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The difference-sign runs length distribution
in testing for serial independence
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We investigate the sequence of difference-sign runs length of a time series in the context of non-parametric
tests for serial independence. This sequence is, under suitable conditioning, a stationary sequence and we
prove that the normalized correlation of two consecutive runs length is small (≈0.0427). We use this result
in a test based on the relative entropy of the empirical distribution of the runs length. We investigate the
performance of the test in simulated series and test serial independence of cardiac data series in atrial
fibrillation.
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1. Introduction

The difference-sign runs test plays a central role in non-parametric tests for serial independence.
This test is often used in time series analysis for testing the independence of the residuals in fitted
deterministic trend models [4]. The definition of difference-sign runs can be given in terms of
occurrence times of extrema (maxima and minima) in the series. Let X1, X2, . . . be a sequence
of continuous random variables (rv), whose indexes are referred to as ‘times’. Denote A = {x1 <

x2, x2 > x3} ⊂ R3 the event corresponding to a maximum, B = {x1 > x2, x2 < x3} ⊂ R3 the
event corresponding to minimum and E = A ∪ B corresponding to an extreme. For instance, we
say that in i a maximum occurs if (Xi−1, Xi, Xi+1) ∈ A.

Let T1, T2, . . . denote the occurrence times of the event E, with T1 ≥ 2 and Ti < Ti+1 and let
Hi denote the associated recurrence times

Hi = Ti+1 − Ti, i = 1, 2, . . .

The intervals defined by Ti are the difference-sign runs, hereafter called simply ‘runs’, and the
Hi are their lengths. The classical runs test is based on the statistics defined as the number of runs.

∗Email: cammar@mat.uniroma1.it
http://www.mat.uniroma1.it/people/cammarota/

ISSN 0266-4763 print/ISSN 1360-0532 online
© 2010 Taylor & Francis
DOI: 10.1080/02664761003758984
http://www.informaworld.com

Techset Composition Ltd, Salisbury CJAS476420.tex Page#: 11 Printed: 29/3/2010



51

56

61

66

71

76

81

86

91

96

2 C. Cammarota

Since this statistic is based on ranking of the values, it gives rise to a distribution-free test [2].
In a sequence of independent and identically distributed (i.i.d.) X1, . . . , Xn continuous rv of size
n, the runs statistic, denoted N , is known to be approximated by a normal of mean (2n − 1)/3
and variance (16n − 29)/90 [11,16]. For practical implementation of this kind of tests, we also
refer to Sachs [14]; for different definitions of runs we refer to Balakrishnan and Koutras [1]. The
covariance matrix of the vector N1, . . . , Np, where Nj is the number of runs of length j, is also
known [11]. These results have been used to test pseudo random numbers generators [10].

Physiologic signals provide a lot of data series in which one has to use robust methods such as
non-parametric tests for serial independence. There are at least two reasons: the data distribution
is generally non-normal or not known and outliers are often present. For a public database and
bibliography, we refer to Goldberger et al. [9]. We consider here the time series of RR intervals
(see below) extracted from the electrocardiograms (ECG). The amount of randomness in these
series has been widely investigated in physical literature related to various normal and pathological
conditions (see for instance Urbanowicz et al. [15] and references therein). In some pathologies,
such as atrial fibrillation, the RR series is characterized by a high level of uncorrelated noise.

However, at our knowledge, is still lacking an analysis based on rigorous testing procedures.
A first step in this direction is in Cammarota and Rogora [6] and suggests that this series can be
modeled by a smooth deterministic trend plus an autoregressive model of Order 0 or 1.

The use of runs test in these data has, in addition to the motivations above mentioned, a third
one: the runs have a direct physiologic interpretation in terms of acceleration and decelerations of
heart rate (see below). Hence a runs test based on the distribution of the runs length seemed to be
more appropriate than the standard one based on the number of runs. Unfortunately, the sequence
of runs length extracted from an i.i.d. sequence is not independent. The joint probability of two
consecutive runs length was computed in Levene and Wolfowitz [11]. This lack of independence
has been noticed later in Knuth [10] and Chen and Kelton [7], where a modified definition of runs
was adopted to assure independence.

