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The RR and RT time intervals extracted from the electrocardiogram measure re-
spectively the duration of cardiac cycle and repolarization. The series of these intervals
recorded during the exercise test are characterized by two trends: a decreasing one during
the stress phase and an increasing one during the recovery, separated by a global mini-
mum. We model these series as a sum of a deterministic trend and random fluctuations,

and estimate the trend using methods of curve extraction: running mean, polynomial fit,
multi scale wavelet decomposition. We estimate the minimum location from the trend.
Data analysis performed on a group of 20 healthy subjects provides evidence that the
minimum of the RR series precedes the minimum of the RT series, with a time delay of
about 19 seconds.

Keywords: ECG, trend, time delay, time series, wavelets, multiresolution, minimum,
RR interval, RT interval, heart rate variability, exercise test.

1. Introduction

From the electrocardiogram (ECG) several time intervals can be measured, re-
vealing important informations on the heart function. The R peak of ECG (fig.1)
corresponds to systole and the time interval between two consecutive R peaks (RR
interval) is a measure of the duration of a complete cardiac cycle, corresponding
to the instantaneous heart rate. During exercise the RR intervals are shorter than
at rest (fig.1 top and bottom) and they take a minimum at the maximal exercise
(acme). The time interval between the Q wave and the end of T wave (QT inter-
val) reflects the overall duration of the ventricular repolarization. The existence
of a relationship between these two intervals was recognized and used in clinical
applications: the QT value is ‘corrected’ basing on the previous RR value (see for
instance [7]). During exercise the peak of the T wave is adopted instead of the end
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Fig. 1. Two seconds recording of the ECG during exercise test (raw data from the lead V5). Top:
The ECG signal at the start of the test (rest condition) with the R peak and the apex of T wave.
Bottom: the signal at the acme, when the RR interval takes its minimum. Time unit = 0.002 sec;
ECG voltage resolution unit= 2.441 microVolt.

of the T wave because the latter is not reliable at rapid heart rates in which the T
wave fuses with the ensuing P wave (fig.1, bottom). The major component of the
QT interval changing with exercise is the interval from onset of the QRS complex
to the peak of the T wave. Terminal repolarization (peak to end of T wave) does
not shorten with exercise [10, 12]. It is possible to consider as an equivalent index
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of repolarization, in place of QT, the duration of the RT interval, defined as the
time between the R peak and the apex of T wave.

It was observed that following an abrupt change in RR duration the RT adapta-
tion is not immediate and a time delay exists [13]. In a small group of non healthy
patients the typical values of time delay were estimated to be in different con-
ditions 136 and 189 seconds. A more recent investigation of the time delay was
conducted over patients survivors of acute myocardial infarction using 24 hours
Holter recordings [20]. This estimate was based on a mathematical model that as-
sumed a dependence of the RT interval on the weighted mean of several previous
RR intervals. The time of adaptation was estimated to be 150 beats, corresponding
to 2.36 minutes, with large inter individual variability. In [19] a model of the RR-RT
interaction was used to estimate the coupling parameters in stationary conditions,
assuming that the RT interval depends on previous RR intervals.

In above models the parameters estimation, included the time delay, is based on
the assumption that between RR and RT series an unidirectional coupling exists,
where the RR-RT casual relationship is of type driver-response. In other words
in the interaction of the two series the RT value depends on previous RR values.
In biological time series various methods have been adopted to detect coupling
directions and to estimate delays. These methods generally assume that the series
are stationary or moderately non stationary. In physiological signals we refer to [22]
for cardiorespiratory interaction, to [24] and [8] for interaction between heart rate
and blood pressure.

