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Trend and variability of the heart beat RR intervals
during the exercise stress test

Camillo Cammarota and Mario Curione

Abstract—The stress test is performed to evaluate the presence
in the electrocardiogram of myocardial ischemia. The heart beat
RR intervals extracted from the electrocardiogram recorded
during this test show a non stationary profile consisting in
a decreasing trend during the exercise phase, an increasing
trend during the recovery and a global minimum (acme). In
addition this time series exhibits a non constant variability. We
decompose the series into a deterministic trend and a random
fluctuation. The trend is obtained as an exponential fit of the
data; the fluctuation is modeled as the evolution of a stochastic
difference equation of Langevin type. Data analysis is performed
on ambulatory recorded electrocardiograms of healthy subjects.
In particular we show that the variance of the RR intervals is
increasing with mean. This behavior, qualitatively similar to the
one found in atrial fibrillation, is reproduced by our model.

Index Terms—exercise test, heartbeat, RR interval, time series

I. INTRODUCTION

The exercise stress test is performed to evaluate the presence
in the electrocardiogram (ECG) of myocardial ischemia. In
multistage Bruce protocol [6] the patient on a bicycle ergome-
ter is subjected at a workload linearly increasing in time (25
W every 2 minutes). The test is stopped when the heart rate
reaches a maximum, usually 85% of the estimated top heart
rate based on the patient’s age. During the test 12-leads ECG
is monitored.

Diagnosis of ischaemia is usually performed by visual
inspection of the ECG signal. Recently our group has started
an automated analysis of these ECG data in order to find
clinical applications related to QRS area evaluation [4].

During the test the RR intervals, defined as the intervals
between two consecutive R peaks, show a typical pattern.
During the exercise (stress phase) the trend is decreasing,
during the recovery the trend is increasing; these two phases
are separated by a global minimum (acme) (fig. 1, first panel).

The variability of the RR intervals, known as Heart Rate
Variability (HRV), is quantified by means of several indices
both in time and in frequency domain, and it is used to extract
informations on the control of autonomic system on heart rate
[11]. The estimation of the HRV indices is usually performed
on RR sequences recorded at rest, where the sequence can
be supposed to be stationary. Evaluation of HRV during the
exercise is difficult because the series is not stationary.

The heart rate during exercise was extensively investigated
both in clinical studies and in signal analysis. A first approach
focuses on the trend component of the RR data, considering
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mainly the heart rate recovery, defined as the maximum heart
rate minus the heart rate at a specified time period during
recovery (for instance 1 minute), measured in beats per minute.
A heart rate recovery of less than 12 beats per minute in the
first minute was found to be a predictor of overall mortality
[3].

A second approach removes baseline trend induced by
exercise in RR series using a suitable filtering and then eval-
uates HRV on the filtered sequence. Several indices estimated
over intervals of two minutes were found to be predictors of
cardiovascular mortality [5]. In this study it is recognized that
the RR variability is related to the RR interval values.

In signal analysis time-frequency methods were applied to
estimate how low frequency (LF) and high frequency (HF)
spectral components vary in time. In application to real data
low frequencies have been filtered out [8]. The above refer-
ences show the usefulness of information contained both in
the trend (heart rate recovery) and in residual after detrending
(time and frequency domain indices).

In this report we analyze the RR series extracted during the
routine ambulatory bicycle exercise test of normal subjects. We
investigate the series using the decomposition of time series
in two main components: deterministic trend and stochastic
variability.

The first result confirms the observed dependence of the RR
variability on the RR value, i.e. that the series is heteroschedas-
tic. We try to quantify this dependence estimating the slope of
the linear fit of standard deviation versus mean for blocks of
adjacent beats. This was already observed in atrial fibrillation
and was proposed to discriminate this pathology [12]. In that
paper the coefficient of variation (defined as standard deviation
over mean) was estimated. A linear dependence of standard
deviation versus mean was also found in [1].

The evidence of heteroschedastic behavior in normal sub-
jects during stress has stimulated the use of novel methods to
investigate non stationary time series [2].

The second result concerns the trend: we propose a method
for estimating the trend based on a simple mechanical model.
The trend is defined by an exponential fit of the data series,
separately in stress and recovery.

Finally we propose a dynamical model for the stochastic
variability defined by a difference stochastic equation of
Langevin type. These models have been recently used in the
reconstruction of the RR series ([7], [9]). In our model we use
a drift and a diffusion term that allow to reproduces some qual-
itative features of the data, in particular the heteroschedastic
behavior.
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II. METHODS

The subjects of our analysis were selected from a group
referred for symptoms and signs suggestive of myocardial is-
chemia to ECG Laboratory. They underwent to clinical exami-
nations, exercise test, standard 12-leads ECG and scintigraphy.
Multistage Bruce protocol diagnosis of inducible ischemia was
used according to current guideline [6]. From the subjects who
underwent the test, those of them who resulted healthy are the
object of the present study; no other selection criteria has been
adopted.

