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Abstract. In prediction problems both response and covariates may have high
correlation with a second group of influential regressors, that can be considered
as background variables. An important challenge is to perform variable selec-
tion and importance assessment among the covariates in presence of these vari-
ables. A clinical example is the prediction of the lean body mass (response)
from bioimpedance (covariates), where anthropometric measures play the role of
background variables. We introduce a reduced dataset in which the variables are
defined as the residuals with respect to the background, and perform variable
selection and importance assessment both in linear and random forest models.
Using a clinical dataset of multi-frequency bioimpedance, we show the effective-
ness of this method to select the most relevant predictors of the lean body mass
beyond anthropometry.

Keywords: variable selection, importance, linear model, random forests, bioimpedance,
multi-frequency, anthropometric variables, lean body mass.

1. Introduction

In biomedical research a typical challenge is the prediction of a target variable of
clinical interest, measured using invasive methods, from a set of covariates measured
using non-invasive methods. Furthermore a variable selection among the covariates
is also needed in order to select those that are most influential and to quantify their
importance for applications. In this framework two types of problems may occur.
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The first is that the covariates may have strong collinearity. The second is the role
of a different group of variables: these variables are able to explain a large part of
the variability of both the target and the covariates, so that they can be considered
influential "background variables" [30]. In several cases the correlation between
the target and the covariates disappears conditioning on these variables (spurious
correlation).

The usual approach in the framework of linear models is to include the background
variables in the regressors but often collinearity produce variance inflation and not
reliable estimates. In the framework of linear models a variable importance can be
associated to each regressor, obtained from an additive decomposition of the R2,
also if the variable is not significant in conjunction to the others [15, 16]. This
approach can be subjected to severe limitations for the a priori assumed functional
form (linearity) of the dependence.

A different approach is provided by the random forests, based on the tree-structured
regression [22, 31]. Tree regression has a wide applicability in biomedical field
[6, 32, 24, 9, 7], were it is useful for the interpretability of the results. Random
forests are extensively used in prediction and classification tasks in order to reduce
the variance of the tree regression [6, 34] and bias [37]. The main advantage of ran-
dom forests with respect to other learning machine methods is the ability to identify
relevant variables in high-dimensional data and to provide a quantitative measure
of their importance [17, 12, 35, 19]. The variable selection task is more challeng-
ing if the predictors have large correlations and the capability of random forests to
select the more influential predictors was extensively investigated using simulations
[30, 3, 21]. A theoretical study on the impact of the correlation among predictors on
the variable importance is in [4]. Theoretical and methodological aspects of variable
selection and importance measures are reviewed in [5].

The data challenge motivating this work is the prediction of the lean body mass
(LBM) obtained by an invasive method, dual-energy X-ray absorptiometry (DXA)
[11, 26, 18]; the predictors are the electrical impedances of the body to an alter-
nate current at different frequencies, measured by a safe and non-invasive procedure
[11, 26, 20]. The background variables are anthropometric measures of the subject
(gender, age, height, weight). It is obvious that, among background variables, at
least height and weight are greatly influential both of the lean body mass and of the
impedance, that depends linearly on the length of arms and legs.

Prediction tasks and selection of variables in clinical applications are subjected
to severe limitations due to the interpretability of the results and their simple use in
practice. First of all clinical databases that include a variable measured invasively
are necessarily not large, hence it is not possible to perform a prediction conditional
to the background variables. Second, a few influential variables are to be selected,
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typically two, for easy of graphical representation. Third, if different set of variables
are proposed, one has to select the one that provides the best prediction of the target
beyond the background variables.

In previous clinical studies on body composition [33, 10, 8, 36, 27] these problems
were investigated only in the framework of linear models and no systematic investi-
gation was performed for variable selection and importance assessment. The major
flaw of these studies is that the collinearity among all the covariates was not taken
into account.

A possible approach to the problem of collinearity is to use the notion of partial
correlation between two variables, defined as the correlation between the residuals
of two linear models having as regressors the remaining covariates.

