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Abstract

The heartbeat time series of the electrocardiogram recorded dur-
ing exercise test clearly reflects the physiological control mechanism
of the autonomic nervous system on heart rate. This series shows
both decreasing and increasing trends and variability of the variance.
We analyze the series of intervals between two consecutive extrema,
i.e. the durations of accelerations or decelerations of heart rate. We
compute the distribution of the length of these intervals and their
mean in a model of stationary independent variables, where they are
independent on the variables distribution. We use the mean length as
discriminant statistics to compare stress and recovery phases. Data
analysis performed over the heartbeat series of 14 healthy subjects
shows significant difference between stress and recovery.

Keywords: Exercise test, extrema, heartbeat, time series, RR interval.
Mathematics Subject Classification 2000: 62P10, 92C55

∗Dept. of Mathematics, University of Rome ”La Sapienza”, cammar@mat.uniroma1.it
†Dept. of Clinical Sciences, University of Rome ”La Sapienza”,

mario.curione@uniroma1.it

1



1 Introduction

The heartbeat time series is defined as the sequence of time intervals be-
tween consecutive R peaks (RR intervals) in an electrocardiogram (ECG).
This series reflects the physiological control mechanisms of the heart rate.
The main mechanism is the autonomous nervous system, which controls
heart rate via the sympathetic and parasympathetic terminations. The vari-
ability of the RR sequence, known as Heart Rate Variability (HRV), is used
to extract informations on the autonomic system (see [12] and references
therein).

One of the situations in which the neuroautonomic control is more ev-
ident is during the cardiac exercise test. This test is performed to evaluate
the presence of myocardial ischemia. In normal subjects during effort my-
ocardial blood flow increases three or four times compared to rest, as a con-
sequence of increased oxygen request. In ischemic patients coronary artery
stenosis does not allow the blood flow increase during effort. Reduced
myocardial oxygen supply induces ischemia and consequent modifications
in electrophysiological, mechanical and perfusional myocardial faculties.
Electrocardiogram, echostress or scintigraphy are respectively employed to
detect these modifications.

We consider the routine ambulatory bicycle exercise test of normal sub-
jects monitored by ECG. It is commonly believed that during stress, in
which heart rate is increasing, the heart is prevalently under influence of
the sympathetic branch and during recovery, in which heart rate is decreas-
ing, the heart is prevalently under influence of the parasympathetic branch.

Spectral analysis [10] is the main tool used to investigate the control of
the autonomic system of the heart rate. It is believed that the parasympa-
thetic control is related to high frequency (HR) spectral components of RR
sequence (0.15 Hz - 0.4 Hz) and the sympathetic one is related to low fre-
quency (LF) components (0.04 Hz - 0.15 Hz). These results are supported
by experiments in humans performed with pharmacological blockade or
stimulation such as the tilt test (for example [4]). In 24 hours normal heart-
beat there is evidence of a significant difference between positive and neg-
ative accelerations [5], suggesting that sympathetic and parasympathetic
controls are not symmetric.

In the above situations the RR time series can be supposed to be station-
ary. In the case of the exercise test the RR series is not stationary showing
an evident typical trend (fig.1). In addition the series is heteroschedastic,
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i.e. its variability depends on time. This feature was already observed in
atrial fibrillation and was proposed to discriminate this pathology [13]. This
data can be transformed into a stationary sequence, using a model based on
linear dependence of standard deviation versus mean [3]. Atrial fibrillation
data are less complex than normal ones, and in particular exercise test data
are strongly non stationary, so the above methods do not apply.

Empirical Mode Decomposition (EMD)[9] is a powerful technique for
the analysis of non stationary signals. This technique, which was originally
formulated for continuous time signals, has been applied also to discrete
time series such as the RR sequences [1, 6]. This method is based on the
analysis of extrema (local maxima and minima) of the series. The expected
number of extrema per unit time has been used as a discriminating statistic
in testing non linearity [7]. Mathematical properties of the extrema of the
intrinsic mode functions of EMD for continuous signals are non trivial; in
the case of white noise some results have been obtained by using numerical
simulation [14].

