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Abstract. The number of percolation clusters for configurations
of the Ising model at zero external field and ferromagnetic first
neighbors interaction on a general finite graph is considered. The
mean number of clusters with respect to the Gibbs measure at any
inverse temperature β is proved to be smaller or equal than the
one at β = 0.
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1. Introduction

Let G = (V,E) be a finite connected graph, of vertexes set V and
edges set E. The Gibbs measure on G is the probability measure µβ

on Σ = {−1, 1}V of weight

eβ
P
{i,j}∈E σ(i)σ(j), σ ∈ Σ

We denote by EG
µβ

the mean with respect to this measure. The mea-
sure µβ describes an Ising model with spin variables on vertexes, fer-
romagnetic interaction on edges, zero external field and inverse tem-
perature β. Given any configuration σ ∈ Σ, the +(−) clusters of σ
are the maximal connected components of σ−1(+1) (σ−1(−1)). We
denote by C+(−)(σ) the set of +(−) clusters of σ; the number of
+(−) clusters N+(−)(σ) is the cardinality of C+(−)(σ), also denoted
|C+(−)(σ)|. The number of clusters of σ, denoted N(σ), is defined as
N(σ) = N+(σ) +N−(σ) and obviously one has by symmetry

EG
µβ

(N+) = EG
µβ

(N−)

It is useful to consider the family µβ, β ∈ [0,+∞]. One easily
recognizes that µ0 is a Bernoulli measure of parameter 1

2
and that

µ∞ = 1
2
δ+ + 1

2
δ−, where δ+(δ−) is the point mass concentrated on the

constant +(−) configuration. Consequently one has EG
µ∞(N) = 1, while

the value of EG
µ0

(N) depends on graph.
The random variable number of clusters plays a central role in per-

colation theory, and in case of Bernoulli percolation it has been ex-
tensively studied (for a general reference see [8]). We are interested
in monotonicity properties with respect to β of the mean number of
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clusters EG
µβ

(N), as a particular case of the general problem of mono-
tonicity in β for variables used in percolation theory. As an example,
it is an open problem to extend the coexistence of + and − infinite
clusters proved in the cubic lattice for the Ising model at β close to 0
[6] to a larger range of temperatures.

The Gibbs measure is FKG for fixed temperature (for instance see
[9]), but there is not a satisfactory notion of stochastic ordering with
respect to temperature. To circumvent this problem one method is
to represent the measure on spins by means of a measure on edges
configurations. A widespread approach is the random cluster model
given by the Fortuin-Kasteleyn representation. For a review we refer
to [9]. Since random cluster measures are stochastically ordered in
temperature, it is enough to prove that a particular observable in edge
representation is monotonic in the partial ordering of these configura-
tions. Using this method some observables related to percolation can
be proved to have monotonicity properties [4, 7].

However other approaches have been used, and in particular we refer
to the group representation of Ising model, for which a basic reference
is [10]. Combining this representation and the notion of stochastic
order has revealed fruitful. In particular some monotonicity properties
of local observables can be re obtained and new ones are proved [2,
5]. The main idea is that the Gibbs measure on spins configurations
is represented by a measure on edges configurations conditioned to a
group, and that conditioned measures are stochastically ordered.

Despite some evident similarities with the random cluster model, one
advantage of this approach is that the measure at β = 0 is a delta mass
concentrated on the empty configuration on edges. This feature can
be exploited to treat a simpler type of problems, i. e. the inequality
between the means at β > 0 and at β = 0. In [3] the mean number
of clusters was proved to be smaller at β > 0 than at β = 0, if the
graph has degree non greater than 3. In the present paper we prove an
extension of this inequality for any degree.

Proposition 1.1. For any graph G the mean number of clusters with
respect to the Gibbs measure at inverse temperature β > 0 is less or
equal to the one at β = 0:

EG
µβ

(N) ≤ EG
µ0

(N)

The main contribution of the present paper essentially consists in
reducing the problem for a general graph G to the one for a graph
G′ with degree not greater than 3. This is achieved using a vertex
resolution procedure, similar to the one used in [11], and conditioning
the measure µβ to a suitable configurations subset ∆. Hence the main
ingredients of our proof can be summarized by the following equations

(1) EG
µβ

(N) = EG′

µβ
(N | ∆) ≤ EG′

µ0
(N | ∆) = EG

µ0
(N)
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Figure 1. Resolution procedure applied to the graph
on the left, having one vertex of degree 4, of coordinates
(3, 6), and one of degree 5, of coordinates (3, 4); on the
right the graph obtained after resolution of these ver-
texes.

