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Abstract. The heartbeat time series of subjects with atrial fibrillation is mod-
eled using a non stationary sequence of random variables. The mean and standard
deviation are estimated by using a segmentation of the data. We find that they
are linearly related and then we use a lognormal model to analyze the data. The
autocorrelation function of the residuals shows to be significantly close to zero.

1 Introduction

The heartbeat time series is the sequence of time intervals between two con-
secutive R peaks of the ECG, corresponding to the depolarization of the
ventriculus(systole). The sequence is extracted from 24 hours Holter ECG
and defines a series of about 105 terms. Cardiac interbeat intervals usually
fluctuate in a complex and apparently erratic manner. These fluctuations
can be considered as a superposition of those caused by autonomous dynam-
ics and the those driven by environmental stimuli. Actually a normal heart
shows a strong adaptability to external changes. This adaptability relies on
two mechanisms. The first one is the influence of the autonomous nervous
system on the pacemaker cells of the heart with typical response delay of the
order of 1 sec. The second mechanism depends on humoral stimulation for
which the response delay is much longer.

Atrial fibrillation is an arrhythmia characterized by rapid randomized
contraction of the atrial miocardium causing a totally irregular, often rapid,
ventricular rate. In this situation the control of the autonomous nervous
system on the RR sequence fades and the heart rhythm should be mainly
modulated by long term humoral stimulation.

The fluctuations of the RR sequence are larger than in a normal heart
and their correlations appear to be weaker. There is evidence that an asso-
ciated suitable symbolic dynamics is described by a sequence of independent
random variables (Cammarota et al., 2002). Recently it has been found by
using multiscale analysis that a suitable notion of complexity, measured as
approximate entropy, is smaller for subjects with atrial fibrillation than for
normals (Costa et al. 2002).

In this study we analyze the heartbeat time series of subjects with atrial
fibrillation. We apply standard tools of analysis of time series, like the auto-
correlation function, in order to quantify the correlation between the values



in the series. The main problem is that the heartbeat time series is highly non
stationary. Various techniques have been adopted to investigate this kind of
series. One can consider the series of the differences and restrict the analysis
to a suitable short segment (Cammarota, 2000). In econometrics and finance
non stationary time series are modeled as the sum of several components,
some deterministic (trend and seasonal variation) and other stochastic (fluc-
tuation). Two types of non stationary behaviors are usually considered: non
stationarity in mean, due to the presence of a deterministic level function,
and non stationarity in variance. In physical literature the analysis of non
stationary series is performed by using the detrended fluctuation analysis
(Peng et al. , 1995). In our model we try to use a mixture of the above tech-
niques. We divide the series into short segments where it can be assumed to
be approximately stationary. We evaluate mean and standard deviation for
each segment and represent these pairs on a scatter plot. The striking fact is
that for most of our cases this is approximately linear, whereas for a normal
subject this does not happen (see fig 1). This is the main motivation for the
choice of our model: a sequence of lognormal variables with time dependent
parameters. In this paper we test the above probabilistic model and use it to
extract from the RR sequence an essentially stochastic component of short
range memory (range zero or one). Our approach is in some sense comple-
mentary to the one in (Hayano et al., 1998) where suitable indexes (in our
opinion related to the deterministic component of the sequence) have been
shown to display a circadian rhythm. Our results on short range memory
(stated at the end of section 4) should be compared to the ones obtained in
(Stein et al., 1999), where short range predictability in RR series has also
been found in some cases.

2 The model

In our model of fibrillating heart time series we assume that non stationarity
in mean and in variance are both present but that they are linearly related.
This can be achieved by considering a non stationary sequence of random
variables Xi, based on lognormal distribution. We denote by εi a stationary
sequence of standard normal random variables and define

Xi = a + eµi+σεi

The sequence of positive numbers µi represents the trend, and takes into
account environmental stimuli; the two constants a and σ describe the heart
response. The random variables εi can be assumed to be independent (this
is a good approximation in some cases) or to form an AR(1) sequence (see
below). We can easily compute the expectation

E(Xi) = a + eµiE(eσεi) = a + eµi+
1
2 σ2



and the variance

V ar(Xi) = V ar(eµi+σεi) = e2µiV ar(eσεi) = e2µi+σ2
(eσ2

− 1)

Therefore these two quantities are related. Actually

V ar(Xi) = (E(Xi)− a)2(eσ2
− 1)

and then √
V ar(Xi) = η(E(Xi)− a), η =

√
(eσ2 − 1)

We stress that the peculiar feature of our model is that the local mean and
the standard deviation are linearly related, as shown in the last equation.

