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Abstract

We study probability distributions of permutations and binary words,
which arise in symbolic analysis of time series and their differences. Un-
der the assumptions that the series is stationary and independent we show
that these probability distributions are universal and we derive a recursive
algorithm for computing the distribution of binary words. This provides
a general framework for performing chi square tests of goodness of fit of
empirical distributions versus universal ones. We apply these methods to
analyze heartbeat time series; in particular we measure the extent to which
atrial fibrillation can be modeled as an independent sequence.
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1 Introduction

In time series analysis it can be very useful to consider a finite partition of the
state space on which to project the dynamics. If the elements of the partition are
identified with symbols from a finite alphabet (e.g letters or digits), the projected
time series is coded into a sequence of symbols and the projected dynamics is
calledsymbolic dynamics. Much attention has been devoted to the case where the
alphabet consists only of two symbols, say 0 and 1. In this case, any segment of a
time series is coded into a binary word of the same length. An important object of
study is the probability distribution induced by the coding on the space of binary
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words of given length. It is also possible to code the order relationships between
values in a segment of the time series into the permutation which reorders the seg-
ment. This gives a finer encoding which, for some purposes, is more enlightening
than the binary one. Here also an important object of study is the probability dis-
tribution induced by the permutation coding on the space of permutations and the
relationships with the probability distribution on binary words.

Symbolic dynamics on binary words and permutations can be useful in order
to distinguish the behavior of time series. In particular this can be done for time
series which arise from data measurements of complex systems for which there is
often not a satisfactory model. This happens generally in physiological data and in
particular in the heartbeat time series, to which our analysis is also concerned. In
literature greater attention has been devoted to the coding of these series in binary
words in various physiological and pathological conditions. Various approaches
have been followed.

A first approach is based on coding the difference between two consecutive
values of the series since the differentiated series is known to be more stationary
than the original one (see for instance [1]). Depending on the type of application,
it can be suitable to fix a threshold under which the difference is not considered
significant. For this type of coding, we refer to [5] and [11]. Otherwise no thresh-
old is considered as in [2], [3], [6], [7]. A second approach is based on coding
directly the original signal as in [12] and [13]. Also permutation patterns have
received some attentions as a method of coding physiological signal, as in [8] and
[10].

In the analysis of signals, when a deterministic model is not available, a prob-
abilistic approach is often used and the time series is modeled as a (usually sta-
tionary) sequence of random variables. In order to characterize the dependence
between the elements of the series it is important to quantify how the series differs
from a sequence of independent variables. One of the methods which has been
used is to shuffle the series in order to get a new series which has the same one
dimensional distribution but no correlation; the measure of the distance from in-
dependence is performed by comparing the occurrence frequency of binary words
in the original time series and in the shuffled one [6].

In this paper we introduce a general framework under which some of the
above methods can be subsumed. Our approach is based on the properties of
permutations and words distributions under the assumption of independence. We
consider a stationary sequence of independent random variables (i.i.d.r.v.) and the
sequence of their differences, which is still stationary but not independent. We
also consider the distributions of permutations and words associated respectively
to the sequence and to the differences. These distributions are universal, i.e. they
do not depend on the distribution of the variables. It is well known that the distri-
bution of permutations is uniform but, at our knowledge, the distribution of words
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has never been investigated, and we provide an explicit algorithm for computing
it.

On the side of data analysis, we consider the empirical distributions of permu-
tations and words occurring in our time series. In order to quantify the distance of
the data series from an i.i.d.r.v. sequence we compare the empirical distribution
with the universal ones. This can be done by using the standard chi square test of
goodness of fit.

As an example we apply our method to the analysis of the 24 hours heartbeat
time series. We consider two cases of atrial fibrillation and two normal subjects
taken from the database of our research group, already used in the papers quoted
above. Although the four series are all significantly non independent, the chi
square values of fibrillating are much closer to independent i.i.d. series than to
normals (see table 2). This result seems to agree with the one in [4] obtained with
a completely different method, and with that in [6] obtained with the shuffling
method. In particular, in our previous paper [4] the analysis of time series was
performed by taking explicitly into account the non stationary behavior of the
heart rate with the estimation of the trend and the analysis of the residuals. This
was necessary since the technique used there to investigate the dependence heavily
relied on stationarity assumptions. On the contrary, we believe that the technique
here introduced, since distribution free, is less dependent on these assumptions.

2 Probability distributions on permutations and bi-
nary words

For coding a segment of a time series into a permutation we use the following
method. InRn+1 let us consider the subset∆ (calledbig diagonal) which is the
set of points(x1, . . . ,xn+1) for which there exist at least two indexesi , j such that
xi = x j and denoteRn+1\∆ byRn+1

6= . LetSn+1 denote the symmetric group, i.e. the
set of permutations of{1, . . . ,n+1}. We use one line notation for permutations,
i.e.

