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1 Introduction and Results

One form of the classical Phragmèn-Lindelöf theorem for subharmonic functions
w in an unbounded angular sector Ω ⊂ IR2 of opening π

α states that if w ≤
0 on ∂Ω and w(x) = O(|x|α) as |x| → +∞, then w ≤ 0 on Ω . See [2] for
extensions of this result to higher dimensions. Several variants and extensions of
this result to smooth solutions of linear and nonlinear elliptic inequalities in more
general unbounded domains of IRn can be found in the literature, see for example
[16, 9, 14, 15, 12, 13, 1, 3].
In the present paper we establish a qualitative result of Phragmèn-Lindelöf type
for upper semicontinuous viscosity solutions, see [8], of the fully nonlinear partial
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differential inequality
F (x,Dw,D2w) ≥ 0 in Ω (1.1)

in a general unbounded domain Ω of IRn.
Here Dw and D2w are, respectively, the gradient and the hessian of the unknown
function w and F = F (x, p,M) is a given continuous real valued mapping defined
on Ω × IRn × Sn → IR , Sn denoting the set of n × n real symmetric matrices
equipped with the partial order ≥ induced by the cone of nonnegative definite
matrices.
Our basic assumptions on F are (degenerate) ellipticity, that is

F (x, p,M) ≥ F (x, p,N) (1.2)

for all x ∈ Ω, t ∈ IR, p ∈ IRn and M ,N ∈ Sn with M ≥ N , and the structure
condition

F (x, p,M) ≤ P+
λ,Λ(M) + b(x)|p| (1.3)

where b > 0 is a continuous function and

P+
λ,Λ(M) = ΛTrM+ − λTr M−

is the Pucci maximal operator.
Let us point out that conditions (1.2) and (1.3) do not imply, in general, the uni-
form ellipticity of M → F (x, p,M), see Section 2 for further comments about this
point. As for the domain, we will assume that Ω satisfies the geometric condition
G∗ which will be stated precisely in Section 3. Let us note for now that the notion
of G∗ domain is a weak version of the one of G domain introduced in [4] and
is satisfied by a wider class of domains, comprising for example n-dimensional
cones, including the cut plane in IR2, and sets which are the complements of
graphs of sublinear functions defined on (n − 1)-dimensional cones.

Two Phragmèn-Lindelöf type results for conical and cylindrical domains can
be derived from our main result Theorem 3. We refer to the monograph [10] for
analogous results for strong solutions of linear inequalities in domains of conical
or cylindrical type.

Theorem A Assume that Ω is a G∗ domain of IRn of conical type and that F
satisfies (1.2) and (1.3) with

|b(x)| ≤ b0

(1 + |x|2) 1
2

.
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Under these conditions, there exists α > 0, depending on F and Ω, such that if
w ∈ USC(Ω) is a viscosity solution of

F (x,Dw,D2w) ≥ 0 in Ω

satisfying w ≤ 0 on ∂Ω and w(x) = O(|x|α) as |x| → +∞, then w ≤ 0 in Ω.
The same conclusion holds for solutions of

F (x,Dw,D2w) + c(x)w ≥ 0 in Ω

if c+(x) ≤ c0
1+|x|2 for small enough c0 > 0.

Theorem B Assume that Ω is a G∗ domain of IRn of cylindrical type and that
F satisfies (1.2) and (1.3) with

|b(x)| ≤ b0

Under these conditions, there exists α > 0, depending on F and Ω, such that if
w ∈ USC(Ω) is a viscosity solution of

F (x,Dw,D2w) ≥ 0 in Ω

satisfying w ≤ 0 on ∂Ω and w(x) = O(eα|x|) as |x| → +∞, then w ≤ 0 in Ω.

