
POSITIVE AND NEGATIVE CORRELATIONS FOR
CONDITIONAL ISING DISTRIBUTIONS

CAMILLO CAMMAROTA

Abstract. In the Ising model at zero external field with ferromagnetic first neigh-
bors interaction the Gibbs measure is investigated using the group properties of the
contours configurations. Correlation inequalities expressing positive dependence
among groups and comparison among groups and cosets are used. An improved
version of the Griffiths’ inequalities is proved for the Gibbs measure conditioned to
a subgroup. Examples of positive and negative correlations among the spin variables
are proved under conditioning to a contour or to a separation line.

1. Introduction

We consider the Ising model on a finite set V , which to fix the ideas is chosen to
be a cube of the d-dimensional integer lattice. The configuration space is

SV = {−1, +1}V

and an element s ∈ SV is a finite sequence

s = (si, i ∈ V )

Two sites i and j are called first neighbors if their distance is 1; we denote by B the
set of the first neighbors pairs of V . The Hamiltonian is

H(s) = −
∑

{i,j}∈B

Jijsisj

where the interaction Jij is assumed to be ferromagnetic, i.e.

Jij ≥ 0

Key words and phrases. correlation inequality, positive correlation, negative correlation, Ising
model, contours configurations, groups.
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The Gibbs measure µ at inverse temperature β with open boundary conditions is
defined as

(1) µ(s) =
e−βH(s)∑

s∈SV
e−βH(s)

We denote by C the set of unit lines (or surfaces in d > 2 dimensions) which separate
the first neighbors pairs; if c ∈ C, we denote the neighboring pair that is separated by
c by {c1, c2}. Given the spins configuration s, the associated contours configuration
γs is the subset of C defined as

γs = {c ∈ C|sc1 6= sc2}

The contours configurations γs are elements of ΩC = {0, 1}C ; the set of contours
configurations is

Γ = {γ ∈ ΩC |γ = γs for some s ∈ SV }

In order to simplify the notations we consider an interaction, denoted by J , which is
not dependent on the pair, but our results do not depend on this assumption. On
the contours configurations one can define the probability measure

(2) λΓ(γ) =
e−2βJ |γ|∑

γ∈Γ e−2βJ |γ|

where |γ| denotes the length of the contours configuration γ. The Gibbs measure can
be expressed in terms of the contours by means of the obvious equation

(3) µ(s) = λΓ(γs)

If C is any finite set, ΩC has a natural group structure: the product of two sets is their
symmetric difference and the identity is the empty set. The contours configurations
set Γ is in turn a subgroup of ΩC : the product of two contours configurations γ1

and γ2 , denoted by γ1 · γ2, is a contours configuration and the identity is the empty
contours configuration. For other properties see sec. 3.

The group structure of the classical lattice systems has been widely investigated
in a general context (see for instance [7]). This structure has been recognized to be
useful in connection with the correlation inequalities in [8] and used in [1]. In [3] the
Gibbs measure was investigated as a Bernoulli one conditioned to a group and some
correlation inequalities and monotonicity properties were proved; applications to the
Ising model were also provided. In particular there was considered the extension of
the measure in eq. (2), considering any subgroup G of ΩC , where C is any finite set.
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The conditional probability with respect to G is defined putting for any E ⊂ G

λG(E) =
∑
γ∈E

λG(γ)

In [3] the following correlation inequalities were proved.

Proposition 1.1. Let G be a subgroup of ΩC and let E, F be subgroups of G and T
a coset of E; then

(4) λG(E) ≥ λG(T )

(5) λG(E ∩ F ) ≥ λG(E) λG(F )

