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Time series analysis of data from stress ECG

Camillo Cammarota

Dipartimento di Matematica

‘La Sapienza’ Università di Roma, Italy
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Abstract

The heartbeat time series of the electrocardiogram recorded during stress test is non
stationary, showing both decreasing and increasing trends and time variability of the
variance. The analysis of the extrema is used to investigate the durations of accelerations
and decelerations of the residuals obtained subtracting the trend. The time mean of these
durations is used as a statistic to test the hypothesis that the residuals are independent
and identically distributed (i.i.d.) variables. In this hypothesis the expectation of the
statistic is 3/2; the rejection region of the test is computed by numerical simulation.
Data analysis performed over the heartbeat series of 14 healthy subjects shows that the
mean is significantly greater 3/2 and different in stress and recovery.
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1. Introduction

The electrocardiogram (ECG) is the recording on the body surface of
the electrical activity generated by the heart. In 1903 Einthoven introduced
a method of recording the signal (the magnitude is of the order of mV) the
labeling of the various waves and investigated a variety of cardiac abnor-
malities. The main peak is called R wave, corresponding to the contraction
of ventricles (systole) (Figure 1). The RR interval is the time between two
consecutive R peaks and it is inversely proportional to the instantaneous
heart rate. The RR time series shows a variability reminiscent of complex
systems, stochastic or deterministic chaotic, that is known as Heart Rate
Variability (HRV). The HRV is mainly due to the autonomic control, to
respiratory interaction,to humoral regulation. Spectral analysis [6] is the
main tool used to investigate the control of the autonomic system on the
heart rate. It is believed that the parasympathetic control is related to high
frequency (HR) spectral components of RR sequence (0.15 Hz - 0.4 Hz) and
the sympathetic one is related to low frequency (LF) components (0.04 Hz -
0.15 Hz). These results are supported by experiments in humans performed
with pharmacological blockade or stimulation such as the tilt test.

It is also conjectured that sympathetic stimulation produces accelera-
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tion of heart rate, and parasympathetic one produces deceleration. It is
known that these controls act on the scale of a few seconds, reflecting in
the dependence of a small number of consecutive elements of the RR time
series. In order to investigate this dependence the RR series is coded into
a sequence of binary symbols and the frequency of suitable short words
is computed (symbolic analysis). This method provides a characterization
of the autonomic control similar to the one of spectral analysis in ECG
data recorded during tilt test [2]. Binary words of fixed length can be used
to code periods of acceleration and deceleration in RR series of 24 hours
(Holter recording). Data analysis of normal subjects shows a significant
difference between positive and negative accelerations [3], suggesting that
sympathetic and parasympathetic controls are not symmetric.
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Fig. 1. The electrocardiogram of a normal subject; the sharp peaks (R) correspond to
systole.

The ECG stress test is performed to evaluate the presence of myocardial
ischaemia. In normal subjects during effort myocardial blood flow increases
three or four times compared to rest, as a consequence of increased oxygen
request. The RR series extracted from the ECG recorded during a stress
test shows: a decreasing trend (stress phase), a global minimum (acme) and
an increasing trend (recovery phase) (Figure 2, top panel). It is commonly
believed that during stress, in which heart rate is increasing, the heart is
prevalently under influence of the sympathetic branch and during recovery,
in which heart rate is decreasing, the heart is prevalently under influence of
the parasympathetic branch. The recording of RR series during ambulatory
ECG stress monitoring is not included in the standard protocols. The anal-
ysis of this type of series is new in the HRV literature [4], and can provide
new insights into the neuroautonomic control of heart rate. In that paper
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the “analysis of extrema” was proposed as a method of investigation of non
stationary series. The sequence of the lengths of monotonicity intervals was
extracted, its properties were investigated and the time mean of the lengths
was used as a statistic in the data analysis. This method was applied to the
RR series of 14 healthy subjects, providing a clear evidence of the control.

In the present contribution we improve the results obtained in [4] in
three directions. First, in the analysis of extrema, after a summary of known
results, we give a new one concerning the variance of the statistic. Second
we find the rejection region of a test of serial independence, simulating series
of independent and identically distributed (i.i.d.) random variables (r.v.).
Third we improve data analysis, performing the analysis of the variabil-
ity after detrending the series, in order to compare the results previously
obtained without detrending.
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Fig. 2. First panel: RR series extracted from the ECG recorded during stress test of a
normal subject. Second panel: Residuals of the RR series after detrending.