For discrete signals, if the time series is modeled as a sequence of con-
tinuous random variables (r.v.), the properties of the extrema are not yet
known. The first aim of the present paper is to investigate these properties.
From a data series we extract the series defined by the length of mono-
tonicity intervals, i.e. the distance between two consecutive extrema. If
the data series is an independent identically distributed (i.i.d.) sequence
of continuous r. v., the length of monotonicity interval series is stationary,
but nothing is known about its dependence structure; numerical simulation
suggests that this sequence is weakly correlated. Hence the univariate dis-
crete density plays a central role in its description. We compute this density,
which has the remarkable property of being independent on the distribution
of the variables in the data series; we show that the mean is equal to 3/2.

The second aim of the paper concerns the applications of the above
ideas to exercise test RR data series. In performing data analysis we have
found that the length of monotonicity intervals series extracted from the
data series is very close to being stationary and uncorrelated. This series
describes the durations of acceleration and deceleration of the heart rate.
As above the univariate discrete density of this series plays a central role in
its description. We have estimated this density from the data and used the
mean as a discriminant statistics. The mean has the following properties:
(i) it is significantly different for increasing and decreasing intervals;
(ii) it is significantly higher than 3/2 both in stress and in recovery phase.
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Property (i) reflects the time irreversibility of the RR series, as was already
found for other type of data [5, 6]. This also suggests that during exercise
the control of the sympathetic and parasympathetic branch of the neuroau-
tonomic system could be quantified by the durations of acceleration and
deceleration. Property (ii) can be understood in the light of the result on
i.i.d series, for which the value 3/2 is the universal mean of the length of
monotonicity intervals. We conjecture that the RR series has a mean higher
than 3/2, due to the action of the neuroautonomic system, which prolon-
gates the durations of acceleration and deceleration.

The analysis of extrema is related to the first Intrinsic Mode Function
of the EMD, since it concerns only the smallest scale of the series. However
the present paper shows that it can be useful for clinical applications and
that it is possible to get mathematical results.

We introduce the analysis of extrema and prove some results in the next
section. We report on the results of data analysis in the third section; in the
fourth section we compare with other methods, in particular with spectral
analysis.

2 The analysis of extrema

We model the observed time series x1, ...,xn as the realization of a se-
quence of r. v. X1, ...,Xn, with joint continuous distribution P. We consider
the subsets of R3 : A = {x1 < x2, x2 > x3} corresponding to maximum
condition and B = {x1 > x2, x2 < x3} corresponding to minimum condi-
tion. For the sequence X ′

i = (Xi,Xi+1,Xi+2), we define the r.v. T max
i and

T min
i respectively as the occurrence times of the event A and B.

The analysis of extrema consists in the extraction of two sequences
from the original time series. The first one is the monotonicity intervals
length, defined as follows. Let us suppose that the first extremum is a min-
imum, i.e. T min

1 < T max
1 ; then we have that T min

i < T max
i , for each i. Since

the other case can be treated in a similar way, we adopt this assumption in
all this section. We define

H+
i = T max

i −T min
i , H−

i = T min
i+1 −T max

i

which are the maximal lengths of intervals in which the series is respec-
tively increasing and decreasing. The second sequence is the monotonic
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variations, defined as

Y +
i = XTmax

i
−XT min

i
, Y−

i = XT min
i+1

−XT max
i

Thus from the original time series one can extract two sequences

H+
1 ,H−

1 ,H+
2 ,H−

2 , ... Y +
1 ,Y−

1 ,Y +
2 ,Y−

2 , ...

By definition the Hi’s are positive integer valued r.v. related to the time
variable of the original series and the Yi’s are continuous r.v. alternating in
sign, related to the values of the series. A more complete description can
be given considering the variables H−

0 = T min
1 , i.e. the length of the interval

from 1 to the first minimum and Y−
0 = XTmin

1
−X1. The sequences Hi’s and

Yi’s contain information on the shortest time scale of the original series and
are reminiscent of the first intrinsic mode function of EMD.