In our experimental setting the standard 12 leads ECG
was performed using PC-ECG 1200 (Norav Medical Ltd.)
which provides in output digital signal with resolution of 2.441
microV and 500 Hz sampling frequency. The analysis of raw
data, R peak detection, and subsequent computations were
performed using a software written in R [10]

III. THE LOCAL MEAN AND VARIANCE

We model the observed RR time series x1, ..., xn as the
realization of a sequence of random variables (r.v.) X1, ..., Xn,
with joint continuous distribution P . Hence Xt denotes the RR
interval at the t-th beat. A sequence of r.v. is called stationary
if the probability distribution of any collection extracted from
it is invariant under time shift. In particular if µt and σt
denote mean and standard deviation of Xt, in a stationary
case these functions are constant with respect to time. In RR
series during stress both the mean and the variance are time
dependent. Hence it is natural to ask if there is a relationship
between mean and variance. At first glance from the plots of
the RR series mt and σt appear to be positively dependent. In
other words when the RR interval takes its minimum (acme)
the variance takes its minimum, and when the RR interval is
maximum the variance is large (fig. 1 first panel). In order to
estimate both the mean and the variance, we divide the time
series into a set B of blocks made of D = 40 successive beats
and compute the mean mb and the standard deviation σb for
each block b ∈ B. Since the trend introduces a bias in the
estimation of the variance, we perform a linear detrending in
each block. The standard deviation is then computed on the
residuals after detrending. The plot of residuals is shown in
fig. 1 (second panel). The pairs mb and σb are plotted and
the slope of the linear fit of σb versus mb is computed. A
typical plot is in fig. 1 (third panel). The use of different values
for the block size D do not substantially alter the plot. We
have selected in our database 11 cases of normal subjects in
which the linear dependence appears to be more evident and
statistically significant. The mean of slopes over these cases
is 0.043 with a standard deviation of 0.017. The value 0.043
in normal subjects is much smaller than the one 0.24 found
in atrial fibrillation [12].

IV. TIME SERIES DECOMPOSITION

The RR series shows a global minimum called ‘acme’
whose value is denoted m. We define as ‘stress phase’ the
sequence of beats before the acme and as ‘recovery phase’
the ones after the acme. The duration of the stress phase is
t1 beats; the global duration is t2 beats; typical values are
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Fig. 1. First panel: Sequence of RR intervals (in msec) of the exercise test
of a normal subject versus the beat number. Second panel: the residuals after
detrending. Third panel: the standard deviation of residuals versus mean for
blocks of 40 beats.

t1 = 1500, t2 = 2500. We introduce a simple mechanical
model to describe the time evolution of the RR interval
in the two phases. The stress phase is characterized by an
external action due to the increasing workload that causes an
increasing of the heart rate. In both phases there is a so called
‘equilibrium’ M , corresponding to the mean value of the RR
intervals immediately before and after the test. Of course
M > m; typical values are M = 800 msec, m = 400 msec
(see fig.1, first panel). The equilibrium values may be slightly
different: for instance in the case of fig. 1 the equilibrium value
at the beginning is larger than the one at end of the recovery.
We denote them as M1 and M2.

We use the classical method of time series decomposition
in trend and fluctuation. In order to estimate the trend we
first introduce a function α(t), where t is a real number in the
interval [0, t2], which is solution of a differential equation. We
use that both the phases are characterized by a restoring term
that drives the system towards the equilibrium M . For sake
of simplicity we assume that this term is linear: −a(α−M),
where a is a positive constant. In addition the stress phase
is characterized by a constant negative contribution −b that
reflects the workload. We assume α(t) to be solution of the
two following ordinary differential equations in different time
intervals

α′1 = −a1(α1 −M1)− b
α1(0) = M1; t ∈ [0, t1] (1)

α′2 = −a2(α2 −M2)
α2(0) = m; t ∈ [t1, t2] (2)

These equations have exponential solutions:

α(t) =
{
M1 − b

a1
(1− e−a1t) t ∈ [0, t1]

M2 + (m−M2)e−a2(t−t1) t ∈ [t1, t2]
(3)
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Hence the trend of our series can be defined as the dis-
cretization of α(t), denoted αt.

The fluctuation is now defined according to the following
equation in both phases:

∆Xt = −k(Xt − αt) + (αt −m)εt; t ∈ [1, t2] (4)

We assume that the initial value is X1 = M1 and εt is
a stationary sequence with zero mean and variance σ2

ε . For
the proposes of the present study we shall assume that the
εt are independent and identically distributed (i.i.d.) normal
variables.

The eq.(4) is a finite difference stochastic equation of
Langevin type. The investigation of its theoretical properties
is outside the scope of the present report. We recall that the
simple equation ∆Xt = εt, X0 = 0 has as solution a ran-
dom walk, that is non stationary; in particular if εt is normal,
the sequence Xt is a sequence of normals with mean zero and
variance σ2

ε t. The term −k(Xt − αt) drives the random walk
towards the deterministic trend αt. The coefficient αt − m
of the diffusion term produces the dependence of standard
deviation versus mean. The use of this type of equation in the
analysis of RR series is not new ([7], [9]), but the presence
of an explicit trend was not considered before.

