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Abstract

Heartbeat intervals during atrial fibrillation are commonly believed
to form a series of almost independent variables. The series extracted
from 24 hours Holter recordings show a non stationary behavior. Be-
cause of non stationarity it is difficult to give a quantitative measure
of independence. In this paper we use and compare two methods for
this. The first is a classical method which models a non stationary
series using a linear Gaussian state space model. In this framework
the independence is tested on the stationary sequence of the residu-
als. The second method codes data into permutations and tests the
uniformity of their distribution. This test assumes as null hypothesis
a weaker form of independence which we call symbolic independence.
We discuss some advantages of symbolic independence in the context
of heartbeat series. We analyze the time series of heartbeat intervals
from 24 hours Holter recordings of 9 subjects with chronic atrial fib-
rillation and find that the detrended series is a zero or one memory
process for 83% of regular segments and is symbolically independent
for 93% of segments.
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1 Introduction

The heartbeat time series is the sequence of time intervals between two con-
secutive R peaks of the ECG, corresponding to the depolarization of the
ventricles (systole). The series extracted from 24 hours Holter ECG con-
sists of about 10° terms and is called RR sequence. Each beat is labeled
by the analyzing software, which recognizes normal QRS complexes, ectopic
ventricular beats, artifacts and so on.

The heartbeat time series in normal subjects is highly non stationary, due
to the influences of the environmental stimuli on the heart, causing significant
trends on different time scales. These trends superimpose to the fluctuations
due to the autonomous heart dynamics.

Atrial fibrillation is an arrhythmia characterized by multiple re-entrant
waveforms within the atria bombarding the atrioventricular node which be-
comes relatively refractive to conduction. This causes a totally irregular,
often rapid, ventricular rate. The QRS complex has however the same ap-
pearance of a normal beat.

In atrial fibrillation fluctuations of RR sequence are larger than in normal
case and their correlations are weaker. This has already been noted in the
late sixties in [13] which showed that in stationary segments of RR sequences
adjacent intervals are almost independent. The assumption of stationarity is
no longer acceptable for segments of RR sequences which come from 24 hours
Holter recordings, where non stationary behavior appears at both short time
and long time scale. Examples of long time trends are circadian rhythms
[14]. The question if atrial fibrillation is deterministic, eventually chaotic, or
a purely stochastic phenomenon has been addressed in [20].

Heartbeat time series can be investigated using standard linear ARIMA
models [5], and in normal subjects this gives autoregressive models of order
p > 16 [4]. In atrial fibrillation the situation is different: when the series is
detrended, the residuals show a low autoregressive order (p < 1); furthermore
the series shows an heteroschedastic behavior: the greater is the mean level,
the greater is the variance, see [21] and [8].

In this paper we are interested in studying the statistical properties of
the Holter recorded RR sequences during atrial fibrillation. At this aim we
consider of primary importance two problems: suitably estimating the trend
and filtering out the beats for which the QRS complex is not labeled as
normal, like ectopic ventricular beats and artifacts.

As to the first problem, a standard approach for detrending a non sta-
tionary time series is to use linear Gaussian state space models, see [11]. In
these models the trend is extracted by means of a Kalman filter; the residu-
als, obtained by subtracting the trend, form an i.i.d. Gaussian sequence and



the model can be checked by performing independence and normality tests
on the residuals. Usually state space methods are applied for time series
with few hundreds of elements. Our RR series, which are extracted from 24
hours Holter recordings, are much longer, hence for applying this method we
divide the series in 1000 beats segments. For each segment we fit the resid-
uals with an autoregressive model of order zero or one. This allows us to
make a precise quantitative statement about the independence of residuals.
Another method for extracting a trend which has received much attention in
the analysis of cardiac signals is detrended fluctuation analysis [17]. How-
ever we found easier to frame our results using the more versatile state space
models.

A further possibility for analyzing non stationary series is to use a sym-
bolic dynamic approach, which has recently received much attention, in par-
ticular for physiological signals. Various methods have been adopted, based
on coding short strings into words or permutations ([22], [18], [3], [16], [2],
[12], [9]). In particular atrial fibrillation has been investigated with these
methods in [1], [7], [9].

The coding into permutations provides a very natural method for testing
independence, based on a standard property: if the series is an i.i.d. se-
quence, the distribution of permutations is always uniform. Since the coding
reduces information, the notion of independence for coded series, which we
call symbolic independence, is weaker than independence of the original one.