The inequality in the middle is an extension of the one proved in [3]
and the external equalities are the result of the resolution procedure.
In the present paper we also provide an exposition of the basic elements
of the group representation, in order to make the paper self consistent.

2. Vertex resolution

In this section we prove the following lemma.

Lemma 2.1. There is a graph G′ = (V ′, E ′) with degree not greater
than 3 and a subset ∆ of Σ′ = {−1, 1}V ′

such that for the number of
clusters N the following equation holds

EG
µβ

(N) = EG′

µβ
(N |∆)

On r.h.s. there is the conditional expectation with respect to ∆, and
the Gibbs measure on G′ is defined as the one on G.

Proof. Given a vertex i ∈ V we denote ∂i the set of the vertexes
adjacent to i (first neighbors); the degree of i, denoted deg(i), is the
cardinality of ∂i. For each i we define a set Bi, the resolution of the
vertex i, as follows. If deg(i) ≤ 3, we put Bi = {i}; if deg(i) > 3, the
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set Bi is defined as a replica of ∂i, and we denote j′ the element of Bi

which corresponds to j. The new vertexes set is

V ′ = ∪i∈VBi

In order to define E ′, we first replace the edges {i, j} ∈ E, j ∈ ∂i, by
the edges {j, j′}, j ∈ ∂i. This defines a set of edges on V ′, called ‘con-
duction’ edges and denoted E ′

C , which are in one to one correspondence
with E. We then put in each of the Bi’s having cardinality greater than
3 edges such that make it connected; if Bi = {k1, k2, · · · , kn}, for in-
stance we choose the edges {k1, k2}, · · · , {kn, k1}, forming a loop on Bi.
We call these ‘identification’ edges and denote them E ′

C . The set E ′

can now be defined as union of conduction edges E ′
C and identification

edges E ′
I . The vertexes with degree not greater than 3 keep unchanged

their degree; the other ones have exactly one conduction edge and two
identification edges; hence the degree of G′ is at most 3. This formal
definition can be made more transparent with the help of figure 1.

For the graph G′ the Gibbs measure on Σ′ = {−1, 1}V ′
is formally

defined as the one on G, and we use the same notation. We define
the identification subset ∆ ⊂ Σ′ as the intersection over i ∈ V of the
identification event which forces all spins in Bi to be equal: σ′(k1) =
· · · = σ′(kn). There is a trivial one to one map between configurations
spins in Σ and ∆, such that if σ ∈ Σ and σ′ ∈ ∆ one has σ(i) =
σ′(k), k ∈ Bi. An important consequence of above definitions is that
the number of clusters satisfies the equation

(2) N(σ) = N(σ′)

Furthermore the interactions that define the Gibbs weights differ for a
constant depending only on the graph:∑

{i,j}∈E′

σ′(i)σ′(j) =
∑

{i,j}∈E′
C

σ′(i)σ′(j) +
∑

{i,j}∈E′
I

σ′(i)σ′(j)

=
∑

{i,j}∈E

σ(i)σ(j) +
∑

i∈V, deg(i)>3

|Bi|

where we have used that conduction edges reproduce exactly E and
that each identification edge gives a constant contribution of value 1.
This suffices to conclude that conditioned to ∆ the mean number of
clusters on G′ has the same value as the one on G. �

Remark 1 Identification edges on Bi can be chosen in several ways,
subject to the condition that they makeBi connected and that deg(j) ≤
3; for instance one of edges of the loop above defined can be dropped.

