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The heart beat RR intervals extracted from the electrocardiogram recorded during the21

stress test show a non stationary profile consisting of a decreasing trend during the22

exercise phase, an increasing trend during the recovery and a global minimum (acme). In23

addition this time series exhibits a time-varying variance. We decompose the series into a24

deterministic trend and random fluctuation. The trend is obtained as an exponential fit25

of the data; the fluctuation is modeled as a mean reverting process driven by the trend,26

in which the random innovation has a time-varying variance. Data analysis, performed27

on ambulatory recorded electrocardiograms of 10 healthy subjects, shows that the model28

describes correctly the data series on a scale of at least 300 beats.29

Keywords: Time series; mean reversion; heart rate variability; exercise test; heart beat;30

RR interval.31

1. Introduction32

The exercise stress test is routinely performed to evaluate the presence in the elec-33

trocardiogram (ECG) of myocardial ischemia. In the multistage Bruce protocol [1]34

the patient on a bicycle ergometer is subjected to a workload increasing in time by35

steps (25W every 2minutes). The exercise is stopped when the heart rate reaches36

a maximum, usually 85% of the estimated top heart rate based on the patient’s37

age. After achieving peak workload, the patient spends some minutes at rest on the38

bicycle until his heart rate recovers its basic value. During the test 12-leads ECG39
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is monitored and diagnosis of ischaemia is usually performed by visual inspection1

of the ECG signal.2

The exercise induces strong modifications of the heart rate reflecting the control3

of the neuroautonomic system. The heart rate is measured beat-to-beat from the4

reciprocal of the duration of a complete cardiac cycle, defined as the interval between5

two consecutive R peaks in the ECG (RR interval). The RR time series recorded in6

the stress test shows a non stationary behavior that can be qualitatively described7

as follows. We refer as a typical example to Fig. 1.8

(1) The RR sequence shows two different types of trend: a decreasing one during9

exercise (stress phase) and an increasing one during recovery (recovery phase);10

these two phases are separated by a global minimum (acme).11

(2) The sequence shows a time dependent variability, that is larger when RR inter-12

vals are larger.13

In the analysis of the heart rate time series the variability of RR intervals is14

known as the Heart Rate Variability (HRV) [2]. This variability is quantified by15
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Fig. 1. Sequence of RR intervals (in msec) of a normal subject versus the beat number obtained
with the Bruce protocol exercise test. The exponential trend is added.
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means of several indices both in time and in frequency domain, and it is used to1

extract information on the control of the autonomic nervous system on heart rate.2

The HRV indices are usually evaluated on RR sequences recorded at rest, when3

the sequence can be supposed to be stationary or from 24 hours Holter monitoring,4

where analysis on several time scales can be performed.5

Evaluation of HRV indices during exercise has been less frequently performed.6

In clinical studies a first type of approach focuses on the trend component of the RR7

intervals in recovery: a heart rate recovery of less than 12 beats per minute in the8

first minute was found to be a predictor of overall mortality [3]. A second approach9

removes baseline trend induced by exercise in the RR series using a suitable filter10

and then evaluates HRV on the residual. Several indices estimated over intervals of11

two minutes were found to be predictors of cardiovascular mortality [4]. Nevertheless12

the authors of [4] point out that the results during exercise contrast to results of13

HRV during rest, both in time and in frequency domain, concluding that the current14

explanations for the physiologic genesis of HRV at rest do not necessarily extend15

to exercise testing.16

In the context of time series modeling evaluations of HRV have focused on com-17

parison of exercise to rest. The complexity of heart rate was found to be less during18

and after a training camp of athletes than before [5]. In [6] differences in corre-19

lation properties are found between rest and exercise. In [7, 8], where the cardio-20

respiratory synchronization is investigated during, before and after exercise, it is21

observed a reduced variability of RR intervals and a reduction in synchronization22

during exercise with respect to rest.23

In the experimental setting of previous papers the workload during exercise24

is constant in time. Data from the diagnostic protocols are characterized by a25

workload increasing in time. The RR time series so obtained are an example of26

a non stationary series for which novel mathematical techniques should be useful.27

A first attempt to investigate these data is in [9] where time-frequency methods28

of signal analysis were applied to estimate how low frequency and high frequency29

spectral components vary in time. In application to real data very low frequencies30

have been filtered out. An analysis based on a non parametric approach (analysis31

of extrema) is in [10]. The earlier references show the usefulness of information32

contained both in trend (heart rate recovery) and in residuals after detrending33

