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The random sequence of inter-event times of a level-crossing is a statistical tool that

can be used to investigate time series from complex phenomena. Typical features of

observed series as the skewed distribution and long range correlations are modeled us-

ing non linear transformations applied to Gaussian ARMA processes. We investigate

the distribution of the inter-event times of the level-crossing events in ARMA pro-

cesses in function of the probability corresponding to the level. For Gaussian ARMA

processes we establish a representation of this indicator, prove its symmetry and that

it is invariant with respect to the application of a non linear monotonic transforma-

tion. Using simulated series we provide evidence that the symmetry disappears if

a non monotonic transformation is applied to an ARMA process. We estimate this

indicator in wind speed time series obtained from three different databases. Data

analysis provides evidence that the indicator is non symmetric, suggesting that only

highly non linear transformations of ARMA processes can be used in modeling. We

discuss the possible use of the inter-event times in the prediction task.
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I. INTRODUCTION

Time series obtained from measures of

wind speed are characterized by high vari-

a)Electronic mail: cammar@mat.uniroma1.it;

https://www1.mat.uniroma1.it/people/cammarota

ability and uncertainty and both linear and

non linear models have been applied to fore-

cast wind speed and power production (see

the reviews1,2,3). Linear Gaussian autore-

gressive (AR) and moving average (MA)

models were firstly used to model and fore-

cast wind speed series4. These models have

been extended to improve predictive per-
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formance using different methods: compo-

sition of non stationary ARIMA models5,6,

ARMA-GARCH7, fractional ARMA8, bi-

variate ARMA9,10, mixed methods combin-

ing ARIMA models, wavelets and neural

networks11. Among these methods we con-

sider in the present work the application of a

non linear transformation to a series obtained

from a linear AR model12.

In the analysis of environmental time se-

ries interesting statistical indicators are the

inter-event times of the occurrence of a spe-

cific event. For instance ramp events, con-

sisting in a sudden increase or decrease, were

used to characterize the memory and inter-

mittence of wind series13,14; another exam-

ple is the sojourn above a threshold in ozone

monitoring15. A typical event is the crossing

of a given level; an application to wind series

is16.

The level-crossing statistic of station-

ary Gaussian processes has been extensively

investigated17 with particular emphasis on

the number of crossings of a given level oc-

curring in a time interval. Much less investi-

gation was devoted to the distribution prop-

erties of the related inter-event times. The

recurrence Kac’s theorem18,19, states that the

expectation of the inter-event times is in-

versely related to the probability of the event.

The probability of a level-crossing event de-

pends on the bivariate distribution of the pro-

cess and theoretical results on the distribu-

tion of the inter-event times in function of

the level are not known also in ARMA pro-

cesses.

In this work we investigate the inter-event

times of ARMA processes and of processes

obtained applying to these ones non linear

and non invertible transformations. A cru-

cial point is the parametrization of the level

for which the inter-event times are computed.

We parametrize the level using the corre-

sponding probability p in the univariate dis-

tribution of the process. We call the resulting

function of p the level-crossing profile. Using

this parametrization the expectation of the

inter-event times is invariant with respect to

monotonic increasing transformations for any

stationary process.

For ARMA processes we provide a new

result concerning the symmetry properties

of the level-crossing profile and provide evi-

dence that if a non monotonic transformation

is applied the symmetry disappears. Envi-

ronmental time series can show several types

of asymmetries, reflecting the non invariance

with respect to time reversal. Asymmetries

in the slopes of local trends20 and in lo-

cal maxima and minima21 were found us-

ing different methods as the visibility graph

method22.

In data analysis of wind series we define

the levels as the quantiles of the empirical
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distribution corresponding to a finite set of

equidistant probabilities in (0,1), following

the same method used in23. Using these

levels we estimate the level-crossing profile

and provide evidence that the profile is non

symmetric. This suggests that a non mono-

tonic transformation should be applied to

ARMA processes in order to fit the data.

In our analysis we use planar wind velocity

data (a similar dataset is used in24) from the

NCEP/NCAR Reanalysis 1 project database,

the wind speed data from an Italian wast to

energy plant and from a wind farm of Enel

Green Power.