The measure λG can be considered as a Bernoulli measure on ΩC conditioned to
the set G. If G is a subgroup, the inequality (5) states a positive dependence among
pairs of events that are subgroups of G. It is reminiscent of the well known FKG
inequality [4] for monotone events, but the kind of events here considered is very
different. The aim of this paper is to discuss some applications of these inequalities
using the contours representation of the Ising model. In particular we shall give an
improved version of the Griffiths’ inequalities [6]. These essentially state that the
spins variables are positively correlated. We shall prove that this is also true for
the Gibbs measure conditioned to a subgroup. We remark that our results depend
on symmetry arguments (the external field is zero) and on the assumption of first
neighbors interaction between two valued variables. We use them to analyze a new
type of problems. In particular we give examples of positive and negative correlations
among the spins for the measure conditioned to a contour or to the separation line
between the phases. The next section is devoted to these applications; the other one
contain a self consistent proof of the inequalities. The proof, which tries to simplify
the one given in [3], is based on several ingredients. The first one is an expansion of
the Gibbs weight based on the ferromagnetic assumption; the second one exploits the
group properties of the contours configurations; the third one makes use of the FKG
theorem. This theorem has been used as a powerful tool for proving both known and
new inequalities. We refer for instance to [9] and [1].

2. Applications

We discuss the two dimensional Ising model, but our arguments are independent
on the dimensionality. We first consider open boundary conditions. The unit lines
in C are incident in vertexes of semiinteger coordinates. Let us denote by I the set
of vertexes which are surrounded by four sites of V . More precisely, if (i1, i2) is a
vertex of semiinteger coordinates, it belongs to I if the four sites (i1 ± 1/2, i2 ± 1/2)
belong to V . The group Γ is characterized by the following parity condition: a
contours configuration γ belongs to Γ if the number of lines of γ that are incident
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in any vertex of I is even ( zero, two or four). This group can be considered as the
intersection of the local groups Ki just defined:

Γ = ∩i∈IKi

Let us denote by ∂I the set of vertexes which are surrounded by a number of sites of
V greater than zero and smaller than four (boundary vertexes). In ∂I the contours
configurations do not satisfy the parity condition (the incident lines are zero or one).
Hence the contours can be ‘open’ in ∂I. The spins configurations set SV has also a
natural group structure: the product of two spins configurations s and t is given by
the ordinary pointwise product, that we denote by s × t, with the obvious identity.
We notice that

γs · γt = γs×t

This implies that the map s → γs maps subgroups into subgroups. This map is not
injective since γs = γ−s. The cylindrical event {s|si = 1} is a subgroup but the event
{s|si = −1} is not. We are interested in the conditional measure with respect to a
given subset G of SV , defined as

(6) µG(s) =
e−βH(s)∑

s∈G e−βH(s)

if s ∈ G and zero otherwise. We consider only events which are closed under the

spin flip operation. If E is such an event, we denote by Ẽ its image in the contours
configurations. Hence the Gibbs measure of E conditioned to G is represented in
terms of a conditioned measure on the contours by

(7) µG(E) = λG̃(Ẽ)

Comparison with the Griffiths’ inequalities

We now consider the relationship between inequality (5) and the Griffiths’ correlation
inequalities [6]

(8) 〈sA〉 ≥ 0

(9) 〈sAsB〉 ≥ 〈sA〉〈sB〉

where 〈 〉 denotes the expectation with respect to the Gibbs measure and sA =∏
i∈A si . We also denote by 〈sA〉G the conditional expectation of sA with respect to

G and if G is any subgroup we state an improved version of the inequalities.
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Proposition 2.1. Let G be any subgroup closed under the spin flip of the spins
configurations space and A , B disjoint lattice sets of even cardinality; then

(10) 〈sA〉G ≥ 〈sA〉

and so

(11) 〈sA〉G ≥ 0

furthermore

(12) 〈sAsB〉G ≥ 〈sA〉G〈sB〉G

Proof. Let us denote by χA the indicator function of the event EA = {s|sA = 1}.
This event is a group and is closed under the spin flip. One has

sA = 2χA(s)− 1

and

〈sA〉G = 2µG(EA)− 1 = 2λG̃(ẼA)− 1

where G̃ is a subgroup of Γ. Using the inequality (5) one has

λG̃(ẼA) =
λΓ(ẼA ∩ G̃)