In our study we are interested in the residuals of the target and of a group of
explanatory variables with respect to the background variables. This approach has
been often adopted in econometrics literature since the FWL theorem [23]. We
analyze models for the residuals obtained predicting on the background variables, in
order to evaluate the importance of the explanatory variables and perform variable
selection. We consider a standard linear model and a non parametric one, the random
forests.

It is worth of mention that residuals with respect to anthropometry are used
in clinical studies of body composition [8, 1]. We apply the above methodology
to analyze a clinical database of 135 healthy subjects that underwent DXA exam-
ination, collecting LBM, anthropometric variables and 10 impedance measures, i.e.
resistances and reactances at five frequencies.

In the next section we describe the methods of variable selection and importance
for linear models and random forests. In the third section we apply the above
methods to analyze the data. In the fourth we performa simulation study. In the
last section we provide the conclusions.

2. Methodology

2.1. The reduced dataset. The complete dataset consists of the target variable
Y and of two matrices X and B, where the columns X.j , j = 1, ..., p are a group of
predictors, and the columns B.k, k = 1, ..., q are the background variables.

We consider the complete linear model

(1) Yi =

p∑
j=1

Xijβj +

q∑
k=1

Bikαk + εi,

i = 1, . . . , n; j = 1, .., p; k = 1, . . . , q

where ε is the noise term.
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The main limitation of the use of linear model in presence of high collinearity in
the standard least squared estimation is that the variance of the estimator of the h-th
parameter is inflated by the factor 1/(1 − R2

h) where R2
h is the multiple R-squared

of the regression of the h-th covariate on the other covariates. This may cause that
some of the variables are not significant according to the standard t-test, but the
R-squared of the model is significant according to the Fisher test.

In order to perform the variable selection we consider the reduced dataset defined
as follows. We denote Y (B) the residuals of the linear model of Y with respect to B,
andX(B) the matrix whose columns are the residuals of the regression of the columns
of X with respect to B. We call for brevity ’reduced dataset’ the new dataset having
as target the variable Y (B) and predictors the variables X(B).

2.2. The reduced linear model. We call ‘reduced linear model’ the linear regres-
sion of Y (B) on X(B). In this problem of prediction both the explanatory variables
X(B) and the target Y (B) are residuals, i.e. quantities estimated and not observed.
In the assumption of multivariate normality and independence for the complete ob-
served dataset, also the residuals are multivariate normal, but the independence is
no longer true. As a rule of thumb [28] the residuals can be considered approximately
independent if the number of explanatory variables is much less than the number
of samples. In the present application the explanatory variables are the background
and their number is q = 3, and the number of samples is n = 135.

There is not a simple relationship between the R2 of the complete model and
the one of the reduced model. In our data the complete model has R2 = 0.90, the
reduced model has R2 = 0.50. In the reduced model the response Y (B) and the
covariates X(B) are both orthogonal to the columns of the background B; hence one
could expect to obtain from analysis of the reduced model new informations on the
most influential among the X variables, that are independent on the ones in B.

2.3. The relative importance metrics. The relative importance metrics for linear
models are described in [16, 15] and they are implemented in the R [29] package
relaimpo [14]. We use the metric lmg defined as following. For a regressor with
index k among p regressors, the additional R2

k is computed as following: given a
permutation π of (1, . . . , p) the R2

k(π) is the increment of R2 for the addition of this
regressor to the set of regressors preceding k in π. The R2

k is defined as the average
over all the permutations π of this additional R2

k(π):

(2) R2
k =

1

p!

∑
π

R2
k(π)
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The remarkable property of this metric is that it provides an additive decomposition
of the model R2 that is independent on the order of regressors:

(3) R2 =

p∑
k=1

R2
k

2.4. Random forests. The random forests algorithm is a non-parametric method
based on the tree-structured regression [22, 31]. We apply this algorithm to the
reduced dataset defined in sec. 2.1, where both the target and the explanatory vari-
ables are residuals, with the assumptions on normality and independence discussed
in sec. 2.2.