In the next section we establish a represen-

tation of the level-crossing profile for Gaus-

sian ARMA processes and show its symme-

try. In sec. 3 we perform a simulation study

in which provide evidence that a non mono-

tonic transformation produces a non symmet-

ric profile. In sec. 4 we apply this method-

ology to wind data series. In the last section

we provide the conclusions.

II. METHODS

Let ..., X−1, X0, X1, X2, ... be a station-

ary sequence of continuous random variables

(r.v.) with probability distribution P, whose

indexes are referred to as times. For a given

event A let Tk denotes the sequence of times

at which Xt ∈ A (event times) and denote

Rk = Tk+1 − Tk the inter-event times. If the

stochastic sequence Xt is stationary and er-

godic, the r.v. Rk are a stationary sequence

(conditional to the event X0 ∈ A) and the

Kac’s recurrence theorem19,18 states that the

expectation of R0 conditional to A is

E(R0 |A) =
1

P(A)
(1)

For a given level x ∈ R we say that there is an

up-crossing at time t if {Xt−1 < x,Xt > x}.

Let Tk be the random sequence of the up-

crossing times and let Rk = Tk+1− Tk be the

inter-event times. Conditional to the event

{X−1 < x,X0 > x}, time T0 = 0 is an up-

crossing time and R0 = T1 − T0. From the

above theorem the r.v. Rk are a stationary

sequence (conditional to the event {X−1 <

x,X0 > x}) and

E(R0 |X−1 < x,X0 > x) =
1

P(X−1 < x,X0 > x)
(2)

Definition If F (x) = P(X0 ≤ x) is

the univariate distribution function we de-

fine the level-crossing profile as the function

U(p), p ∈ (0, 1), given by

U(p) =
1

P(X−1 < x,X0 > x)

∣∣∣∣
x=F−1(p)

(3)

Remark 1 An important consequence of this

definition is that the process η(Xt) where

η : R → R is a monotonic strictly increas-

ing function has the same profile of Xt.
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Example Let Xt be a stationary sequence

of independent variables with univariate con-

tinuous distribution and p = P(X0 < x); one

has by independence P(X−1 < x,X0 > x) =

p(1− p), hence

U(p) =
1

p(1− p)
(4)

In a stationary sequence the probability of

the level-crossing event can be computed in

terms of the bivariate distribution at two con-

secutive times. In a sequence of normal vari-

ables this distribution depends only on the

value of the autocorrelation at lag 1. The

level x is related to the probability p by

x = Φ−1(p), where Φ is the univariate normal

distribution. We can prove the following.

Proposition In a stationary sequence of nor-

mal variables with lag 1 correlation ρ the

level-crossing profile U(p) is given by

U(p) =
1

p(1− p)− I(p)
(5)

where

I(p) =
1

2π

∫ ρ

0

1√
1− r2

e−
Φ−1(p)2

1+r dr (6)

The profile is symmetric with respect to p =

1/2 and for p = 1/2 it is given by

U(
1

2
) =

4

1− 2
π

arcsin ρ
(7)

that tends to infinity as ρ tends to 1 and that

attains its minimum 2 at ρ = −1.

Proof Let Xt be a stationary sequence of

normal variables, that can be assumed with-

out loss of generality to have zero mean, and

whose bivariate marginal (X−1, X0) has cor-

relation ρ. If Φ and Φ2 denote the uni-

variate and bivariate distributions one has

P(X−1 < x,X0 > x) = Φ(x)− Φ2(x, x). The

level-crossing profile is given by

U(p) =
1

Φ(x)− Φ2(x, x)

∣∣∣∣
x=Φ−1(p)

(8)

Using the integral representation of Φ2(x, x)

in25

Φ2(x, x) = Φ(x)2 +
1

2π

∫ ρ

0

1√
1− r2

e−
x2

1+r dr

(9)

one has

Φ(x)− Φ2(x, x) = Φ(x)(1− Φ(x))

− 1

2π

∫ ρ

0

1√
1− r2

e−
x2

1+r dr
(10)

This proves eq.(5) since Φ(x) = p. This quan-

tity is symmetric in x with respect to x = 0

and since x = Φ−1(p) it is symmetric in p

with respect to p = 1/2. From eq. (9) if

x = 0 one has

Φ2(0, 0) =
1

4
+

1

2π
arcsin ρ

Φ(0)− Φ2(0, 0) =
1

4
(1− 2

π
arcsin ρ)

Hence the profile for p = 1/2 is given by

eq.(7).