One of the results of the present paper concerns the dependence structure of the sequence of
runs length H1, H2, . . . Under suitable conditioning this sequence is stationary [5] and ergodic.
In this setting, we compute the lag one normalized autocorrelation of this sequence, and show
that it is positive, but very small (≈ 0.0427). This implies that a sample H1, . . . , Hn of runs
length extracted from an i.i.d. sequence can be considered approximately as a random sample.
This leads us to a test for serial independence based on the distribution of the runs length. The
statistic is defined as the relative entropy of the empirical runs distribution with respect to the runs
distribution of i.i.d. The performance of the test is compared with one of the standard runs test
both in simulated processes and in data series of atrial fibrillation. An example is given in which
the entropy test outperforms the standard one in detecting dependence.

2. The correlation of two consecutive runs length

The main new result in this section contained in Proposition 4 and Equation (11) states that the
correlation of two consecutive runs length extracted from an i.i.d. sequence is small (≈ 0.0427); the
exact value is given by Equation (11). The proof requires some preliminary results (Propositions
2 and 3), which go back to Levene and Wolfowitz [11], whose proofs are in the appendix. Some
basic results on the sequence of runs length are in Proposition 1 [5].

The first result concerns the conditions under which the sequence H1, H2, . . . of runs lengths
extracted from an i.i.d. sequence is stationary. For this we need to introduce the sequence

X′
i = (Xi, Xi+1, Xi+2) ∈ R3, i = 1, 2 . . .

and consider the probability conditioned to the event {X′
1 ∈ E}, that is, ‘in two there is an

extremum’. Following general properties for stationary and ergodic sequences of recurrence times



101

106

111

116

121

126

131

136

141

146

Journal of Applied Statistics 3

[3], the sequence H1, H2, . . . is stationary if the probability is conditioned to start in an extreme.
A second basic result is the well-known distribution free equation [13]

P(X1 < · · · < Xs) = 1

s! , (1)

where Xi are i.i.d. variables with continuous product distribution P . We summarize the basic
properties of runs length in the following proposition.

Proposition 1 If Xi are i.i.d. variables with continuous distribution, the sequence of runs length
Hi is stationary and ergodic in the measure conditioned to the event X′

1 ∈ E. The conditional
mean is given by

E(H1 | X′
1 ∈ E) = 3

2 . (2)

Proof As a preliminary step we compute the probability of an extrema. By symmetry,

P(X′
1 ∈ E) = P(X′

1 ∈ A) + P(X′
1 ∈ B) = 2P(X′

1 ∈ A)

and using Equation (1) one has

P(X′
1 ∈ A) = P(X1 < X2, X2 > X3)

= P(X1 < X2) − P(X1 < X2 < X3) = 1
2 − 1

6 = 1
3

and

P(X′
1 ∈ E) = 2

3 . (3)

The sequence X′
i is stationary and from Equation (3) we get P(X′

i ∈ E i.o.) = 1. The times
H1, H2, . . . are finite a.e., they form a stationary sequence under the conditional probability
P(|X′

1 ∈ E). The stationary sequence X′
i is two-dependent, that is, X′

i and X′
j are independent

if |i − j | > 2 and not independent elsewhere. Hence it is also ergodic and Hi is an ergodic (not
independent) sequence in the probability conditioned to X′

1 ∈ E. Equation (2) can be obtained
easily from the well-known Kac formula for the expectation of the first recurrence time

E(H1 | X′
1 ∈ E) = 1

P(X′
1 ∈ E)

. (4)

�

Remarks By symmetry, the probability of events generated by H1, H2, . . . conditioned to E is
the same as conditioned to A or B. For instance, P(H1 = s| X′

1 ∈ E) = P(H1 = s| X′
1 ∈ A). The

mean 3
2 is to be put into correspondence to the leading term 2

3 of the expectation of the number
N of runs in a series of n elements [11].

The univariate distribution and the first two moments are summarized in the following
proposition, where we denote the conditional probability shortly as P( | E).

Proposition 2 The conditional distribution of the runs length is given by

P(H1 = s | E) = 3

[
1

s + 2

1

s! − 1

s + 3

1

(s + 1)!
]

, s ≥ 1 (5)

and

E(H1 | E) = 3
2 , (6)

E(H 2
1 | E) = 3(2e − 9

2 ), (7)

Var(H1 | E) = 3(2e − 21
4 ) ≈ 0.560. (8)
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Proof See appendix �

Proposition 3 The joint distribution of two consecutive runs length is given by

P(H1 = s, H2 = t | E) = 3

[
1

s + t + 1

1

s!
1

t ! − 1

s + t + 2

1

s!
1

(t + 1)!
− 1

s + t + 2

1

(s + 1)!
1

t ! + 1

s + t + 3

1

(s + 1)!
1

(t + 1)!
]

, s, t ≥ 1

(9)

Proof See appendix �

Proposition 4 The correlation of two consecutive runs length is given by

E(H1H2| E) − E(H1| E)E(H2| E) = 3( 1
2e2 − 2e + 5

2 ) − ( 3
2 )2 ≈ 0.024. (10)

Proof In order to compute the expectation E(H1H2| E), we use the formula

E(H1H2| E) =
∞∑

s0,t0=1

P(H1 ≥ s0, H2 ≥ t0| E).