Theorems A and B extend the classical results of [10] Section 1.5 in the di-
rection of more general unbounded domains as well as of viscosity solutions of
non necessarily uniformly elliptic fully nonlinear differential inequalities contain-
ing lower order terms.
The proof of these theorems makes use of a reduction of the partial differential
inequality to a standard form via the change of unknown w = uξ for a suitably
chosen positive C2 function ξ (see Lemma 1) and of an appropriate version of the
Alexandrov-Bakelman-Pucci estimate for bounded viscosity solutions of

F (x,Dw,D2w) ≥ f(x)

in a G∗ domain (see Theorem 1). The techniques employed to establish the re-
sult, which rely in an essential way on the Caffarelli-Cabré [5] boundary weak
Harnack inequality and the local maximum principle for viscosity solutions, are
partially mutuated from the papers [17, 7]. In both papers the focus is on general
unbounded domains, in [17] the target being the Phragmèn-Lindelöf principle for
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linear elliptic equations while [7] deals with the ABP Maximum Principle for fully
nonlinear equations satisfying conditions (1.2) and (1.3.
The general geometric condition G∗ is precisely defined in Section 3, with exam-
ples and counterexamples, and generalized by an iteration process, starting from
the globalization of a local geometric condition.
The Phragmèn-Lindelöf theorem for the considered domains, established in Sec-
tion 4, turns out to be a consequence of some auxiliary results of autonomous
interest which are extensions of classical estimates to the viscosity solution frame-
work: the Krylov-Safonov Growth Lemma via the boundary weak Harnack in-
equality (see Lemma 2, Lemma 3 and Remark 3), the ABP estimate (see Theorem
1) and the stability of the Maximum Principle under a small zero-order pertur-
bation of a fully nonlinear operator (see Lemma 4).

2 Some preliminary facts

In this section we recall some basic facts about viscosity solutions of fully non-
linear elliptic equations and prove a calculus lemma, which will be used later for
reducing the partial differential inequality to a standard form, as well as a version
of the boundary weak Harnack inequality.

For given numbers 0 < λ ≤ Λ, the Pucci maximal operator P+
λ,Λ is defined as

P+
λ,Λ(M) = ΛTrM+ − λTr M−

where we denoted by Tr the trace of a matrix and the matrices M+ and M− are
such that

M = M+ − M− M+ ≥ O M− ≥ O M+M− = O

The operator P+
λ,Λ is uniformly elliptic, that is

λTr Q ≤ P+
λ,Λ(N + Q) − P+

λ,Λ(N) ≤ ΛTr Q for all N,Q ∈ Sn with Q ≥ 0 ,

positively homogeneous and subadditive, i.e.

P+
λ,Λ(αM) = αP+

λ,Λ(M) , P+
λ,Λ(M + N) ≤ P+

λ,Λ(M) + P+
λ,Λ(N)

for all α > 0 and M,N ∈ Sn.
The Pucci minimal operator P−

λ,Λ is defined in a symmetric way as

P−
λ,Λ(M) = λTrM+ − ΛTrM− ,
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see [5] for these properties and further informations on the Pucci operators.
We will always assume that the function F involved in the partial differential
inequality (1.1) satisfies conditions (1.2) and (1.3) in the Introduction.
Let us briefly comment on this point. Our assumptions (1.2), (1.3) are satisfied by
any uniformly elliptic F growing at most linearly with respect to the p variable,
that is if F satisfies the following conditions:

λTr Q ≤ F (x, p,N + Q)− F (x, p,N) ≤ ΛTr Q (2.1)

F (x, p,O) ≤ b(x) |p| (2.2)

for some 0 < λ ≤ Λ, for all (x, p,N) ∈ Ω× IRn × Sn and for all Q ∈ Sn, Q ≥ O.
Indeed, condition (2.1) obviously implies (1.2). To check (1.3), observe that (2.1)
yields

F (x, p,M+ − M−) − F (x, p,−M−) ≤ ΛTrM+

F (x, p,O) − F (x, p,−M−) ≥ λTr M− .

Hence,
F (x, p,M)− F (x, p,O) ≤ ΛTr M+ − λTr M−

and (1.3) follows taking (2.2) into account.
Let us observe explicitly that assumptions (1.2), (1.3) allow nonlinear, possibly
degenerate, elliptic operators of the form

F (M) = Λ

(
n∑

i=1

ϕ(µ+
i )

)

− λ

(
n∑

i=1

ψ(µ−
i )

)

where µi, i = 1 , . . . n, are the eigenvalues of the matrix M ∈ Sn and ϕ,ψ :
[0,+∞) → [0,+∞) are continuous and nondecreasing functions such that ϕ(s) ≤
s ≤ ψ(s).
Observe also that if the principal part x → F (x, 0,M) of F is linear and satisfies
(1.2) and(1.3), then F (x, 0,M) is uniformly elliptic. Indeed, using (1.3) with
M = ±Q with Q ≥ O yields

