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Abstract

The use of Bayesian approach in forensic science requires the eval-
uation of likelihood ratio related to the crime scene evidence event
E and the suspect characteristic event C. This evaluation fails when
the two events are disjoint, i.e. the evidence E is not compatible
with the characteristic C of the suspect, and then the casework has a
negative conclusion. This situation is very common, especially using
continuous variables, e.g. height, refractive index, voice frequencies,
etc. In particular in standard approach there is no difference between
an evidence E close to C (for instance, heights with 1 centimeter of
difference) and an evidence far from C.

We propose a method of calculation of the likelihood ratio, based
on a bivariate representation of the database, supposed to be Gaus-
sian, with a correlation coefficient r > 0. The likelihood ratio, calcu-
lated with this method, has larger values when both the events are in
the tail of the distribution, as expected. Moreover, it reduces to the
standard one when r tends to 1.

Application in the case of height is performed using Italian Cara-
binieri database.
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1 Introduction

The aim of forensic science is to support intelligence and the judge in making
decision in Court by means of a scientific approach in evaluation of evidences.
Accordingly, the forensic scientist has to present the results of his analysis in
such appropriate way that no doubt of interpretation could arise.
The widespread accepted approach in the evaluation of evidences is the prob-
abilistic one, based on the Bayesian model [1, 2, 3, 4, 5].
The theory allows to consider two complementary events C and C̄ in very
different cases. For example, the event C could be related to a blood group of
a biological stain, or a refractive index (RI) of a glass fragment, or a height,
and so on, concerning the suspect of the crime; so the event C is usually
related to the guilty of a person, or his presence on the crime scene, or his
responsibility in breaking a glass window, and so on.
In a suitable probability space with a probability P , the a priori odds O(C)
in favor of the event C is defined by:

O(C) =
P (C)

P (C̄)
(1)

The a priori odds O(C) represents how many times the probability of the
event C is stronger with respect to the probability of the event C̄: if O(C) = 1
the two probabilities have the same value, and no help in making decision in
favor of one of them can arise; if O(C) > 1, the event C is more probable
than C̄; finally, if O(C) < 1, the event C is less likely than the event C̄.
When information changes the scenario, new elements could be considered,
and they could improve or not the evaluation of odds. If the event E rep-
resents the evidence, the judge must evaluate the a posteriori odds O(C|E),
which is defined by:

O(C|E) =
P (C|E)

P (C̄|E)
(2)

where the usual notation for the conditional probability of the event A with
respect to the event B has been used, i.e.:

P (A|B) =
P (A ∩ B)

P (B)
(3)

For example, the evidence E represents information that arises from the
crime scene analysis, and concerns the same variable of C: for instance, they
are both intervals of heights.
According to Bayes’ theorem, the a posteriori odds O(C|E) can be written
with respect to the a priori odds O(C) as:

O(C|E) = LR(C, E) · O(C) (4)
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where the quantity:

LR(C, E) =
P (E|C)

P (E|C̄)
=

P (E ∩ C)

P (E ∩ C̄)
· P (C̄)

P (C)
(5)

is called likelihood ratio.
If LR(C, E) > 1, the evidence E favors the event C, and the greater the
value of the likelihood ratio is, the more determinant the evidence is. On
the contrary, if LR(C, E) < 1, the evidence E favors the event C̄. Finally,
LR(C, E) = 1 implies the absolutely unconcern of the evidence about the
two events C and C̄.
Note that, even if two complementary events C and C̄ are considered in eq.
(5), the generality of the method allows to consider the evaluation of the
likelihood ratio for any two events.
Let us consider the following example. Let the probability space be the set
of the real numbers, <, and the exclusive events C and C̄ be the following:

C: the height in centimeters of the suspect does belong to the
interval [170, 171];

C̄: the height in centimeters of the suspect does not belong to
the interval [170, 171];

Let us suppose now that the evidence E is:

E: the height in centimeters of the crime author measured from
the videotape recorded on the crime scene belongs to the interval
[164, 169];