(time and frequency domain indices), but have not addressed the mathematical34

modeling of the observations in points (1) and (2) above.35

The source of variability of RR intervals includes both purely stochastic com-36

ponents and deterministic ones related to the multiple interactions of the cardiac37

system of which the cardiorespiratory interaction plays a dominant role. This inter-38

action has been widely investigated, using mathematical models, in various condi-39

tions of breathing during rest (see for instance [11]). The dynamics of RR intervals40

during spontaneous breathing reveal both a deterministic behavior in the so-called41

“angular component”, and a random one in the “radial component” [12]. According42

to the results in [8] the cardiorespiratory interaction is reduced during the exercise43
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(constant workload of 50 Watt) with respect to rest, so that when the workload is1

increasing its contribution to the RR variability should be even smaller. In addi-2

tion the strong deterministic trend in data recorded during increasing workload can3

mask the other sources of variability in RR series, modeled as low-frequency noise4

in [8].5

So it is natural to consider a stochastic model for the fluctuations as a candidate6

to describe some other features of the RR series as the time dependent variability7

(point (2) above). This time dependent variability was already observed in atrial8

fibrillation as a dependence of the RR variance on the RR mean in 24 hours Holter9

recording ([13, 14]). The time varying variance has been used in [15] to model10

volatility in non stationary financial series. Stochastic models of RR fluctuations11

have been recently used in different situations ([16, 17]). As to point (1) mathemat-12

ical models of non stationary series include the notion of “mean reversion”, widely13

used to model the economic time series (see for instance [18]).14

The first aim of the present report is to formulate a model of the RR sequence15

that explains the observations (1) and (2) above. We use the classical theory of16

time series [19] based on the decomposition of the series in two main components:17

deterministic trend and stochastic fluctuations. The model can be summarized as18

follows:19

• The trend is obtained using a simple mechanical model related to the workload.20

• The stochastic fluctuations are modeled by a mean reverting process driven by21

the trend.22

• The time varying variance is modeled using a random innovation whose amplitude23

is modulated by a smooth time varying scale factor.24

The second aim is to describe the series using a small number of parameters25

obtained from the model, that could be used to improve the diagnostic. Accordingly26

model estimation and validation is performed on real data series extracted during27

the routine ambulatory stress test. In this report we analyze 10 normal subjects28

who underwent to the test performed according to the Bruce protocol.29

2. The Model30

We model the observed RR time series as the realization of a sequence of continuous31

random variables (r.v.) X1, . . . , Xn, where Xt denotes the RR interval at the tth32

beat. The model is defined according to the following dynamical equation:33

∆Xt = −k(Xt − αt) + σtεt; t = 1, 2, . . . , t2 − 1. (1)34

Here ∆ is the difference operator, ∆Xt = Xt+1−Xt, k is a positive constant, the35

sequences αt and σt are, respectively, the trend and the time-varying variance and36

t2 is the number of beats. Both αt and σt are to be considered slowly variable at a37

small time scale (few beats). The stochastic fluctuation is defined by εt, a sequence38

of independent and identically distributed (i.i.d.) r.v. with zero mean. The model39
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is constructed starting from a basic random walk of equation ∆Xt = σεt, with1

addition of a mean reversion term, −k(Xt − αt), that drives the random walk2

towards the deterministic trend αt. The scale factor σt models the time-varying3

variance.4

Given the initial value X1 and the values of the parameters the equation defines5

a data generating process that can simulate the system. Equation (1) is a finite6

difference stochastic equation of Langevin type. The investigation of its theoretical7

properties is outside the scope of the present report and it is to our knowledge, not8

easy. We now consider in detail the components of the model.9

2.1. Trend10

The RR series shows a global minimum called “acme” whose value is denoted m.11

We define as “stress phase” the sequence of beats before the acme and as “recovery12

phase” the ones after the acme. The duration of the stress phase is t1 beats; the13

global duration is t2 beats; typical values are t1 = 1500, t2 = 2500 (see Table 1).14

We model the trend as a function α(t), solution of a differential equation, where15

t is a real number in the interval [0, t2]. Both phases are characterized by a restoring16

term that drives the system towards an equilibrium value M . For sake of simplicity17

we assume that this term is linear: −a(α−M), where a is a positive constant. Since18

the two phases may be characterized by different values, we shall use the notations19

a1, a2, M1, M2. In addition the stress phase is characterized by a constant negative20

contribution −b, that quantifies the workload and produces a decreasing of the RR21

intervals. We assume α(t) to be solution of the two following ordinary differential22

equations in different time intervals23

α′
1 = −a1(α1 − M1) − b

α1(0) = M1; t ∈ [0, t1],
(2)24

Table 1. Parameters of the RR series: from
left: t1 duration in beats of the stress phase,
t2 total duration in beats of the test, m min-
imum RR in msec, M1 maximum RR in
stress in msec, M2 maximum RR in recovery
in msec.