Remark 2 In ARMA series the profile can be

computed using the value of the autocorrela-

tion at lag 1 in dependence on the parameter

of the model. For instance in AR(1) with pa-

rameter φ1 one has ρ = φ1 and in AR(2) with

parameters φ1, φ2, one has ρ = φ1/(1− φ2).
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Remark 3 Non Gaussian ARMA processes

can be obtained from Gaussian ones applying

the Tukey g-and-h transformation12, that is

a monotonic increasing transformation, in or-

der to fit the skewed univariate distribution

of wind series. By our results for these non

Gaussian processes the profile is still symmet-

ric.

If Xt is a simulated or a data series the ex-

pectation of inter-event times can only be es-

timated using ergodicity, i.e. computing the

occurrence frequency of the event in the se-

ries. For any p ∈ (0, 1) let x be the corre-

sponding empirical quantile of the univariate

distribution of the series, and consider the

number N of occurrences of the up-crossing

of the level x as shown in fig. 1. Denoting

r1, ..., rN the inter-event times, we estimate

their profile in function of p as

Û(p) =
1

N

N∑
j=1

rj (11)

Since
∑N

j=1 rj is close to the length L of the

series, eq. (11) can be rewritten as Û(p) ∼

L/N i.e. the reciprocal of the empirical fre-

quency of the up-crossing event, according to

eq. (1).

III. SIMULATIONS

Simulations and data analysis are per-

formed using the R software26. We consider

the following data generating processes where

εt, zt are standard Gaussian noise.

AR(1)

Xt = φ1Xt−1 + εt (12)

monotonic transform of AR(1)

Xt = eYt/5; Yt = φ1Yt−1 + εt (13)

non monotonic transform of AR(1)

Xt = |Yt|; Yt = φ1Yt−1 + εt (14)

AR(2)

Xt = φ1Xt−1 + φ2Xt−2 + εt (15)

GARCH(1,1)

Xt = φ1Xt−1 + εt; εt = ztσt;

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

(16)

Processes (12), (15) and (16) have been

extensively used to model wind speed se-

ries. The process (13) is obtained applying

a monotonic transformation to (12); (14) is

obtained applying a non monotonic transfor-

mation to (12), that mimics the modulus of a

wind velocity vector computed from its com-

ponents. According to the theoretical result

of sec.2 we expect processes (12), (15), (13)

to have a symmetric profile.

We first evaluate the dependence of the

level-crossing profile with respect to φ1 in

models (12), (14). For simulated series of

10000 values, 20 equispaced values of p in
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FIG. 1: Top: Example of a time series of wind speed with 10 min aggregation period.

Bottom: Window of 150 values; the up-crossing times are marked by red lines.
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FIG. 2: Dependence of the profile on the parameter φ of (A) AR(1) process; (B) Absolute

AR(1) process. Simulated series of 10000 elements and 20 levels p ∈ (0, 1), with φ1 < 0

(left panel, dotted lines, blue online) and φ1 > 0 (right panel, dashed lines, red online);

theoretical curve 1/(p(1− p)) for independent series (solid line).
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FIG. 3: Top: time series of exponential transformed AR(1) process. Bottom: histogram

and profile.

(0, 1), 10 values of φ1 from -0.9 to 0.9, we

compute Û(p) from eq.(11). In case of model

(12) the Û(p) profiles obtained from the se-

ries are shown in the panels (A) of fig. 2

with φ1 < 0 (left panel, blue lines) and the

ones with φ1 > 0 (right panel, red lines). No-

ticeably the greater is |φ1| the larger is the

distance from the curve 1/(p(1 − p)) corre-

sponding to the independent series φ1 = 0.