An analog situation could present in the analysis of the RI of glasses, for
which we refer to [2], if information on RI on both the suspect and the crime
scene were associated to intervals.
The trivial consideration about the possibility that C matches E is obviously
naught (C ∩E = ∅), and so a negative conclusion follows about the fact that
the measured height of the crime author from the recorded videotape can
belong to the interval C.
The reasons for which this negative conclusion is unsatisfactory lie on the
fact that an error of measurement could be done, or the evidence E could
arise from non 100%-reliable information (see, for example, [5], where the
information about the color of a taxi could be not 100%-reliable since it was
detected in darkness time).
Attempts to overcome this match/non-match approach into a continuous one
has been already done in case of interpretation of evidence for RI of glass
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fragments [6, 7]. In Lindley [6], the evidence and the control are expressed by
two groups of measures, whose means are naturally considered to be normal
variables, say X and Y . These two variables are supposed to be dependent
under the assumption of guilty, and a bivariate distribution is taken into
account. In Walsh [7], the denominator and the numerator of the likelihood
ratio are, respectively, the values that the probability density of the database
and of the t-density evaluated with control take on the mean value of the
evidence. In both these papers, the relevant feature is that a greater evidence
of identity occurs when X and Y are close and near to an unusual index with
respect the case of frequently occurring indices.
In this paper, we try to overcome the match/non-match approach in the
case in which the measures are represented by intervals, maintaining the
advantages of the previous ideas. A distinctive feature of our approach is
that probabilities are computed by integrating the probability density on
intervals and not from a particular value of the density.
For the above considerations, we give a definition of the likelihood ratio which
is non-zero also in case that the events are disjoint. Our definition has the
following main properties: it depends on a parameter r and reduces to the
standard case as r reaches a given value (in our case, r → 1); the likelihood
ratio is greater if the two intervals are both in the same tail of the distribution
with respect to the case that they are both close to the mean. The method
is based on a bivariate representation of the probability P as explained in
the next section.

2 The extended likelihood ratio

Measurements in a database can be modeled as a random variable, which is
characterized by a probability distribution from which it is straight forward to
determine the probabilities of intervals of interest. For instance, the database
of the heights of a population is described by a random variable, say X, with
probability distribution PX . The probability of events like {X ∈ A}, where
A is for instance an interval of the real line <, is denoted as PX(A).
Our method is based on the idea that there is another random variable Y ,
with distribution PY equal to PX . This means that for any event A, one has
PX(A) = PY (A). We remark that X and Y are distinct random variables:
if one randomly picks an individual according to the first one and randomly
picks an individual according to the second one, this generally gives different
outcomes of the height. In probability theory language, these two variables
are called ‘equally distributed’; only if two variables are assumed to be ‘equal’,
the two random outcomes are equal.
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A graphical representation of the outcomes, as ordered pairs of numbers, is
a set of points which form a so called ‘scatter plot’. For instance, in figure 1
there is the result of the simulation of 500 outcomes of two variables (heights)
equally distributed according to a common database.
An important ingredient of our approach is that the two variables are ‘nearly
equal’, i.e. for any pair of outcomes the two values are ‘nearly equal’, in the
sense that the scatter plot is concentrated along the main diagonal {x = y}.
If one has, for instance, two intervals, A and B, the event {X ∈ A ∩ B}
can be written as the intersection of the two events {X ∈ A} and {X ∈
B}, and in our approach we replace the second one by {Y ∈ B}. In a
graphical representation, the two events {X ∈ A} and {Y ∈ B} are two
strips of the plane, and their intersection is a rectangle. Hence, we replace
the intersection A ∩ B by the rectangle A × B, which is not empty also if
the first is (see figure 1). Consequently, the probability of the intersection
is replaced by a bivariate probability of the rectangle, and so an extended
likelihood ratio can be defined. We describe more precisely our approach
below, while mathematical details are given in the Appendix.
We assume that the measurements in the database can be modeled by a
normal probability distribution X with mean µ and variance σ2.
We consider a jointly normal pair of variables (X, Y ), with distribution P r

XY ,
such that its marginal distributions coincide with the distribution of X. The
strength of the dependence between the two variables is quantified by their
correlation index r, and it is well known that in general one has:

−1 < r < 1 (6)

and that the case r = 0 corresponds to the independence of X and Y .
We are interested in the case r close to 1, i.e. when the bivariate density
is concentrated along the straight line {x = y}, corresponding to a strong
positive dependence between X and Y (see figure 1).
With reference to this figure, the bivariate probability of a rectangle can be
numerically evaluated as the fraction of points contained in the rectangle
over the total number of points.
Our method is based on the following rule:

to replace in the likelihood ratio the univariate probability of the intersection

of two events with the bivariate probability of the associated rectangle.