A second problem is that of filtering out non normal beats, since we want
to separate the beats due to atrial fibrillation from those not fired by electrical
activity of the atria, like ventricular ectopic beats. In order to do this we
label all non normal beats as NA (missing value). Then we analyze the series
either by filling the missing beats by using Kalman filter or by performing
symbolic analysis only on segments without missing beats. We believe that
filling the data by using Kalman filter is something quite artificial and not
appropriate in presence of many missing values. We have chosen to compare
the two methods on segments of 1000 beats in which at least 90% of the
beats were normal. We have found that the results on independence obtained
with Kalman filter agree with those obtained with symbolic analysis. This
separation of beats into classes according to their labels is also crucial for
the validation of mathematical models of atrioventricular node conduction
during atrial fibrillation, as the one proposed by Zeng and Glass in [23] (see
also [15] and [10]). In fact these models refer only to beats for which the
QRS complex is normal.

We explain our use of state space models in sections 2 and 3, and per-
mutation coding in section 4. In section 5 we compare the two methods
analyzing 24 hours Holter recordings of 9 subjects with atrial fibrillation and



state our final remarks in section 6.

2 The state space model

We review some basic facts about autoregressive models following [5] and
about state space models following [11] to which we refer for an extensive
treatment.

A basic model for stationary time series is the autoregressive model of
order p, AR(p), in which data are modeled as a jointly Gaussian random
vector x = (z1,...,xy); the dependence is defined by

p
T; = Z (bjmifj + ws, w; ~ N(O, 0'12”)
j=1

where the ¢;’s are coefficients, and the w;’s are a sequence of independent
Gaussian variables. In our analysis we shall use only the AR(1) model

T = Q11 + W; (1)

and the trivial AR(0) model z; = w;.
A measure of independence is given by the autocorrelation function which
is defined by
pr = Cov(z;, x;_)

For AR(1) models one has p;, = ¢*.

In case of non stationary series a basic approach is provided by the state
space models. A state space model is based on two jointly Gaussian random
vectors = (z1,...,zy) and a = («q, ..., ay) such that

Ty = Q; + €, €~ N(QUEZ)

Qip1r = 0+ 0, 1~ N(0>U727)

for: =1,..., N. Here the sequences of normal random variables n;’s and ¢;’s
are mutually independent and independent on the «;’s.
The logarithm of the joint probability density of z and « is, apart from
constants,
| V-l N
—27727 : (Qip1 — ) = ch : (2 — ;)?
i=1 =1
The vector « is the local level (or state vector) and the vector x is the
vector of observations. In this model it is possible to estimate the distribution
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of av given the observations x. Since the conditional probabilities of the «
given x are Gaussian, this reduces to estimate the means and the variances
of the a;’s. In particular in the filtering approach one defines

a; = E(a;|zy,...,x21), i=2,...,nand a; = 14

The computations of the means a; and of the related variances give rise to
recursive relations, which constitute the Kalman filter. In particular one has
the relations

CLZ'+1:CLZ‘+KZ'(ZL’Z'—CLZ'), ay = I, 222,,N (2)
where the sequence K; depends only on the variances ¢ and 0’2. This se-
quence rapidly converges to a value K. In the hypothesis that

h=(0,/0)* << 1
neglecting the terms of order greater or equal to h, one has
K ~ao,/o. (3)

These variances can be estimated from the data by means of a maximum like-
lihood method. The variance of the residuals v; = x; — a;, denoted F}, also
converges to a limit, which in the above approximation is F' ~ ¢2(1+40,/0.).
The Kalman filter algorithm is implemented in the package StructTS of the
free statistical software R [24] that we have used in our data analysis. The
main features of this model are: it provides an estimate of the trend, defined
by the sequence a;; the residuals v; are mutually independent Gaussian vari-
ables. Hence the model diagnostic consists essentially of an independence
test and a normality test on the residuals. An additional criterion to eval-
uate the suitability of the model, at least in our setting, is A << 1. In this
case the level sequence a; is weakly influenced by observations, and can be
indeed interpreted as a regular trend by equation (2).