The tree regression is implemented in several R packages; we have used the func-
tion ctree in the party package [32], that can be summarized as follows:

i) in a database where Y is the target variable and X1, ..., Xp are predictors, a test
of the association of between Y and any single predictor is performed using as statistic
the linear correlation. The global null hypothesis of no association between any of
the predictors and the target is performed, with Bonferroni adjustment for multiple
testing. Stop if this hypothesis cannot be rejected. Otherwise select the variable Xj

that has the maximal association with Y , computed by 1-p-value exceeding 0.95.
ii) the range of Xj is split in two intervals to achieve the best piecewise constant

fit of Y ; more precisely the split value s in the range of Xj is chosen to get the
following minimum

(4) min
s

∑
i:Xij≤s

(Yi − Y1)2 +
∑

i:Xij>s

(Yi − Y2)2

where Y1, Y2 are respectively the means of Y in the sets {i : Xij ≤ s}, {i : Xij > s}.
iii) for each of the two sets of samples {i : Xij ≤ s}, {i : Xij > s} the previous

steps are replicated until the process stops when no significant association of Y
with any covariate is found. Different criteria for testing association, splitting and
stopping can be chosen; details are in [32].

The trees constructed on a learning sample can be considered weak learners since
they have low bias and high variance. A collection of trees, the forest, is constructed
in order to obtain an unique predictor with reduced variance.

i) A bootstrap sample of the learning set is randomly selected.
ii) A tree is grown on this sample as before with the only difference that at each

node m covariates Xj are randomly chosen out of the p available.
iii) The prediction in the remaining dataset called out-of-bag (OOB) sample is

obtained as the average of all trees predictions. The number m and the number of
bootstrap samples are the only parameters to be selected.

2.5. Permutation importance. The variable importance implemented in random
forests framework is based on the idea that ifXj is a relevant predictor a permutation
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of its values (or of the response) destroys the prediction accuracy. The importance
is computed by the following steps:

i) A bootstrap sample consisting of 2/3 of the observations is selected and a tree
is grown on it. The remaining observations, considered OOB observations, are used
to test the prediction. The accuracy is computed as the mean squared error (MSE).

ii) For each variable Xj the importance is computed in terms of the difference of
MSE between the prediction obtained using Xj and the permuted version X ′j (or of
the response). More precisely, for a tree t the OOB- MSE is computed as

(5) OOB-MSEt =
1

|OOBt|
∑

i∈OOBt

(Yi − Ŷ (t)
i )2

where OOBt is the set of terminal nodes of the tree t and Ŷ
(t)
i is the prediction

according to t. The same quantity is computed for the permuted variable X ′j (or the
response) and the difference with respect to the previous is computed.

ii) The operation is repeated for all bootstrap samples, typically 1000, and the
average is computed. For details see [17, 34, 30]. The percentage increasing in
MSE (%IncMSE) is also used, defined as MSE after permutation minus the one
before permutation divided by the latter. This method produces an empirical null
distribution of importance for each predictor; the p-value is extracted comparing
with the original importance scores.

In this work we use a test of significance for the importance metric implemented in
the package rfPermute [2]. The significance is obtained by permuting the response
variable.
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Table 1. Summary statistics of anthropometry, impedance data and
lean body mass (LBM) of 135 subjects. Units: LBM (kg), height
(m), weight (kg), age (years); R = logarithm of resistance (Ohm);
X= reactance (Ohm)

Statistic N Mean St. Dev. Min Max

LBM 135 55.15 8.18 36.59 74.95
height 135 1.62 0.06 1.45 1.80
weight 135 97.74 17.58 56.20 136.80
age 135 44.86 13.23 18 69
R5 135 6.31 0.14 5.94 6.68
R10 135 6.28 0.14 5.92 6.65
R50 135 6.18 0.14 5.83 6.54
R100 135 6.13 0.14 5.79 6.49
R250 135 6.05 0.14 5.73 6.42
X5 135 25.72 5.22 9.93 41.92
X10 135 35.79 6.89 18.84 59.69
X50 135 49.39 8.38 29.81 74.41
X100 135 44.08 7.21 26.14 62.02
X250 135 30.67 5.77 17.10 44.97
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3. Application

