂i) = (dim i)v̂i,

and this implies that Ωgvi = (dim i)vi.
3) =⇒ 1). This follows from what we have seen about eigenvectors for
Ωg.
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Lecture 4 Abelian ideals and
∧

g

On the structure of
∧

g

Notation

Ĉp = Span(v̂a | a abelian subalgebra of dimension p)

M̂p = eigenspace of eigenvalue p for the action of Ωg on ∧(p,p)u−

a1, . . . , ar : abelian ideals of b of dimension p

µi = 〈N(wai )〉 = − dim(ai )δ + 〈Φai 〉,

Ĵ = ideal (for exterior multiplication) in ∧u− generated by ∂∗2(u−),

Ĵp = Ĵ ∩ ∧(p,p)u−.
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Lecture 4 Abelian ideals and
∧

g

On the structure of
∧

g

Proposition

1 Ĉp = M̂p =
r⊕

i=1
V (µi ) = Ker(Lp |∧(p,p)) = Hp(u−)p.

2 The following orthogonal decomposition with respect to {·, ·} holds:

∧(p,p)u− = Ĉp ⊕ Ĵp

In particular, letting A be the subalgebra of
⊕
p≥0
∧(p,p)u− generated by

1 and ∂∗2(u−) then ⊕
p≥0

∧(p,p)u− = A ∧
∑
p≥0

Ĉp
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Lecture 4 Abelian ideals and
∧

g

On the structure of
∧

g – Proofs

Proof.

1). We know that the linear generators of Ĉp are eigenvectors for Ωg of

eigenvalue p, hence Ĉp ⊆ M̂p. Clearly, M̂p ⊆ Ker Lp. We know from the
first lecture that w(ρ)− ρ = −〈N(w)〉. Combining this observation with

GL-Theorem and Theorem (∗), we have that Ker Lp =
r⊕

i=1
V (µi ).

Finally, by Theorem (∗), V (µi ) is linearly generated by elements in Ĉp,

hence
r⊕

i=1
V (µi ) ⊆ Ĉp.
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Lecture 4 Abelian ideals and
∧

g

On the structure of
∧

g – Proofs

Proof.

2). We have
Ĉ⊥p = (KerLp)⊥ = ∂∗p(∧(p−1,p)u−).

The first equality is clear from part 1), whereas the second follows
combining relation Hp(u−) = Ker Lp with the fact that ∧(p+1,p)u− = 0.
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Lecture 4 Abelian ideals and
∧

g

On the structure of
∧

g – Proofs

Proof.

It remains to prove that ∂∗p(∧(p−1,p)u−) = Ĵp. Observe that, if

v ∈ ∧(p−1,p)u−, then necessarily v is a sum of decomposable elements of
type x1

−1 ∧ x2
−1 ∧ · · · ∧ xp−1

−1 . Assume that v = x1
−1 ∧ x2

−1 ∧ · · · ∧ xp−1
−1 .

Since ∂∗ is a skew-derivation and
∂∗p−1(x2

−1 ∧ · · · ∧ xp−1
−1 ) ∈ ∧(p−1,p−2)u− = 0, we have

∂∗p(v) = ∂∗2(x1
−1) ∧ x2

−1 ∧ · · · ∧ xp−1
−1 ,

so that ∂∗p(v) ∈ Ĵp.
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Lecture 4 Abelian ideals and
∧

g

On the structure of
∧

g – Proofs

Proof.

Conversely, if w ∈ Ĵp, then w = ∂∗2(x) ∧ y with
x ∈ ∧(1,s)u−, y ∈ ∧(p−2,r)u−. Since s + r = p, r ≥ p − 2, s ≥ 2, we have
necessarily s = 2, r = p − 2. Therefore ∂∗p−1(y) = 0, hence

w = ∂∗p(x ∧ y) ∈ ∂∗p(∧(p−1,p)u−).

Finally, if x ∈
⊕

p≥0 ∧(p,p)u−, then x = a1 + ∂∗2(j1) ∧ b1 with

a1 ∈ Ĉp, j1 ∈ u−, b1 ∈ ∧(p−2,p−2)u−. In turn, we can write
b1 = a2 + ∂∗2(j2) ∧ b2 as above, and so on. The last claim now follows.
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Lecture 4 Abelian ideals and
∧

g

On the structure of
∧

g

Using the map Z : ∧(r ,r)u− → ∧rg , the previous Proposition can be
restated as a result on the algebra ∧g. We set Cp to be the linear span of
the vectors va when a ranges over the set of commutative subalgebras of g
of dimension p, Mp to denote the eigenspace corresponding to the
eigenvalue p for the action of Ωg on ∧pp. Let J be the ideal (for exterior
multiplication) in ∧g generated by d(g) and set Jp = J ∩ ∧pg.