Since the minimum is at p = 1/2 correspond-

ing to x = 0, the increase of the minimum in

function of φ1 is given by the eq. (7), with

ρ = φ1. In case of model (14) the results are

summarized in panels (B) of fig. 2. Interest-

ingly the level-crossing profiles for |φ1| / 1

are markedly asymmetric, having their min-

imum below p = 1/2 and all the profiles are

greater than the curve 1/(p(1− p)).

In order to analyze the statistical features

of the profiles we have generated 500 real-

izations of the processes with the following

parameters producing long range correlations
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FIG. 4: Top: time series of absolute AR(1) process. Bottom: histogram and profile.

typical of wind speed series:

AR(1), φ1 = 0.95

AR(2), φ1 = 0.82, φ2 = 0.08

ARMA-GARCH(1,1), φ1 = 0.95, α0 =

0.3, α1 = 0.2, β1 = 0.3

The series have 1000 values and we have

estimated the level-crossing profiles in each

realization for 7 probability levels; the 500

replicated profiles are globally represented in

box plots. In fig. 3 the AR(1) series has

been transformed via a monotonic function

that produces a non symmetric right skewed

histogram and the box plots of the profiles

as expected are symmetric. In fig. 4 the

AR(1) series has been transformed via a non

monotonic transformation. As before the his-

togram is right skewed, but the profile shows

an evident asymmetry.

The results for AR(2) and GARCH(1,1)

are shown in box plots of fig. 5 (A) and (B).

The AR(2) process as expected shows a sym-

metric profile. In order to test the symmetry
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in the GARCH case we have used the Wilcox

test of comparison of location parameters for

the inter-event times at levels 1 and 7. The

test does not reject the symmetry hypothesis.

IV. DATA ANALYSIS

We have performed analysis of wind data

from different databases.

A. NCEP/NCAR Reanalysis 1

project

The NCEP/NCAR Reanalysis 1 project27

is an analysis/forecast system to perform

data assimilation using past data from 1948

to the present. Data are freely available at

the web page

https://psl.noaa.gov/data/gridded

/data.ncep.reanalysis.pressure.html.

The database contains a global grid (144x73)

with spatial coverage 2.5 degree latitude x

2.5 degree longitude of U-wind and V-wind

components measured 4-times daily. We

have computed the speed from the U-wind

and V-wind components data in year 2019

consisting in series of 1460 values. We have

randomly selected a sample of 200 series from

the database and estimated the inter-event

profile both of the V-wind series and of the

speed value. The box plots of profiles, each

containing 200 values, are represented in

fig. 6 (A) and (B). In replicated samplings

the profiles of the speed show significant

asymmetry, according to the Wilcox test

of comparison of location parameters for

the inter-event times at levels 1 and 7.

Conversely the opposite asymmetry with

minor evidence or no asymmetry is observed

for the wind component, a behavior that

deserves further investigation.

B. Lsi-Lastem

The second database contains data

collected at an Italian waste to en-

ergy plant available at the web page

http://hera.meteo.lsi-lastem.it

/pages/download.aspx. We have used wind

speed series sampled every 10 minutes in the

year 2018. The series consisting in more than

52000 values was split into segments of length

1000. The level-crossing profile for 7 levels is

estimated in each segment and the box plot

is represented in fig.7 (A). The Wilcox test of

comparison reveals that the inter-event times

at levels 1 and 7 have significantly different

location parameter.

C. Enel Green Power

The third database provided by Enel

Green Power contains measures at a wind

farm with 32 turbine generators located in

9
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FIG. 5: Box plots of the level-crossing profile for 7 probability levels in 500 realizations of

simulated series. (A) AR(2) process; (B) GARCH(1,1) process.