3.1. Measures. We apply the above methods to perform variable selection and im-
portance assessment for the bioimpedance data in the prediction of the lean body
mass, using the anthropometric variables as background. The data are extracted
from a database collected at the Food Science and Human Nutrition Research Unit
of the Department of Experimental Medicine of Sapienza Rome University in the
years 2017-2018. The dataset extracted for the present study is enclosed as sup-
plementary material. This dataset contains a group of 135 overweight and obese
women that underwent dual-energy X-ray absorptiometry (DXA) examination (Ho-
logic 4500 RDR). This method [18] provides an accurate prediction of body com-
position that is commonly used as a reference to validate bioimpedance prediction
equations [26]. Whole body bioimpedance measurements were performed according
to the standardized protocol [26], using the multi-frequency device Human im Touch
(Ds Medica, Milan, Italy). The database collected raw multi-frequency impedance
data (resistance and reactance denoted respectively by R and X) measured at five
frequencies (5, 10, 50, 100, 250 kHz). The anthropometric variables include for each
subject height, weight, age.

3.2. Description of the dataset. The descriptive statistics of the variables in-
cluded in the study are in Tab. 1. To assess the normality of the variables distribu-
tion we have used the R package LambertW [13] in which the Shapiro-Wilk, Shapiro-
Francia and Anderson-Darling normality tests are used. The resistance data are
generally non Gaussian (right skewed), and this can be corrected using a logarithmic
transformation. This is coherent to what was observed by [25] i.e. that random
effects related to impedances have a log-normal distribution. The reactance data are
normal. The variables LBM, height, weight are normal; the age has a small deviation
from normality not corrected.

Tab. 2 reports the Pearson correlations among the variables. Resistances show
high collinearity having correlations greater than 0.98; the reactances are moderately
correlated (greater than 0.53). The target variable LBM has a a strong correlation to
the weight (0.85) as expected, and a moderate negative correlation to the resistances
and reactances. The resistances have a negative correlation (-0.60) to the weight,
and the reactances a negative correlation to the age.

3.3. Linear models. We fit to the complete dataset the standard linear model with
ordinary least squares estimation in eq. (1) (complete linear model), using the t-
test for the significance of the parameters and the Fisher test for the significance
of R2. The complete linear model has R2 = 0.90 and the only significant variables
are intercept, weight, height. This result can be explained by the high collinearity
of the resistances that inflates the variance of their estimates. The model that uses



10

height
weight

age
R5

R10
R50

R100
R250

X5
X10
X50

X100
X250

linear complete model

lmg metric

0.00 0.05 0.10 0.15 0.20 0.25 0.30

R5re
R10re
R50re

R100re
R250re

X5re
X10re
X50re

X100re
X250re

linear reduced model

lmg metric

0.00 0.02 0.04 0.06 0.08

Figure 1. Variable importance of linear model prediction of LBM
in complete dataset (upper) and reduced dataset (lower). The bar
heights sum up to the R2 model.
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Figure 2. Variable importance of the random forest prediction of
the LBM in complete dataset (upper) and reduced dataset (lower).
Parameters setting: ntree=1000, mtry=4
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only anthropometry as predictors has R2 = 0.81. This suggests to investigate more
deeply the role of the resistances and reactances in the prediction of the target
beyond anthropometry.

We have analyzed the reduced linear model i.e. the linear model of the reduced
dataset obtained computing the residuals with respect to anthropometry both of the
target and of the other covariates, according to secs. 2.1 and 2.2. The normality of
residuals is verified and the covariance matrix is computed (not shown here). This
matrix reveals in turn collinearity. The reduced linear model is significant in the
Fisher test for the R-squared with R2 = 0.50, but none of the variables is significant
in the standard t-test. This can explained as before from the inflated variance of the
estimates.

The importance metric, that provides an additive decomposition of the R2 with
respect to the covariates, is summarized in fig. 1 both for complete and reduced
models.

In the complete model having R2 = 0.90 the anthropometric variables height and
weight are the most important, and resistances are more important than reactances.
In the reduced model having R2 = 0.50 the importance of resistances over reactances
results increased.