Using the telescopic form of the series, we get

∞∑
t=t0

P(H1 = s, H2 = t | E) = 3

[
1

s + t0 + 1

1

s!
1

t0! − 1

s + t0 + 2

1

(s + 1)!
1

t0!
]

,

∞∑
t=t0,s=s0

P(H1 = s, H2 = t | E) = 3

[
1

s0 + t0 + 1

1

s0!
1

t0!
]

.

To compute the last series we use that

1

s0 + t0 + 1
=

∫ 1

0
zs0+t0 dz

and so

∞∑
s0,t0=1

1

s0 + t0 + 1

1

s0!
1

t0! =
∫ 1

0
dz

∞∑
s0,t0=1

zs0

s0!
zt0

t0! =
∫ 1

0
dz(ez − 1)2 = 1

2e2 − 2e + 5
2 . �

Using the above results, the coefficient of correlation between the two variables is given by

E(H1H2 | E) − E(H1 | E)E(H2 | E)√
Var(H1 | E)Var(H2 | E)

= 2e2 − 8e + 7

8e − 21
≈ 0.0427. (11)

3. An entropy-based runs test

Let X1, . . . , Xn be a data series that is supposed to be i.i.d. and let H1, . . . , HN be the runs length
extracted from it, where N denotes the number of runs.
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Table 1. Rounded values of the probabilities of runs length s from 1 to 5 according
to Equation (5).

1 2 3 4 5

0.625 0.275 0.079 0.017 0.003

The standard runs test commonly in use is based on a normal approximation of the number of
runs N for n large:

N − (2n − 1)/3√
(16n − 29)/90

∼ Z, (12)

where Z is the standard normal. Hence, a level 0.05 test is usually performed computing the above
Z-score and comparing it with the quantiles z0.025 = −1.96 and z0.975 = 1.96 [14]. According to
the result of the previous section, the length Hi is with good approximation. A random sample
extracted from the stationary distribution is given by Equation (5).

These probabilities for lengths from 1 to 5 are given in Table 1. Let

g(s) = P(H1 = s|E)∑5
s=1 P(H1 = s|E)

, s = 1, . . . , 5

denote the distribution in Equation (5) truncated up to length five.
Let fn(s) denote the empirical frequency of runs length up to length five:

fn(s) = Ns

N1 + · · · + N5
, s = 1, . . . , 5, (13)

where Ns is the number of runs of length s in the data sequence of n elements. The test we consider
here is based on the comparison of the empirical and the theoretical distributions fn and g. The
comparison is performed using the relative entropy or Kullback–Leibler divergence between two
distributions [8].

In our setting the relative entropy of fn with respect to g is given by

hn =
5∑

s=1

fn(s) log

(
fn(s)

g(s)

)
, (14)

where fn(s) log(fn(s)/g(s)) = 0 if fn(s) = 0 and the natural logarithm is used. One has hn ≥ 0
and hn = 0 if and only if fn(s) = g(s), s = 1, . . . , 5.

Denoting q0.95 the 0.95th quantile of the distribution of hn, the test rejects the independence
hypothesis if the value of hn computed on a data sequence exceeds q0.95. Tests based on relative
entropy with rejection region of type {hn > c} have bounds of Type I and Type II errors that are
exponentially small in the number of observations (Hoeffding’s entropy test [8]).

The quantiles of the distribution of hn for a sequence of n = 200, 500, 1000 i.i.d. variables
are obtained simulating 10,000 replicas using a pseudo random number generator (Table 2). In
this and in the following computations, we have used the [12] free statistical software. We shall
compare the powers of Z-score and entropy tests in the next section.