Remark 2 Equation (2) may not be true for other percolation vari-
ables. Let us consider the cardinality of the (say +) cluster containing
a fixed vertex; if W+

k (σ′) denotes the + cluster on G′ containing the
vertex k ∈ V ′, where k ∈ Bi and σ′ ∈ ∆, and if W+

i (σ) denotes the
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corresponding cluster on G, they are related by the non trivial rela-
tionship

|W+
k (σ′)| =

∑
j∈W+

i (σ)

|Bj|

3. Group representation of conditioned Gibbs measures

We first discuss the representation of unconditioned Gibbs measures
following [2]. Given σ ∈ Σ we associate to it the edge configuration
ω ∈ Ω = {0, 1}E, defined as ω(i, j) = 0 if σ(i) = σ(j) and ω(i, j) = 1 if
σ(i) 6= σ(j). This defines a map ψ from spins to edges configurations;
by symmetry one has ψ(σ) = ψ(−σ). The range of this map, denoted
Γ, can be characterized as the set of edges configurations such that any
loop contains an even number of 1’s (this was noticed for instance in
[7], but with the opposite coding). A next step is to recognize that this
set has a group structure, as a subgroup of Ω [1]. Actually in Ω there
is a product defined as

ω1ω2(e) = ω1(e) + ω2(e) mod 2, e ∈ E

and the identity is the null element 0(e) = 0, e ∈ E. We call Γ the
‘parity’ group.

The Gibbs weight can be written as

eβ|ω−1(0)|−β|ω−1(1)|, ω ∈ Γ

This is the same as the one of a Bernoulli product measure νp of pa-
rameters p for the 1’s and 1− p for the 0’s, where p = e−β/(eβ + e−β),
conditioned to Γ. Since we are interested in variables invariant with
respect to total spin flip, their means with respect to the measure µβ

can be written in terms of means with respect to the Bernoulli measure
νp conditioned to the subgroup Γ. If X denotes such a variable, both
as a function of spins configurations and of edges configurations, we
have

(3) Eµβ
(X) = Eνp(X| Γ)

We now consider the general problem of representing the Bernoulli
measure νp conditioned to a subgroup Θ. We need some definitions.
The cylinder of base A ⊂ E, given α ∈ {0, 1}A, is

KA
α = {ω ∈ Ω| ω(e) = α(e), e ∈ A}

We include the case A = ∅ putting K∅
α = Ω. In particular one has that

KA
0 is a subgroup and KA

α is a coset for any α. If X is a function on Ω
and Θ is a subgroup, we define a function on the subsets of E

(4) XΘ(A) = |Θ ∩KA
0 |−1

∑
ω∈Θ∩KA

0

X(ω)
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We also introduce a probability measure λΘ
p on the subsets of E

(5) λΘ
p (A) = νp(Θ)−1(1− 2p)|A|p|E\A||Θ ∩KA

0 |
With these notation we have

Proposition 3.1. [2] The mean of X with respect to the Bernoulli
measure νp conditioned to a subgroup Θ can be represented by

(6) Eνp(X|Θ) =
∑
A⊂E

XΘ(A)λΘ
p (A)

Proof. Denoting for brevity ω = ω−1(1) and ωc = ω−1(0) and con-
sidering ω as a subset of E, one has

νp(ω) = p|ω|(1− 2p+ p)|ω
c| =

∑
A⊂ωc

(1− 2p)|A|p|E\A|

Hence ∑
ω∈Θ

νp(ω)X(ω) =
∑
A⊂E

(1− 2p)|A|p|E\A|
∑

ω∈Θ∩KA
0

X(ω)

and this concludes the proof. �

We can now discuss the representation of conditioned Gibbs mea-
sures; in particular we are looking for a suitable representation of
EG′

µβ
(N |∆). We first notice that the image of ∆ on edges configura-

tions is a subgroup of Ω′. In particular it is the cylinder K
E′

I
0 obtained

putting 0’s on identification edges of E ′; we use the same notation ∆
and call it ‘identification’ group. We shall use the following property.
Since the representation of the Gibbs measure requires conditioning
to the parity group Γ, the representation of the Gibbs measure condi-
tioned to identification group ∆ can be achieved conditioning to the
intersection of these two groups. We can so write

(7) EG′

µβ
(N |∆) = EG′

νp
(N |Γ ∩∆)

Since Θ = Γ ∩∆ is a group, we can apply eq. (6) and get

(8) EG′

µβ
(N |∆) =

∑
A⊂E

NΘ(A)λΘ
p (A)

We now remark that for β = 0, i.e. p = 1/2, the corresponding
measure λΘ

1
2

is a delta mass concentrated on the empty set. Hence

(9) EG′

µ0
(N |∆) = NΘ(∅)

Hence in order to have

(10) EG′

µβ
(N |∆) ≤ EG′

µ0
(N |∆)

it is sufficient the condition
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(11) NΘ(A) ≤ NΘ(∅), A ⊂ E ′

The next section is devoted to prove this inequality.