λΓ(G̃)
≥ λΓ(ẼA)

and so

〈sA〉G ≥ 〈sA〉 ≥ 0

We also have

〈sAsB〉G = 〈(2χA − 1)(2χB − 1)〉G = 4λG̃(ẼA ∩ ẼB)− 2λG̃(ẼA)− 2λG̃(ẼB) + 1

Since the events ẼA and ẼB are subgroups, the inequality (5) gives

λG̃(ẼA ∩ ẼB) ≥ λG̃(ẼA)λG̃(ẼB)

and then the inequality (12) follows. �

Remark The inequalities (11) and (12) can be obtained also using the standard
method of proof in the natural spins representation (see [5]). According to this
method the main point is now to prove that for any subgroup G and any lattice
subset A one has

(13)
∑
s∈G

sA ≥ 0
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If s′ is a duplicated spins configuration, one obviously has

∑
s∈G

sA

∑
s′∈G

s′A ≥ 0

Since s and s′ are both elements of the group G, there is a unique t ∈ G such that
s′ = ts. Hence the left hand side is∑

(s,s′)∈G×G

sAs′A =
∑

(s,t)∈G×G

sAtAsA = |G|
∑
t∈G

tA

and this proves the inequality (13). If L is a coset of G it is natural to ask for the
sign of

(14)
∑
s∈L

sA

Since L = l ×G for some l ∈ L, one has

∑
s∈L

sA = lA
∑
s∈G

sA

and in general there is no simple inequality for this sum. Hence we are led to consider
particular cosets and this can be naturally done in the contours description.

Conditioning to a contour or to a separation line

We are interested in conditioning to an event which is a cylinder in the contours.
Given α ⊂ C the cylinder

L(α) = {γ ∈ Γ|γ ∩ α = α}

is the set of contours configurations that occupy the lines in α; given η ⊂ C the
cylinder

G(η) = {γ ∈ Γ|γ ∩ η = ∅}
is the set of configurations that occupy only lines outside η. In the 0, 1 language,
L(α) is a cylinder of 1’s and G(η) is a cylinder of 0’s. It is easy to check that G(η)
is a subgroup of Γ and L(α) is a coset of G(α). If α ∩ η = ∅ we also consider the
cylinder G(η)∩L(α), which is a coset of G(α∪ η). In order to simplify the notations
we denote the corresponding sets in the spins by the same notations.
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We want to study the Gibbs measure conditioned to G(η) ∩ L(α). This can be
done using the local character of these events and the additivity of the Hamiltonian
in the contours configurations. Hence in order to have a 0 conditioning on η and a
1 conditioning on α it is sufficient to restrict the space of contours to those which
lie outside α ∪ η. One has just to guarantee that these contours are compatible with
α, in the sense that they satisfy the parity conditions. What follows is just a formal
exposition of the above ideas.

We consider the subset of ΩC\(α∪η) defined as

Γ(α ∪ η) = {ρ ∈ ΩC\(α∪η)| ρ ∪ α ∈ Γ}
Obviously there is a one to one map between Γ(α ∪ η) and L(α) ∩ G(η) given by
γ = ρ ∪ α and one has

|γ| = |ρ|+ |α|
If one chooses α ∈ Γ, then Γ(α∪ η) is a subgroup of ΩC\(α∪η) with the usual product.
Actually, the empty subset of C \ (α∪ η) is the identity and considering the elements
ρ1, ρ2 ∈ Γ(α∪ η) one has ρ1 · ρ2 ∈ Γ(α∪ η) since (ρ1 · ρ2)∪α ∈ Γ. The group Γ(α∪ η)
can also be considered as the intersection of local groups, according to the equation

Γ(α ∪ η) = ∩i∈IKi(α ∪ η)

where the parity condition now depends on the fact that both the unit lines of α and
η are not to be occupied. We remark that this new space of contours configurations is
corresponding to spins ones only if α is a contours configuration. The Gibbs measure
conditioned to L(α) ∩G(η) is simply given by the measure on Γ(α ∪ η) defined as

(15) λΓ(α∪η)(ρ) =
e−2βJ |ρ|∑

ρ∈Γ(α∪η) e−2βJ |ρ|

Now the correspondence between the spins and the contours which takes the place of
(3) is

(16) µL(α)∩G(η)(s) = λΓ(α∪η)(ρs)

where ρs is such that γs = ρs ∪ α.