One of the settings in which RR and RT intervals are progressively varied is
the exercise test, that is routinely performed to evaluate the presence in the ECG
of myocardial ischemia [9,15]. The RR series shows a non stationary behavior that
can be qualitatively described as a V shape profile (we refer as a typical example
to fig. 2 (top)): a decreasing trend during exercise (stress phase) and an increasing
one during recovery (recovery phase); these two phases are separated by a global
minimum (acme). According to a model proposed in [3] these two phases can be
described by exponential trends and the fluctuation has a time varying variance. An
analysis of local extrema is in [2]. The RT time series has the same type of trend,
as it is shown in fig. 2 (bottom). At our knowledge a model is not existing for RT
series; a visual inspection of fig. 2 suggests that the two series differ for the amount
of fluctuation. We also notice that both series exhibit an asymmetry with respect
to acme, i.e. the slope at the early stage of recovery is larger than the one at the
end of stress (fig. 2). For these series it was observed that for a given RR interval
the RT interval is shorter during recovery than during stress (hysteresis) [4,12,14].
Obviously hysteresis can be explained if one assumes that the RT interval responds
slowly to changes in heart rate.

In the present paper we firstly consider the trend estimation of the RR and RT
series during the exercise test. We use standard methods of curve extraction as the
running mean and the polynomial fitting [1], and a wavelet multiresolution analy-
sis. For a general reference on the use of wavelets in time series see [17]. Wavelets
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are used for extraction of trend in physiological time series [16] and in statistical
problems [5]. Physiological time series are frequently described using a multi-scale
approach and the wavelet transform provides a simple and clear method for sep-
arating the scale contributions. A wavelet method was used to extract variability
indices for non stationary RR time series in various situations [18], [23]. For a differ-
ent approach (detrended fluctuation analysis) to RR series of exercise and recovery
see [11].

The second aim of the present paper is to provide evidence of a time delay
between RR and RT intervals, that is independent on any coupling assumption
between the two series, and to give an estimate of it. At this aim we exploit the
experimental setting provided by the exercise test, during which both series take a
minimum: we estimate the time delay as the time distance between the two minima.

The above mentioned methods of trend estimation are characterized by different
assumptions on the type of trend and by restrictive assumptions on the fluctuation.
We analyze the residuals of the series after detrending in order to verify the validity
of these assumptions and discuss their relevance.

2. Data acquisition

In multistage Bruce protocol [9] the patient on a bicycle ergometer is subjected to a
workload increasing in time by steps (25 W every 2 minutes). The exercise is stopped
when the heart rate reaches a maximum, usually 85% of the estimated top heart
rate based on the patient’s age. After achieving peak workload, the patient spends
some minutes at rest on the bicycle until its heart rate recovers its basic value. The
standard 12-leads ECG was recorded using the electrocardiograph PC-ECG 1200
(Norav Medical Ltd.), which provides in output digital signal with resolution of
2.441µV and 500 Hz sampling frequency. The duration of the test was about ten
minutes both for stress and recovery.

Pre-processing was performed on the raw data. For the RR extraction the pre-
cordial lead V5 was chosen, because it is less influenced by motion artifacts. The R
peak detection was performed using a derivative-threshold algorithm. The T apex
was detected as the maximum of the T wave subsequent to each R peak. Ectopic
beats were absent or less than 1% of the total beats for each subject. Some missed
beats produced RR intervals outside the normal range. A filtering algorithm re-
placed these intervals with the median computed over blocks of 30 adjacent beats.
We have analyzed 20 normal subjects who underwent to the test performed accord-
ing to the Bruce protocol in a preceding study of our group [6]. Analysis of raw
data, R and T peak detection and subsequent computations were performed using
the free statistical software R [21].

3. Trend extraction

We assume as a model for both RR and RT series, denoted Xt, t = 0, ..., N − 1, the
following one
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Fig. 2. The RR (top) and RT (bottom) time series of the same subject during the exercise test.
Unit of RR and RT interval is millisecond.