3.4. Random forests. We apply the random forest approach for the variable im-
portance assessment both in the complete dataset and in the reduced dataset ob-
tained according to the procedure described in sec. 2.1. In random forests approach
the definition of importance is not related to a variance decomposition as in linear
models, but to the permutation-based reduction of the MSE of prediction. From
sec. 2.4 the parameter ntree (number of trees) was set to 1000 and the parameter
mtry (number of variables randomly selected at each step) was changed from 1 to 6,
without observing relevant differences in the importance allocations. In fig. 2 the
upper panel shows that among the anthropometric variables the weight has larger
importance, and among the other covariates the resistance at 100 KHz has an impor-
tance greater than others. The lower panel shows the results for the reduced model.
The importances of the resistances is larger than reactances and the plot suggests
that it is increasing with frequency, having its maximum at 250KHz.

3.5. Permutation-test. We have performed the test of significance of importance
in the case of the reduced dataset, in order to select the variables (resistances and
reactances) more influential beyond anthropometry. This test, usually adopted in
the literature [12, 16, 17], is based on the permutation-increase of MSE, as described
in section 2.5. In tab. 3 we report the results of the test. The first row shows the
%IncMSE for each variable of the reduced model (average of 200 replicates) and the
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second row the p-value obtained from the empirical distribution of 200 replicates.
The only variables having significant importance are R250, R100, R50.

Table 3. Test of significance of the importance metric defined by
% increase in mean squared error in the reduced dataset. Only the
importances of three variables (R250, R100, R50) result significant.

R250re R100re R50re R10re R5re X50re X10re X100re X5re X250re

%IncMSE 5.38 5.07 2.91 1.55 1.07 0.85 0.60 0.49 0.33 0.28

%IncMSE.pval 0.00 0.00 0.01 0.34 0.74 0.66 0.69 0.88 0.69 0.68

4. Simulation study

This study is conducted to evaluate the ability of the proposed method to distin-
guish relevant from irrelevant variables in different correlation schemes, characterized
by high collinearity. In the correlation table (tab. 2) of the observed dataset the
resistances have very high correlations (the maximum is 0.99), that cannot be in-
creased. Consequently we have investigated the performance of the method when
this maximum is lowered preserving a correlation scheme similar to the observed
one. We have used the following method. Given a pair of variables x, y consider
the new pair defined by x′ = x + wx, y

′ = y + wy, where the two terms wx, wy are
independent each other and from x, y, with E(wx) = 0,Var(wx) = α2Var(x) and
similar for y. Then the correlation of x′, y′ is obtained from the correlation of x, y
lowered by the factor 1 + α2.

In the simulations we have generated datasets of 135 observations in three different
cases. In the first the observations are distributed according to a multivariate normal
having mean and covariance obtained from the observed one. In the second we have
added to each variable an amount of noise with standard deviation equal to 10% of
the standard deviation of the variable (case α = 0.1); in the third case have used
α = 0.2. In each case consisting of 100 simulations we have obtained the reduced
dataset defined by the residuals with respect to the background and computed the
importances from the linear and forest methods. The results are summarized in the
figs. 3, 4, 5, where the box plots of the 100 simulations are shown for each of the
predictors in the reduced dataset. These figures should be compared with the lower
panels of figs. 1 and 2. The following features are preserved across the simulations:
the resistances are more important than reactances both in linear and forest method;
the forest method shows a differentiation among the resistances allocating greater
importance to resistances at larger frequencies (R100, R250).
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Figure 3. Simulation study 1 - Box plots of the importance of the
predictors in the reduced dataset for 100 simulations of the lmg metric
(upper) and permutation metric (lower).

5. Conclusion and discussion

We have considered a variable selection task in presence of high collinearity, for
two groups of predictors, one of which plays the role of influential background vari-
ables and the other one are variables of clinical interest. We have considered a
reduced dataset obtained from the residuals with respect to the linear fit on the
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Figure 4. Simulation study 2 - Box plots of the importance of the
predictors in the reduced dataset for 100 simulations of the lmg metric
(upper) and permutation metric (lower) where each variable is added
with noise with standard deviation 10% of the one of the variable.

background variables of all other variables. Two problems may occur. First, the
collinearity may be present also in the reduced dataset and this prevents from using
standard methods for variable selection. Second, when the background variables are
able to explain a large part of the variability of the response, it is not obvious that
the reduced dataset can reveal a residual dependence on the covariates, useful for
applications.