Let us now consider the particular case of conditioning to L(α). Just to fix the
ideas choose α to be the a simple loop, say the boundary of a square. In this case we
say that i and j are separated by α if they can be joined by a path which intersects α
only one time, and they are not separated if there is a path which does not intersect
α. For any contours configuration α we say that the sites are separated by α if the
number of intersections is odd and they are not separated if this number is even. We
can prove the following.
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Proposition 2.2. Given two sites i and j and a contours configuration α, one has

(17) 〈sisj〉L(α) ≤ 0

if the two sites are separated by α and

(18) 〈sisj〉L(α) ≥ 0

if they are not separated.

Proof. Conditioning to L(α), the set si = sj corresponds to ‘i and j are separated by
an odd number of contours’ , since one separating contour is given by α. Denoting by
Fij = ‘i and j are separated by an even number of contours’ , with obvious notations
one has

〈sisj〉L(α) = λΓ(α)(F
c
ij)− λΓ(α)(Fij)

The event F c
ij is a coset of the group Fij. Using eq. (4) in the configurations space

Γ(α) one has

λΓ(α)(Fij) ≥ λΓ(α)(F
c
ij)

and the inequality
〈sisj〉L(α) ≤ 0

follows. The other stated inequality can be proved using a similar argument. �

This provides an example of negative dependence; we refer to [10] where related
problems and recent results are discussed.

A simple consequence is the following one. Given two lattice sites i and j we denote
by R0(i, j) the event ‘i and j belong to the same cluster’ , where, as usual, a cluster
is a maximal connected set of sites having the same spin. We also denote by R1(i, j)
the complement, i.e. ‘the sites belong to different clusters’. We also denote by 〈sisj〉0
and 〈sisj〉1 the conditional expectations with respect to R0(i, j) and R1(i, j). One
obviously has 〈sisj〉0 = 1 and it is natural to ask for the sign of 〈sisj〉1. We can prove
the following

Proposition 2.3. The expectation of sisj conditioned to ‘i and j belong to different
clusters’ is non positive, i.e.

(19) 〈sisj〉1 ≤ 0

Proof. Fix a site i and a spin configuration s. It is so defined the set η of the lines
which separate the points of the cluster to which i belongs in s and the set α of the
lines which separate the points of the cluster from the outside. If s ∈ R1(i, j) there
exist α and η such that s ∈ L(α)∩G(η) and one can so define a partition of R1(i, j).
We now have

(20) 〈sisj〉1 =
∑
α,η

〈sisj〉L(α)∩G(η) µ(L(α) ∩G(η))
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where the sum is over all the elements of the partition. We also have

〈sisj〉L(α)∩G(η) = λΓ(α∪η)(F
c
ij)− λΓ(α∪η)(Fij)

and using the argument used in the above proposition we get

〈sisj〉L(α)∩G(η) ≤ 0

and the inequality (19) follows. �

We now consider the separation line between the phases in the two dimensional
Ising model and, as usual, we put + and - boundary conditions respectively on the
upper half and on the lower half of a square box. Let us denote by a and b the
unit lines that separate the + spins from the - ones on the boundary. We define the
separation line ξ as the maximal connected component of the contours configuration
that joins a and b. Given two lattice sites i and j and a spin configuration s we say
that they are separated by ξ if i can be connected, say, to the upper half boundary
without crossing ξ and j can be connected to the lower half boundary without crossing
ξ. The event ‘the points are (not) separated’ is the set of spin configurations such
that there is a line which (not) separates the points and it is denoted by L1 (L0).