Xt = Tt + εt (1)

where Tt denotes a deterministic sequence (trend) and εt a sequence of random
variables (fluctuation). At the present there is no generally accepted model for
trend and fluctuation of the RR series during exercise, and we are not aware of any
previous investigation on RT. In [3] on the basis of a dynamical model the trend
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Fig. 3. Windows of 400 beats of RR and RT intervals (in millisecond) around the minimum
previously estimated and polynomial trend (color on line).

of RR was assumed to be a decreasing exponential during the stress phase and an
increasing one during recovery. This global model for trend did not provide any
information on the acme, which is the object of the present investigation. The level
of fluctuation of the RR series is variable in time and it is negligible close to the
acme (fig. 2, top). On the contrary in RT series the level of fluctuation appears to
be constant and non negligible (fig. 2, bottom). This fluctuation is mainly due to
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Fig. 4. Top left : RR duration (in millisecond) and smooth (color on line), versus beat number;
bottom left: corresponding RT duration (in ms) and smooth, versus beat number. The levels of
smooth are J0 = 3 left and J0 = 6 right.

the errors in the measurement of the apex of the T wave, which is not so sharp as
the R peak (see an example in fig. 1 top, at the first T wave). Furthermore some
of the series in our database show an asymmetry close to the acme: the slope is
greater at the start of the recovery phase than at the end of the stress (see fig. 2).

We consider the problem of estimating Tt assuming that it has only one global
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minimum (acme). The sequence εt is assumed to be a stationary sequence of inde-
pendent normal variables of zero mean and variance σ2. In the sequel we discuss
the applicability of these assumptions. We use three methods for trend extraction:
running mean, polynomial fit and wavelet analysis.

The running mean provides an estimator of the trend Tt given by

T̂t =
1

2n + 1

n∑
i=−n

Xt+i (2)

In case of a linear trend, Tt = a0 +a1t, this estimator is non biased, i.e. E(T̂t) =
Tt and its variance is Var(T̂t) = σ2/(2n + 1). In case of a quadratic profile, Tt =
a0(t − c)2, one easily gets

T̂t = a0(t − c)2 +
a0

2n + 1

n∑
i=−n

i2 +
1

2n + 1

n∑
i=−n

εt+i (3)

E(T̂t) ≈ a0(t − c)2 + a0
n2

3
; Var(T̂t) =

σ2

2n + 1
(4)

where we have considered only the leading term in n.
We notice that the bias of the estimator T̂t, i.e. a0n

2/3, is a constant independent
on t and so the minimum location can be estimated correctly, although the minimum
value is not. The squared risk R2 of this estimator, defined as the squared bias plus
variance, is approximately for large n

R2 ≈ (a0
n2

3
)2 +

σ2

2n

This, considered as a function of n, takes its minimum at

n =
(

9
8

σ2

a2
0

) 1
5

(5)

Obviously one needs to know the standard deviation σ and the convexity parameter
a0 to compute n. We consider these problems below.

The case more realistic of a non symmetric profile close to the minimum is not
easy and requires suitable assumptions on the type of asymmetry. This case, that
is outside the scope of the present paper, at our knowledge is not discussed in
literature.

We have investigated the dependence of the minimum location on the length of
the filter for the values n = 4, 8, 16, 32. The results are reported in Tab. 1.

A polynomial trend model that includes the information of the presence of a
minimum can be defined as follows

Tt = b + (t − c)2(a0 + a1t + a2t
2 + a3t

3) (6)
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We have used the non linear least squares fitting nls() function of R in a window
of the data centered at the minimum previously estimated of total length 400 beats
and with subtraction of the minimum (fig. 3). We have preferred this non linear
fitting algorithm to a standard polynomial one, because the former allows to extract
more directly the interesting parameter c of minimum location.

The function nls() requires starting values for the parameters in order to get
an optimal convergence of the algorithm. We have used c = 200; a0 = 0.01; b =
a1 = a2 = a3 = 0. The results are in the table 2.