4. A pruning tree argument

We shall prove that the function NΘ over the subsets of E ′ has the
following weak monotonicity property.

Proposition 4.1. For any A ⊂ E ′, A 6= ∅, there is e ∈ A such that

(12) NΘ(A) ≤ NΘ(A \ e)

One easily recognizes that this property is sufficient to give eq. (11).
The case that Θ is the parity group was considered in [3]. Here we
recall that proof, adapting it to the present context.

Proof. Eq. (12) is equivalent to

(13) |Θ ∩KA\e
0 |

∑
ω∈Θ∩KA

0

N(ω) ≤ |Θ ∩KA
0 |

∑
ω∈Θ∩K

A\e
0

N(ω)

We use
|Θ ∩KA\e

0 | = |Θ ∩KA\ee
0 0 |+ |Θ ∩KA\ee

0 1 |
and ∑

ω∈Θ∩K
A\e
0

N(ω) =
∑

ω∈Θ∩K
A\ee
0 0

N(ω) +
∑

ω∈Θ∩K
A\ee
0 1

N(ω)

and so eq. (13) is equivalent to

(14) |Θ ∩KA\ee
0 1 |

∑
ω∈Θ∩K

A\ee
0 0

N(ω) ≤ |Θ ∩KA\ee
0 0 |

∑
ω∈Θ∩K

A\ee
0 1

N(ω)

where we have used Θ ∩KA\ee
0 0 = Θ ∩KA

0

If the set Θ ∩KA\ee
0 1 is empty, we define zero the sum extended to it

and we have by definition

NΘ(A) = NΘ(A \ e)

Since Θ = ∆ ∩ Γ, the set Θ ∩ K
A\ee
0 1 is empty if the value 1 on the

edge e violates the identification or the parity condition. The first case
happens if e is an identification edge; the second one if e belongs to a
loop of A, since any loop must contain an even numbers of 1’s.

If the set Θ∩KA\ee
0 1 is non empty, it is a coset of the group Θ∩KA\ee

0 0

and so it has the same cardinality. Hence eq. (12) is equivalent to

(15)
∑

ω∈Θ∩K
A\ee
0 0

N(ω) ≤
∑

ω∈Θ∩K
A\ee
0 1

N(ω)

From the previous argument we can now suppose that A does not
contains loops, i.e. it is union of disjoint trees and we shall prove that
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pruning any end line e preserves ineq. (12), since eq. (15) holds. It is
convenient to rewrite this equation in spins language, getting

(16)
∑

σ∈∆∩K
A\ee
= =

N(σ) ≤
∑

σ∈∆∩K
A\ee
= 6=

N(σ)

where the set K
A\ee
= 6= is the spin version of K

A\ee
0 1 . If e = {i, j} where j

is an endpoint of the tree T ∪ {j} of A, in order to get eq. (15) it is
sufficient

(17) N(σTj
++) +N(σTj

−−) ≤ N(σTj
+−) +N(σTj

−+), σ ∈ {−1, 1}V ′\T∪{j}

where for instance σTj
+− denotes the completion of σ with +’s on T and

− on j.
We denote for instance by C+

T (σ) and C+
j (σ) respectively the set of

+clusters of σ adjacent to T and j. We have

N(σTj
++) = N(σ)− |C+

T (σ) ∪ C+
j (σ)|+ 1(18)

N(σTj
+−) = N(σ)− |C+

T (σ)|+ 1− |C+
j (σ)|+ 1(19)

N(σTj
−−) = N(σ)− |C−

T (σ) ∪ C−
j (σ)|+ 1(20)

N(σTj
−+) = N(σ)− |C−

T (σ)|+ 1− |C+
j (σ)|+ 1(21)

The first equation, for instance, uses the fact that if one turns on +’s
over T and j, the +clusters adjacent to T or to j become an unique
cluster. Using in eq. (17) above equations we get

(22) |C+
T (σ) ∩ C+

j (σ)|+ |C−
T (σ) ∩ C−

j (σ)| ≤ 2

The left hand side is bounded by the number of vertexes that are
simultaneously adjacent to T and j. Since T and j are adjacent and
deg(j) ≤ 3, this number is not greater than 2. This proves eq. (22)
and completes the proof of the proposition. �
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