Proposition 2.4. In the model with separation line, given two lattice points i and j,
one has

(21) 〈sisj〉L1 ≤ 0

and

(22) 〈sisj〉Lo ≥ 0

Proof. Let us denote by L(ξ) the event in the spins configurations that the line is ξ.
Conditioning to this event is equivalent to consider the reduced contours configura-
tions Γ(ξ). If i and j are separated by ξ, the event si = sj corresponds to ‘i and j are
separated by an odd number of contours’ in Γ(ξ). Actually any path that joins i and
j crosses ξ an odd number of times. With the same notations used before one has

〈sisj〉L(ξ) = λΓ(ξ)(F
c
ij)− λΓ(ξ)(Fij)

and so for any ξ this gives

〈sisj〉L(ξ) ≤ 0

Similarly one has

〈sisj〉L(ξ) ≥ 0

if the sites are not separated by ξ. Using the same arguments of the above proposition
the result follows. �
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3. Proof of the inequalities

An expansion for the ferromagnetic Ising measure

We provide an expansion of the measure λΓ based on the factorization of the Gibbs
weight of the contours configurations and on the ferromagnetic character of the in-
teraction. We define x = e−2βJ/(1 + e−2βJ) and write the measure λΓ as

(23) λΓ(γ) =
x|γ|(1− x)|γ

c|∑
γ∈Γ x|γ|(1− x)|γc|

where γc denotes the complement of γ in C.

This equation states that the Gibbs measure can be considered as a product one on
the space ΩC conditioned to the subset Γ of contours configurations. We now define
the probability measure on ΩC

(24) νΓ(ω) =
(1− 2x)|ω|x|C\ω| |Γω

0 |∑
ω⊂C(1− 2x)|ω|x|C\ω| |Γω

0 |

were we have used the notation

Eω
0 = {γ|γ ∈ E, γ ∩ ω = ∅}

Using this measure we can state the following representation.

Proposition 3.1. The ferromagnetic Ising measure λΓ can be represented in terms
of the measure νΓ on ΩC as

(25) λΓ(E) =
∑
ω⊂C

νΓ(ω)
|Eω

0 |
|Γω

0 |

Proof. From the ferromagnetic hypothesis, J ≥ 0, one has x ≤ 1/2 and so the
following expansion

(1− x)|γ
c| =

∑
ω⊂γc

(1− 2x)|ω|x|γ
c\ω|
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has only non negative summands. We also get

x|γ|(1− x)|γ
c| =

∑
ω⊂γc

(1− 2x)|ω|x|C\ω|

Let us compute the λΓ probability of an event E:

λΓ(E) =

∑
γ∈E x|γ|(1− x)|γ

c|∑
γ∈Γ x|γ|(1− x)|γc|

Using the above expansion the numerator is given by

(26)
∑
γ∈E

∑
ω⊂γc

(1− 2x)|ω|x|C\ω| =
∑
ω⊂C

(1− 2x)|ω|x|C\ω| |Eω
0 |

where we have used ∑
γ∈E, γ⊂ωc

1 = |Eω
0 |

and the denominator by

(27)
∑
γ∈Γ

∑
ω⊂γc

(1− 2x)|ω|x|C\ω| =
∑
ω⊂C

(1− 2x)|ω|x|C\ω| |Γω
0 |

Using the definition of νΓ, this completes the proof. �

We also write
λΓ(E) = νΓ(fE)

where the right hand side denotes the average with respect to νΓ of the function fE

on ΩC defined by

fE(ω) =
|Eω

0 |
|Γω

0 |

We notice that while the contours configurations measure λΓ is a measure conditioned
to the subset Γ, the measure νΓ is defined in all the space ΩC .