In this paper we focus on the properties of the Hi’s under the assump-
tion that the variables Xi are i.i.d. with continuous distribution.
We base our computations on the following classical result [11], which is
independent on the distribution of the Xi’s

P(X1 < X2 < ... < Xs) =
1
s! , s ≥ 2 (2.1)

and a similar one for the reversed inequality.
We first compute the conditional mean of the Hi’s :

E(H+
1 | X ′

1 ∈ A∪B) = E(H−
1 | X ′

1 ∈ A∪B) =
3
2 (2.2)

The sequence H+
1 ,H−

1 ,H+
2 ,H−

2 , ... is defined as the recurrence times of the
event A∪B for the stationary sequence X ′

i . The Hi’s form a stationary se-
quence under the conditional probability P( |X ′

1 ∈ A∪B) ([2],sec. 6.9)
and

E(H+
1 | X ′

1 ∈ A∪B) = E(H−
1 | X ′

1 ∈ A∪B) =
1

P(X ′
1 ∈ A∪B)

(2.3)

We have taking complements

P(X ′
1 ∈ A) = P(X1 < X2, X2 > X3) = P(X1 < X2)−P(X1 < X2 < X3)

and so
P(X ′

1 ∈ A) =
1
2!

−
1
3!

=
1
3

(2.4)
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and since A and B are disjoint and P(X ′
1 ∈ A) = P(X ′

1 ∈ B) eq. (2.2) follows.
A similar argument for the recurrence times Lmax

i , Lmin
i gives

E(Lmax
1 | X ′

1 ∈ A) =
1

P(X ′
1 ∈ A)

= 3 , E(Lmin
1 | X ′

1 ∈ B) =
1

P(X ′
1 ∈ B)

= 3

(2.5)
We compute the conditional distribution of H+

1 , which despite its simplicity
seems to be new.
Proposition For the i.i.d. sequence X1,X2, ... if the Xi’s have continuous
distribution, the variable “length of the monotonicity interval” has a discrete
density

P(H+
1 = s | X ′

1 ∈ B) = 3
[

1
(s+1)! −2 1

(s+2)! +
1

(s+3)!

]

, s ≥ 1 (2.6)

Proof We have for s ≥ 3

P(H+
1 = s−2 | X ′

1 ∈B) = P(X2 < ...< Xs, Xs > Xs+1| X1 > X2, X2 < X3)

We consider the intersection

J = {X2 < ... < Xs, Xs > Xs+1}∩{X1 > X2, X2 < X3}

corresponding to “2 is a minimum, the sequence is increasing in 2,..., s , s
is a maximum”. Hence

P(H+
1 = s−2 | X ′

1 ∈ B) = P(J)/P(X ′
1 ∈ B), s ≥ 3

Taking complements we have

P(J) = P(X1 > X2, X2 < ... < Xs, Xs > Xs+1) =

P(X2 < ... < Xs, Xs > Xs+1)−P(X1 < X2 < ... < Xs, Xs > Xs+1)

and again taking complements for each summand

P(J) = P(X2 < ... < Xs)−P(X2 < ... < Xs < Xs+1)−

[P(X1 < X2 < ... < Xs)−P(X1 < X2 < ... < Xs < Xs+1)]

Using eq. (2.1), we get

P(J) =
1

(s−1)! −2 1
s! +

1
(s+1)!
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and this gives the result. �

One can check the equation

+∞

∑
s=1

3
[

1
(s−1)!

−2 1
s!

+
1

(s+1)!

]

= 1

using that the series can be decomposed in the sum of two telescopic series.
With similar methods one can also prove that

+∞

∑
s=1

3
[

1
(s−1)!

−2 1
s!

+
1

(s+1)!

]

s =
3
2

i.e. as expected

E(H+
1 | X ′

1 ∈ B) =
3
2
, E(H−

1 | X ′
1 ∈ A) =

3
2

(2.7)

3 Data analysis

The subjects of our analysis were selected from a group of 28 referred
for symptoms and signs suggestive of myocardial ischemia to ECG Lab-
oratory. They underwent the clinical examinations, exercise test, standard
12-leads ECG and scintigraphy. Multistage Bruce protocol diagnosis of in-
ducible ischemia was used according to the current guideline [8]. From the
subjects who underwent the test, 14 of them resulted healthy, and are the
object of the present study; no other selection criteria has been adopted.