F (x, 0, Q) ≤ P+
λ,Λ(Q) = ΛTrQ , F (x, 0,−Q) ≤ P+

λ,Λ(−Q) = −λTr Q

so that, by linearity,

λTr (Q) ≤ F (x, 0, Q) ≤ ΛTr Q ∀Q ≥ O

and (2.1) holds. In particular, for viscous Hamilton-Jacobi operators of the form
∆w + H(x,Dw), conditions (1.2) and (1.3) are satisfied with λ = Λ = 1 if
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H(x, p) ≤ b(x)|p| where b > 0 is a continuous function. The same is true if ∆w
is replaced by a general uniformly elliptic operator in non divergence form with
continuous coefficients .

We denote by USC(Ω) the set of upper semicontinuous functions defined
on Ω. Let us recall for convenience that a function w ∈ USC(Ω) is a viscosity
solution of the partial differential inequality (1.1) provided that

F (x0,Dϕ(x0),D
2ϕ(x0)) ≥ f(x0)

at any point x0 ∈ Ω and for all ϕ ∈ C2(Ω) such that (w − ϕ)(x0) = 0 and
(w − ϕ)(x) ≤ 0 in a neighborhood of x0, see [8, 5].
Note that for F (x, p,M) = TrM , the notion of viscosity solution of (1.1) coincides
with that of subharmonic function, see for example [6], and also that any C2

function satisfying (1.1) in the viscosity sense is a classical solution of (1.1).

Lemma 1 (reduction to standard form) Let w ∈ USC(Ω) be a viscosity solution
of

F (x,Dw,D2w) ≥ f(x) in Ω (2.3)

Assume that f ∈ C(Ω) and that conditions (1.2), (1.3) hold. If ξ ∈ C2(Ω) is such
that

ξ > 0 , |Dξ| ≤ k1(x)ξ , |D2ξ| ≤ k2(x) ξ in Ω

for some continuous positive functions k1, k2, then u = w
ξ is a viscosity solution

of

P+
λ,Λ(D2u) + γ1(x)|Du| + γ2(x)u+ ≥ f(x)

ξ(x)
in Ω (2.4)

where γ1(x) = 2h1bnΛk1(x) + b(x) , γ2(x) = h2nΛk2(x) + k1(x)b(x) .

Proof. Let ϕ ∈ C2(Ω) and x0 ∈ Ω be such that 0 = (u − ϕ)(x0) ≥ (u − ϕ)(x)
in a neighborhood of x0. Since u = w

ξ with ξ > 0, it follows that

w(x) − ξ(x)ϕ(x) ≤ w(x0) − ξ(x0)ϕ(x0) = 0 .

Since ξ ∈ C2(Ω) and w is a viscosity solution of (2.3), then

F
(
x0,D(ξϕ)(x0),D

2(ξϕ)(x0)
)
≥ f(x0) .

A direct, elementary computation shows then that at point x0 the following in-
equality holds

F
(
x0, ξDϕ + ϕDξ, ξD2ϕ + 2Dξ × Dϕ + ϕD2ξ

)
≥ f
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where we denoted by Dξ×Dϕ the symmetrized product 1
2 (Dξ

⊗
Dϕ + Dϕ

⊗
Dξ).

Using the structure condition (1.3) we obtain,

P+
λ,Λ

(
ξD2ϕ + 2Dξ ×Dϕ + ϕD2ξ

)
+ ξ b |Dϕ| + |Dξ| bϕ+ ≥ f

at x0. Hence, by positive homogeneity,

P+
λ,Λ

(
D2ϕ + 2

Dξ

ξ
× Dϕ + ϕ

D2ξ

ξ

)
+ b |Dϕ| + |Dξ|

ξ
bϕ+ ≥ f

ξ
.

We use now the assumptions made on function ξ to obtain the matrix inequality

2
Dξ

ξ
× Dϕ +

D2ξ

ξ
ϕ+ ≤

(
2h1k1|Dϕ| + h2k2ϕ

+
)
I

for some positive constants h1 , h2. From ellipticity and subadditivity of P+
λ,Λ we

deduce

P+
λ,Λ(D2ϕ) + P+

λ,Λ

(
(2h1k1|Dϕ| + h2k2ϕ

+)I
)

+ b|Dϕ| + k1bϕ
+ ≥ f

ξ

Using the positive homogeneity of P+
λ,Λ once more we obtain

P+
λ,Λ(D2ϕ) + (2h1nΛk1 + b)|Dϕ| + (h2nΛk2 + k1b)ϕ

+ ≥ f

ξ

at x0, which proves the validity of inequality (2.4) in the viscosity sense. !