(i1, i2, . . . , in+1)

denotes the permutation (
1 2 . . . n+1
i1 i2 . . . in+1

)
We define a functionΠ : Rn+1

6= → Sn+1 in the following way:

Π(x1, . . . ,xn+1) = (π(1), . . . ,π(n+1))
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where

π(i) = 1+#{ j : x j < xi}
(The symbol # denotes cardinality). Note that with this definition, ifπ−1 is the
inverse ofπ, then

xπ−1(1) < xπ−1(2) < · · ·< xπ−1(n+1)

For example, if(x1, . . . ,x4)= (181,32,42,115), thenπ =(4,1,2,3), π−1 =(2,3,4,1)
and

x2 < x3 < x4 < x1.

For coding a segment of a time series into a binary word we use the following
method.
If Z2 denotes the set{0,1}, we callZn

2 the set of binary words of lengthn.
We define a functionW : Rn+1

6= → Zn
2 in the following way:

W(x1, . . . ,xn+1) = (w(1) . . . ,w(n))

where

w(i) =
{

0, if xi > xi+1

1, if xi < xi+1
(1)

For example
W(181,32,42,115) = (0,1,1)

Note that for eachx = (x1, . . . ,xn+1),

W(Π(x)) = W(x) (2)

This is the reason why we have chosenπ and not its inverse in the definition of
Π. The problem to compute how many permutations correspond to the same word
will be an object of our investigation.
Let us denote byX = (X1, . . . ,Xn+1) a collection ofn+ 1 independent random
variables identically distributed with probability densityf positive and absolutely
continuous with respect to the Lebesgue measure ofR, and letP be the product
probability measure onRn+1. We consider the subsets

Aπ = {(x1, . . . ,xn+1) ∈ Rn+1
6= : Π(x1, . . . ,xn+1) = π}

parametrized by the permutationsπ ∈ Sn+1. Note thatAπ can be identified with
the event

{Xπ−1(1) < Xπ−1(2) < · · ·< Xπ−1(n+1)}
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The subsetsAπ give a partition ofRn+1
6= . We define the probability measurePΠ

overSn+1 induced byP as
PΠ(π) = P(Aπ)

Lemma (see [9]) The probabilityPΠ is uniform onSn+1, i.e.

PΠ(π) = 1/(n+1)!

We now consider the probability measure induced byP on Zn
2 or equivalently by

PΠ in force of (2). For any wordw we define the subset

Bw = {(x1, . . . ,xn+1) ∈ Rn+1
6= : W(x1, . . . ,xn+1) = w}

and we define the induced probabilityPW by

PW(w) = P(Bw)

We consider an explicit example.

Permutations Words

(1,2,3) → 11
(1,3,2) → 10
(2,1,3) → 01
(2,3,1) → 10
(3,1,2) → 01
(3,2,1) → 00

The probability induced over words of lengthn can be simply computed by count-
ing all permutations which are mapped to a given word and dividing by 1/(n+1)!.
In the example we have

PW(11) = 1/6, PW(10) = PW(01) = 1/3, PW(00) = 1/6

In general, the same kind of argument proves thatPW is explicitly computable by
PΠ and does not depend on the probability densityf .

3 Computation of PW

We now show how to compute directlyPW in the i.i.d. case without referring to
PΠ and this can be useful when we analyze long words. This computation is a
recursive one based on the following framework.
We first introduce some notations. By|w| we denote the length of a binary word,
by 1n we denote the word of lengthn containing only 1’s, byvw we denote the
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word obtained by concatenatingv andw, by v•w we denote the two element set
{v0w,v1w} and by() we denote the empty word, i.e the only word inZ0

2.
Let {Pn}n≥0 be a family of probability distributions, wherePn is defined overZn

2
such that the following properties hold

1. P0(()) = 1

2. P|v|+1+|w|(v•w) = P|v|(v)P|w|(w)

When it is clear from the context we shall drop the subindex fromPi .
Note that, since theP ’s are probabilities, one always has

(∗) P (w0)+P (w1) = P (w•).

TheoremIf the family of probabilities{Pn} satisfies properties 1 and 2 andPn(1n)
are known for alln’s, then they are completely determined.

Proof The proof consists of an explicit algorithm to computeP (w).
For the empty word one hasP (()) = 1 by property 1.
For words of length 1,P (1) is assumed to be known andP (0) = 1−P (1).
In general, given a binary wordw, let us assume that we already know how to
computeP (u) for all words of length less than|w|. If w= 1n thenP (1n) is known.
Otherwise letw = u0v wherev contains no 0’s. ThenP (w) = P (u•v)−P (u1v)
by (*). MoreoverP (u•v) = P (u)P (v) by property 2 and we are able to compute
the two factorsP (u) andP (v) since they have length shorter than that ofw. To
computeP (u1v) we consider the last zero inu and we decompose the word as
before. By iterating the procedure we finally get words with only 1’s. �

An example will make the proof of the theorem clearer.