3 Estimation of trend

Our previous investigations suggest that the heartbeat time series in atrial
fibrillation can be modeled as a non stationary sequence of independent ran-
dom variables [8], [9]. In time series analysis ARIMA models are often used
[5], and for removing non stationarity one has to differentiate the series. In
heartbeat series this is a very efficient method, in particular for normal sub-
jects. Actually the autocorrelation function, which for the original series has
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Figure 1: (a): Plot of non stationary segment of length N = 1000 of the
time series; (b): Plot of the differences of segment (a); (c): Autocorrelation
of the segment (a) ; (d) Autocorrelation of the segment (b). The values of
the autocorrelation within the dotted lines are considered non significant.

a very slow decay, after differentiation has a much faster decay [6]. In atrial
fibrillation series after differentiation the autocorrelation function has only
one significant value at lag 1, which is a little above —0.5, as shown in figure
1. One can easily show that differentiating a sequence of i.i.d. variables, the
autocorrelation is zero for lags greater or equal than 2 and takes exactly the
value —0.5 for lag 1. Hence the data in atrial fibrillation should be modeled
by a non stationary sequence of weakly dependent variables, and one has to
use a more subtle method for removing non stationarity than differentiation.

One of the features of the inter beat intervals in atrial fibrillation is a non
stationarity of the variance. More precisely the variance is increasing with
respect to the local value of the mean ([21], [8]). According to a common
method used to stabilize the variance, we take the logarithm of the data. In
order to estimate the mean level we use the Kalman filter defined in section
2. The mean level is shown as a solid line in figure 2(a). The result of
the filter algorithm provides also the two variances o) and ¢7. In figure 2
h = 0.005, hence K ~ 0.07. The small value of K implies that the level

sequence a; depends weakly on the data values according to equation (2), so
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Figure 2: (a): Logarithmic values (base 10) of the series in figure 1(a) (dot-
ted) and the level line (solid); ratio of the variances o7/0? = 0.005; (b):
Standardized residuals; (c): Autocorrelation of residuals; values within the
dotted lines are non significant; (d) Independence test (Ljung-Box) for the
residuals up to the lag 10, and significance level 0.05. Values under the
threshold (dotted line) reject independence hypothesis.

it appears much more stable than the series. For this reason one can assume
this sequence as an estimation of the trend.

The Kalman filter algorithm provides a simple method for treating both
the mean level and its variance also when there are missing values. In partic-
ular the mean level sequence a; is defined to be constant in correspondence
of missing data values; in other words the same recursion equations apply
with K; = 0 for those ¢’s for which x; is missing; the residuals are defined to
be zero. The plot of data in figure 1 contains missing values, although this
is not evident in the picture.

In the assumptions of the state space model the residuals with respect to
the Kalman filter form a sequence of normal independent variables. Hence
the diagnostic of the model consists of a test of independence and a test of
normality. The autocorrelation function provides a first insight on the inde-
pendence. Under this assumption the values of the autocorrelation function
are normally distributed and if N is the length of the sequence a 95% confi-
dence interval is (—1.96/v/N,1.96/v/N). In figure 2(c) the values are inside
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Figure 3: Normality check for residuals of figure 2(b). (a): Histogram of stan-
dardized residuals; (b): qg-plot of normal standard quantiles versus quantiles
of standardized residuals.

this interval. A standard test of independence for residuals is the Ljung-Box
test [5]. This test checks the hypothesis that the first k values of the autocor-
relation are compatible with the independence assumption. An usual choice
is k = 10. We reject the hypothesis if any of the p-values is less than 0.05.
As to normality we show in figure 3 an example of histogram of residuals and
of qg-plot.

4 Symbolic dynamics

In this section we follow a method we have developed in [9]. Here we recall
the essential points in order to get a self contained exposition. We code
short segments of fixed length n into permutations in the following way. In
R™ let us consider the subset A (called big diagonal) which is the set of points
(21, ...,x,) for which there exist at least two indexes ¢ , j such that z; = x;
and denote R™\ A by R,. Let S, denote the symmetric group, i.e. the set of
permutations of {1,...,n}. We use one line notation for permutations, i.e.