Theorem

1 Cp = Mp =
r⊕

i=1
L(〈ai 〉).

2 The following orthogonal decomposition holds

∧p g = Cp ⊕ Jp

Moreover, letting A be the subalgebra of
∧
g generated by 1 and d(g)

then
∧

g = A ∧
∑

p≥0 Cp.
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Lecture 5 Kostant-Macdonald formulas

Euler product

Recall that we have denoted by

φ(x) =
∞∏
n=1

(1− xn) ∈ C[[x ]]

the Euler product. Its importance is due to the expansion

1

φ(x)
=
∑
n≥0

p(n)xn

where p(n) is the classical partition function.

Known facts

φ(x) =
∑
n∈Z

(−1)nx
3n2+n

2 = 1− x − x2 + x5 + . . . (Euler)

φ(x)3 =
∑

n∈Z≥0

(−1)n(2n + 1)x
n2+n

2 (Jacobi, 1828)

φ(x)10 = −−−−−

Winquist (1969) has shown that he expression of φ(x)10 affords an
elementary proof of Ramanujan’s third congruence for p

p(11m + 6) ≡ 0 mod 11.
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Lecture 5 Kostant-Macdonald formulas

Macdonald formula

Let
η(x) = x1/24φ(x)

be the Dedekind η-function.

Theorem

If g is a simple Lie algebra, Q its root lattice and h∨ is the dual Coxeter
number

η(x)dim g =
∑

ν∈h∨ Q

∏
β∈∆+ (ν + ρ, β)∏
β∈∆+ (ρ, β)

x (ν+ρ,ν+ρ).
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Lecture 5 Kostant-Macdonald formulas

Kostant 1976

Theorem

1 Macdonald formula implies

φ(x)dim g =
∑
ν∈P+

tr (θλ(τ)) dim VλxCas(λ).

where θλ : W → GL(V 0
λ ) and τ is a Coxeter element.

2 If a = e2π
√
−1 2ρ then

tr θλ(τ) = χλ(a) ∈ {0,±1}.
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Lecture 5 Kostant-Macdonald formulas

Comment on the proof

Recall Freudenthal-de Vries strange formula

dim g/24 = (ρ, ρ).

Then

φ(x)dim g = η(x)dim gx− dim g/24 = η(x)dim gx−(ρ,ρ)

=

(∑
λ∈P+

dim Vλε(λ)x (λ+ρ,λ+ρ)

)
x−(ρ,ρ) =

∑
λ∈P+

ε(λ) dim VλxCas(λ)

The change of summation range is not completely obvious.
The theory of regular elements in the connected simply connected Lie
group with Lie algebra g allows to evaluate ε(λ) as χλ(a).
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Lecture 5 Kostant-Macdonald formulas

Kostant 2004

Proposition

χλ(a) =

{
0 if λ /∈ D+,

(−1)`(w) if λ = λw .

Corollary

Recall that we set φdim g =
∑

k bkxk . If k ≤ h∨, then (−1)kbk = dim Mk .

Proof.

By the proposition bk =
∑

w∈Ŵ+,Cas(λw )=k
(−1)`(w) dim Vλw . It can be

shown that Cas(λw ) ≥ `(w), hence `(w) ≤ k ≤ h∨, so that w ∈ Ŵ +
2 and

`(w) = Cas(λw ) = k, so the formula reduces to

bk =
∑

w∈Ŵ+
2 ,`(w)=k

(−1)k dim Vλw =
∑

i∈Iab,dim i=k

(−1)k dim V〈i〉

= (−1)k dim Mk = (−1)k dimCk
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Lecture 5 Applications to number theory

Number theoretical applications

For any complex number s one can define s power of Euler product∏∞
n=1(1− xn) by taking the logarithm of the Euler product, multiplying by

s and then exponentiating.( ∞∏
n=1

(1− xn)

)s

=
∑
k≥0

fk(s)xk , (5.1)

fk(s) is a polynomial of degree k defined as follows: Let µ : N→ Q be
defined by putting µ(m) =

∑
d |m 1/d . For k, n ∈ N, n ≤ k, let

Qk,n = {q ∈ Nn | q = (m1, . . . ,mn),
n∑

i=1

mi = k}

and using this notation let

qk,n =
∑

q∈Qk,n

µ(m1) · · ·µ(mn)

Put

f0 = 1, fk(s) =
k∑

n=1

qk,n (−s)n/n!
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Lecture 5 Applications to number theory

Number theoretical applications

In the following ressult Kostant gives a representation theoretical
interpretation of some linear factors of f2, f3, f4.