t1 t2 m M1 M2

1218 2373 377 665 701
2021 3223 331 534 593
1601 2662 383 749 679
2094 3217 342 571 597
2098 2883 369 814 642
1303 2213 418 855 762
1225 2459 389 634 544
1147 2062 395 678 723
1219 2131 421 610 696
2030 3097 365 492 594
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α′
2 = −a2(α2 − M2)

α2(0) = m; t ∈ [t1, t2].
(3)1

These equations have exponential solutions:2

α(t) =




M1 − b

a1
(1 − e−a1t), t ∈ [0, t1],

M2 + (m − M2)e−a2(t−t1), t ∈ [t1, t2].
(4)3

Obviously we cannot solve explicitly Eqs. (2) and (3) since we do not know the4

values of the parameters. We estimate these parameters fitting the data series by5

the formula in Eq. (4). This will be accomplished in Sec. 3, and the value of the fit6

for each t = 1, 2, . . . , t2 is denoted αt. An example of this exponential trend is in7

Fig. 1.8

2.2. Mean reversion9

The role of the mean reversion term −k(Xt−αt) is to drive the system towards the10

deterministic trend αt. For instance if the random innovations put the system above11

αt the subsequent increment ∆Xt is negative. The coefficient k > 0 measures the12

speed of reversion. The estimate of this parameter can be done only after having13

estimated the trend αt. More precisely we consider as an independent variable the14

values Xt − αt and as a dependent one the values ∆Xt (since the sequence ∆Xt15

has an element less than Xt − αt we cut the last element of the latter). From the16

scatter plot of the points defined, the slope of the linear fit gives an estimate of17

the parameter k. Of course for the validation of the model one has to verify that18

the intercept coefficient is not significantly different from zero, while the slope is a19

negative number significantly different from zero. This term can explain the large20

fluctuations around the trend that are mainly observed for large RR (Fig. 1).21

2.3. Time-varying variance22

After having estimated the parameter k, we define the sequence23

ηt = ∆Xt + k(Xt − αt), (5)24

so Eq. (1) becomes25

ηt = σtεt. (6)26

Squaring and taking logarithms we get27

log(η2
t ) = log(σ2

t ) + log(ε2t ). (7)28

Examples of sequences ηt and log(η2
t ) are in Fig. 2 (first and second panels, where29

only the stress phase is reported). From the plot of log(η2
t ) we argue that a linear30

regression with respect to time is reasonable:31

log(η2
t ) = c + dt + γt, (8)32
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Fig. 2. Stress phase. First panel: The ηt sequence; second panel: log(η2
t ); third panel εt.

where c and d are constants coefficients and γt represents the random error term.1

We estimate the coefficients using the standard least squares method (Table 2). We2

are mainly interested in the sign of d, since d < 0 (in the stress phase) implies (see3

below) that the scale function σt is decreasing in time (during stress), as expected.4

The data points (Fig. 2, second panel) are not symmetrically distributed around5

the linear fit, or in other words the distribution of γt is not symmetric around zero.6

In presence of a departure from normality we are not able to compute a confidence7

interval of d using standard methods; this point is outside the scope of the paper.8

Table 2. Estimated parameters of the model: stress (left) and recovery (right). From the left in
stress: a1 speed of reversion to equilibrium (beat−1), b workload (msec/beat), k1 speed of reversion
to trend (adimensional), c1 intercept (adimensional) and d1 slope (adimensional) of logarithmic
time varying variance, e1 standard deviation of the error term (msec). From the left in recovery:
the same without workload.

a1 b k1 c1 d1 e1 a2 k2 c2 d2 e2

0.00036 0.36 −0.16 3.82 −0.0030 2.49 0.0040 −0.20 1.99 0.0006 2.12
0.00084 0.24 −0.14 1.43 −0.0003 2.46 0.0021 −0.14 −0.37 0.0010 2.19
0.00096 0.53 −0.08 4.11 −0.0025 2.27 0.0022 −0.13 −1.26 0.0019 2.30
0.00024 0.18 −0.05 3.70 −0.0024 2.53 0.0018 −0.14 −1.41 0.0012 2.17
0.00073 0.43 −0.12 4.62 −0.0025 2.32 0.0004 −0.08 −4.28 0.0025 2.31
0.00053 0.43 −0.51 4.42 −0.0037 2.15 0.0030 −0.16 0.69 0.0011 2.29
0.00038 0.25 −0.21 4.36 −0.0041 2.25 0.0044 −0.18 0.93 0.0006 2.86
0.00028 0.32 −0.14 2.86 −0.0016 2.23 0.0062 −0.17 2.97 0.0003 2.12
0.00071 0.27 −0.08 2.44 −0.0025 2.39 0.0036 −0.09 0.27 0.0013 2.81
0.00021 0.16 −0.05 3.19 −0.0016 2.34 0.0037 −0.15 −0.84 0.0013 2.74
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Hence we get1