(ilaiQa s 7Zn)



denotes the permutation

where

(i) =1+ #{j:z; <z}
(The symbol # denotes cardinality). Note that with this definition, if
71 is the inverse of 7, then

Tr-1(1) < Tr-1(2) <+ 00 < Tp-1(p)
For example, if (xq,...,24) = (181,32,42,115), then 7 = (4,1,2,3),
7t =(2,3,4,1) and
To < Ty < Xy < X7q.
Let us denote by (x1,...,z,) a collection of n independent random vari-
ables identically distributed with probability density f positive and abso-

lutely continuous with respect to the Lebesgue measure of R, and let P be
the product probability measure on R™. The subsets

Ar ={(71,...,2,) €RY  (zy,...,3,) =7}

parameterized by the permutations 7 € 5, give a partition of R7,. We define
the probability measure P over S, as

The probability P is uniform on S,,, i.e.
Pu(m) =1/n!

(see [19]). We note that this property does not depend on the density f. We
say that a sequence of random variables is n-symbolically independent if the
distribution Ppy is uniform.

Let x1,...,zy be aii.d. random sequence and let o € S,,. We define the
estimator

T<a>=[5]_1 S A WMGm) =) @)

i=1, i=1 mod (n)
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where: x is the indicator function which takes the value 1 when the equality
(x;, ..., Tin1) = o is true and 0 otherwise; square brackets denote integer
part, hence [%} is the number of consecutive disjoint intervals of length n
in which we can split the series; the indexes in the sum are the minimum of

these intervals. Let I be the set of these indexes. For brevity we shall write

r0)= %] T

el

We notice that the random variables x;(o) for ¢ € I are independent. Hence

the n! variables T'(0) form a multinomial vector with > T(o) = [%] and

with probabilities Pr(o) = 4.
The statistics

¥y - 5

oc€ESh nl

UESn

is asymptotically distributed as a x?(n! — 1) (as N — oo) and we use the
standard x? test for goodness of fit (see [19]). We refer to this test for
symbolic independence as to permutation test (PT).

5 Data analysis

We have analyzed the RR time series of 24 hours Holter recordings of 9 cases
of atrial fibrillation provided by the Department of Cardiology of our Uni-
versity. The data were recorded using an Holter equipment with sampling
frequency of 180Hz (Rozinn Electronics, Glendale, USA); the analyzer soft-
ware labels each beat with a code number. We have considered only beats
which are labeled normal and we have coded NA (Not Available) all other
beats.

We divide each time series into segments of length 1000 and give a code
NA to those segments in which the number of NA beats is greater than 100;
these segments are discarded. For the remaining ones we start our analysis by
fitting a state space model in each segment. After detrending, the residuals
are computed. If the ratio of variances (o,/0.)? is greater than 0.01 we label
the segment as NS (Non Smooth). Otherwise an LB test is performed for
the first £ = 10 lags. If all the p values are greater than 0.05, then we do not
reject the independence hypothesis and attribute a code AR0 to the segment.
If not, we fit the sequence v; of residuals with an AR1 model

v, = O10;-1 +w; (6)
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N SEG NA NS ARO AR1 NAR PT ARO&PT
1 107 9 0 73 14 11 93 72
2 99 14 0 31 43 11 73 29
3 157 14 4 53 35 ol 137 51
4 106 0 9 71 11 15 102 69
5 110 bt 12 38 42 13 96 34
6 107 65 1 16 20 ) 36 14
7 92 38 1 21 28 4 52 21
8 100 44 0 39 10 7 50 35
9 116 20 0 67 16 13 91 66

Table 1: The table summarize the analysis of 9 RR sequences of atrial fib-
rillation divided into segments of length 1000. Column N: case number;
column SEG: number of segments analyzed for each case; column NA: num-
ber of segments with more than 100 NA; column NS: number of segments
with no more than 100 NA with non smooth trend; column AR(O: number
of segments with no more than 100 NA and smooth trend whose residuals,
after detrending, are independent; column ARI: number of segments with
no more than 100 NA and smooth trend whose residuals, after detrending,
fit an AR1 model; column NAR: number of segments with no more than 100
NA and smooth trend whose residuals, after detrending, are neither AR0
nor AR1; column PT: number of segments with no more than 100 NA which
pass the permutation test; column AROEPT: number of segments labeled
ARO and PT

where w; is a sequence of normal independent variables (see [5]). We use
the package ARIMA implemented in R for fitting the model and perform LB
test on residuals: if the model is not rejected we code the segment as ARI.
Otherwise, we code the segment as NAR. We note that the coefficient ¢, has
typical values positive and less than 0.1.