P (1010) = P (101•)−P (1011) = P (101)−P (1011) =

P (1•1)−P (111)−P (1•11)+P (1111) =

P (1)P (1)−P (111)−P (1)P (11)+P (1111) =

P (1)2−P (13)−P (1)P (12)+P (14)

Corollary The algorithm given in the proof of the theorem can be used to compute
PW.

Proof The i-th symbolw(i) in the wordw is a random variable which depends only
on the differenceXi+1−Xi . Hencew(i) andw(i +2) are independent in force of
the independence of the variablesXi . This implies property 2. Note however that
PW is not trivial sincew(i) andw(i +1) are not independent.
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000 001 010 011 100 101 110 111

00 0.001 0.007 0.019 0.014 0.026 0.049 0.037 0.014
01 0.019 0.056 0.085 0.049 0.036 0.056 0.026 0.007
10 0.007 0.026 0.056 0.036 0.049 0.085 0.056 0.019
11 0.014 0.036 0.049 0.026 0.014 0.019 0.007 0.001

Table 1: Rounded values of probability distribution on length 5 binary words. The
first two digit of the word are those in the first column and the last three are those
in the first row. e.g. the word 01111 has probability 0.007.

SincePW is induced byPΠ

PW(1n) = PΠ(1,2, . . . ,n+1) =
1

(n+1)!

For n = 0 this gives property 1. �

As an example we computePW(1010), completing the computations of the previ-
ous example.

PW(1010) = PW(1)2−PW(13)−PW(1)PW(12)+PW(14) =(
1
2

)2

− 1
4!
− 1

2
1
3!

+
1
5!

=
2
15

The probabilities of binary words of length 5, computed with the above algorithm,
are shown in table 1. In fig. 1 we compare the probabilityPW with the histogram
of frequencies in simulated sequences.

4 Tests of independence

The existence of a universal probability distribution for permutations of fixed
length enables us to set a framework for a statistical test of independence.
Let X1, . . . ,XN be a i.i.d. random sequence and letσ ∈ Sn+1. We define the esti-
mator

T(σ) =
[

N
n+1

]−1 N−n

∑
i=1, i≡1 mod(n+1)

χ(Π(Xi , . . . ,Xi+n) = σ) (3)

where: χ is the indicator function which takes the value 1 when the equality
Π(Xi , . . . ,Xi+n) = σ is true and 0 otherwise; square brackets denote integer part,
hence

[
N

n+1

]
is the number of consecutive disjoint intervals of lengthn+ 1 in
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Figure 1: Comparison of the probability distribution of binary words of length 6
and their relative frequency in simulations of a sequenceX1, . . . ,XN of uniformly
distributed and independent random variables for N=100000, 10000, 1000. The
main qualitative difference is that forN = 1000 the relative frequencies of the
most probable words (i.e. 101010 and 010101) are larger than theoretical ones.
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which we can split the series; the indexes in the sum are the minimum of these
intervals. LetI be the set of these indexes. For brevity we shall write

T(σ) =
[

N
n+1

]−1

∑
i∈I

χi(σ).

We notice that the random variablesχi(σ) for i ∈ I are independent. Hence the
(n+1)! variablesT(σ) form a multinomial vector with∑σ∈Sn+1

T(σ) =
[

N
n+1

]
and

with probabilitiesPΠ(σ) = 1
(n+1)! .

If we denote byT̂(σ) the value thatT(σ) takes on the series we assume that the
statistics [

N
n+1

]
∑

σ∈Sn+1

(T̂(σ)− 1
(n+1)! )

2

1
(n+1)!

(4)

is asymptotically distributed as aχ2((n+ 1)! − 1) (as N → ∞) and we use the
standardχ2 test for goodness of fit (see [9]).