We have applied two methods for variable selection: the relative importance met-
ric in the framework of linear methods, and the permutation importance in the
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Figure 5. Simulation study 3 - Box plots of the importance of
the predictors in the reduced dataset for 100 simulations of the lmg
metric (upper) and permutation metric (lower) where each variable
is added with noise with standard deviation 20% of the one of the
variable.

framework of random forests. The application has been performed both in the com-
plete and in the reduced dataset in order to compare the results.

The main objective of the paper was to select the most influential variables from
bioimpedance beyond the anthropometry (background) in the prediction of lean
body mass. The main results, shown in fig. 1 and fig. 2, are:

1) In the complete dataset the anthropometry has globally larger importance than
bioimpedance; the most important variable is weight both in linear and in random



17

forest prediction. Actually, the prediction of the response in the linear model from
the anthropometry has R2 = 0.81 and from all the predictors has R2 = 0.90.

2) In the reduced dataset (R2 = 0.50), the resistances are more important than
the reactances both in linear and in random forest prediction.

3) In the reduced dataset for both types of prediction the importance of the resis-
tances is allocated increasingly with respect to the frequency, having its maximum
at 250 KHz. The empirical test of significance selects only the resistances R50, R100
and R250 as having a significant importance.

4) Comparison between complete and reduced datasets reveals that the impor-
tance allocations may be different: in the complete dataset R100 is the most im-
portant and in the reduced dataset R250 is the most important. This inversion is
present both in linear and random forest approaches.

The simulation study conducted in three different correlation schemes concerns
the prediction in the reduced model and is aimed to give insights on points 2) and
3) above. The simulation confirms that the method is able to distinguish between
two groups of predictors, allocating more importance on the resistances than on the
reactances, and is able to select among the resistances the ones at high frequencies
(R100, R250) having greater importance.

The theoretical and methodological aspects of the importance measures in random
forests are still object of research, mainly focused to investigate the performance of
the methods when the predictors are highly correlated [5]. In the particular case of
additive regression models it is possible to describe the impact of the correlation on
the permutation importance and to show the efficiency of the algorithm to select a
small number of variables [4]. This and other methods consider special examples of
covariance schemes and are not yet sufficiently general to include clinical applications
as the present one. We are not aware of investigations on the role of background
variables in the importance measure, with the exception of [30] where a conditional
variable importance is defined. This method computes the permutation importance
on subset of samples obtained from the splitting of the variables to be conditioned
on during the grow of the trees. This obviously does not defines a reduced dataset
that in our approach is used to apply a different method of variable selection and
compare the results. The method here proposed can be justified by the fact that
the number of predictors used for computing the residuals is much smaller than the
number of samples (respectively 3 and 135) so the samples in the reduced dataset
can be considered approximately independent. The simulation has confirmed the
validity of this approach.

Our clinical oriented application suggests three open problems: 1) to give a the-
oretical justification of the use of residuals with respect to a group of background



18

variables to perform a variable selection in the remaining group of variables of clin-
ical interest; 2) to provide a test to compare two permutation importances; 3) to
select variables among different subgroups having different physiological roles, such
as resistances and reactances.

The main contribution of this study to the prediction of the lean body mass is
the evidence of increasing allocation of importance of resistances with respect to fre-
quency observed both in linear and random forest approach. A possible explanation
is that this increase of importance is due to the well known fact that the alternate
current penetrates into intracellular water of lean mass increasingly with frequency.
We conclude that R250, the resistance at 250 KHz, could be selected as the most
influential predictor, beyond anthropometry. It is worth of mention that for predic-
tion of body composition the traditional clinical practice of bioimpedance analysis
uses measures obtained at a single frequency, typically the pair R50 and X50 [26].

6. Acknowledgements

We thank the Referees for valuable comments and suggestions.