ECG was recorded with the PC-ECG 1200 (Norav Medical Ltd.), which
provides output digital signal with an amplitude resolution of 2.441 microV
and 500 Hz sampling frequency. The data analysis was performed using the
statistical software R [15]. The 50 Hz power-line interference and volun-
tary muscular activity were removed by using a discrete wavelet transform
filter. An automated method was used for R peaks detection from the V5
lead.
The plot of the RR sequence in a typical case is in fig.1. This time series has
been smoothed using a moving window average filter with span of 50 beats.
The filtered series shows a unique global point of minimum (acme). The
original series restricted to beat numbers smaller than acme is called ‘stress
phase’; the original series restricted to beat number greater than acme is
called ‘recovery phase’.
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Figure 1: Sequence of RR intervals (in msec) of the exercise test of a normal
subject versus the beat number.
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Figure 2: First panel: length of the monotonicity intervals versus the in-
terval number; second: the autocorrelation of above sequence; third: the
monotonic variation (in msec) versus the interval number; fourth: the auto-
correlation of the above.
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Stress and recovery phases are characterized by respectively a decreasing
and increasing trend. The trend is not symmetric with respect to acme: this
is because the stress phase is driven while the recovery is not. In addition
the RR sequence is heteroschedastic: its variability is greater at the start
and at the end of the test than near acme.
We extract the two sequences as required by the analysis of extrema: the
length of monotonicity interval and the monotonic variation. Both of these
reflect the non stationary behavior of the RR series, but in a very different
way. The first one, which is shown in the first panel of fig.2, shows a mod-
erate non stationarity behavior with greater values at start and at end of the
test. Its autocorrelation function (second panel) is almost everywhere close
to the 0.95 significance threshold of an i.i.d. sequence. The monotonic
variation, which is alternate in sign, and is shown in third panel, shows a
stronger non stationary behavior and its autocorrelation (fourth panel) is
above the threshold. This behavior is common to all the cases of our study.
Although the autocorrelation functions cannot capture the fine statistical
properties of these two series, their comparison suggests that the sequence
of monotonicity interval length has weaker correlations. This series is not
stationary because even and odd elements are lengths of intervals in which
the series is, say, increasing and decreasing. If the positive and negative
accelerations of heart rate are under control of the two different branches
of the neuroautonomic system, we should find some differences in these
two sub series. Near acme, where the variability of the RR series vanishes,
there are intervals in which the series is constant. This event has zero prob-
ability in our model, based on a sequence of continuous variables. In order
to compare the data to the model, we have distorted the RR series adding a
sequence of independent normal values with mean 0 and standard deviation
0.1. This perturbation, which is much smaller than 1, the resolution of data
values, modifies the data only near the acme, since far from it the variability
of the data is much greater. This perturbation has not substantially modified
the interesting structure of the data, as can be seen a posteriori, since the
values of the statistics in the last row of Table 1 turn out to be significantly
different from the value 3/2.
In fig.3 there are the histograms of length of monotonicity intervals of a
typical case. The simulated series with the same length of the RR series
(second panel) has a distribution non distinguishable from the theoretical
one for i.i.d. variables (first panel). The distributions of stress and recovery
phases in the exercise RR sequence are different from each other and they
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Figure 3: Distribution of length of monotonicity intervals (lengths greater
than 5 are not reported). First panel (top left): the distribution for an i.i.d.
sequence computed according to theory; second (top right): histogram for
a simulated i.i.d. sequence with the same length of the RR sequence; third:
histogram of the length of intervals in stress phase for the RR sequence;
fourth: the same for recovery.
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stress recovery
case inc dec inc dec

1 1.76 1.84 1.74 1.97
2 1.72 1.75 1.95 1.62
3 1.66 1.87 2.29 2.67
4 1.84 1.97 2.39 1.83
5 1.95 2.03 1.97 2.01
6 1.63 1.80 2.22 2.15
7 1.87 2.20 2.18 2.08
8 1.72 1.64 2.13 1.81
9 1.76 1.99 2.02 1.75

10 2.00 2.21 2.28 2.17
11 1.78 1.81 2.29 2.36
12 1.66 1.66 1.79 1.89
13 1.63 1.85 1.94 1.95
14 1.43 1.66 1.41 1.46