The group structure of the contours
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We now recall some of the properties of the group ΩC (for a general reference see for
instance [2]). We shall use that the group is commutative and that ω−1 = ω. If G is
a subgroup the binary relation ∼ defined by ω1 ∼ ω2 if and only if ω1 · ω2 ∈ G is an
equivalence relation. The elements of the partition of ΩC so defined are the cosets of
G. The subgroup itself is an element of the partition. Any coset L different from G
is so disjoint from G ad is given by

L = σ ·G = {α ∈ ΩC |α = σ · ω, ω ∈ G}
for any σ ∈ L. We shall use that G and L have the same cardinality: |G| = |L|.
Given two cosets H, L the set

H · L = {α ∈ ΩC | α = σ · ω, σ ∈ H, ω ∈ L}
is a coset. The set of the cosets of a group G is itself a group with respect to the
product above defined, the identity being G. If F is a subgroup of G the quotient
G/F is a group whose elements are the cosets of F . Hence its cardinality is given by
the equation

(28) |G/F | = |G|
|F |

We shall use the following result

Lemma 3.2. For any two subgroups E, F of the group G one has

(29) |E · F ||E ∩ F | = |E||F |

Proof. We notice that both E ·F and E ∩F are subgroups of G. We first consider
the case E ∩ F = {∅}, i.e. the two groups have in common only the identity. In this
case from the definitions it follows easily that

|E · F | = |E||F |
In the general case we consider the quotient with respect to E ∩ F of the groups
E, F, E ·F . These quotients that we denote by E/(E∩F ), F/(E∩F ), (E ·F )/(E∩F ),
are groups, the identity being E ∩ F . Since the two first have in common only the
identity, the above equation gives

|(E · F )/(E ∩ F )| = |E/(E ∩ F )| |F/(E ∩ F )|
From the eq. (28) it follows that

|E · F |
|E ∩ F |

=
|E|

|E ∩ F |
|F |

|E ∩ F |

and this proves the lemma.
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If σ ⊂ C we denote

(30) Eσ
α = {ω ∈ ΩC |ω ∈ E, ω ∩ σ = α}

In the sequel we shall use the following property, whose proof is a direct consequence
of the definitions: Gσ

0 is a group and Gσ
α are its cosets. As a consequence one has

(31) |Gσ
α| = |Gσ

0 |

Furthermore for any α and β

(32) Gσ
α ·Gσ

β = G σ
α·β

Proof of the inequality (4)

We use the representation (25) for λG(E) and λG(T ) and the obvious fact that if T ω
0

is non empty it is a coset of Eω
0 . Hence |Eω

0 | ≥ |T ω
0 | and one easily gets the result. �

The FKG structure

The set ΩC has a natural order structure based on the partial order

ω1 ≤ ω2 if ω1 ⊂ ω2

A function f on ΩC is called ‘increasing’ if

ω1 ≤ ω2 ⇒ f(ω1) ≤ f(ω2)

A similar definition is given for decreasing functions. A probability measure µ on ΩC is
said to be ‘positively associated’ or to have the FKG property if for any two increasing
(or decreasing) functions f, g the following inequality holds for the expectations with
respect to µ

(33) µ(fg) ≥ µ(f) µ(g)

An event is called ‘increasing’ if its indicator function is so. Hence if two events A, B
are both increasing, it follows

(34) µ(A ∩B) ≥ µ(A) µ(B)

A sufficient condition for positive association is [4]

(35) µ(ω1 ∪ ω2) µ(ω1 ∩ ω2) ≥ µ(ω1) µ(ω2)

Using the spins language version of this condition one can get, as it is well known,
that the Ising ferromagnetic measure is associated. We are looking for a similar
property in the contours language. We will first show that the probability measure
νΓ has the FKG property. We then show that if E is a group then the function fE

is monotonic and finally we use the representation (25). This will be sufficient to
deduce the correlation inequality.