The existence of a universal probability distribution also for words of fixed
length enables us to set up a framework for a statistical test of independence for
words, even if it appears more difficult to meet the requirements for the chi square
test. However words are important from a practical point of view. In fact the num-
ber of permutations of lengthn+1 is (n+1)!, while the number of binary words
of lengthn is 2n and therefore it remains manageable for more values ofn. Each
word corresponds to a subset of permutations and the set of words determines a
partition of the set of permutations. We believe that other sets of permutations and
other partitions can encode more efficiently than words some specific information
about a time series (see for example [2], [3], [5], [7]).
The work we have done for permutations may be essentially repeated for words.
Let X1, . . . ,XN be a (i.i.d.) random sequence and letw∈ Zn

2. We define the esti-
mator

V(w) =
[

N
n+1

]
∑
i∈I

χ(W(Xi , . . . ,Xi+n) = w)

whereχ is the indicator function which takes the value 1 when the equalityW(X1, . . . ,Xi+n)=
w is true and 0 otherwise. We remark that the setI is the same for permutations of
Sn+1 and words of lengthn, since two words are independent if and only if their
initial indexes differ at leastn+ 1 and words are defined in terms of the series
of differences. As before we have that the 2n variablesV(w) form a multinomial
vector with∑wV(w) =

[
N

n+1

]
and probabilitiesPW(w) computed in the previous

section. The analogue of (4) is[
N

n+1

]
∑

w∈Zn
2

(V̂(w)−PW(w))2

PW(w)
(5)
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Figure 2: Plot of the RR series we have analyzed

5 Data analysis

In this section we analyze the empirical frequencies of permutations and words in
the case ofheartbeat series. The heartbeat series is defined as the sequence of du-
ration of the cardiac cycle measured as the time interval between two consecutive
Rpeaks in the ECG recording (RR sequence).

The data we analyze in this paper are the RR sequences extracted from 24
hours Holter recordings of two normal subjects and two subjects with atrial fibril-
lation. The series were obtained from Holter equipments with sampling frequency
of 180Hz (Rozinn Electronics, Glendale, USA) and taken from the database pro-
vided by the Department of Cardiology of our University. The RR series that we
have analyzed are shown in figure 2.

In these time series some of the values are not defined for measurement errors
or for other causes. If a segment contains one or more missing values, we shall
simply drop it. This implies that in the statistics of formula (4) we need to change
the factor

[
N

n+1

]
into the number of segments which do not contain missing data.

We believe that the analysis of̂T(σ) and V̂(w) are useful tools for under-
standing the short range neuroautonomic control mechanisms of heart beat, as
explained for example in [4] and [5].

The values ofT̂ andV̂ for the RR series which we have analyzed are sum-

10



0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Normal subject; case 1

Permutations

R
el

at
iv

e 
fr

eq
ue

nc
y

0 20 40 60 80 100 120

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Normal subject; case 2

Permutations

R
el

at
iv

e 
fr

eq
ue

nc
y

0 20 40 60 80 100 120

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Atrial fibrillation; case 1

Permutations

R
el

at
iv

e 
fr

eq
ue

nc
y

0 20 40 60 80 100 120

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Atrial fibrillation; case 2

Permutations

R
el

at
iv

e 
fr

eq
ue

nc
y

Figure 3: Comparison of the probability distribution of permutations of segments
of length 5 and their relative frequency in four RR sequences. Note that the values
for the y axes are between 0 and 0.1 in the normal cases and between 0 and 0.02
in the fibrillation ones
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nor1 nor2 fib1 fib2 simul i.i.d

permutations 24370 21089 274 362 101
length 5 words 38347 22773 66.8 66.6 18.4
length 4 words 19387 15949 43.8 57.2 9.4

Table 2: Chi square values for binary words and permutations. Only the simulated
i.i.d. sequence is below the 95% threshold (145.5 for permutations, 45.0 for binary
words of length 5 and 25.0 for binary words of length 4). Note however that the
values of chi square is at least two order of magnitude higher for normal than for
atrial fibrillation.

marized in the histograms of figures 3 and 4. Even if the third and the fourth
histograms of figure 3 seem very close to uniform, the chi square test shows a
significant statistical deviation from uniformity. In table 2 we display the values
for theχ2 test for goodness of fit of the frequency of length 5 permutations in our
data with respect toPΠ (first row) and of the frequency of length 5 and length 4
words in our data with respect toPW (second and third row). In the last column we
test the fit for a simulated i.i.d. sequence. The 95% confidence threshold is 145.5
for the first row (119 degrees of freedom), 45.0 for the second row (31 degrees of
freedom) and 25.0 for the third row (15 degrees of freedom).

By looking at the first row of this table, it is clear that no RR sequence passes
the test of independence based on permutations (which is passed by the simulated
series). It seems interesting however to use the chi square value as a measure of
the distance from independence. This could be one of the possible indexes with
which to classify different kinds of atrial fibrillations. The values of chi square
are much lower for atrial fibrillation than for normal. This suggests that the RR
series of atrial fibrillation is quite close to independence. In the second and third
rows of table 2 the values of the chi square statistics for words give results which
substantially agree with those for permutations.

AcknowledgmentsWe thank Giuseppe Guarini for useful discussions about atrial
fibrillation.
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Figure 4: Comparison of the probability distribution of words of length 5 and their
relative frequency in four RR sequences
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