More precisely, we make the replacement:

PX(A ∩ B) → P r
XY (A × B) (7)
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Figure 1: Simulation of a bivariate normal database with 500 points. (a)
and (c): simulated points for correlation r = 0.7; (b) and (d): simulated
points for correlation r = 0.9; the greater the correlation is, the more closer
to the main diagonal the concentration of points is. (a) and (b): rectangle
not intersecting the diagonal for r = 0.7 and r = 0.9 respectively; (c) and
(d): rectangle intersecting the diagonal for r = 0.7 and r = 0.9 respectively.
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We remark that the bivariate representation computed on rectangles enjoys
the properties of the univariate probability of intersection, but if A∩B = ∅,
while PX(A∩B) = 0 in the classical case, in our approach one has P r

XY (A×
B) > 0.
With these assumptions, we can provide a new version of the formula for
computing the likelihood ratio: the extended likelihood ratio LRr(C, E) is:

LRr(C, E) =
P r

XY (E × C)

P r
XY (E × C̄)

· PX(C̄)

PX(C)
(8)

obtained by making the replacement (7) in the definition of the likelihood
ratio in equation (5).
We shall prove that P r

XY (A × B) tends to PX(A ∩ B) as r tends to 1, i.e.
when the correlation takes its maximum value.
We note that if r = 0, i.e. in the case of independence, the extended likelihood
ratio as computed according to equation (8) is 1 for any pair of events. Hence
r = 0 implies a total unconcern of the two events.
In this sense, the parameter r can be interpreted as the degree of uncertain-
ness related to the measurement of both intervals, being r = 0 the case of
total uncertainness, while r = 1 the case of measurements without uncer-
tainness.
In applications, the value of r has to be chosen in the interval (0, 1) depending
on the specific case-work under consideration. The question of an optimal
choice of r is an important problem which needs further investigation.

3 A case-work: evaluation of extended likeli-

hood ratio for the height

We apply the proposed approach to a case-work in which the measurements
of the height of the suspect is the interval C = [x1, x2] and the evidence is
the interval E = [y1, y2], and these are disjoint but very close. We have used
the database of about 200,000 people filed in the police archive of Italian
Carabinieri. This distribution is very close to a Gaussian one with mean
µ = 170.73cm and standard deviation σ = 8.86cm. In this application, we
choose as an example the value r = 0.95, very close to the maximum r = 1,
which means that we retain the measurements very reliable.
The bivariate normal distribution has been simulated using the free statistical
software R [8], and the number of simulated points is 50,000. The probability
of the rectangle C×E ⊆ <2 can be easily computed counting the points that
fall inside the rectangle and dividing by their total number.
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Figure 2: Extended likelihood ratio as a function of x for r = 0.95, for the
intervals E = [x− 4, x] and C = [x+1, x+5], computed for values of x from
145.6 to 195.6 at steps of 2 centimeters. The minimum is 0.90.

Putting C = [x − 4, x], E = [x + 1, x + 5], the likelihood ratio is a function
of x, and it is investigated in order to validate our method. As result, this
function has the following main property: its value is below 1 if x is close
to the average of the heights, and it is very large if x is in the tails of the
distribution. The plot of this function is shown in figure 2.

4 Conclusion

In this paper we have extended the notion of likelihood ratio to those cases
in which the control and the evidence are expressed by disjoint events, and
in particular by disjoint intervals.
Our proposal is based on the assumption that the database is normal and
uses a bivariate normal distribution.
The value of the extended likelihood depends on a parameter r such that in
the limit r → 1 the standard definition is recovered.
We have applied our method to the database of heights filed in the po-
lice archive of Italian Carabinieri (200,000 people). We have considered the
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events C and E, both of which are obtained from a indirect measurement.
For this case, we have chosen r = 0.95.
We have computed the extended likelihood ratio in a case of two disjoint but
nearby intervals of heights [x−4, x] and [x+1, x+5], and we have investigated
the dependence on x. As expected, the likelihood ratio calculated with our
method is very large when x is in the tails of the distribution.
In some applications, it may be useful to compare the likelihood ratio of E
with respect to two events C1 and C2, related to two different suspects. In
this case, in which a comparison is required, the choice if r is less critical.
The paper can be improved in several directions: to consider a non-normal
database and a non-unidimensional database. The first case can be developed
constructing a bivariate representation of the database, by using the theory
of copulas. The second case is important, for instance, in analysis of voice
frequencies. Finally, also the problem of dependence of the likelihood ratio
on r, fixed a pair of intervals, should be investigated. For instance, the
maximum or the mean value of the likelihood ratio could provide interesting
quantities independent on r.
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Appendix

We assume that the database is modeled by a normal random variable X
with mean µ and variance σ2, whose probability density is:

pX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (9)

and the probability of the event A ⊆ < is:

PX(A) =

∫

A

ds pX(s) (10)

The probability density of the pair (X, Y ) is a two variable function pr
XY (s, t),

with (s, t) ∈ <2, so that the probability of rectangles is:

P r
XY (A × B) =

∫

A

ds

∫

B

dt pr
XY (s, t) (11)