σt = e
1
2 (c+dt) εt = e

1
2γtsgn(ηt). (9)2

Notice that the square of ηt in Eq. (7) causes to lose the information on the sign3

of εt; the sign is recovered from ηt in Eq. (6). One could choose εt of unit variance4

just dividing for its standard deviation, after having estimated it; consequently the5

scale function σt should be multiplied by this constant.6

3. Estimation of the Parameters and Data Analysis7

For the aims of the present study we have selected 10 healthy subjects from a8

group referred for symptoms and signs suggestive of myocardial ischemia to ECG9

Laboratory during a recent study [20]. They underwent clinical examinations and10

scintigraphy; the standard 12-leads ECG was recorded during all the Bruce proto-11

col exercise test. It was used PC-ECG 1200 (Norav Medical Ltd.), which provides12

in output digital signal with resolution of 2.441 µV and 500Hz sampling frequency.13

The duration of the test was about ten minutes both for stress and recovery. These14

two durations are conditioned by two factors: the heart rate and the physical perfor-15

mance of the patient; evaluation of possible dependency between the two durations16

was outside the aims of the present work.17

Pre-processing was performed on the raw data. For the RR extraction the pre-18

cordial lead V5 was chosen, because it is less influenced by motion artifacts. The R19

peak detection was performed using a derivative-threshold algorithm. Ectopic beats20

were absent or less than 1% of the total beats for each subject. Some missed beats21

produced RR intervals outside the normal range. A filtering algorithm replaced22

these intervals with the median computed over blocks of 30 adjacent beats. In our23

study we have adopted the usual method in HRV literature to consider the beat24

number and not the real time as the independent variable in the RR time series.25

The real time scale of the experiment can be recovered from the RR series, just by26

summation of the RR intervals.27

Analysis of raw data, R peak detection, and subsequent computations were28

performed using the free statistical software R [21].29

The parameters m, M1, M2, t1, t2 are estimated just by observation of the time30

series. In particular M1, M2 are estimated by the mean of 20 values of the series at31

the start of exercise and at the end of recovery, respectively. A more subtile point32

is the estimation of the acme, and, in particular, of the beat number t1. To do this33

the RR series is smoothed so that there is only one beat in which the series takes34

its minimum and this defines uniquely t1. These values are reported in Table 1.35

The parameters a1, a2, b are not observable directly and have to be estimated36

from the model. From Eq. (4) a rough estimate of the parameters a1, a2, b can be37

obtained. These values are then used as starting ones in a nonlinear least squares38

estimation of the same parameters from the data series. The values obtained are39

reported in Table 2. The exponential fitting obtained is satisfactory in all the cases40

considered; a typical one is in Fig. 1.41
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The parameter k is estimated as the slope of a linear fit of ∆Xt with respect1

to Xt − αt. From the fitting report this slope is negative with a very high level of2

significance; the intercept is not significantly different from zero. In the estimation of3

the time-varying variance parameters of Eq. (8) the main parameter d is significantly4

different from zero.5

The last parameter is the standard deviation of εt, denoted e, which represents6

the amount of random noise contained in the data. The values of the parame-7

ters k1, c1, d1, e1 for stress and the corresponding ones for recovery are reported in8

Table 2.9

4. Model Diagnostics10

The analysis of the residuals εt shows at least qualitatively symmetry with respect11

to zero, which is compatible with the hypothesis of zero mean (Fig. 2, third panel);12

the quantile-quantile plot of the non normalized distribution versus a standard13

normal (Fig. 3, first panel) shows a moderate departure from normality.14

In order to test the assumption of independence of εt, we have used the standard15

methods of statistical time series analysis, for which we refer for instance to [19]. We16

have first extracted sub series of εt of 300 beats located in the middle of stress and17

−3 −2 −1 0 3

−1
0

−5
0

10

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

0 10 15 20

−0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series start=300, end=600

5

21

5

Fig. 3. Stress phase. First panel: The normal Q-Q plot of the sequence εt; second panel: the
autocorrelation function of εt for a segment of 300 beats.
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recovery phases. For these sub series we have computed the autocorrelation function1