Sicily. The wind speed was recorded in year

2015 every 10 minutes so that each series has

52560 values. Since some series are affected

by artifacts and missing values occurring at

different times, we have extracted 168 seg-

ments of 5200 values having less than 150 ar-

tifacts. For each segment we have estimated

the level-crossing profile for 7 levels. Box

plots are in fig. 7 (B). The Wilcox test of

comparison reveals that the inter-event times

at levels 1 and 7 have significantly different

location parameter.

V. DISCUSSION AND

CONCLUSIONS

In our study we have considered the pro-

file of the inter-event times of the up-crossing

of a threshold in function of the probability.

Our main result is a representation of the

profile for Gaussian processes from which the

symmetry of the profile is obtained. One of

the consequences concerns the applicability

of Gaussian and non Gaussian ARMA pro-

cesses in modeling of wind speed. Gaussian

ARMA models were used in4,9 and non Gaus-

10



●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

1 2 3 4 5 6 7

1
0

2
0

3
0

4
0

5
0

levels

(a)

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

1 2 3 4 5 6 7

1
0

2
0

3
0

4
0

5
0

6
0

levels

(b)

FIG. 6: Box plots of the level-crossing profile for 7 probability levels in data series from

NCEP database. (A) Component of wind velocity; (B) Wind speed.

sian models obtained applying a monotonic

transformation to a Gaussian series were used

in12. Our result shows that both these mod-

els have a symmetric profile. The applica-

tion of a monotonic transformation produces

a skewed univariate distribution of the se-

ries, that is used to fit the observed one,

but does not changes the symmetry of the

level-crossing profile. Numerical simulations

have provided evidence that ARMA-GARCH

models, used for instance in7, share the same

symmetric profile of ARMA models. On the

other side, data analysis has shown that the

profile estimated in wind speed is not sym-

metric, suggesting that the above models are

not capable to reproduce all the features of

wind speed series. The level-crossing profile

allows to capture some aspects of the depen-

dence among the variables not previously de-

tected.

We have also provided numerical evidence

that the application of a non monotonic

transformation to an ARMA process pro-

duces an asymmetry in the profile similar to

the one observed in wind speed data. The

observed asymmetry could be related to the
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FIG. 7: Box plots of the level-crossing profile for 7 levels in data series. (A) Wind speed

data from LASTEM; (B) Wind speed data from Enel Green Power.

peak - throat asymmetry that is typical of

many environmental data series, previously

detected by means of the visibility graph21,20,

not yet detected for wind data series.

An advantage of our approach is the inter-

pretability of the result, since it concerns a

feature, the up-crossing of a threshold, that

is relevant in any prediction task. A qual-

itative argument is the following. Fixed a

probability p corresponding to a threshold

x, the profile gives the average of the time

that one has to expect to get the next up-

crossing of the threshold x. This provides

a prediction time that depends on x, dif-

ferently from other methods where the pre-

diction time is a parameter independent on

the threshold. In Gaussian series and non

Gaussian ones obtained applying a mono-

tonic transformation the prediction time has

a minimum at p = 1/2 corresponding to the

median. The profiles estimated in wind se-

ries have an asymmetric U-shape where the

minimum is attained at a value less than 1/2.

At the left and right extremes of the profile

(p close to 0 and 1 respectively) the profile

is high, meaning that one has to expect a
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long time to get a new up-crossing. During

this time the system is first above the thresh-

old and then below, and the sojourn time

above the threshold for instance is an im-

portant variable to be considered. The value

at the minimum, say m, represents a time

scale, in units of sampling, that can be used

to quantify the predictability of the series. In

a time interval greater that m, in the average,

the system has performed a new up-crossing

and a new renewal cycle has started. If one

assumes independence of events occurring in

two consecutive renewal cycles, no prediction

can be performed for time horizon greater

than m, based on the informations of the pre-

vious cycle. In this case the only informations

that can be used concern the distribution of

the inter-event times, for instance the second

moment, and the distribution of the sojourn

times above the threshold. A final remark

concerns the time scale of the profile. It de-

pends on the aggregation period of the data,

that in our examples varies from 10 minutes

to 6 hours. This has to be taken into ac-

count when estimating the real time scale of

the forecasting horizon.
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