Proposition 3.3. The probability measure νΓ is FKG.
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Proof. We shall prove the more general statement for the measure νG where G is
any subgroup of ΩC . We shall check the sufficient condition

νG(ω1 ∪ ω2)νG(ω1 ∩ ω2) ≥ νG(ω1)νG(ω2)

which is equivalent to

(36) |Gω1∪ω2
0 ||Gω1∩ω2

0 | ≥ |Gω1
0 ||Gω2

0 |

We first consider the case ω1 ∩ ω2 = ∅ in which Gω1∩ω2
0 = G. Hence we have to prove

(37) |Gω1∪ω2
0 ||G| ≥ |Gω1

0 ||Gω2
0 |

We have

|Gω1
0 | =

∑
α2⊂ω2

|Gω1∪ω2
α2

|; |Gω2
0 | =

∑
α1⊂ω1

|Gω1∪ω2
α1

|; G =
∑

α1⊂ω1

∑
α2⊂ω2

|Gω1∪ω2
α1∪α2

|

The sets which appear in the sums, if non empty, are cosets of the group Gω1∪ω2
0 .

From the eq. (32) if α1 ⊂ ω1, α2 ⊂ ω2, it easily follows that

Gω1∪ω2
α1

6= ∅, Gω1∪ω2
α2

6= ∅ ⇒ Gω1∪ω2
α1·α2

= Gω1∪ω2
α1

·Gω1∪ω2
α2

6= ∅

and obviously one has α1 · α2 = α1 ∪ α2. Since all the sets that appear in the sums
have the same cardinality (if non empty) one gets

|Gω1∪ω2
α1

| |Gω1∪ω2
α2

| ≤ |Gω1∪ω2
0 | |Gω1∪ω2

α1∪α2
|

Using this inequality we easily get eq. (37).

We now consider the case ω1 ∩ ω2 = τ 6= ∅. We put τ1 = ω1 \ τ, τ2 = ω2 \ τ and
since τ1 ∩ τ2 = ∅ we apply the above argument to the group Gτ

0 in place of G, and
this completes the proof. �

Proposition 3.4. If E is a subgroup of G, the function defined on ΩC by

fE(ω) =
|Eω

0 |
|Gω

0 |

is increasing.

Proof. We have to prove that for each ω and i ∈ C \ ω one has

(38) fE(ω) ≤ fE(ω ∪ {i})

We use the notation

Eωi
01 = {ρ ∈ E|ρ ∩ ω = ∅, ρ ∩ {i} = {i}}
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and the similar one for Eωi
00 and for G. Hence

fE(ω ∪ {i}) =
|Eωi

00 |
|Gωi

00|

and the inequality (38) is equivalent to

(39) |Gω
0 | |Eωi

00 | ≥ |Eω
0 | |Gωi

00|
We have

|Eω
0 | = |Eωi

00 |+ |Eωi
01 |; |Gω

0 | = |Gωi
00|+ |Gωi

01|
so the above inequality is equivalent to

(40) |Gωi
01||Eωi

00 | ≥ |Eωi
01 ||Gωi

00|
If Eωi

01 = ∅ this inequality is trivially true. Suppose that this set is non empty. It is a
coset of the group Eωi

00 and so it has the same cardinality; in addition it follows that
also the coset Gωi

01 is non empty and it has the same cardinality of Gωi
00. In this case

the eq. (40) holds as an equality. We notice that if Gωi
01 were empty, also Eωi

01 would
be so, since by hypothesis E ⊂ G. �

Proof of the correlation inequality (5)

We prove the more general statement for any group G. From the representation (25)
one gets

λG(E ∩ F ) =
∑
ω⊂C

νG(ω)
|(E ∩ F )ω

0 |
|Gω

0 |

We shall use for each ω ⊂ C the following inequality

(41)
|(E ∩ F )ω

0 |
|Gω

0 |
≥ |Eω

0 |
|Gω

0 |
|F ω

0 |
|Gω

0 |

and since the two functions at the right hand side are both increasing, the FKG
theorem proves the statement. From the eq. (29), since E · F ⊂ G, one has

(42) |G||E ∩ F | ≥ |E||F |
We now use that (E ∩F )ω

0 = Eω
0 ∩F ω

0 and the fact that Eω
0 , F ω

0 are subgroups of Gω
0 .

The above inequality then gives ineq. (41). �
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