(ACF). The plot of a typical ACF (Fig. 3, second panel) shows that the majority of2

the values are inside the 95% confidence limits (dashed lines) and that only a few3

values are nearly outside. In these cases it is usual not to reject the assumption that4

the sequence is uncorrelated. In some nonlinear models of time series (for instance,5

ARCH models of financial series) there is the following situation: the series is not6

independent; the series has zero ACF; the squared series has non zero ACF. For7

this reason we have computed the ACF of the sub series ε2t ; the results are similar8

to the ones of εt and we conclude that also the ACF of the sub series of ε2t is zero.9

This rules out the possibility of this type of nonlinear models. We have also tested10

the stronger assumption that the subseries εt is an independent sequence. We have11

used the runs test, a non parametric test that does not assume normality. The runs12

test shows that the independence cannot be rejected at the 95% confidence level.13

Hence we conclude that at least on the chosen temporal windows of 300beats, the14

i.i.d. assumption cannot be rejected.15

The same tests for the entire series εt (not reported here) show a significant16

departure from the i.i.d. assumptions. We conjecture that this is caused by non sta-17

tionary behavior that is still present, if much reduced, and that cannot be explained18

by the model. This behavior depends on several factors. The first one is the depar-19

ture of individuals features from the model, in particular for the exponential trend,20

that is typical of medical data. A second one is the low resolution of the RR interval21

measurement. Actually the RR values close to acme, where the variability is smaller,22

have a very small range and are more similar to discrete r.v. than to continuous23

ones. This can be seen at the right end of the εt plot in the third panel of Fig. 2.24

A third one is the cardiorespiratory interaction, that may modulate the variability25

at the beginning of exercise and at the end of recovery (larger RR values).26

At this stage of our findings the independence of the entire sequence εt can be27

assumed in the model defined by Eq. (1) only as a first approximation.28

5. Conclusion29

In our model of the RR series the trend is described by a simple (exponential)30

sequence, and the fluctuations are decomposed into two contributions: the time31

varying variance and the error term. The first one is in turn a simple (exponential)32

scale factor and the second one is modeled as a random sequence. The model uses33

a small number of parameters that describe some relevant features of the series, if34

compared to the complexity of this type of data. The parameters of trend and time35

varying variance reported in Table 2 show that there is an inter individual variabil-36

ity, but this is in the typical range of medical data. Some essential parameters that37

quantify the main features are rather homogeneous both in sign and in value.38

The tests on the random sequence εt show that over some intervals of 300beats39

this sequence can be considered as an independent sequence of r.v. Hence at40

this stage the main information contained in this sequence are the two standard41
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deviations e1, e2 of stress and recovery in Table 2 . We notice that these are rather1

constant in the group of individuals, which is surprising in medical data.2

The modeling of εt as an independent random sequence cannot be extended to3

all the duration of the test. In particular for larger RR intervals we expect that4

the interaction of respiratory and other systems modulates the RR variability. This5

would be reflected in a non zero autocorrelation of εt; but to observe it one should6

have sufficiently long stationary conditions. This experimental setting characterized7

by a strong trend masks these modulations. It is not excluded that for larger RR8

intervals a more detailed analysis aimed to point out the deterministic behavior as9

the one in [12] could reveal the cardiorespiratory interaction.10

Our results show that a great part of the information is contained in the non11

stationary behavior, i.e., the profiles of trend and time-varying variance. In those12

HRV studies, where indices are computed on the residuals obtained after detrending,13

a bias is introduced since there is another source of non stationarity, i.e., these14

residuals are non stationary in variance. This could explain the controversial results15

in [4].16

While the actual clinical use of the stress test consists mainly in a visual inspec-17

tion of the ECG, the model provides a set of parameters that could lead to new18

clinical applications. Each comparison of a parameter during stress with the cor-19

responding one during recovery could be interesting. For instance parameters a120

and a2 reflect the restoring force towards equilibrium in stress and recovery. These21

two phases are respectively prevalently under the influence of the sympathetic and22

vagal termination of neuroautonomic system, so that the parameters should pro-23

vide a quantification of these influences. The same for the pairs k1, k2 and e1, e224

to which a physiologic meaning should be given. We have described the stepwise25

loading by a unique constant parameter, as a first approximation. A more accu-26

rate use of timing of the load and of the response could also provide interesting27

informations. A comparison between normal of the non normal cases could provide28

useful insights for instance in diagnosis of ischaemia. In these type of investigations29

a larger number of cases than the present one is required.30
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