In this table the columns 1 and 5 contain the estimate of the parameter c, i.e. the
minimum location of RR and RT series. The columns 2 and 6 contain the standard
error of the minimum locations (the means are 3.0 and 5.7). The columns 3 and 7
contain the estimate of parameter a0, related to the convexity of the trend profile.
The columns 4 and 8 contain the residual standard error, which provide an estimate
of the parameter σ.

We can compute the optimal value of n, related to the length of the filter
according to eq. (5) for each case, using the values of a0 and c provided by table
2. The mean value of n turns out to be 43 for RR and 56 for RT. These values
are optimal if the profile of the minimum is parabolic. Some of our series have an
asymmetric profile, and so we can only conjecture that a smaller width of the filter
should reduce the squared bias. The value n = 32 of table 1 seems to be a good
compromise.

The third method we use for the extraction of the trend is based on wavelets.
In the notations of [17] the discrete wavelet transform (DWT) of

X = (X0, ..., XN−1)

where N is a power of 2, is a vector of wavelet coefficients

W = (W0, ..., WN−1)

that is composed of J0 + 1 subvectors,

W = (W1, ...,WJ0 ,VJ0), 2J0 ≤ N

where Wj has N/2j elements, and such that each of them can be associated with a
particular scale: τj = 2j−1 in case of Wj and λJ0 = 2J0 in case of VJ0 . An analysis
of variance (ANOVA, or energy decomposition) holds

||X||2 =
J0∑

j=1

||Wj||2 + ||VJ0 ||2 (7)

where

||X||2 =
N−1∑
t=0

|Xt|2
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Table 1. Running mean estimation of minimum location of RR
and RT series of 20 normal subjects, at four increasing filter
lengths 2n + 1. The last line contains means and standard devi-
ations of minimum locations differences.

n = 4 n = 8 n = 16 n = 32
RR RT RR RT RR RT RR RT

967 877 962 1029 967 1032 967 1032
1367 1455 1364 1459 1370 1451 1370 1451
817 808 813 812 806 823 806 823
579 574 576 583 568 583 568 583
1206 1295 1213 1291 1218 1284 1218 1284
1961 2033 1993 2038 1976 2030 1976 2030
2091 2231 2088 2182 2080 2183 2080 2183
2029 2150 2024 2140 2030 2138 2030 2138

1255 1245 1259 1241 1267 1234 1267 1234
1378 1358 1379 1359 1383 1367 1383 1367
2072 2288 2089 2292 2081 2282 2081 2282
1562 1660 1566 1658 1573 1671 1573 1671
786 1016 788 1012 783 1017 783 1017
1205 1293 1209 1284 1217 1276 1217 1276
1219 1187 1216 1161 1217 1164 1217 1164
1155 1045 1159 1131 1167 1133 1167 1133
1039 1105 1035 1117 1034 1120 1034 1120
1869 1924 1873 1927 1878 1935 1878 1935
1032 1072 1027 1068 1020 1066 1020 1066
1405 1445 1409 1441 1417 1431 1417 1431

53 ± 88 59 ± 71 58 ± 72 58 ± 72

In this paper we use the multiresolution analysis (MRA) of X, an additive
decomposition in terms of the N dimensional vectors Dj (the jth level detail,
1 ≤ j ≤ J0) and SJ0 (the J0th level smooth), associated with scales τj in case of
Dj and λJ0 in case of SJ0 . The time series is decomposed according to

Xt =
J0∑

j=1

Dj,t + SJ0,t (8)

We base the MRA on the non dyadic wavelet transform called ‘maximal overlap’
DWT (MODWT). In dyadic DWT the coefficients are computed over rigidly fixed
intervals that not necessarily line up with interesting features of the time series, as
the minimum. In MODWT the transform is shift invariant, which allows a optimal
detection of the minimum at each scale. The wavelet filter is LA(8), Daubechies
least asymmetric scaling filter with 8 coefficients, and periodic boundary conditions
are used. The trend extraction method is based on the idea that the smooth SJ0 is
associated with the trend Tt and the details Dj are associated with the fluctuation
εt [5]

T̂t = SJ0,t; ε̂t =
J0∑

j=1

Dj,t (9)
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Table 2. Polynomial trend estimation of the minimum loca-
tion of RR and RT series of 20 normal subjects (col. 1 and
col. 5); standard errors of the the minimum location (col. 2
and col. 6); estimation of coefficient a0 (col. 3 and col. 7);
residual standard error (col. 4 and col. 8).