References

[1] Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M,
Kritchevsky SB, Tylavsky FA, Rubin SM, and Harris TB amd Health ABC
Study Investigators. Sarcopenia: alternative definitions and associations with
lower extremity function. J Am Geriatr Soc., 51(11):1602–9, 2003.

[2] Eric Archer. rfPermute: Estimate Permutation p-Values for Random Forest
Importance Metrics, 2018. R package version 2.1.6.

[3] Kellie J. Archer and Ryan V. Kimes. Empirical characterization of random
forest variable importance measures. Computational Statistics & Data Analysis,
52(4):2249 – 2260, 2008.

[4] Gregorutti B., Michel B., and Saint-Pierre P. Correlation and variable impor-
tance in random forests. Stat Comput, 27:659–678, 2017.

[5] G. Biau and E. Scornet. A random forest guided tour. Test, 25:197–227, 2016.
[6] Strobl C, Malley J, and Tutz G. An introduction to recursive partitioning:

Rationale, application and characteristics of classification and regression trees,
bagging and random forests. Psychological methods, 14(4):323–348, 2009.

[7] Guy Cafri, Luo Li, Elizabeth W. Paxton, and Juanjuan Fan. Predicting risk
for adverse health events using random forest. Journal of Applied Statistics,
45(12):2279–2294, 2018.

[8] Paul Deurenberg, Anna Tagliabue, and Frans J. M. Schouten. Multi-frequency
impedance for the prediction of extracellular water and total body water. British
Journal of Nutrition, 73(3):349–358, 1995.



19

[9] Neska El Haouij, Jean-Michel Poggi, Raja Ghozi, Sylvie Sevestre-Ghalila, and
Mériem Jaïdane. Random forest-based approach for physiological functional
variable selection for driver’s stress level classification. Statistical Methods &
Applications, 2018.

[10] Seoane F., Abtahi S., Abtahi F., Ellegard L., Johannsson G., Bosaeus I., and
Ward L. C. Mean expected error in prediction of total body water: A true
accuracy comparison between bioimpedance spectroscopy and single frequency
regression equations. BioMed Research International, page 656323, 2015.

[11] Kyle Ursula G., Bosaeus Ingvar, De Lorenzo Antonio D., Paul Deurenberg,
Marinos Elia, Jose Manuel Gomez, Berit Lilienthal Heitmann, Luisa Kent-
Smith, Jean-Claude Melchior, Matthias Pirlich, Hermann Scharfetter, Anne-
mie M.W.J. Schols, and Claude Pichard. Bioelectrical impedance analysis part
i: review of principles and methods. Clinical Nutrition, 23(5):1226 – 1243, 2004.

[12] Robin Genuer, Jean-Michel Poggi, and Christine Tuleau-Malot. Variable se-
lection using random forests. Pattern Recognition Letters, 31(14):2225 – 2236,
2010.

[13] Georg M. Goerg. LambertW: Probabilistic Models to Analyze and Gaussianize
Heavy-Tailed, Skewed Data, 2016. R package version 0.6.4.

[14] Ulrike Grömping. Relative importance for linear regression in r: The package
relaimpo. Journal of Statistical Software, 17(1):1–27, 2006.

[15] Ulrike Grömping. Estimators of relative importance in linear regression based
on variance decomposition. The American Statistician, 61(2):139–147, 2007.

[16] Ulrike Grömping. Variable importance assessment in regression: Linear regres-
sion versus random forest. The American Statistician, 63(4):308–319, 2009.

[17] A. Hapfelmeier and K. Ulm. A new variable selection approach using random
forests. Computational Statistics & Data Analysis, 60:50 – 69, 2013.

[18] Ellis Kenneth J. Human body composition: In vivo methods. Physiological
Reviews, 80(2):649–680, 2000.

[19] Silke Janitza, Ender Celik, and Anne-Laure Boulesteix. A computationally fast
variable importance test for random forests for high-dimensional data. Advances
in Data Analysis and Classification, 2016.