We then perform the permutation test described in section 4 to all seg-
ments which are not coded as NA. This test depends on one parameter, i.e.
the length of the permutations which are considered. In this work this param-
eter is chosen to be 3. We code each segment as P7T' if symbolic independence
is not rejected by permutation test at the 0.05 significance level. Finally we
compute the number of segments that are coded both AR0 and PT, i.e. the
segments that are independent in both tests, denoted as AROEPT.

The results of this analysis are reported in table 1.

We give here some more explanation of the content of the table.

Column SEG: The variability of the number of segments in the 24 hours
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Holter recording reflects the variability of heart rate among individuals.

Column NA: The number of NA segments may be very large (case 6 and
8) as well as very small (case 5) or even zero (case 4).

Column NS: The values are small and reveal that smooth trend extraction
algorithm provided by Kalman filter performs well for atrial fibrillation. We
shall call a smooth trend segment also a regular segment. Their number is
SEG - NA—-NS.

Column AROQ: The values are extremely variable. In order to make com-
parison between different cases easier we define the following index

ARO
SEG—-NA—-NS
This index is reported in table 2. Its average value is 0.54.
Column ARI1: As above we define the index
AR1
SEG—-NA—-NS
This index is reported in table 2. Its average value is 0.31.
Column NAR: This column is reported for completeness. Its values are
obtained as SEG — NA— NS — ARO — AR1
Column PT': As for AR(O we define the index
PT
SEG — NA

whose values are reported in table 2. We remark that the values are very
large (minimum is 86%), less variable than AROn and AR1n; their average
is 92%.

Column AROEPT: One expects that the set of segments coded ARO is
included in the set coded PT (i.e. ARO=AR0EPT), apart from differences
due to accepting and rejecting errors of probabilistic tests. The observed
little difference in the results reported in the table are compatible with this
discrepancy.

We remark that permutation test has been applied to all “non NA seg-
ments” while the other tests has been applied only to regular segments.

We finally remark that the independence test of residuals checks correla-
tions up to lag 10, while we have used a permutation test based on permu-
tations of 3 elements only.

AROn =

ARIn =

PTn =

6 Conclusions

State space models provide a mathematical framework under which a suitable
notion of independence can be tested for non stationary heartbeats during

12



AROn ARln PTn
0.75 0.14 0.95
0.37 0.51 0.86
0.38 0.25 0.96
0.73 0.11 0.96
0.41 0.45 0.91
0.39 0.49 0.86
0.40 0.53 0.96
0.70 0.18 0.89
0.70 0.17 0.95

© 00O Uk W2

Table 2: Comparison between indexes of independence computed from stan-
dard and permutation tests. Column N: case number; column AROn: ratio
of ARO segments on segments which are neither NA nor NS; column AR1n:
ratio of AR1 segments on segments which are neither NA nor NS; column
PTn: ratio of PT segments on segments which are not NA.

atrial fibrillation. One of the advantages of this model is that we can give
a meaningful interpretation of the elements of the model: the level sequence
reflects the influence of the external world on the heart; the residuals reflect
the autonomous dynamics of the heart. In our database of atrial fibrillation
the autonomous dynamics can be modeled as an independent sequence for
54% of regular segments and as a first order autoregressive model for other
29%; in summary, the autonomous dynamics is a zero or one memory process
for 83% of the regular segments.

On the other hand the autonomous dynamics is symbolically independent
for 93% of non NA segments. Moreover, the symbolic dynamics approach is
coherent with the state space one. More precisely, the idea that symbolic in-
dependence is weaker than the independence of residuals over AR( segments
has been confirmed by our data analysis.

The symbolic approach has some advantages over state space models.
First, it can be used to analyze time series with many missing values. Sec-
ond, permutation test is not dependent on the distribution of the original
series. Third, it can be applied also to smooth trend data without detrend-
ing. Finally, it provides a possible method for measuring a distance from
independence. This can be used, for instance, for distinguishing the heart
beat series of atrial fibrillation from normal ones, where the smooth trend
condition does not hold; see [9]. On the other hand it has at least one dis-
advantage since coding a series into permutations obviously causes a loss of
information.

13



This statistical analysis can also be used to validate models for nodal con-
duction in atrial fibrillation like [23]. Actually the RR sequences simulated
using this model, according with some preliminary work, fit ARO or AR1
models.

Our results may have clinical applications too. A large percentage of in-
dependence can be interpreted as a loss of efficiency of the control mechanism
of autonomous dynamics of the heart.
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