RR RT

953 7.7 0.001 10.8 1017 9.8 2e-04 4.7
1370 2.4 0.001 6.7 1469 5.9 2e-04 2.1
770 1.8 0.002 10.6 784 6.7 2e-04 4.5
558 3.4 0.001 9.6 584 7.6 2e-04 2.5
1220 2.9 8e-04 6.4 1306 3.1 3e-04 2.2
1956 2.8 3e-04 5.2 2014 5.1 3e-05 2.5
2093 1.3 6e-04 3.5 2234 2.1 2e-04 4.6
2018 2.6 1e-04 2.8 2172 4.1 2e-04 2.9
1230 1.9 5e-04 7.2 1265 2.9 1e-04 3.3
1355 3.9 6e-04 5.5 1380 6.3 2e-04 3.2
2147 4.2 4e-04 2.9 2208 6.3 1e-04 3.1
1534 3.3 3e-04 4 1691 6.1 4e-04 3.5
761 2.6 0.001 4.1 1064 3.3 2e-04 2.1
1221 3 0.001 6.6 1263 5.6 8e-05 4
1172 2.9 4e-04 10.9 1190 6 3e-04 3.9
1170 2.1 3e-04 7.3 1066 10.4 2e-04 2.9
1019 4.4 6e-04 8 1110 3.5 1e-04 3.6
1830 1.9 3e-04 4.6 1945 5.2 1e-04 2.8
1001 2.5 0.001 7.3 1095 3.8 2e-04 3.1
1418 2.9 7e-04 7.9 1425 10.7 4e-05 2.4

In our data all the series have length greater than N = 210 = 1024, so the range of
possible scale indices J0 goes from 1 to 10. Obviously if J0 = 1, 2, the trend SJ0 is
not sufficiently smooth and the minimum location is biased by the fluctuation; if
J0 is large, say J0 ≥ 7, the trend SJ0 is conditioned by values that are far from the
true location of the minimum. We have selected the intermediate scales J0 = 3, ..., 6.
These can be related to the running mean filter length by 2n + 1 = 2J0 + 1, J0 =
3, 4, 5, 6. An example of the estimated trend is reported in fig. 4 for scales J0 = 3
and J0 = 6. The minimum locations for each of the 20 patients and each of the 4
scales are reported in table 3.

The estimated trend T̂t is a bandpass version of the data series Xt with an
approximate bandpass frequency of [0, 2−(J0+1)] [5,17]. For J0 = 3, 4, 5, 6 this means
that we have applied respectively the cut off 0.062, 0.031, 0.015, 0.007 (in this
approach the frequency range is [0, 1/2]).

4. Test on the RR-RT delay

We denote the minimum location of the trend Tt as

τ = argmint Tt (10)
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Table 3. Wavelet estimation of the minimum locations of RR
and RT series of 20 normal subjects, at four different scales. The
last line contains means and standard deviations of minimum
locations differences.