2. Analysis of extrema

The analysis of extrema is based on the idea that a relevant information
for a time series is contained in the extrema (local maxima and minima).
This idea is also used in the “ Empirical Mode Decomposition” (EMD) [5],
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a method of analysis of continuous non stationary signals. Mathematical
properties of the extrema of the intrinsic mode functions of EMD are non
trivial; in the case of white noise some results have been obtained by using
numerical simulations.

The analogous of white noise in time series is a sequence of i.i.d. vari-
ables. In this case some results on the extrema can be obtained [4]. We
summarize them below.

We model the observed time series x1, ..., xn as the realization of a se-
quence of r. v. X1, ..., Xn, with joint continuous distribution P . We consider
the subsets of R

3 : A = {x1 < x2, x2 > x3} corresponding to maximum
condition and B = {x1 > x2, x2 < x3} corresponding to minimum condi-
tion and the event E = A ∪ B, corresponding to an extreme (or turning
point).

For the sequence X ′

i = (Xi−1, Xi, Xi+1) ∈ R
3, i = 2, ..., n − 1, we

consider the sequence of r.v. Ti, i = 1, ... defined as the occurrence times
of the event E and the sequence of r.v. defined as the recurrence times

Hi = Ti+1 − Ti, i = 1, ...

We refer to the Hi as to the “lengths of monotonicity intervals”. We focus
on the properties of the Hi’s under the assumption that the variables Xi

are i.i.d. with continuous distribution. In these assumptions the sequence
X ′

i, i ≥ 2 is also stationary. Hence the Hi’s form a stationary sequence
under the conditional probability P ( | X ′

2 ∈ E) [1].
The first result concerns the conditional mean of the Hi’s.

Theorem 2.1. For the i.i.d. sequence X1, X2, ... of continuous variables,

the variable “length of the monotonicity interval” has a conditional mean

(1) E(H1 | X ′

2 ∈ E) =
1

P (X ′

2 ∈ E)
=

3

2

A second result is the conditional distribution of H1, which despite its
simplicity was not known.

Theorem 2.2. For the i.i.d. sequence X1, X2, ... of continuous variables,

the variable “length of the monotonicity interval” has a discrete density

(2) P (H1 = s | X ′

2 ∈ E) = 3

[

1

(s + 1)!
− 2

1

(s + 2)!
+

1

(s + 3)!

]

, s ≥ 1
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We now give a new result concerning the conditional variance of the
length of the monotonicity intervals.

Theorem 2.3. For the i.i.d. sequence X1, X2, ... of continuous variables,

the variable “length of the monotonicity interval” has a conditional variance

(3) Var(H1 | X ′

2 ∈ E) = 3

[

2e −
63

12

]

Proof.

We compute the variance using in short notations

V ar(H) = E(H2) − E(H)2

By the distribution 2.2 we have

E(H2) = 3

∞
∑

s=1

s2

[

1

(s + 1)!
− 2

1

(s + 2)!
+

1

(s + 3)!

]

We compute separately the three contributions. After some easy calcula-
tions one gets

s2

(s + 1)!
=

(s + 1 − 1)2

(s + 1)!
=

1

(s − 1)!
−

1

s!
+

1

(s + 1)!

s2

(s + 2)!
=

(s + 2 − 2)2

(s + 2)!
=

1

s!
−

3

(s + 1)!
+

4

(s + 2)!

s2

(s + 3)!
=

(s + 3 − 3)2

(s + 3)!
=

1

(s + 1)!
−

5

(s + 2)!
+

9

(s + 3)!

Collecting the three summands we get

s2

[

1

(s + 1)!
− 2

1

(s + 2)!
+

1

(s + 3)!

]

=

=
1

(s − 1)!
−

3

s!
+

8

(s + 1)!
−

13

(s + 2)!
+

9

(s + 3)!

This quantity can be decomposed into 4 telescopic series and a residual
term:

1

(s − 1)!
−

1

s!
−

2

s!
+

2

(s + 1)!
+

6

(s + 1)!
−

6

(s + 2)!
−

7

(s + 2)!
+

7

(s + 3)!
+

2

(s + 3)!
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The sums of the four series take the values 1, -2, 3, -7/6 and the residual
is

2
∞
∑

s=1

1

(s + 3)!
= 2(e −

8

3
)

Finally we have obtained

E(H2) = 3

(

2e + 2 −
39

6

)

Using that E(H) = 3/2 we get the result.