As mentioned in the Introduction, one fundamental tool which will be em-
ployed is a boundary weak Harnack inequality for viscosity solutions in annular
domains, see [4], Remark 3.2, which is stated below in a convenient form for our
purposes.
Let T and T ′ be domains of IRn such that, for some positive integer N and positive
real numbers µ and ρ,

T ⊂
N⋃

i=1

Bi
ρ ⊂

N⋃

i=1

Bi
2ρ ⊂ T ′

where Bi
ρ, B

i
2ρ are balls of radius ρ and 2ρ, respectively, satisfying

|T | ≥ µρn , |Bi
ρ ∩ Bi+1

ρ | ≥ µρn .
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Consider next a domain A of IRn such that both T ∩ A and T ′\A are nonempty.
For v ∈ LSC(A), v ≥ 0, the lower semicontinuous extension v−

m of v is defined by

v−
m(x) =

{
min{v(x),m} if x ∈ A

m if x +∈ A

where
m = inf

x∈T ′∩∂A
v(x) .

In this setting we have:

Lemma 2 (a boundary weak Harnack inequality)
Let T , T ′ and A as above. Assume that N ≤ N0, µ ≥ µ0, ρ ≤ ρ0 for positive
constants N0, µ0 and ρ0. If v ∈ LSC(A), v ≥ 0 , is a viscosity solution of

P−(D2v(x)) − γ(x)|Dv(x)| ≤ g(x) in A ,

with g ∈ C(A) ∩ L∞(A) and γ ∈ C(A) satisfies

‖γ‖L∞(T ′∩A) ≤ γ0 ,

then ( 1

|T |

∫

T

(v−
m)p

)1/p
≤ C

(
inf
T∩A

v + ρ‖g‖Ln(T ′∩A)

)
(2.5)

where p and C are positive constants depending on n,λ,Λ, N0, µ0 and ρ0γ0.

Remark 1 The Lemma above is the analogue for viscosity supersolutions of
fully nonlinear operators of Theorem 3.1 of [4] for strong supersolutions of linear
operators. It can be deduced from the fully nonlinear version of the boundary
weak Harnack inequality in balls established in [7] using a covering argument,
along the same lines of the proof of the above mentioned result of [4].

Remark 2 We will use the boundary weak Harnack inequality on the annular
domains T = BR(y)\B̄2εR(0) and T ′ = BR/τ(y)\B̄εR(0) with positive constants
τ < 1 and ε < 1/2. In this case we take N0 = N0(n, τ, ε), µ0 = µ0(n, τ, ε), ρ0 =
On,τ,ε(R).
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3 Geometric conditions on Ω

We will establish in the next section some local and global Alexandrov-Bakelman-
Pucci (ABP, in short) type estimates for bounded above solutions w of the partial
differential inequality

F (x,Dw,D2w) ≥ f(x) in Ω . (3.1)

The local estimates, see Lemma 3 below, will be obtained at those points of the
domain Ω which satisfy some specified local geometric condition.

Definition 1 (local geometric conditions) Let σ, τ ∈ (0, 1).
(i) a point y ∈ IRn satisfies condition Gσ,τ in Ω if there exists a ball B of

radius R = R(y) such that

y ∈ B, |B\Ωy,B,τ | ≥ σ|B| (3.2)

where Ωy,B,τ is the connected component of BR/τ ∩ Ω containing y.
(ii) a point y ∈ IRn satisfies condition GR0,η

σ,τ in Ω if y satisfies Gσ,τ in Ω with
R(y) ≤ R0 + η|y| for some positive constantsR0, η.

Example 1 To illustrate the above local geometric condition (i), let Ω be the
”cut plane” in IR2, that is Ω = IR2 \ {x = (x1, x2) : x1 ≥ 0, x2 = 0}. A point
y = (y1, y2) ∈ Ω with |y2| < y1

2 satisfies condition G1
2 ,12

. Conversely, if |y2| > y1

2 ,

then y cannot satisfy G1
2 ,τ for τ < 1

5 . Note also that a point on the negative x1

-axis cannot satisfy condition Gσ,τ no matter how the parameters σ and τ are
chosen. Indeed, for any circle B containing such a point, the set B ∩Ω turns out
to be connected.