3 Estimation of parameters

We have analyzed the RR time series from Holter ECG of 28 patients of our
Cardiology Department with atrial fibrillation. The trend is estimated by the
step function Tk defined below. We consider disjoint intervals of l integers

Ik = {kl, ..., kl + l − 1}, k = 0, 1, ...

and put

Tk =
1
l

∑
i∈Ik

Xi

In our analysis we have chosen l in the range (100, 500) and the results es-
sentially do not depend on the particular choice. The expectation E(Xi) is
estimated by Tk when i ∈ Ik. If we put

Vk =
1
l

∑
i∈Ik

(Xi − Tk)2

the variance V ar(Xi) is estimated by Vk when i ∈ Ik. We also put Sk =
√

V k

and consider the scatter plot of the pairs (Tk, Sk). The typical shape of this
plot for atrial fibrillation and normal heart are shown in fig.1. It is natural
therefore to describe plots for atrial fibrillation by using linear functions. One
can estimate the parameters a and η by using a linear regression. We have
found that the typical values of η are between 0.2 and 0.3 in a subgroup of
10 cases. From η one can compute σ and µi by using the equations

σ2 = log(1 + η2)

and
µi = log(E(Xi)− a)− 1

2
σ2



Hence for any i ∈ Ik the numbers µi can be estimated by the quantity

µi = log(Tk − a)− 1
2
σ2.

The variability of the sequence µi (or equivalently of Tk) is related to the non-
stationary behavior of the RR-series (night and day differences for instance),
but it is not the object of our study. Instead we are interested in introducing
quantities which are intrinsically related to the heart response, namely a and
η. These quantities, by definition, are estimated on the whole 24 hours RR
series.

 0

 50

 100

 150

 200

 250

 300

 400  500  600  700  800  900  1000  1100  1200  1300
0

50

100

150

200

250

300

400 500 600 700 800 900 1000 1100 1200 1300

Fig. 1. Scatter plot of the pairs (Tk, Sk) for the interval length l = 100 in atrial
fibrillation (left figure) and normal heart (right figure).

4 Testing the model

The residuals of our model are defined by

εi =
log(Xi − a)− µi

σ

One has to test two things: that the random variables εi are standard normal
and that they are independent.

The histogram of the residuals is much more symmetric than the his-
togram of the series and at a qualitative level it has a satisfactory normal
shape. The autocorrelation function of residuals, supposed to be stationary,
is

ρ(s) = Cov(ε0, εs)/V ar(ε0)

This function can be used to quantify the correlation between the elements
of the series. If they were independent this should be equal to 0 for s ≥ 1.
The sample autocorrelation is given by

rs =
n−s∑
i=0

(εi − ε)(εi+s − ε)/
n−s∑
i=0

(εi − ε)2



were ε is the mean of the series εi. In the analysis of the residuals it is generally
assumed that if their autocorrelation falls outside the range

− 2√
N

, +
2√
N

where N is the length of the series, the residuals are significantly different
from zero. We have found that this function is approximately comprised in
this range in many cases. In some of them however it has a significantly non
zero value at lag s = 1(see fig.2). We improve our model using an AR(1)
model for the residuals

εi = θεi−1 + bwi, wi ∼ N(0, 1) i.i.d.

The parameter θ is estimated by r1, the value of the sample autocorrelation
of the sequence εi at lag 1. The new residuals wi are now close to zero for
any s ≥ 1 (fig. 2).
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Fig. 2. Left figure: Sample autocorrelation function of the residuals for a) εi and
b) wi. The lower line (dotted in the figure) represents the autocorrelation of the
residuals wi of the AR(1) model for atrial fibrillation. Right figure: Sample auto-
correlation function of the residuals for a normal heart.

5 Conclusion

The main feature of our model is that it essentially describes the stochas-
tic component of fibrillation time series using only two parameters, a and η.
These parameters are found by a linear regression of the scatter plot of the
mean - standard deviation pairs (Tk, Sk) of the series, where k runs over the
segments in which the series has been divided. Actually a linear relationship
between mean and standard deviation seems to be a feature of atrial fibrilla-
tion, whereas it is not observed in normal heartbeat. The step function Tk,
which takes into account the long term external influences, provides useful
information when coupled with the function Sk. For some of our series a third



parameter is needed. It is the coefficient of the AR(1) model for the sequence
of residuals. This parameter should describe a dependence of range 1 which
occurs in some individuals.
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