3. A test of serial independence

For a time series X1, X2, . . . , Xn we consider the lengths of the mono-
tonicity intervals H1,H2, . . . ,HN , and the statistic

Dn =
1

N

N
∑

j=1

Hj

i.e. the time mean of the variables H1,H2, . . . ,HN . Note that N is random
and depends on n. Given n, the distribution of Dn does not depend on
the distribution of the Xi if these are independent. By using the ergodic
theorem one can see that the statistic Dn converges almost everywhere:

lim
n→∞

Dn =
3

2
, a.e.

The distribution of Dn depends only on n and can be computed simulating
on a computer a large number of i.i.d. sequences. This simulation and the
data analysis is performed using the statistical software R [7]. In table 1
two examples of quantiles useful for applications are reported. The lengths
of data series n = 500 and n = 1000 are typical of the present application.
These ideas allow to perform a test of serial independence: if the observed
value of Dn falls outside an interval centered in 3/2 the i.i.d. hypothesis
is rejected. The main interest in this test with respect to other tests is: it
does not assume a specific distribution for the data; the statistic has a clear
meaning related to acceleration of heart rate.

4. Data analysis

In the data analysis of [4] the analysis of the extrema was performed
on the RR time series. Here we perform the same type of analysis on the
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Table 1. Rounded values of the quantiles of the simulate distri-
bution for the statistic Dn, the time mean length of monotonicity
intervals, in case of two sequences with n= 500 and n=1000 data.

probability 1% 2.5% 5% 95% 97.5% 99%
quantile n= 500 1.42 1.43 1.44 1.56 1.58 1.59
quantile n=1000 1.43 1.44 1.45 1.55 1.56 1.57

sequence of residuals obtained after detrending the RR series. The trend is
estimated using a cubic spline (see Figure 2, first panel) and the residuals
are computed (second panel). The residuals are non stationary in variance,
but this has a weak effect on the statistic Dn, since the time variation of the
variance is very slow if compared to the length of an interval of acceleration
that is typically of a few units.

A group of 14 healthy subjects underwent to stress test in the Labo-
ratory of Cardiology. ECG was recorded with the PC-ECG 1200 (Norav
Medical Ltd.), which provides output digital signal with an amplitude res-
olution of 2.441 microV and 500 Hz sampling frequency. The 50 Hz power-
line interference and voluntary muscular activity were removed by using
a discrete wavelet transform filter. An automated method was used for R
peaks detection from the V5 lead. The RR sequence was extracted. All the
cases show a profile of the RR series similar to the one of Figure 2(first
panel). The filtered series shows a unique global point of minimum (acme);
the original series restricted to beat numbers smaller (larger) than acme
is called ‘stress (recovery)phase’respectively. The analysis of the extrema
was applied to the residuals (Figure 2,second panel) for both phases. The
results are reported in table 2.

Table 2. Rounded values of the statistic Dn, mean
length of monotonicity intervals of the 14 cases. First
column: case number; second column: stress phase;
third column: recovery phase.

case stress recovery case stress recovery

1 1.80 1.89 8 1.75 2.02
2 1.77 1.81 9 1.92 1.92
3 1.76 2.60 10 2.22 2.26
4 1.94 2.12 11 1.78 2.34
5 2.00 2.04 12 1.68 1.80
6 1.73 2.23 13 1.77 2.03
7 2.13 2.28 14 1.56 1.46
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5. Conclusions

Statistical analysis of the data has given the following results.
(i) In all the cases, with exception of case 14, the statistic Dn has val-

ues greater than 1.59 (the 0.99 quantile for n = 500) both for stress and
recovery.

(ii) The values in stress are significantly greater than in recovery, as
confirmed by a standard t-test.

Result (i) means that the hypothesis of independence for the residuals
has to be rejected. More precisely it suggests that the control system acts
prolonging the durations of acceleration and deceleration. In case 14 the
hypothesis is not rejected: the residuals can be considered an i.i.d. sequence
and this suggests a reduced neuroautonomic control. Therefore the action
of the neuroautonomic control reflects not only in the trend of the RR series
but also in the residuals.

Result (ii) suggests that during exercise the control of the sympathetic
and parasympathetic branch of the neuroautonomic system are of different
intensity and that they could be quantified by the durations of acceleration
and deceleration in the residuals of the RR series.
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