To get the uniform ABP estimate in Theorem 1 we need to globalize the local
geometric condition. Let us observe that condition GR0,η

σ,τ is stronger than condi-
tion wG introduced in [CV] which requires Gσ,τ to be satisfied at all points of
Ω.

Definition 2 (global geometric conditions)
(j) a domain Ω satisfies condition G∗ if GR0,η

σ,τ holds at point of Ω
(jj) a domain Ω is piecewise G∗ if there exists H ⊂ Ω such that all connected
components of Ω\H satisfy G∗ with the same parameters σ, τ, R0, η and, more-
over, any y ∈ H satisfy condition GR0,η

σ,τ in Ω. (jjj) a domain Ω is piecewise G∗
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reducible if there exists H ⊂ Ω such that all connected components of Ω\H are
piecewise G∗ with the same parameters σ, τ, R0, η and, moreover, any y ∈ H
satisfy condition GR0,η

σ,τ in Ω.

It is worth to notice, for computations, that condition GR0,η
σ,τ imply condition

G
R′

0,η′

σ′ ,τ ′ if σ′ ≤ σ, τ ′ ≥ τ , R0 ≤ R′
0 and η′ ≥ η. For completeness, we also

remark that a subdomain of a (piecewise, iteratively) G∗ domain is (piecewise,
iteratively) G∗.

Example 2 Condition (j) in definition 2 with η = 0 is condition G of [4] which
is satisfied for example by domains with finite Lebesgue measure, cylinders and
also by the whole space with periodic holes with periodic holes having non-empty
interior (see Fig.1).
Proper open cones in IR2 and complements of logarithmic spirals, for instance
r = eθ in polar coordinates, are G∗ but not G, while the cut plane of Example 1
is a piecewise G∗ domain but not G∗. More generally, open cones in IRn whose
closure is different from IRn are G∗; the complements of hypersurfaces which are
graphs of continuous functions with at most linear growth on (n−1)-dimensional
cones, are piecewise G∗.
Finally, considering the 2n−1-hyperplane Q = {x = (x′, 0) ∈ IRn / x′

j > 0, j =
1, . . . , n − 1}, let Ω be a domain which is obtained from IRn removing all balls,
having the some fixed radius, centered at the points of Q with integer coordinates.
Using H = Q̄ ∩ Ω, one recognizes that Ω is piecewise G∗ reducible (see Fig.1).

Fig.1
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4 The ABP estimate and the Phragmèn-Lindelöf
Theorem

The next Lemma provides a pointwise estimate for viscosity solutions of

F (x,Dw,D2w) ≥ f(x) in Ω (4.1)

at those points y ∈ Ω where the geometric condition Gσ,τ in Ω holds. As it will
be seen in the subsequent remark, this estimate yields in particular a viscosity
solutions version of the well-known Krylov-Safonov Growth Lemma.
As for notations, with reference to Definition 1 we will denote by BR a ball of
radius R = R(y) containing y, a concentric ball of radius R/τ will be denoted

by BR/τ , while AR/τ
εR will denote the annular set BR/τ \ BεR(0). Also, χ+

c will be
the characteristic function of the set ]c,+∞[, i.e. χ+

c = 1 in ]c,+∞[ and χ+
c = 0

outside, and χ−
c = 1 − χ+

c .

Lemma 3 Let w ∈ USC(Ω) be a viscosity solution of (4.1) with f ∈ C(Ω).
Assume that the structure condition (1.3) holds with b ∈ C(Ω) such that

0 < b(x) ≤ b0

for some b0 > 0. Then, at any y ∈ Ω satisfying condition GR0,η
σ,τ the following

inequality holds

w(y) ≤ κ sup
BR/τ∩Ω

w+ + (1 − κ) lim sup
x→BR/τ∩∂Ω

w+ + χ−
R0

(|y|)R0f̂ + χ+
R0

(|y|)Rf̃ (4.2)

where f̂ = ‖f‖Ln(BR/τ∩Ω), with R ≤ (1+η)R0, and f̃ = ‖f‖
Ln(AR/τ

εR ∩Ω)
, for positive

constants ε = ε(σ, η) and κ = κ(n,λ,Λ, b0,σ, τ, R0, η, R‖b‖
L∞(A

R/τ
εR ∩Ω)

) < 1 .