Proposition

We have f1(s) = −s and

f2(s) = 1/2! s(s − 3)

−f3(s) = 1/3! s(s − 1)(s − 8)

f4(s) = 1/4! s(s − 1)(s − 3)(s − 14)

Theorem

Let k be a positive integer. Then fk(s) is determined by the numbers
dimCk(slm) for k different values of m ∈ Z≥0 where m ≥ k and m > 1.
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Lecture 5 Applications to number theory

Proof of the Proposition

( ∞∏
n=1

(1− xn)

)s

=
∑
k≥0

fk(s)xk , (5.2)

f2(s) = 1/2! s(s − 3) − f3(s) = 1/3! s(s − 1)(s − 8) f4(s) = 1/4! s(s − 1)(s − 3)(s − 14)

Euler has determined the right side of (5.2) when s = 1. The only
nonzero coefficients on the right side of (5.2) are the coefficients of the
pentagonal powers x (3n2−n)/2 where n ∈ Z. Since 3 and 4 are not
pentagonal numbers it follows that 1 must be a root of f3(s) and f4(s).
Now Jacobi has determined the right side of (5.2) when s = 3. Here the
only nonzero coefficients on the right side of (5.2) are the coefficients of
the triangular powers xn(n+1)/2 for n ∈ Z+. Since 4 is not a triangular
number, 3 must be a root of f4(s).
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Lecture 5 Applications to number theory

Proof of the Proposition

( ∞∏
n=1

(1− xn)

)s

=
∑
k≥0

fk(s)xk , (5.2)

f2(s) = 1/2! s(s − 3) − f3(s) = 1/3! s(s − 1)(s − 8) f4(s) = 1/4! s(s − 1)(s − 3)(s − 14)

If M denotes the maximum dimension of an abelian subalgebra, we have
M < h∨, just when g is of A1,A2 and G2. More precisely
M = 1, 2, 3, h∨ = 2, 3, 4, respectively. In these cases we have

(−1)k dim Mk = bk = fk(dim g) (5.3)

But then, M4 = C4 = 0 if g is of type G2, M3 = C3 = 0 if g is of type A2

and M2 = C2 = 0 is of type A1 and by (5.3)

bh∨ = fh∨(dim g) = 0.

Hence we have proved that the missing roots are the complex dimensions
of G2, A2 and A1, namely 14, 8, 3
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Lecture 5 Application to affine Lie algebras

Application to affine Lie algebras

Map g→ so(g) via the adjoint reps. This map can be lifted to ĝ→ ŝo(g)

Theorem (Cellini-Kac-Möseneder-P.)

Let ε = 0 or 1. Then one has the following decomposition of the basic and

vector ŝo(g)-modules with respect to ĝ.

L(Λ̃ε) =
⊕
i∈Iab

|i|≡εmod 2

L(h∨Λg
0 + 〈i〉 − 1

2
(|i| − ε)δ)

Moreover, the highest weight vector vi of the submodule
L(h∨Λg

0 + 〈i〉 − 1
2 (|i| − ε)δ) is, up to a constant factor, the following pure

spinor (of the spin representation of Cl0(g̃)):

vi =
∏
α∈Φi

(t−1xα).
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Lecture 5 Developments and open problems

Combinatorics

ad-nilpotent ideals offer many nice examples in bijective combinatorics.
An instance is the following

Proposition (Andrews-Krattenthaler-Orsina.P.)

There is an explicit bijection between ad-nilpotent ideals in sl(n) and Dyck
paths of semilength n mapping ideals of class of nilpotence k to paths of
height k + 1.

Panyushev has written several papers on questions having the same
flavour: for instance, for sln, he proves that

#{i ∈ I | i is generated by k elements as a b-module} =
1

n

(
n

k

)(
n

k + 1

)
,

the so-called Narayana numbers.
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Lecture 5 Developments and open problems

AKOP bijection

D = (10, 10, 9, 6, 5, 4, 4, 3, 1, 1, 1, 1, 0) ⊂ T13. i3 = 10, i2 = 5, i1 = 1
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Lecture 5 Developments and open problems

AKOP bijection

Procedure

1 Start with n + 1− ik up-down pieces

2 Write the word corresponding to the path inside the k-th rectangle
la0d la1d . . . d laik−ik−1

3 Insert a0, a1, ... picks

4 Iterate the proedure on the next rectangle
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Lecture 5 Developments and open problems