J0 = 3 J0 = 4 J0 = 5 J0 = 6
RR RT RR RT RR RT RR RT

968 876 966 1034 974 1024 971 1005
1359 1454 1366 1452 1377 1456 1379 1464
816 808 811 836 814 826 794 820
578 590 579 584 568 580 557 576
1209 1294 1216 1289 1225 1280 1231 1286
1962 2031 1988 2033 1978 2029 1980 2015
2091 2234 2086 2169 2083 2181 2093 2203
2027 2149 2034 2143 2023 2151 2016 2174

1292 1245 1284 1240 1270 1236 1254 1245
1392 1358 1385 1361 1373 1370 1360 1375
2092 2291 2070 2287 2085 2274 2106 2247
1565 1658 1564 1660 1569 1671 1553 1669
791 1016 785 1014 775 1023 762 1053
1243 1258 1234 1280 1224 1278 1210 1290
1218 1189 1216 1160 1219 1175 1206 1207
1159 1043 1166 1137 1176 1132 1175 1019
1043 1108 1036 1114 1027 1124 1034 1113
1892 1927 1883 1935 1871 1930 1855 1945
1032 1072 1033 1067 1022 1071 1002 1090
1442 1443 1435 1411 1420 1421 1436 1411

44 ± 89 53 ± 76 58 ± 74 62 ± 88

and we denote τRR, τRT the minimum locations estimated from the trends of the
RR and RT series. We consider to test the hypothesis

τRR = τRT (11)

against the alternative τRR < τRT and to estimate the RR-RT delay given by
τRT − τRR.

We have used the standard paired t-test of comparison of the means. The sample
of patients satisfies the standard assumptions for using this test: 1) the subjects in
the study were randomly selected from the population of normal subjects; 2) we
have checked using the Shapiro-Wilk test of normality that the measured values of
RR-RT delay do not differ significantly from a normal sample.

Using data in Tab. 1 the hypothesis (11) is rejected with p-values less than 0.02
in the first running mean length and less than 0.002 in the others. The number of
subjects in which the RR minimum does not precede the RT minimum are 7, 5,4,4
out of 20.

In Tab. 2 the columns 1 and 5 contain the estimate of the parameter c, i.e. the
minimum location of RR and RT series. The mean delay is 74 beats with a standard
deviation of 81, and the the hypothesis (11) is rejected with p=0.0006.

The same test for data in Tab. 3 rejects the hypothesis (11) with p-values smaller
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than 0.05. The estimated delay, reported in the last row of the table 3, ranges from
to 44 to 62 beats.

According to the results of the tests, our data clearly provide a rejection of the
null hypothesis in favour of the existence of a RR-RT delay. As to the value of this
delay some cautions are in order. In our study we have used data from 20 subjects.
This number of subjects is not sufficient to quantify with precision a confidence
interval for the delay. In addition this number is not sufficient to detect with a high
power a small delay. More precisely we assume from our data that the standard
deviation of the delay is 75 beats; a two tailed t-test with 20 subjects has a power
0.80 with a 0.05 level of significance to detect a delay of 50 beats (the power is 0.87
in a one-tailed test).

5. Residual analysis

At the maximal heart rate the level of fluctuation in RR series takes its minimum
and becomes comparable with the time resolution (0.002 seconds) of the RR mea-
sure and this prevents us to analyze the RR residuals. We analyze the residuals εt

obtained from the wavelet trend estimation of the RT series. We have considered
the case J0 = 4 so that the estimated residuals are defined as

ε̂t = D1,t + D2,t + D3,t + D4,t (12)

We first discuss the stationarity assumption. We have considered a window of
400 beats centered at the estimated minimum of each case; by visual inspection
it turns out that about one half of the cases in our database show a stationary
behavior. We have reported in fig. 5 two cases: a non stationary one (top) and
a stationary one (bottom); both show symmetry around zero. The diagnostics of
the stationary case is reported in fig. 6. The autocorrelation function is within the
0.95 confidence limits of a non correlated sequence (fig. 6, top). The Box-Pierce
test for independence is non significant. The QQ plot for comparison to a normal
distribution (fig. 6, bottom) shows a significant deviation from normality. The non
parametric runs test for independence, however, does not reject the independence
hypothesis. In summary in about one half of the cases the residuals satisfy the
assumptions of the model (except normality). In the remaining cases the residuals
show a non stationary behavior. We notice that the scale index J0 plays a relevant
role. Larger values, J0 > 4, produce an increase of correlation in the residuals. This
analysis of the residuals can be considered only a preliminary step for a mathe-
matical model of the RT series. The fluctuation can bias both the value and the
location of the minimum, but at our knowledge a quantification of this effect has
not yet been investigated.
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Fig. 5. RT residuals (in millisecond) versus beat number in a window of 400 beats centered around
the minimum in two cases: a non stationary case (top) and a stationary one (bottom).