Proof. Thanks to (1.3), w satisfies

P+
λ,Λ(D2w(x)) + b(x)|Dw(x)| ≥ f(x) x ∈ Ω .

It is easy to check that v(x) = supBR/τ∩Ω w+ − w(x) is a viscosity solution of

P−
λ,Λ(D2v(x))− b(x)|Dv(x)| ≤ f−(x) x ∈ Ω.

Take now a ball B = BR as in Definition 2. If |y| > R0, we set T = AR
2εR and

T ′ = AR/τ
εR , with 0 < ε < min( 1

2(1+η),
σ
4 ), and consider the component A of T ′ ∩Ω
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containing y. In fact, in this case R ≤ (1 + η)|y| and, with the above choice of ε,
y ∈ AR

2εR. Also,

|T\A| ≥ |T\Ωy,τ | ≥ |BR\Ωy,τ |− |B2εR| ≥

≥ σ|BR|− (2ε)n|BR| ≥
σ

2
|BR| ≥

σ

2
|T |.

If, on the contrary, |y| ≤ R0, we have R ≤ (1+η)R0. In this case we set T = BR,
T ′ = BR/τ and A = Ωy,B,τ .
Suppose temporarily that w0 ≡ lim supx→BR/τ∩∂Ω w+ ≤ 0. Since

T ′ ∩ ∂A ⊂ T ′ ∩ ∂(T ′ ∩ Ω) ⊂ T ′ ∩ (∂T ′ ∪ ∂Ω) ⊂ T ′ ∩ ∂Ω

then
lim inf

x→T ′∩∂A
v(x) = w̄ − lim sup

x→T ′∩∂A
w(x) ≥ w̄ − lim sup

x→T ′∩∂Ω
w+(x) ≥ w̄ (4.3)

where
w̄ = sup

BR/τ∩Ω
w+ .

Since y ∈ T ∩ A, then
inf
T∩A

v ≤ v(y) = w̄ − w(y) (4.4)

Set m = lim infx→T ′∩∂A v(x) and use (4.3) and (4.4) together with Lemma 2 to
obtain

(σ

2

)1/p
w̄ ≤

( |T\A|
|T |

)1/p
w̄ ≤

( 1

|T |

∫

T\A

mp
)1/p

≤
( 1

|T |

∫

T

(v−
m)p

)1/p
≤

≤ C
(

inf
T∩A

v + R‖f−‖Ln(T ′∩A)

)
≤ C(w̄ − w(y) + R‖f−‖

Ln(A
R/τ
εR ∩Ω)

). (4.5)

Recalling the dependence of the constants C, p (see Lemma 2) and ε (see Remark

2), we use inequality (4.2) with κ = 1− (σ/2)1/p

max(C,1) is established in the case w0 ≤ 0.

To obtain (4.2) in its generality, it suffices to consider the function w(x)−w0. !

Remark 3 Let w ∈ C(Ω̄) , w ≤ 0 on ∂Ω be a viscosity solution of

P+
λ,Λ(D2w(x)) + b(x)|Dw(x)| ≥ 0 x ∈ Ω

Consider a ball BR of radius R ≤ R0 such that |BR ∩Ω| ≤ t |BR| with 0 < t < 1.
Then, each point y ∈ BR ∩ Ω satisfies condition GR0,0

σ,τ in Ω for any positive
σ < 1 − t and τ → 1−. Hence, as a consequence of Lemma 3, we get

sup
BR∩Ω

w ≤ κ sup
BR/τ∩Ω

w+ (4.6)
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for a positive constant κ = κ(n,λ,Λ, b0, t, τ, R0) < 1.
This local estimate is well-known for strong subsolutions of uniformly elliptic
linear equations as the Krylov-Safonov Growth Lemma, see [11],[13],[10].

If the domain satisfies the global geometric (iteratively piecewise) G∗ condi-
tion, see Definition 2, Lemma 3 above can be used to obtain an ABP estimate
for bounded above solutions of 4.1 in such domains .