V. ESTIMATION OF THE PARAMETERS AND DATA ANALYSIS

The parameters m,M1,M2, t1, t2 are estimated just by ob-
servation of the time series. In particular M1,M2 are estimated
by the mean of say 20 values at both the extremes. In order
to estimate t1 the RR series is smoothed so that there is
only one time in which the series takes its minimum. The
values are reported in the Table I. The parameters a1, a2, b
are not observable directly and have to be estimated from
the model. From the solutions (3) a rough estimate of the
parameters a1, a2, b can be obtained. These values are used
as starting ones in a non linear least squares estimation of
the same parameters from the data series. The values obtained
are reported in Table II. The exponential fitting obtained is
satisfactory in all cases; a typical case is in fig. 2.

The estimation of the parameters in the second member of
eq. (4) is outside the scope of the present communication.
We limit ourselves to verify that for suitable values of the
parameters the model qualitatively reproduces the data series
and the plot of standard deviation versus mean reproduces the
observed one.

In fig. 3 an example of a simulated series is shown in the
second panel. The parameters of the trend are in the 3th row
of the two tables. The parameters of the model in eq.(4) are
k = 0.1, σε = 0.06. The third panel shows the relationship
between mean and standard deviation.

VI. CONCLUSION

The plot of standard deviation versus mean has revealed that
in normal subjects there is a positive correlation between the
two variables, of the same type that was found in atrial fib-
rillation [12], but much smaller. In order to better understand
the dynamics we have performed a decomposition of the RR
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Fig. 2. The RR series and the exponential fit both for the stress and for the
recovery phases.

TABLE I
PARAMETERS OF THE RR SERIES: FROM THE LEFT: DURATION IN BEATS
OF THE STRESS PHASE, TOTAL DURATION OF THE TEST, MINIMUM RR IN

MSEC, MAXIMUM IN STRESS, MAXIMUM IN RECOVERY.

t1 t2 m M1 M2

1218 2373 377 665 701

2021 3223 331 534 593

1601 2662 383 749 679

2094 3217 342 571 597

2098 2883 369 814 642

1303 2213 418 855 762

1225 2459 389 634 544

1147 2062 395 678 723

1219 2131 421 610 696

2030 3097 365 492 594

986 1764 411 624 583

series in trend and random fluctuation. We have simulated the
series using a small number of parameters, if compared to the
complexity of this type of data. We have used 8 parameters:
each of the two exponential fits requires 3 parameters and
the stochastic evolution requires 2 parameters. We are able to
reproduce both some qualitative features of the data and the
observed dependence mean - standard deviation.

The capability of this model to reproduce finer features of
the data should be investigated. In heart rate variability studies
a lot of indices both from linear and non linear modeling
are used in time domain and in frequency domain. Most of
them are defined only if the series is stationary. Thus they
can not be applied to these RR data series. The proposed
model suggests which are the components responsible for non
stationary behavior. With reference to equation (4) they are the
restoring term −k(Xt−αt) and the coefficient of the diffusion
(αt −m); some other information should be contained in the
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TABLE II
ESTIMATED PARAMETERS OF THE EXPONENTIAL MODEL: RESTORING

COEFFICIENT OF THE TRESS, RESTORING IN RECOVERY, DRIFT.

a1 a2 b

0.0004 0.0040 0.357

0.0008 0.0021 0.236

0.0010 0.0022 0.529

0.0002 0.0018 0.175

0.0007 0.0004 0.433

0.0005 0.0030 0.433

0.0004 0.0044 0.253

0.0003 0.0062 0.324

0.0007 0.0036 0.269

0.0002 0.0037 0.159

0.0005 0.0004 0.334

random sequence εt. This sequence could be estimated from
the data, after estimation of the parameter k, using the equation
(4):

(∆Xt + k(Xt − αt))/(αt −m) = εt (5)

The sequence εt should be close to stationary so that a residual
information could be extracted using standard methods.

There are several other possible improvements concerning
the estimation of the parameters of the dynamical model. The
values of M1 and M2 are in many cases different; this can
be caused by the fact that the recovery phase is shorter than
the stress. Also the parameters a1 and a2 are different. They
reflect the strength of the restoring towards equilibrium which
in turn is regulated by the neuroautonomic control. It is an
interesting problem to test if these differences are significant.
Another problem concerns the form of the diffusion term (αt−
m)εt. This simple form assumes that the variance reduces to
zero at the acme, i.e. if αt = m. One can introduce another
parameter to have a non zero variance. A reliable estimation of
the variance close to the acme requires a higher resolution of
the RR intervals and could be achieved using an ECG signal
of higher sampling frequency. Other forms can be considered
for the diffusion and in particular to assume that the variance
increases non linearly in the difference (αt −m).
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