An alternative goodness-of-fit test could be the standard chi-square test, where the runs of
length s observed are Nfn(s) and the expected are Ng(s) for s = 1, . . . , 5. This approach has
two drawbacks: the number of runs N itself is random and the usual condition on the number of
observations per cell, Nfn(s) > 5, requires a large n. Actually, the runs of length five are expected
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Table 2. Rounded values of the quantiles of the empirical distribution of hn from simulated i.i.d. sequences
of n = 200, 500, 1000 elements.

n 1% 2.5% 5% 50% 95% 97.5% 99%

200 0.003355 0.003838 0.004390 0.013067 0.035700 0.041821 0.050466
500 0.000355 0.000721 0.001145 0.005619 0.014674 0.017268 0.020958
1000 0.000204 0.000390 0.000575 0.002707 0.007470 0.008468 0.009851

to occur only three times in a sequence with N = 1000 runs (Table1), corresponding to n ∼ 1500,
according to Equation (12).

Another runs test is based on the asymptotic normal approximation of the vector (N1, . . . , Ns).
This test has been used for pseudo random number generators since it requires long series with
n ∼ 4000 [10].

4. Power study

We investigate the performance of the entropy runs test in detecting dependence using as an
alternative hypothesis models based on linear AR(1) processes:

Xt = ϕXt−1 + Zt,

where Zt is an i.i.d. sequence of standard normals. This model has a stationary univariate distribu-
tion for ϕ ∈ (−1, 1), which is the normal of mean 0 and variance 1/(1 − ϕ2). For the properties
of these models, we refer to [4]. In our simulation initial datum is put to zero, and Zt is simulated
using a pseudo random number generator.

We have computed the power of the entropy runs test of level 0.05 for size n = 500 in function
of the parameter ϕ in the interval (−1, 1). For each value of the parameter the sequence has been
replicated 500 times and the rejection rate was computed. Using the same sequences the power
of the Z-score test has also been computed. The two powers are compared in Figure 1. Other
simulations of AR(1) sequences with non-normal (Cauchy) innovations show similar results.
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Figure 1. Powers of the runs test of 0.05 level: Z-score (circles) and entropy (stars) as a function of the
parameter ϕ of the AR(1) process with n = 500 elements.
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Figure 2. Power of the runs test of 0.05 level: Z-score (circles) and entropy (stars) as a function of the
parameter ϕ of the non-stationary process with n = 500 elements.

We consider a second process obtained by concatenating four AR(1) processes of size n = 125:
the first and the third one with ϕ, the second and the fourth with −ϕ. This process is not stationary,
but its one-dimensional marginal is stationary with respect to mean and variance.

For each ϕ ∈ (−1, 1), the process has been replicated 500 times and the powers of the two
tests are computed. The powers are shown in Figure 2.

For the stationary AR(1) process the power of entropy is slightly smaller that the other, in the
non-stationary case the former largely dominates the latter.

5. Application to atrial fibrillation

In the electrocardiogram the main peak (corresponding to the systole) is labeled as R peak and the
time intervals between two adjacent R peaks are called RR intervals. These intervals are inversely
related to the instantaneous heart rate. The RR series show a strong variability, which is known as
heart rate variability (HRV) [9]. This variability is caused by several factors, the main of which
is the neuroautonomic control, which acts accelerating and decelerating the heart rate. Hence the
analysis of the runs up and down of this series may be a tool for investigating the efficiency of
this control.

Atrial fibrillation is a commonly diagnosed arrhythmia which affects up to 1% of the general
population. In this pathology the conduction of the electrical stimulation through the atria is
irregular leading to a corresponding sequence of irregular RR intervals, which are no longer
controlled by the neuroautonomic system.

In subjects with atrial fibrillation, the RR series show very large uncorrelated fluctuations if
compared with normals and other pathologies (see, for instance, Urbanowicz et al. [15] and
references therein).

Although the irregular rhythm during atrial fibrillation is generally accepted to be random,
rigorous statistical testing is still lacking.

In Cammarota and Rogora [6], data analysis performed using parametric tests on a small group
of subjects showed that the hypothesis of serial independence is not rejected in the large majority
of time; in the remaining the series can be modeled as an auto regressive model (AR) of very
short memory.
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This type of data has two features that make useful non-parametric tests: the distribution is
not normal, having a longer right tail; there are outliers due to the automated detection of the R
peaks. Furthermore, adjacent data values are generally largely different so the frequency of ties
is negligible and the runs are well defined. We apply both standard and entropy runs tests in one
case of atrial fibrillation.