6. Conclusions

Accepted mathematical models of the non stationary RR and RT series are not
available and consequently in our explorative analysis we have used different meth-
ods for trend extraction. We have focused on a very specific problem, i.e. to test for
the difference in the minimum locations of the two series, as an index of the pres-
ence of the RR-RT delay. For each of the methods used, the standard paired t-test
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Fig. 6. Top: Autocorrelation function of RT residuals in a window of 400 beats in the stationary
case; bottom: the QQ plot for comparison to normal distribution.

has rejected the hypothesis of equal minimum location, and provided evidence that
the RT minimum follows the RR minimum. The existence of the RR-RT delay here
obtained is in agreement to the result of previous investigations, but these were
conducted in different conditions and with different methods [19, 20].

Previous models on the interaction between RR and RT were based on the
assumption that the RR-RT delay exists in any individual. In our approach these
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limitations are overcome, since we do not require the specification of a model of
interaction. The analysis of tables from 1 to 3 suggests that in the majority of
normal subjects the RR-RT delay exists, but that in some cases this could not be
true. As it was explicitly remarked in [19] it is not possible to exclude a common
factor driving both RR and RT so that a causal unidirectional model cannot explain
entirely their variability. The large inter individual variability and the absence of
the RR-RT delay in some individuals require further investigations, aimed to verify
if these aspects reflect a physiological or a pathological condition. Our method could
provide a new tool for this type of investigation, since it is not invasive and based
on the a posteriori analysis of data from a routine laboratory test.

A possible explanation from the hemodynamic point of view for the RR-RT
delay is the following. The sympathetic system has a twofold action: 1) it acts on
the slope of the phase 4 of the transmembrane action potential of sinus node cells
by increasing the frequency of discharge and so reducing the RR intervals; 2) it acts
on phase 3 of the action potential by reducing the duration of RT (repolarization
phase) mainly on the work cells. This allows a more rapid relaxation of myocardial
fibers in protodiastole. Immediately after the acme the sharp reduction in the peak
heart rate should be compensated by the persistence of the sympathetic activity on
ventricular relaxation manifested by a persistence of RT in the minimum. From the
electrophysiological point of view this physiological mechanism is able to protect
the normal heart from life threatening arrhythmias that could be produced in its
absence. Actually at high level of sympathetic activity at peak heart rate a sudden
temporal prolongation of the repolarization, according to Bazett formula at rest,
could trigger life threatening arrhythmias. More studies are needed on patients with
cardiac disease to assess the presence or absence of this protective mechanism.

At the acme of the exercise the heart rate is very high; the mean RR duration
of 20 cases is 378 milliseconds. We can roughly estimate the delay as 50 beats, so
that the corresponding time delay is about 19 seconds. At the start of exercise the
RR duration, computed as the mean of the first 100 beats, is much larger: its group
mean is 667 milliseconds. In rest condition an estimate of the time delay obtained
with the above argument should be 33 seconds.

Our estimated time delay (19 and 33 seconds) are remarkably smaller than the
one found by [20], i.e. 2.36 minutes (corresponding to 150 beats). This difference can
be in part explained since our mean includes negative values and in part since our
estimate concerns normal subjects at maximal heart rate, while the other is from
patients survivors of acute myocardial infarction at normal heart rate. Actually the
response of RT to changes in RR interval could be faster at maximal heart rate
than in normal conditions and normal subjects could have a faster adaptation than
survivors of acute myocardial infarction.
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