Theorem 1 Let F and f be as in Lemma 3. If w ∈ USC(Ω) is a bounded above
viscosity solution of

F (x,Dw,D2w) ≥ f(x) in Ω

where Ω is an (iteratively piecewise) G∗ domain. Then,

sup
Ω

w ≤ lim sup
x→∂Ω

w+ + C(R0 sup
y∈Ω

f̂ + χ+
0 (η) sup

y∈Ω,|y|>R0

Rf̃ ), (4.7)

where f̂ = ‖f‖Ln(BR/τ∩Ω), with R ≤ (1 + η)R0, and f̃ = ‖f‖
Ln(A

R/τ
εR ∩Ω)

, for some

ε = ε(σ, η) and C = C
(
n,λ,Λ, b0,σ, τ, R0, η, R‖b‖

L∞(A
R/τ
εR ∩Ω)

)
.

Proof. Consider first the case where w0 = lim supx→∂Ω w+ ≤ 0. If condition
G∗ is satisfied, then, using the pointwise estimate (4.2) and taking the supremum
over y ∈ Ω, we get at once

sup
Ω

w ≤ C(R0 sup
y∈Ω

f̂ + χ+
0 (η) sup

y∈Ω,|y|>R0

Rf̃ ). (4.8)

Next, consider a piecewise G∗ domain. The above argument, when applied to
w − supH w+ in each connected component of Ω\H, yields, by j) of Definition 2,

sup
Ω

w ≤ sup
H

w+ + C(R0 sup
y∈Ω

f̂ + χ+
0 (η) sup

y∈Ω,|y|>R0

Rf̃ ). (4.9)

For x ∈ H, using part jj) of Definition 2, the pointwise estimate (4.2) implies

w(x) ≤ κ sup
Ω

w+ + R0 sup
y∈H

f̂ + χ+
0 (η) sup

y∈H,|y|>R0

Rf̃

with κ < 1.
When inserted in (4.9), the above inequality extends (4.8) to piecewise G∗ do-
mains. Finally, for a piecewise G∗ reducible domain, a similar reduction to com-
ponents, by virtue of the result just obtained for piecewise G∗ domains, provides
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(4.7) when w0 ≤ 0. The case of a general upper bound on the boundary easily
follows by considering the function w(x) − w0. !

In the case of slabs Ω = S × IRk ⊂ IRn, where S is a bounded open set in Rh

and h+ k = n, we can get G∗ with σ = 1/2, τ = 1/2, R0 = diamS ≡ δ and η = 0.
Therefore the ABP estimate (4.7) implies

sup
Ω

w ≤ lim sup
x→∂Ω

w+ + CR0 sup
y∈Ω

‖f−‖Ln(B2δ(y)∩Ω) (4.10)

with C depending on n,λ,Λ, b0, δ.
On the other side, when η > 0 and supy∈Ω R(y) = +∞, we need a suitable decay
of the first-order coefficient at infinity, to keep the cross term Rb bounded, and
thus C finite.
For proper circular cones Ω ⊂ IRn of opening φ with vertex in the origin, we can
obtain G∗ with σ = σ(φ), τ = 1/2, R0 = 0 and η = 2. In this case, supposing
|b(x)| ≤ b0/(1 + |x|2)1/2, the above ABP estimate (4.7) yields

sup
Ω

w ≤ lim sup
x→∂Ω

w+ + C sup
R>0

R‖f−‖Ln((B2R(y)\BεR(0))∩Ω), (4.11)

with ε = ε(φ) and C = C(n,λ,Λ, b0,φ).
As an easy consequence of Theorem 1, for our general domains we have

Corollary 2 Suppose, in addition to the assumptions of Theorem 1 , that

b(x) ≤ b0

(1 + χ+
0 (η)|x|2)1/2

, (4.12)

then (4.7) holds with ε = ε(σ, η) and C = C(n,λ,Λ, b0,σ, τ, R0, η).

Remark 4 In the case η = 0, the above result is a viscosity version of the
”improved” ABP estimate of [4] for cylinders and in general for G domains (see
Example 2). Analogously, for η > 0 the above extends the ”variant” of ABP
estimate of [17] for cones and for the much more general class of G∗ domains (see
again Example 2).

Inequality (4.7) for f ≡ 0 implies the validity of the weak Maximum Principle
for bounded above viscosity solutions of

F (x,Dw,D2w) ≥ 0

14



in a piecewise G∗ reducible domain Ω. The next result shows that the validity of
the weak Maximum Principle is preserved under an additive perturbation with a
sufficiently small positive zero-order term. This fact will be used next to derive
our qualitative Phragmèn-Lindelöf principles.