[20] Sami F. Khalil, Mas S. Mohktar, and Fatimah Ibrahim. The theory and funda-
mentals of bioimpedance analysis in clinical status monitoring and diagnosis of
diseases. Sensors, 14(6):10895–10928, 2014.

[21] Nicodemus K.K., Malley J.D., Strobl C., and Ziegler A. The behaviour of
random forest permutation based variable importance measures under predictor
correlation. BMC Bioinformatics, (11:110), 2010.

[22] Breiman L., Friedman J. H., Olshen R. A., and Stone C. J. Classification and
regression trees. Chapman & Hall, Boca Raton, 1998.



20

[23] Michael C. Lovell. A simple proof of the fwl theorem. The Journal of Economic
Education, 39(1):88–91, 2008.

[24] Tayefi Maryam, Esmaeili Habibollah, Karimian Maryam Saberi,
Alireza Amirabadi Zadeh, Mahmoud Ebrahimi, Mohammad Safarian,
Mohsen Nematy, Seyed Mohammad Reza Parizadeh, Gordon A. Ferns, and
Majid Ghayour-Mobarhan. The application of a decision tree to establish the
parameters associated with hypertension. Computer Methods and Programs in
Biomedicine, 139(Supplement C):83 – 91, 2017.

[25] J M McGree, S B Duffull, J A Eccleston, and L C Ward. Optimal designs for
studying bioimpedance. Physiological Measurement, 28(12):1465, 2007.

[26] Earthman Carrie P. Body composition tools for assessment of adult malnutrition
at the bedside. Journal of Parenteral and Enteral Nutrition, 39(7):787–822,
2015.

[27] Georg P. Pichler, Omid Amouzadeh-Ghadikolai, Albrecht Leis, and Falko Skra-
bal. A critical analysis of whole body bioimpedance spectroscopy (bis) for the
estimation of body compartments in health and disease. Medical Engineering
& Physics, 35(5):616 – 625, 2013.

[28] Draper N. R. and Smith H. Applied Regression Analysis. Wiley, New York,
1998.

[29] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.
ISBN 3-900051-07-0.

[30] Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and
Achim Zeileis. Conditional variable importance for random forests. BMC Bioin-
formatics, 9(307), 2008.

[31] Hastie T, Tibshirani R, and Friedman J. The elements of statistical learning.
Springer, 2001.

[32] Hothorn T, Hornik K, and Zeileis A. Unbiased recursive partitioning: A condi-
tional inference framework. Journal of Computational and Graphical Statistics,
15(3):651–674, 2006.

[33] H. van Baar, P.J.M. Hulshof, M. Tieland, and C.P.G.M. de Groot. Bio-
impedance analysis for appendicular skeletal muscle mass assessment in (pre-)
frail elderly people. Clinical Nutrition ESPEN, 10:e147 – e153, 2015.

[34] A. Verikas, A. Gelzinis, and M. Bacauskiene. Mining data with random forests:
A survey and results of new tests. Pattern Recognition, 44(2):330 – 349, 2011.

[35] Qiang Wang, Thanh-Tung Nguyen, Joshua Z. Huang, and Thuy Thi Nguyen.
An efficient random forests algorithm for high dimensional data classification.
Advances in Data Analysis and Classification, 2018.



21

[36] Y. Yamada, Y. Watanabe, M. Ikenaga, K. Yokoyama, T. Yoshida, T. Mori-
moto, and M. Kimura. Comparison of single- or multifrequency bioelectrical
impedance analysis and spectroscopy for assessment of appendicular skeletal
muscle in the elderly. J Appl Physiol, 115(6):812–8, 2013.

[37] Guoyi Zhang and Yan Lu. Bias-corrected random forests in regression. Journal
of Applied Statistics, 39(1):151–160, 2012.


	1. Introduction
	2. Methodology
	2.1. The reduced dataset
	2.2.  The reduced linear model
	2.3. The relative importance metrics
	2.4. Random forests
	2.5. Permutation importance

	3. Application
	3.1. Measures
	3.2. Description of the dataset
	3.3. Linear models
	3.4. Random forests
	3.5. Permutation-test

	4. Simulation study
	5. Conclusion and discussion
	6. Acknowledgements
	References