1.74 1.88 2.04 1.98

Table 1: Rounded values of the mean length of monotonicity intervals of
the 14 cases. First and second columns: increasing and decreasing during
stress phase; third and fourth columns: increasing and decreasing during
recovery phase. In the last row there are the column means

are both different from the i.i.d. case (third and fourth panels).
In order to get a quantitative evaluation of this difference, we use as a dis-
criminant statistics the mean interval length. We have computed this mean
for increasing and decreasing intervals and for stress and recovery. The
results for the 14 cases are in Table 1.
Notice that all the values, with exclusion of case 14, are larger than 1.5,
which is the mean for i.i.d sequences. If we consider the i.i.d. case as a
model of the absence of control on the RR sequence, this result means that
the control system produces longer monotonicity intervals.
We have performed paired T test for the means of the columns; the results
are in Table 2.
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col. 1 and col. 2 p-value = 0.0004
col. 3 and col. 4 non significant
col. 1 and col. 3 p-value = 0.0004
col. 2 and col. 4 non significant

Table 2: Result of paired T test of comparison between the means of
columns of Table 1.

Table 2 suggests that the control system acts differently in stress and re-
covery. During stress there is a significant difference between duration of
increasing and decreasing intervals, with prevalence of the latter (first line),
but during recovery the difference is not significant (second line). The du-
ration of increasing intervals is longer in recovery than in stress (third line),
but the duration of decreasing intervals is not different in the two phases
(fourth line).

4 Comparison with spectral analysis

The indices usually utilized by clinicians in the analysis of heart rate vari-
ability are commonly divided into two groups: time domain and frequency
domain indices[12]. Both type of indices are not designed to separate ac-
celerations and decelerations of heart rate, hence the analysis of extrema
is complementary with respect to them. The time domain indices are mea-
sures of variability of the RR sequence or of the differentiated series and are
strongly influenced by non stationary behavior of the series. Using some of
them it is possible to find significant differences between stress and recov-
ery phases, but in our opinion these are mainly due to the non stationary
behavior. The spectral indices are used to detect the influences of the neu-
roautonomic control, investigating how the variability is distributed among
the frequencies. We give an example of their use. We have considered two
segments of 300 heart periods of the time series: the first one is selected at
the end of the stress phase,just before the acme, and the second one at the
end of the recovery phase. In these two segments an exponential trend is
found and the residuals are computed. We have made a spectral analysis of
the residuals, focusing on the HF component of the power spectrum [10],
i.e. the power spectrum over the frequencies between 0.15 Hz and 0.4 Hz.
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case end of stress end of recovery
1 0.78 0.05
2 0.60 0.13
3 0.70 0.02
4 0.31 0.31
5 0.65 0.05
6 0.67 0.02
7 0.59 0.09
8 0.65 0.20
9 0.63 0.18
10 0.70 0.23
11 0.79 0.05
12 0.61 0.14
13 0.61 0.14
14 0.56 0.47

Table 3: Normalized HF index of the power spectrum.

We have used the normalized HF index, defined [12] as the ratio of the HF
component and the total power minus the VLF component (Very Low Fre-
quency component is defined as the power over the frequencies less than
0.04 Hz). The results are reported in Table 3. The paired T test of the two
columns is highly significant (p-value is of the order of 10−6). We have
used the normalized index since the variances on the two segments are very
different: as previously noticed, the near acme segment has a much smaller
variance. According to the usual interpretation the HF index is related to
parasympathetic stimulation, which is prevalent in the recovery phase and
manifests in the so called Respiratory Sinus Arrhythmia. Hence one should
find smaller values of HF index in the stress phase than in the recovery.
The larger values of the first column are in contrast with this interpreta-
tion. A possible explanation is that the variability of the RR intervals in
the first segment is largely due to measurement noise. Actually the HF in-
dex is significantly different but not far from the one of a flat spectrum, in
which this index has the value (0.4−0.15)/(0.5−0.04)' 0.54. Hence the
analysis should be performed over segments which contain more variabil-
ity, so that noise contamination is relatively smaller. Owing to the strong
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non stationary behavior of the series, the choice of these segments is rather
problematic and deserves further investigation. The analysis of extrema
overcomes this problem, since it allows us to compare longer segments of
the series in which the length of monotonicity intervals is almost station-
ary. It also complements power spectral analysis, which does not allow to
separate increasing and decreasing behavior of the series. The monotonic
variation series, not analyzed by us here, should contain other information,
mainly regarding the non stationary behavior of the data series.
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