AKOP bijection

k-th rectangle: dldllldl → a0 = 0, a1 = 1, a2 = 3, a4 = 1

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
��@@��@@��@@��@@

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

��@@��
��@@

@@��
��@@��@@��@@

@@��
��@@

@@

• • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • • • • • • • • • • •

��@@��
��
��@@

@@
@@��

��@@��
��@@

@@��
��
��@@

@@��@@
@@
@@��

��@@
@@
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Lecture 5 Developments and open problems
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Lecture 5 Developments and open problems

Combinatorics: references 2
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Lecture 5 Developments and open problems

Combinatorics

Another seemingly unrelated topic relies on the following definition,
coming from operational research

Definition

A subset Y ⊂ Sn is inversion complete if
⋃

x∈Y
N(x) = ∆+, and is minimal

inversion complete if it is inversion complete and minimal wrt this property.

Clearly, the same definition extends to any Weyl group (indeed finite
reflection group). Malvenuto-Möseneder-Orsina-P. started the
investigation of MICS of maximum cardinality, and subsequent work of
Panyushev made there approach more transparent.The most relevant
unsolved problem is dealt with in the following

Conjecture

Let W be the Weyl group of g, simply laced. The maximum cardinality of
a MICS equals the maximal dimension of an abelian subalgebra of g.
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Lecture 5 Developments and open problems

Representation theory

There is a nontrivial theory parallel to that of abelian ideals in the graded
case. More precisely, let g be a simple Lie algebra endowed with an
indecomposable involution σ.

Let g = g0 ⊕ g1 be the corresponding Cartan decomposition. The analog
of Iab is

Iσab = abelian b0-stable subspaces of g1.

Results

1 There is an encoding of Iσab via a subset Wab
σ ∈ Ŵ . The alcoves in

Wab
σ ∈ Ŵ pave a polytope with explicit defining inequalities. This

description yields a uniform formula for |Iσab| [Cellini-Möseneder-P.,
IMRN]

2 It is possible to describe the maximal elements in Iσab and to obtain
uniform enumerative formulas for their dimensions
[Cellini-Möseneder-P.-Pasquali, Selecta]

3 There are many applications to affine and vertex algebras, especially
in the theory of conformal embeddings
[Adamovic-Kac-Möseneder-P.-Perse]
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Lecture 5 Developments and open problems

Connections with spherical varieties

Let G be a connected simply connected semisimple complex algebraic
group with Lie algebra g. Let B be a Borel subgroup, and set b = LieB.

Panyushev

If a ∈ Iab then

1 any nilpotent orbit meeting a is a G -spherical variety

2 Ga is the closure a spherical nilpotent orbit. In particular, B acts on a
with finitely many orbits.

Definition

We say that a ∈ Iσab is G -spherical (resp. G0-spherical) if all orbits
Gx , x ∈ a are G -spherical (resp. if all orbits G0x , x ∈ a are G0-spherical).

Paolo Papi (Sapienza Università di Roma) Ad-nilpotent ideals of Borel subalgebras 115 / 116



Lecture 5 Developments and open problems

Connections with spherical varieties

Let G be a connected simply connected semisimple complex algebraic
group with Lie algebra g. Let B be a Borel subgroup, and set b = LieB.

Panyushev

If a ∈ Iab then

1 any nilpotent orbit meeting a is a G -spherical variety

2 Ga is the closure a spherical nilpotent orbit. In particular, B acts on a
with finitely many orbits.

Subsequently, Panyushev dealt with the Z2-graded case, g = g0 ⊕ g1.

Definition

We say that a ∈ Iσab is G -spherical (resp. G0-spherical) if all orbits
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Lecture 5 Developments and open problems

Gandini-Möseneder-P., JLMS 2017

i) We clarify the connections between G0-orbits of nilpotent elements in
g1, spherical G -orbits of nilpotent elements in g1 and G0-orbits of
abelian subalgebras in g1 which are stable under some Borel
subalgebra of g0.

ii) We prove that B0 acts on a with finitely many orbits, independently
of its sphericity. Moreover, we parametrize orbits via orthogonal set of
weights of a.

iii) Assume that there exist non-spherical subalgebras. We give a
construction of a canonical non-spherical subalgebra ap.

iv) We give a simple criterion to decide whether a is spherical or not: in
the main theorem we show that there exists a ∈ Iσab such that a is
non-spherical if and only if a ⊃ a.
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