It is well known [9] that the joint probability density of a pair (X, Y ) of
normal variables is the following two variables function:

pr
XY (s, t) =

1

2πσ2
√

1 − r2
e
−

1
2σ2(1−r2)

[(s−µ)2−2r(s−µ)(t−µ)+(t−µ)2 ]
(12)

where the parameter r represents the correlation index. In particular, the
following property holds:

r =
Cov(X, Y )

√

V ar(X)V ar(Y )
(13)

where:
Cov(X, Y ) = E((X − µ)(Y − µ)) (14)

and E denotes the expectation.
We also note that the function pr

XY (s, t) is symmetric, i.e.:

pr
XY (s, t) = pr

XY (t, s) (15)

and its marginals are the densities of X and Y , according to the following
equations:

pX(s) =

∫

<

dt pr
XY (s, t) (16)

pY (t) =

∫

<

ds pr
XY (s, t) (17)
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In turn, the two densities are equal:

pX(s) = pY (s), s ∈ < (18)

Similarly, the probability of rectangles satisfies the following properties: by
symmetry, one has:

P r
XY (A × B) = P r

XY (B × A) (19)

and taking marginals:
P r

XY (A × <) = PX(A) (20)

Proof of the limit P r
XY (A × B) → PX(A ∩ B) as r → 1

In eq. (12), we make the substitutions:

ξ = x − µ, η = y − µ (21)

which is equivalent to consider centered variables, and we reduce the quadratic
form into a diagonal one:

(x − µ)2 − 2r(x − µ)(y − µ) + (y − µ)2 = ξ2 − 2rξη + η2 = (22)

= (1 + r)(
ξ − η√

2
)2 + (1 − r)(

ξ + η√
2

)2

Introducing the new variables:

u =
ξ − η√

2
, v =

ξ + η√
2

(23)

the joint density pr
XY can be expressed as a product:

pr
XY (x, y) = gr

+(v)gr
−
(u) (24)

where:

gr
+(v) =

1√
2πσ

√
1 + r

e
−

v
2

2σ2(1+r) (25)

and:

gr
−
(u) =

1√
2πσ

√
1 − r

e
−

u
2

2σ2(1−r) (26)

The two functions gr
+ and gr

−
are the densities of centered normal variables

with variances given by σ2(1 + r) and σ2(1 − r), respectively. In particular,
we shall use the following property of gr

−
: given any interval J , one has:

lim
r→1

∫

J

du gr
−
(u) =

{

0 if 0 /∈ J

1 if 0 ∈ J
(27)
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This property, whose proof follows from standard arguments, is equivalent
to say that the density gr

−
tends to the delta mass concentrated on 0. Fur-

thermore, the density gr
+ tends to the one of a centered normal with variance

2σ2.
Since the Jacobian determinant of the transformation (ξ, η) → (v, u) is 1,
denoting by T (A × B) the transformed rectangle, one has:

P r
XY (A × B) =

∫ ∫

T (A×B)

dudv gr
+(v)gr

−
(u) (28)

The axes (v, u) are a pair of orthogonal axes centered at (µ, µ), the first one
corresponding to the line {x = y}. The set T (A × B) is a normal domain
with respect to the v axis, and so it can be represented by means of the
collection of intervals J(v), v ∈ K, of the u axis, where K is the projection
of the domain on the v axis. The double integral is then reduced to:

P r
XY (A × B) =

∫

K

dv gr
+(v)

∫

J(v)

du gr
−
(u) (29)

We first consider the case A ∩ B = ∅. We have already noticed that in this
case the domain T (A×B) does not intersect the v axis, hence all the intervals
J(v) do not contain zero. Hence, from equation (27), first case:

lim
r→1

∫

J(v)

du gr
−(u) = 0 (30)

and also the double integral tends to zero.
In the case A ∩ B = D 6= ∅, the only non-vanishing contribution is:

P r
XY (D × D) =

∫

K

dv gr
+(v)

∫

J(v)

du gr
−
(u) (31)

where all the J(v)’s contain 0. In force of eq. (27), second case, the inner
integral has limit 1 for any v ∈ K, and so:

lim
r→1

P r
XY (D × D) =

∫

K

dv gr
+(v) (32)

If c1 and c2 are the extremes of D, then the extremes of K are
√

2(c1−µ) and√
2(c2 − µ). For the computation of the integral, if we use the new variable

s = µ + v/
√

2, the new extremes are exactly c1 and c2, and the integrating
function becomes pX(s). Hence:

∫

K

dvgr
+(v) =

∫

D

pX(s)ds = PX(D) (33)

and this concludes the proof.
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