This series was exported by the native software of a Rozinn Holter (Glendale, USA) equipment
for ambulatory diagnostics in Policlinico of La Sapienza University of Rome.

This case shows an episode of paroxysmal atrial fibrillation, a condition in which the irreg-
ular rhythm occurs and terminates in a non-predictable way over time having duration from
a few minutes up to days. In the case under analysis, the episode of fibrillation was consist-
ing of about 58,000 beats; extraction of these beats produces an RR time series of the same
length (Figure 3, first panel). We have divided the series into 58 consecutive disjoint windows
of size n = 1000. The entropy runs test is applied to each window and the values of the statistic
are reported in Figure 3 (third panel) and compared with the Z-score of the standard runs test
(second panel).

The same procedure was repeated for windows of size n = 500 and 200 and the results are
reported in Table 3. The number of widows in which the hypothesis is not rejected is almost the
same for sizes n = 200 and 500. In case n = 1000, the acceptance rates ( 38

58 and 46
58 ) are smaller

and their difference is larger. Both these facts can be explained since longer data windows could
be non-stationary with respect to the mean. Finally, since the third column is less than the fourth,
the entropy seems to be a more conservative test, which is in agreement with Figure 1.
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Figure 3. First panel: The time series of the RR intervals in milliseconds extracted from the 24-h Holter ECG
during atrial fibrillation. Second panel: The Z-scores of the standard runs test for windows of size 1000 and
the acceptance region of level 0.05. Third panel: The runs entropy for the same windows and acceptance
region of level 0.05.
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Table 3. Acceptance rates of the Z-score test (third column) and of the entropy test
(fourth column) for three sizes windows in the time series of atrial fibrillation.

n Windows Z-score Entropy

200 290 258 260
500 116 97 102
1000 58 38 46

First column, size of the window; second, number of windows.

6. Conclusions

The first result states that the correlation of two consecutive runs length is small. This allows to use
all the runs extracted from a data series as an approximately random sample, avoiding to eliminate
runs or data values from the series. The second result concerns an entropy-based runs test that
uses as statistic the relative entropy of the empirical distribution of the runs length fn(s) = Ns/N

with respect to the theoretical one in the i.i.d. hypothesis. This test is compared with the Z-score
runs test, based on the asymptotic normal approximation of the total number of runs N .

The powers of the two tests have been compared using as alternative processes based on AR(1)
models with parameter ϕ ∈ (−1, 1), which describes the strength of the interaction. The results
are different if the process is stationary or not. In the stationary case the power of the entropy is
smaller than the other, while in the non-stationary case the opposite happens. Power studies were
lacking. This is a very preliminary investigation and extensive studies are needed to get some
conclusion. We remark that the Z-score depends only on the number N of runs, while the entropy
is less sensitive to N , since the empirical frequencies are computed just normalizing with respect
to this number. For this reason a compound test which uses both the information should be of
interest.

The entropy runs test has been applied to time series of inter beat duration in atrial fibrillation.
These series are conjectured to be independent based on physiologic arguments and from previous
investigations mainly without tests of statistical significance. The runs up and down of the RR
series can be interpreted as decelerations and accelerations of the heart rate, hence their departure
from the i.i.d. can reflect the control of the neuroautonomic system.

Both the Z test and the entropy do not reject the independence hypothesis for a large majority of
the time. The rate of acceptance of entropy seems to be larger; both the rates decrease as the size of
the window increases, but the entropy seems more stable. These facts depend on several factors;
one of them could be the slowly varying mean typical of physiologic signals. In the windows in
which the independence is rejected, an AR model of short memory was conjectured [6], and the
problem deserves a detailed analysis. The fraction of the windows in which the independence is
not rejected could be used in clinics as a an index of the strength of the pathology.

Some other questions are naturally to be considered. The entropy test is based on the numerical
evaluation of the distribution of the statistic and relies upon the capability of pseudo random
generators to simulate i.i.d. sequences. Investigations on the asymptotic distribution of the statistic
can take advantage of the small correlation between two consecutive runs, a result that has not
been fully exploited here. Finally, both tests assume that the variables are continuous, but in data
series this is only an approximation mainly for low measurement resolution.
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Appendix

Proof of Proposition 2 The proof of Equation (5) goes back to Levene and Wolfowitz [11]; a
recent exposition is in Cammarota and Curione [5]; a proof obtained from the bivariate distribution
is given below. Equation (6), a rewriting of Equation (2), can be obtained from the distribution
(5) as follows:

E(H1|E) = 3
∞∑

s0=1

P(H1 ≥ s0|E),

P (H1 ≥ s0|E) =
∞∑

s=s0

1

s + 2

1

s! − 1

s + 3

1

(s + 1)! = 1

s0 + 2

1

s0! ,

where the last equality is obtained summing the telescopic series. Using that

1

s0 + 2
=

∫ 1

0
dz zs0+1,

one gets Equation (6) since
∞∑

s0=1

1

s0 + 2

1

s0! =
∫ 1

0
dz z(ez − 1) = 1

2
.