Lemma 4 Let Ω be a piecewise G∗ reducible domain. Assume that F satisfies
condition (1.3) with b ∈ C(Ω) such that

0 < b(x) ≤ 1

(1 + χ+
0 (η)|x|2)1/2

.

Let c ∈ C(Ω) and w ∈ USC(Ω) be a bounded above viscosity solution of

F (D2w(x),Dw(x), x) + c(x)w+(x) ≥ 0 in Ω (4.13)

such that
lim sup

x→∂Ω
w(x) ≤ 0 .

If

c+(x) ≤ c0

1 + χ+
0 (η)|x|2

(4.14)

for some sufficiently small positive constant c0, depending on the structure data
and the geometric parameters, then w ≤ 0 in Ω.

Proof. Using the structure assumptions (1.3) it is easy to check that w is a
viscosity solution of

P+
λ,Λ(D2w(x)) + b(x)|Dw(x)| ≥ −c+(x)w+(x)

We apply now Theorem 1 with f = c+w+. At this purpose we estimate the
right-hand side of inequality (4.7) using condition (4.14). This yields

R0‖c+w+‖Ln(B(R/τ∩Ω) ≤ τ−1ω1/n
n (1 + η)R2

0c0 sup
Ω

w+

R‖c+w+‖
Ln(A

R/τ
εR ∩Ω)

≤ τ−1ω1/n
n c0ε

−2 sup
Ω

w+

where ωn is volume of the unit ball in IRn. From (4.7) it follows then that

sup
Ω

w ≤ Kc0 sup
Ω

w+

for some constant K > 0 independent of w and the statement follows. ! We are
now in position to prove our main result:
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Theorem 3 Assume that Ω is a piecewise G∗ reducible domain with parameters
σ, τ, R0, η . Let w ∈ USC(Ω) be a viscosity solution of

F (x,Dw(x),D2w(x) ≥ 0 in Ω

such that
lim sup

x→∂Ω
w(x) ≤ 0

where F satisfies the structure condition (1.3) with b ∈ C(Ω) such that

0 < b(x) ≤ 1

(1 + χ+
0 (η)|x|2)1/2

.

Then there exists a positive α, depending on the structure data and the geometric
parameters, such that if

w+(x) = O(eα(log |x|+χ−
0 (η)|x|)) (4.15)

as |x| → ∞, then w ≤ 0 in Ω.

Proof . Consider, for α > 0 to be chosen later, the positive smooth function

ξ(x) = χ+
0 (η)(1 + |x|2)α/2 + χ−

0 (η) eα(1+|x|2)1/2

If w grows at infinity as prescribed by condition (4.15), the function u(x) = w(x)
ξ(x)

is bounded above and obviously lim supx→∂Ω u(x) ≤ 0.
A straightforward calculation shows now that

|Dξ|
ξ

≤ α

2(1 + χ+
0 (η)|x|2)1/2

,
|D2ξ|
ξ

≤ 2nα

1 + χ+
0 (η)|x|2

for a sufficiently small α. Thus, from Lemma 1, using (4.12), we deduce that

P+
λ,Λ(D2u(x)) + γ1(x)|Du(x)| + γ2(x)u+(x) ≥ 0

with

γ1(x) =
2h1nΛα + b0

2(1 + χ+
0 (η)|x|2)1/2

, γ2(x) =
α(2h2n2Λ+ b0)

1 + χ+
0 (η)|x|2

For sufficiently small α > 0 the coefficient γ2 satisfies condition (4.14). Hence, by
Lemma 4, u ≤ 0. This concludes the proof of the theorem. !
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Remark 5 To obtain the assert of Theorem 3 we do not need the admissible
growth (4.15) on all spherical sections of Ω, but only on an increasing sequence of
spherical sections |x| = Rk such that Rk → ∞ as k → ∞. Indeed, using a typical
Phragmèn-Lindelöf argument (see [16]), we can assume, instead of (4.15), that

lim inf
k→∞

Mk

eα(logRk+χ−
0 (η)Rk)

< +∞,

where Mk = supΩ∩∂BRk
(0) w

+. This is a refinement of Theorem 3 along the lines
of classical results, which turn out to be extended to viscosity subsolutions with
exponential (η = 0) and polynomial growth (η > 0) in the above piecewise
G∗ reducible domains of cylindrical type (η = 0) and conical type (η > 0),
respectively.
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