Let us now compute the second moment E(H 2
1 |E). This is given by

3
∞∑

s=1

s2

[
1

s + 2

1

s! − 1

s + 3

1

(s + 1)!
]

.

Using s2 = (s + 1)2 − 2s − 1 in the second contribution, we get

s2

(s + 2)s! − s2

(s + 3)(s + 1)! = s2

(s + 2)s! − (s + 1)2

(s + 3)(s + 1)! + 2s + 1

(s + 3)(s + 1)! .



501

506

511

516

521

526

531

536

541

546
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The first two terms form a telescopic series whose sum is 1
3 . The third one gives

2(s + 1)

(s + 3)(s + 1)! − 1

(s + 3)(s + 1)! = 2

(s + 3)s! − 1

(s + 3)(s + 1)! ,
which can be treated as before and gives after summation 2e − 29

6 . �

Proof of Proposition 3 A complete proof is contained in the paper Levene and Wolfowitz [11].
Here we explain the idea of the proof in the particular case H1 = 3, H2 = 3 to avoid notational
complications. Conditioning to E is the same as to B and this gives Factor 3. Conditioning to B

means that two is a minimum, five is a maximum and eight is a minimum. One has, denoting f

the density of the Xi ,

P(H1 = 3, H2 = 3|E)

= 3P(X1 > X2, X2 < X3 < X4 < X5, X5 > X6 > X7 > X8, X8 < X9)

= 3
∫ +∞

−∞
dx5f (x5)P (X1 > X2, X2 < X3 < X4 < x5, x5 > X6 > X7 > X8, X8 < X9)

= 3
∫ +∞

−∞
dx5f (x5)P (X1 > X2, X2 < X3 < X4 < x5)P (x5 > X6 > X7 > X8, X8 < X9),

where the last equation follows by independence. One also has

P(X1 > X2, X2 < X3 < X4 < x5) = P(X2 < X3 < X4 < x5) − P(X1 < X2 < X3 < X4 < x5),

P (x5 > X6 > X7 > X8, X8 < X9) = P(x5 > X6 > X7 > X8) − P(x5 > X6 > X7 > X8 > X9).

Denoting F the distribution function of the Xi, the first contribution is given by

P(X2 < X3 < X4 < x5) =
∫ x5

−∞
dx4f (x4)

∫ x4

−∞
dx3f (x3)

∫ x3

−∞
dx2f (x2) = 1

3!F
3(x5).

Using similar expressions for the other contributions, we get

P(H1 = 3, H2 = 3|E) = 3
∫ +∞

−∞
dx5f (x5)

[
1
3!F

3(x5)
1
3!F

3(x5) − 1
3!F

3(x5)
1
4F

4(x5).

− 1
4!F

4(x5)
1
3!F

3(x5) + 1
4!F

4(x5)
1
4!F

4(x5)
]
.

The integration of the first contribution gives∫ +∞

−∞
dx5f (x5)

1
3!F

3(x5)
1
3!F

3(x5) = 1
7

1
3!

1
3! .

Since the other contributions are similar, this completes the proof of the particular case. �

Proof of Equation (5) We compute the first marginal of Equation (9). The first two contributions
in Equation (9) form a telescopic series with respect to t :

∞∑
t=1

1

s + t + 1

1

s!
1

t ! − 1

s + t + 2

1

s!
1

(t + 1)! = 1

s + 2

1

s! .

The same for the third and fourth:
∞∑
t=1

1

s + t + 2

1

(s + 1)!
1

t ! − 1

s + t + 3

1

(s + 1)!
1

(t + 1)! = 1

s + 3

1

(s + 1)! .

Hence,
∞∑
t=1

P(H1 = s, H2 = t |E) = 3

[
1

s + 2

1

s! − 1

s + 3

1

(s + 1)!
]

. �




