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Abstract

We propose and analyze numerical schemes for viscosity solutions of time-dependent
Hamilton-Jacobi equations on the Heisenberg group. The main idea is to construct a grid
compatible with the noncommutative group geometry. Under suitable assumptions on the
data, the Hamiltonian and the parameters for the discrete first order scheme, we prove that
the error between the viscosity solution computed at the grid nodes and the solution of
the discrete problem behaves like

√
h where is h is the mesh step. Such an estimate is

similar to those available in the Euclidean geometrical setting. The theoretical results are
tested numerically on some examples for which semi-analytical formulas for the computation
of geodesics are known. Other simulations are presented, for both steady and unsteady
problems.

1 Introduction

This paper is concerned with the approximation of solutions of Cauchy problems for some first
order degenerate Hamilton-Jacobi partial differential equation, of the form

∂u
∂t + Φ(|DHu|) = 0, in R3 × (0,∞),

u(x, 0) = u0(x), in R3,
(1)

where Φ is a positive, continuous and convex function on R+ (we shall make further assumption
on Φ later), and DH is defined as follows:

DHu =

(

∂x1
u + 2x2∂x3

u
∂x2

u − 2x1∂x3
u

)

, (2)

and |DHu| stands for the Euclidean norm of the vector DHu, namely

|DHu| =
√

(∂x1
u + 2x2∂x3

u)2 + (∂x2
u − 2x1∂x3

u)2 .

If D is the standard gradient operator in R3, we have

DH = σ(x)D , σ(x) =

(

1 0 2x2

0 1 −2x1

)

. (3)
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The degeneracy of equation (1) comes from the fact that the matrix σ has rank two at any point
x ∈ R3. Problem (1) is strongly associated to the asymptotic behavior of the heat kernel on the
Heisenberg group (R3,⊕), where

y ⊕ x = (x1 + y1, x2 + y2, x3 + y3 + 2(x1y2 − x2y1)), (4)

see [7]. Problem (1) is also related to the dynamic programming approach to optimal control
problems for the Brockett system, see [10, 3], and to the level set approach to front propagation
[27].
Under suitable assumptions on Φ and u0, a Hopf-Lax type representation formula (see (15)
below) for the viscosity solution of (1) has been established by Manfredi and Stroffolini [26], see
also [13].
For nondegenerate Hamilton-Jacobi equations, Crandall and Lions [16] studied finite difference
schemes for the approximation of viscosity solutions: for monotone and consistent schemes on
a uniform grid, they proved convergence and optimal error estimates. In this direction, further
developments were proposed by Osher and Sethian [27, 29] inspired by the Engquist-Osher
scheme for conservation laws. Osher and Sethian also proposed fast marching methods for the
eikonal equation, see [29]. In the same context, Lagrangian methods were proposed and analyzed
in [11, 15, 19, 20]. Higher order schemes have been proposed in e.g. [28, 20]. For finite element
methods, see for example [22, 30]. Finally, finite difference schemes for degenerate Hamilton-
Jacobi-Bellman equations have been studied in for e.g. [6, 5, 4, 24, 25].
The purpose of the present paper is to propose and analyze finite difference schemes for the
approximation of viscosity solutions of (1). The main idea is to construct a grid compatible with
the translations (4) in such a way that it inherits the geometrical properties of the Heisenberg
group. More precisely, the grid nodes are chosen to be ξi,j,k = (ih, jh, (4k + 2ij)h2), where h
is the grid step, and i, j, k are integers. Such a grid has been introduced in [1] for designing a
finite difference scheme for the Dirichlet problem with the Kohn Laplacian on the Heisenberg
group. Once the grid is constructed, it is natural to implement the above mentioned schemes.
Inspired by [16], we show that, under suitable assumptions on Φ, the initial data u0 and the
parameters for the discrete scheme, the error between the viscosity solution computed at the
grid nodes and the solution of the discrete problem is bounded by C

√
h, which is precisely the

estimate obtained by Crandall and Lions in the nondegenerate case.
In order to test the theoretical results, we use the scheme for both (1) and the associated
static eikonal equation. In particular, we test the numerical method against the semi-analytical
formulas provided by Beals et al [7] for the Carnot-Carathéodory distance.
The results in the present paper certainly hold for the higher dimensional version of equation
(1) in R2n+1. In this setting, DH is replaced by DHn = σ(x)D with

σ(x) =

(

I 0 2x′′

0 I −2x′

)

,

where x′, x′′ ∈ Rn and x = (x′, x′′, x2n+1).
Similar methods, with appropriate changes in the choice of the grid, may work for more general
problems like

∂u
∂t + Φ(|σ(x)Du|) = 0 in Rn × (0,∞),

u(x, 0) = u0(x) in Rn,
(5)

under the assumption that the columns of the m × n matrix σ(x) satisfy the Hörmander-Chow
rank condition at some order k at all points x ∈ Rn, see [8].
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2 Basic facts on the Heisenberg group and viscosity solutions

Let us start by recalling relevant properties of the Heisenberg group H = (R3,⊕), where

y ⊕ x =
(

x1 + y1, x2 + y2, x3 + y3 + 2(x1y2 − x2y1)
)

.

It is obvious that, in general, x⊕y '= y⊕x. Note that x⊕y = y⊕x if and only if x1y2−x2y1 = 0.
The operator DH commutes with left translations, i.e. for all y ∈ R3, calling τL

y u the function
x (→ u(y ⊕ x),

DH(τL
y u) = τL

y (DHu). (6)

On the contrary, calling τR
y u the function x (→ u(x ⊕ y),

(

DH(τR
y u)

)

(x) =
(

τR
y (DHu)

)

(x) + 4((∂x3
u)(x ⊕ y))

(

−y2

y1

)

.

Let α be a nonnegative parameter, the dilation of x by α is defined by

α · x = (αx1, αx2, α
2x3). (7)

One can verify that α · (x ⊕ y) = α · x ⊕ α · y.
The operator DH has the following behavior with respect to dilatations: calling u◦α the function
x (→ u(α · x), we have

DH(u ◦ α) = α (DHu) ◦ α. (8)

Observe that for all x ∈ R3 and y = (y1, y2, 0), one has

x ⊕ ty = x(t), (9)

where x(t) is the solution of the ordinary differential equation





ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





1 0
0 1
2x2(t) −2x1(t)





(

y1

y2

)

,

with the initial value x(0) = x.
For any fixed y ∈ R3, the stationnary eikonal type problem

|DHwy(x)| = 1 in R
3\{y}, wy(y) = 0 (10)

has a unique viscosity solution satisfying

wy(x) ≥ 0, ∀x, y ∈ R
3,

lim
|x−y|→∞

wy(x) = +∞,

wy(x) + wz(y) ≥ wz(x), ∀x, y, z ∈ R
3,

see [2, 3], where | · | is the standard Euclidean norm in R2.
We use the notation d(x; y) = wy(x) the so-called Carnot-Carathéodory distance. It follows
easily from the left invariance and homogeneity of DH , see (6) and (8), that

d(z ⊕ x; z ⊕ y) = d(x; y), and d(α · x;α · y) = αd(x; y). (11)

3



It is also well-known, see [8], that for any R > 0 there exists a constant K(R) > 0 such that

d(x; y) ≤ K(R) |x − y|
1

2 for all x, y ∈ R
3 , |x − y| ≤ R . (12)

We denote by | · |K the Korànyi homogeneous norm in R3, which is naturally associated with
the Heisenberg group:

|x|K =
(

(x2
1 + x2

2)
2 + x2

3

)
1

4 . (13)

It is clear that

|x|K =
√

x2
1 + x2

2 = |x|

for any horizontal vector x = (x1, x2, 0). Note also that for each α ∈ R+ and x, y ∈ R3,
|α · x|K = α|x|K and | − y ⊕ x|K = | − x ⊕ y|K . It is proved in [23] that (x, y) (→ | − y ⊕ x|K
defines a metric in R3. It can be seen that x (→ | − y ⊕ x|K is a viscosity subsolution of (10).
We also recall that there exist two positive constants c1 < c2 such that

c1| − x ⊕ y|K ≤ d(x; y) ≤ c2| − x ⊕ y|K , (14)

see [8]. For what follows, we define the Carnot-Carathéodory balls

BC(r) = {x ∈ R
3, d(x; 0) ≤ r},

and the Korànyi balls
BK(r) = {x ∈ R

3, |x|K ≤ r}.

We shall say that u is Lipschitz continuous with respect to the left translations with a constant
L if, for all y ∈ R3,

sup
z∈R3

|u(y ⊕ z) − u(z)| ≤ L|y|K .

Similarly, u is Lipschitz continuous with respect to the right translations with a constant L if,
for all y ∈ R3,

sup
z∈R3

|u(z ⊕ y) − u(z)| ≤ L|y|K .

For example, for any real valued Lipschitz continuous function χ on R+, x (→ χ(|x|K) is Lipschitz
continuous w.r.t. right translations. Also, any bounded subsolution of |DHw| ≤ 1 in R3 is
Lipschitz continuous with respect to right translations, see [9].
If the initial datum u0 is bounded and continuous and Φ : [0,+∞) → R is convex nondecreasing
with Φ(0) = 0, then, introducing the conjugate function

Φ∗(q) = sup
p≥0

(

p q − Φ(p)
)

,

the Hopf-Lax formula

u(x, t) = inf
y∈R3

(

u0(y) + tΦ∗

(

d(x; y)

t

))

, (15)

see [26, 12, 13, 14], provides the unique continuous viscosity solution of problem (1), see [17].
It is simple to verify that Φ∗ is convex and nondecreasing with Φ(0) = 0.
In what follows, we make the following assumption on Φ:

Assumption 1 The function Φ is convex and nondecreasing, and Φ(0) = 0 and the conjugate
function Φ∗ is such that

lim
q→+∞

Φ∗(q)

q
= +∞. (16)
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The assumption is fulfilled for example by Φ(p) = 1
αpα with α ≥ 1. If Assumption 1 holds, then

u(x, t) = min
y∈R3

(

u0(y) + tΦ∗

(

d(x; y)

t

))

. (17)

For each t ≥ 0, let S(t) be the time t map associated with (1), i.e. S(t)u0(x) = u(x, t) where u is
the viscosity solution of (1). In the following proposition we summarize several useful properties
of S(t).

Proposition 1 Let Φ satisfy Assumption 1. Then, for u0 and v0 continuous in R3,

1. ‖(S(t)u0 − S(t)v0)+‖∞ ≤ ‖(u0 − v0)+‖∞.

2. ‖S(t)u0 − S(t)v0‖∞ ≤ ‖u0 − v0‖∞.

3. infR3 u0 ≤ S(t)u0 ≤ supR3 u0.

4. ‖τL
y (S(t)u0) − S(t)u0‖∞ ≤ ‖τL

y (u0) − u0‖∞.

5. If u0 is Lipschitz continuous with respect to left translations with a constant L1, then so is
S(t)u0.

6. S(t + τ)u0 ≤ S(t)u0 ,∀τ > 0.

7. If u0 is Lipschitz continuous with respect to right translations with a constant L, then for

K = Φ
(

L
c1

)

, where c1 appears in (14),

‖S(t)u0 − S(t′)u0‖ ≤ K|t − t′|, ∀t, t′ ≥ 0. (18)

8. If supp (u0) ⊂ BC(R0), then S(t)u0 is compactly supported and there exists a function
R : R+ → R+, nondecreasing, which only depends on Φ∗ and on ‖u−

0 ‖∞, such that

supp (S(t)u0) ⊂ BC(R0 + R(t)) ⊂ BK(
1

c1
(R0 + R(t))). (19)

9. If

• u0 is supported in the Carnot-Carathéodory ball BC(R0),

• u0 is Lipschitz continuous with respect to left translations with a constant L1,

• there exists L2 such that ‖u0(· ⊕ δe3) − u0(·)‖ ≤ L2|δ|, for all δ > 0,

then S(t)u0 is Lipschitz continuous with respect to right translations with a constant

L(t) = L1 +
4L2(R0 + R(t))

c1
. (20)

Proof. To prove points 1 and 2, set v(x, t) = S(t)v0, u(x, t) = S(t)u0 and from (17), let ȳ be

such that v(x, t) = v0(ȳ) + tΦ∗
(

d(x;ȳ)
t

)

.

Then,

u(x, t) − v(x, t) ≤ u0(ȳ) + tΦ∗

(

d(x; ȳ)

t

)

− v0(ȳ) − tΦ∗

(

d(x; ȳ)

t

)

.
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The above gives
u(x, t) − v(x, t) ≤ (u0 − v0)(ȳ) ≤ ‖u0 − v0‖∞,

and also
u(x, t) − v(x, t) ≤ (u0 − v0)

+(ȳ).

From the above, it follows that

(u − v)+(x, t) ≤ (u0 − v0)
+(ȳ) ≤ ‖(u0 − v0)

+‖∞ .

The proof of points 1 and 2 is now completed by exchanging the roles of u and v.
To verify the right-hand side inequality at point 3 it is enough to take y = x in the representation
formula (17); on the other hand, since Φ∗ ≥ 0 we have that

u0(y) + tΦ∗

(

d(x; y)

t

)

≥ inf
y∈R3

u0,

which implies the left-hand side inequality at point 3.
Point 4 stems from point 2 and from the fact that τL

y (S(t)u0) = S(t)
(

τL
y u0

)

. The last identity
comes from (17) and (11), because

(

τL
y (S(t)u0)

)

(x) = u(y ⊕ x, t) = min
z∈R3

(

u0(z) + tΦ∗

(

d(y ⊕ x; z)

t

))

= min
z′∈R3

(

u0(y ⊕ z′) + tΦ∗

(

d(y ⊕ x; y ⊕ z′)

t

))

= min
z′∈R3

(

u0(y ⊕ z′) + tΦ∗

(

d(x; z′)

t

))

= min
z′∈R3

(

τL
y u0(z

′) + tΦ∗

(

d(x; z′)

t

))

=
(

S(t)
(

τL
y u0

))

(x).

Point 5 is an immediate consequence of point 4.
For proving point 6, observe that since Φ ≥ 0,

(t + τ)Φ∗

(

d(x; y)

t + τ

)

= sup
p≥0

(

p d(x; y) − (t + τ)Φ(p)
)

≤ sup
p≥0

(

p d(x; y) − tΦ(p)
)

= tΦ∗

(

d(x; y)

t

)

,

and the claim follows from the Hopf-Lax formula.

Let us prove point 7: let ȳ = ȳ(x, t) be such that u(x, t) = u0(ȳ) + tΦ∗
(

d(x;ȳ)
t

)

.

Then, by (17),

u(x, t′) − u(x, t) ≤ u0(y) + t′Φ∗

(

d(x; y)

t′

)

− u0(ȳ) − tΦ∗

(

d(x; ȳ)

t

)

, ∀y ∈ R
3. (21)

Using now the Lipschitz continuity w.r.t. right translations and (14), we obtain from (21)

u(x, t′) − u(x, t) ≤
L

c1
d(y; ȳ) + (t′ − t)Φ∗

(

d(x; ȳ)

t

)

. (22)

With no restriction, we can assume that t′ < t. Consider the geodesic connecting x to ȳ, and
choose y on the geodesic such that

d(x; y)

t′
=

d(x; ȳ)

t
. (23)
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It is clear that d(x; ȳ) = d(x; y) + d(y; ȳ). Thus, from (22),

u(x, t′) − u(x, t) ≤
L

c1
(d(x; ȳ) − d(x, y)) + (t′ − t)Φ∗

(

d(x; ȳ)

t

)

= (t − t′)

(

L

c1

d(x; ȳ)

t
− Φ∗

(

d(x; ȳ)

t

))

≤ (t − t′)Φ(
L

c1
),

where the second line comes from (23), and the third line comes from Fenchel’s inequality.
For the proof of point 8, assume that u0 is supported in the Carnot-Carathéodory ball BC(R0).
We are going to use the representation formula (15) to prove that for each t > 0, x (→ u(x, t) has
a bounded support. We first observe that Φ∗ is a nonnegative function. We proceed in two steps:

first step: from (16), we see that there exists a positive number ξ such that

Φ∗(q) ≥ q‖u−
0 ‖∞, ∀q ≥ ξ. (24)

If d(x; 0) > R0 + max(1, ξt), then for all y ∈ supp (u0), we have d(x; y) ≥ d(x; 0) − d(y; 0) >

max(1, ξt). Thus, from (24), u0(y) + tΦ∗(d(x;y)
t ) ≥ u0(y) + ‖u−

0 ‖∞ ≥ 0. Note also that for

y /∈ supp (u0), u0(y) + tΦ∗(d(x;y)
t ) ≥ 0 because Φ∗ is nonnegative. This and the representation

formula (17) imply that if d(x; 0) > R0 + max(1, ξt), then u(x, t) ≥ 0.

second step: if d(x; 0) > R0 +max(1, ξt), take a sequence yn /∈ supp (u0) such that limn→∞ yn =
x. We have

0 ≤ u(x, t) ≤ u0(yn) + tΦ∗(
d(x; yn)

t
) = tΦ∗(

d(x; yn)

t
).

We have limn→∞ d(x; yn) = 0 thanks to (12), which yields u(x, t) = 0 since Φ∗(0) = 0.
Point 8 is proved with R(t) = max(1, ξt).
To prove point 9, we see that

u(x ⊕ y, t) − u(x, t) = u(y ⊕ x, t) − u(x, t) + u(x ⊕ y, t) − u(y ⊕ x, t).

But x ⊕ y = 4(x2y1 − x1y2)e3 ⊕ y ⊕ x. Therefore,

|u(x ⊕ y, t) − u(x, t)| ≤ |u(y ⊕ x, t) − u(x, t)| + |u(4(x2y1 − x1y2)e3 ⊕ y ⊕ x, t) − u(y ⊕ x)|,

We make out two cases:

1. if
√

(x1 + y1)2 + (x2 + y2)2 > 1
c1

(R0 +R(t)), then u(x⊕y, t) = u(y⊕x, t) = 0 and we have

|u(x ⊕ y, t) − u(x, t)| = |u(y ⊕ x, t) − u(x, t)| ≤ L1|y|K ,

from point 5.

2. If
√

(x1 + y1)2 + (x2 + y2)2 ≤ 1
c1

(R0 + R(t)), then

|x2y1−x1y2| = |(x2+y2)y1−(x1+y1)y2| ≤
√

(x1 + y1)2 + (x2 + y2)2|y|K ≤
1

c1
(R0+R(t))|y|K
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and we have that

|u(x ⊕ y, t) − u(x, t)| ≤ |u(y ⊕ x, t) − u(x, t)| + |u(4(x2y1 − x1y2)e3 ⊕ y ⊕ x, t) − u(y ⊕ x)|
≤ ‖τL

y (u0) − u0‖∞ + ‖τL
4(x2y1−x1y2)e3

(u0) − u0‖∞
≤ L1|y|K + 4L2|x2y1 − x1y2|

≤
(

L1 +
4L2(R0 + R(t))

c1

)

|y|K ,

where we have used successively point 4, the definitions of L1 and L2 and the estimate on
|x2y1 − x1y2| obtained just above.

Therefore S(t)u0 is Lipschitz continuous with respect to right translations with the constant
L(t) defined in (20).

Remark 1 In Theorem 1, the assumptions of point 9 imply the fact that u0 is Lipschitz continuous
with respect to the right translations with a constant L = L1 + 4L2R

c1
. Therefore the assumptions

of point 9 imply point 7 with

K = Φ

(

L1 + 4
L2R

c1

)

. (25)

Remark 2 We do not know if the asssumptions of point 9 are optimal. For example, one may
wonder if the asssumption that u0 is Lipschitz continuous w.r.t. right translations would be
enough to reach the same conclusions.

3 Finite difference schemes

Let T be a positive time. We are interested in approximating u for times t ≤ T . Let P be a
positive integer and ∆t = T

P . Let h be a positive real number. Hereafter, we assume that there
exists a constant C such that

∆t ≤ Ch. (26)

For three integers i, j, k we define the nodes ξi,j,k = (ih, jh, (4k + 2ij)h2), and for a nonnegative
integer n, we define tn = n∆t. This lattice was first introduced in [1], as the key ingredient for a
second order finite difference scheme for the Kohn Laplacian on the Heisenberg group. Calling
(e1, e2, e3) the canonical basis of R3, we have

ξi,j,k ⊕±he1 = ξi±1,j,k,
ξi,j,k ⊕±he2 = ξi,j±1,k∓i.

(27)

More generally,
ξ#,m,n ⊕ ξi,j,k = ξ#+i,m+j,k+n−j#. (28)

Formulas (27) and (28) clearly show between the grid and the group operations ⊕ and ·. Since
ξi,j,k ⊕ ξ#,m,n = ξ#+i,m+j,k+n−im, we see that ξi,j,k ⊕ ξ#,m,n and ξ#,m,n ⊕ ξi,j,k coincide if and only
if im = j(.
Capital letters U , V ,... will stand for discrete functions defined on the lattice {ξi,j,k, i, j, k ∈ Z}
and their values at ξi,j,k will be written Ui,j,k, Vi,j,k,... The notations ∆1

+U and ∆2
+U will be

used for the discrete functions:

(∆1
+U)i,j,k = Ui+1,j,k − Ui,j,k, (∆2

+U)i,j,k = Ui,j+1,k−i − Ui,j,k.
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The value of the numerical approximation of u(ξi,j,k, tn) will be written Un
i,j,k.

We shall consider numerical schemes

Un+1
i,j,k = G(Un

i,j,k, U
n
i+1,j,k, U

n
i−1,j,k, U

n
i,j+1,k−i, U

n
i,j−1,k+i), (29)

such that there exists a continuous function g : R4 → R, called the numerical Hamiltonian, with

G(Ui,j,k, Ui+1,j,k, Ui−1,j,k, Ui,j+1,k−i, Ui,j−1,k+i)

=Ui,j,k − ∆tg

(

1

h
(∆1

+U)i,j,k,
1

h
(∆1

+U)i−1,j,k,
1

h
(∆2

+U)i,j,k,
1

h
(∆2

+U)i,j−1,k+i

)

.
(30)

For the scheme (29) to be consistent with the Hamilton-Jacobi equation, we must have

g(a, a, b, b) = Φ

(∣

∣

∣

∣

(

a
b

)∣

∣

∣

∣

)

. (31)

We will say that (29) is monotone if G is a nondecreasing function of each of its five arguments.
We will say that (29) is monotone on [−R,R] if, for all i, j, k ∈ Z,
G(Ui,j,k, Ui+1,j,k, Ui−1,j,k, Ui,j+1,k−i, Ui,j−1,k+i) is a nondecreasing function of each of its five
arguments as long as (∆1

+U)#,m,n (∆2
+U)#,m,n are contained in [−R,R] for all (,m, n ∈ Z.

For brevity, we will use the notation )G(U) = (G(U)i,j,k)i,j,k∈Z. We will also use the notation
‖U‖∞ = supi,j,k∈Z |Ui,j,k|. We will say that U ∈ (∞(Z3) if ‖U‖∞ < +∞.
For Λ > 0, we call CΛ the set

CΛ = {U ∈ (∞(Z3), |(∆1
+U)i,j,k| < Λh, |(∆2

+U)i,j,k| < Λh, ∀i, j, k ∈ Z}. (32)

Finally, for ((,m, n) ∈ Z3, we note τL
(#,m,n)U the discrete function defined by

(τL
(#,m,n)U)i,j,k = U#+i,m+j,k+n−4j#.

Proposition 2 Assume that the scheme (29) is consistent and monotone on [−Λ, Λ]. Then

1. Identifying λ ∈ R with the constant function λ on Z3, we have )G(U + λ) = )G(U) + λ, for
all discrete function U .

2. For U and V in CΛ,
‖( )G(U) − )G(V ))+‖∞ ≤ ‖(U − V )+‖∞. (33)

3. For U and V in CΛ such that U ≤ V , )G(U) ≤ )G(V ).

4. For U and V in CΛ,
‖)G(U) − )G(V )‖∞ ≤ ‖U − V ‖∞. (34)

5. The operator )G commutes with the left lattice translations: for ((,m, n) ∈ Z3,

)G(τL
(#,m,n)U) = τL

(#,m,n)
)G(U). (35)

6. If U0 ∈ CΛ and if there exists a positive number L1 such that for all ((,m, n) ∈ Z3,
‖τL

(#,m,n)U
0−U0‖∞ ≤ L1|ξ#,m,n|K , then for all p ≥ 0, Up = )Gp(U0) has the same property.

7. If the discrete function U0 satisfies: there exist two positive integers I0 and J0 and two
positive real numbers L1 and L2 such that

9



• U0
i,j,k = 0 if |i| > I0 and |j| > J0,

• for all ((,m, n) ∈ Z3, ‖τL
(#,m,n)U

0 − U0‖∞ ≤ L1|ξ#,m,n|K ,

• for all k ∈ Z, ‖τL
(0,0,k)U

0 − U0‖∞ ≤ 4L2|k|h2,

• L1 + 4L2(P + max(I0, J0))h < Λ,

then for all p ≥ 0, Up = )Gp(U0) is such that

‖∆1
+Up‖∞ ≤ (L1 + 4L2(p + J0)h)h,

‖∆2
+Up‖∞ ≤ (L1 + 4L2(p + I0)h)h.

(36)

8. Under the assumptions of point 7 on U0, there exists a constant K ′ depending on L1, L2,
Ph, (I0 + J0)h such that, for all p < P ,

‖Up+1 − Up‖∞ ≤ K ′∆t. (37)

Proof. Point 1 is a direct consequence of (30).
If V ∈ CΛ, then for all constant α, V + α ∈ CΛ. Thus, if the two lattice functions U and
V belong to CΛ, then U and V + ‖(U − V )+‖∞ belong to CΛ. From this, the mononicity of
G, and the inequality Ui,j,k ≤ Vi,j,k + ‖(U − V )+‖∞, for all (i, j, k) ∈ Z3, we deduce that
)G(U) ≤ )G(V ) + ‖(U − V )+‖∞. This implies (33).
Point 3 is straightforward consequence of (33). Also from (33), we see that

‖)G(U) − )G(V )‖∞ =‖( )G(U) − )G(V ))+ − ( )G(U) − )G(V ))−‖∞
=max(‖( )G(U) − )G(V ))+‖∞, ‖( )G(V ) − )G(U))+‖∞)

≤max(‖(U − V )+‖∞, ‖(V − U)+‖∞)

=‖U − V ‖∞,

and we have proved (34).
Identity (35) comes from straightforward calculus.
We have ‖τL

(#,m,n)
)G(U0)− )G(U0)‖∞ = ‖)G(τL

(#,m,n)U
0)− )G(U0)‖∞ from (35). It is simple to verify

that if U0 belongs to CΛ, then, for all ((,m, n) ∈ Z3, τL
(#,m,n)U

0 ∈ CΛ. Thus, we can use (34),
and we obtain that

‖τL
(#,m,n)

)G(U0) − )G(U0)‖∞ ≤ ‖τL
(#,m,n)U

0 − U0‖∞ ≤ L1|ξ#,m,n|K .

This proves point 6 for p = 1. For p > 1, we proceed by induction.
To prove point 7, we first observe that U0 belongs to CΛ, because

(∆1
+U0)i,j,k = U0

i+1,j,k − U0
i,j,k = U0

i+1,j,k − U0
i+1,j,k−j + U0

i+1,j,k−j − U0
i,j,k,

(∆2
+U0)i,j,k = U0

i,j+1,k−i − U0
i,j,k = U0

i,j+1,k−i − U0
i,j+1,k + U0

i,j+1,k − U0
i,j,k.

Moreover, if |i| > I0, then U0
i,j+1,k−i − U0

i,j+1,k = 0, and if |j| > J0, U0
i+1,j,k − U0

i+1,j,k−j = 0.

This, together with the other assumptions on U0 imply that |U0
i,j+1,k−i − U0

i,j+1,k| ≤ 4L2|i|h2 ≤
4L2I0h2. Similarly, |U0

i+1,j,k − U0
i+1,j,k−j| ≤ 4L2J0h2. Therefore

|(∆1
+U0)i,j,k| ≤ |U0

i+1,j,k − U0
i+1,j,k−j| + |U0

i+1,j,k−j − U0
i,j,k| ≤ (L1 + 4L2J0h)h < Λh,

|(∆2
+U0)i,j,k| ≤ |U0

i,j+1,k−i − U0
i,j+1,k| + |U0

i,j+1,k − U0
i,j,k| ≤ (L1 + 4L2I0h)h < Λh.
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Assume now that for some q, 0 ≤ q < P , (36) is true for all p, 0 ≤ p ≤ q. Then, for p ≤ q,
Up ∈ CΛ because L1 + 4L2(P + max(I0, J0))h < Λ. We also verify that Up

i,j,k = 0 if |i| > I0 + p
or if |j| > J0 + p. Moreover, we know from points 5 and 4 that

‖τL
(#,m,n)U

p − Up‖∞ ≤ L1|ξ#,m,n|, ∀((,m, n) ∈ Z
3,

‖τL
(0,0,n)U

p − Up‖∞ ≤ 4L2|n|h2, ∀n ∈ Z.
(38)

We wish to study the properties of U q+1 = )G(U q): we see immediately that U q+1
i,j,k = 0 if

|i| > I0 + q + 1 or if |j| > J0 + q + 1 and we deduce from (35),(34) and from U q ∈ CΛ that

‖τL
(#,m,n)U

q+1 − U q+1‖∞ ≤ L1|ξ#,m,n|, ∀((,m, n) ∈ Z
3,

‖τL
(0,0,n)U

q+1 − U q+1‖∞ ≤ 4L2|n|h2, ∀n ∈ Z.
(39)

Now, we use exactly the same arguments as those we just used for U0 and prove that

|(∆1
+U q+1)i,j,k| ≤ |U q+1

i+1,j,k − U q+1
i+1,j,k−j| + |U q+1

i+1,j,k−j − U q+1
i,j,k | ≤ (L1 + 4L2(J0 + q + 1)h)h < Λh,

|(∆2
+U q+1)i,j,k| ≤ |U q+1

i,j+1,k−i − U q+1
i,j+1,k| + |U q+1

i,j+1,k − U q+1
i,j,k | ≤ (L1 + 4L2(I0 + q + 1)h)h < Λh.

We have proved (36) by induction.
For proving the last point, we call Λ̃ = (L1 + 4L2(max(I0, J0) + P )): we have Λ̃ < Λ; from (36)
and from the monotonicity of the scheme, we see that

G(Up
i,j,k, U

p
i,j,k − Λ̃h,Up

i,j,k − Λ̃h,Up
i,j,k − Λ̃h,Up

i,j,k − Λ̃h) ≤ Up+1
i,j,k ,

Up+1
i,j,k ≤ G(Up

i,j,k, U
p
i,j,k + Λ̃h,Up

i,j,k + Λ̃h,Up
i,j,k + Λ̃h,Up

i,j,k + Λ̃h).

From (30), we see that

−∆tg(−Λ̃, Λ̃,−Λ̃, Λ̃) ≤ Up+1
i,j,k − Up

i,j,k ≤ −∆tg(Λ̃,−Λ̃, Λ̃,−Λ̃)

This yields (37) with K ′ = max(|g(−Λ̃, Λ̃,−Λ̃, Λ̃)|, |g(Λ̃,−Λ̃, Λ̃,−Λ̃)|).

4 Examples

4.1 An upwind scheme

The equation ∂u
∂t + |DHu| = 0 We first consider the simpler case when Φ is the identity. We

choose the level set scheme proposed by Osher and Sethian in [27], see also [29]. This scheme is
connected with the Engquist-Osher scheme for conservation laws, see [18]. The scheme is given
by (29), with (30) and

g(u1, u2, v1, v2) =
(

min(u1, 0)
2 + max(u2, 0)

2 + min(v1, 0)
2 + max(v2, 0)

2
)

1

2 . (40)

From the inequality: for any x ∈ R4,
∑4

i=1 |xi| ≤ 2
(

∑4
i=1 |xi|

) 1

2

, and after some algebra, we see

that the scheme is monotone if 2∆t ≤ h.

The general case of equation (1) Take equation (1) with Φ satisfying Assumptions 1. The
upwind scheme proposed by Osher and Sethian reads (29), with (30) and

g(u1, u2, v1, v2) = Φ
(

(

min(u1, 0)
2 + max(u2, 0)

2 + min(v1, 0)
2 + max(v2, 0)

2
)

1

2

)

. (41)

From the hypothesis on Φ, we see that the scheme is monotone on [−Λ, Λ] if 1− 2∆t
h Φ′(2Λ) ≥ 0.
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4.2 The Lax-Friedrichs scheme

The analogue of the Lax-Friedrichs scheme for equation (1) is (29), with (30) and

g(u1, u2, v1, v2) = Φ





(

(

u1 + u2

2

)2

+

(

v1 + v2

2

)2
)

1

2



 − θ
h

∆t
(u1 − u2 + v1 − v2) , (42)

where θ is a positive constant. It can be verified that the scheme is monotone on [−Λ, Λ] provided
0 < θ < 1

4 and θ − ∆t
2h Φ′(

√
2Λ) ≥ 0.

5 Error estimate

We now give the main theorem:

Theorem 1 Under the following assumptions:

1. Φ satisfies Assumption 1,

2. the difference scheme (29) is in the form (30), monotone on [−Λ, Λ] and consistent with
(1),

3. the function u0 satisfies the assumptions in point 9 of Proposition 1, and the interpolation
U0 of u0 on the lattice (ih, jh, (4k + 2ij)h2), i, j, k ∈ Z, satisfies the assumptions in point
7 of Proposition 2,

4. L(T ) defined by (20) satisfies L(T ) < Λ,

5. the numerical Hamiltonian g is locally Lipschitz continuous,

6. for a positive constant C, ∆t ≤ Ch,

there exist two positive constants H and c (independent of h) such that for h < H,

|Up
i,j,k − u(ξi,j,k, tp)| ≤ ch

1

2 , (43)

for all 0 ≤ p ≤ P and i, j, k ∈ Z.

6 Proof of Theorem 1

6.1 General strategy and preliminary lemmas

The strategy for proving Theorem 1 is similar to that of [16]. We seek to estimate

sup
i, j, k ∈ Z

0 ≤ p ≤ P

|Up
i,j,k − u(ξi,j,k, p∆t)|.

For that purpose, we will assume

sup
i, j, k ∈ Z

0 ≤ p ≤ P

(

u(ξi,j,k, p∆t) − Up
i,j,k

)

= σ > 0, (44)
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and look for an upper bound on σ. Were inf
i, j, k ∈ Z

0 ≤ p ≤ P

(

u(ξi,j,k, p∆t) − Up
i,j,k

)

= −σ < 0, we

could estimate σ exactly in the same way, so we have bounds from below and from above. For
that, we define

M = ‖u0‖L∞(R3) + 1. (45)

Note that Propositions 1 and 2 above imply that

|u| ≤ M on Q, and ‖Up‖∞ ≤ M 0 ≤ p ≤ P. (46)

For simplifying the notations, we call Q = R3 × [0, T ] and Qd = {(ξi,j,k, p∆t), i, j, k ∈ Z, 0 ≤ p ≤
P}. The main ingredient for obtaining the desired estimate will be a function Ψ : Q×Qd → R,

Ψ(η, t, ξ, s) = u(η, t) − Up
i,j,k + (5M +

σ

2
)βε(−ξ ⊕ η, t − s) −

σ(t − s)

4T
(47)

where ξ = ξi,j,k, s = p∆t and βε(x, t) = β(|1ε · x|K , t
ε), with ε is a positive real number and β a

smooth function on R × R, satisfying

β(0, 0) = 1, 0 ≤ β ≤ 1, β(r, t) = 0 if r4 + t4 > 1. (48)

Lemma 1 (Crandall-Lions) Under the assumptions of Theorem 1, there is a point (η0, t0, ξ0, s0) ∈
Q × Qd such that

1. Ψ(η0, t0, ξ0, s0) ≥ Ψ(η, t, ξ, s), ∀(η, t, ξ, s) ∈ Q × Qd,

2. βε(−ξ0 ⊕ η0, t0 − s0) ≥ 3/5.

Proof. The proof is exactly the same as for Lemma 4.1 in [16].

Lemma 2 Let (η0, t0, ξ0, s0) be the same as that in Lemma 1, and L(T ) be given by (20). We
have

(5M +
σ

2
) |(DHβε)(−ξ0 ⊕ η0, t0 − s0)| ≤ L(T ), (49)

and
(5M +

σ

2
) |∂3βε(−ξ0 ⊕ η0, t0 − s0)| ≤ L2. (50)

If t0 > 0, then

−(5M +
σ

2
)Dtβε(−ξ0 ⊕ η0, t0 − s0) ≤ K −

σ

4T
, (51)

with K given by (25).
If 0 < t0 < T , then

(5M +
σ

2
)|Dtβε(−ξ0 ⊕ η0, t0 − s0)| ≤ K +

σ

4T
. (52)

Proof. The mapping

η (→ u(η, t0) + (5M +
σ

2
)βε(−ξ0 ⊕ η, t0 − s0)

is maximized at η0, so

(5M +
σ

2
) (βε(−ξ0 ⊕ η, t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0)) ≤ u(η0, t0)−u(η, t0) ≤ L(T )|− η0 ⊕ η|K .

(53)
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On the other hand, choosing η = η0 ⊕ r1e1 ⊕ r2e2, we have that

βε(−ξ0⊕η, t0−s0)−βε(−ξ0⊕η0, t0−s0) = (DHβε)(−ξ0⊕η0, t0−s0) · (−η0⊕η)+o(|−η0⊕η|K).

The last observation and (53) yield (49).
We also know that

(5M +
σ

2
) (βε(−ξ0 ⊕ η0 + re3, t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0)) ≤ u(η0, t0)−u(η0 +re3, t0) ≤ L2r.

(54)
On the other hand

βε(−ξ0 ⊕ η0 + re3, t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0) = r∂3βε(−ξ0 ⊕ η0, t0 − s0) + o(r).

The last observation and (54) yield (50).
Similarly, the function

t (→ u(η, t) −
σt

4T
+ (5M +

σ

2
)βε(−ξ0 ⊕ η, t − s0)

is maximized at t0. If t0 > 0, then for a small r,

(5M+
σ

2
) (βε(−ξ0 ⊕ η0, t0 − s0 − r) − βε(−ξ0 ⊕ η0, t0 − s0)) ≤ u(η0, t0)−u(η0, t0−r)−

σr

4T
≤ Kr−

σr

4T
,

where the last inequality comes from (18). Then (51) follows immediately.
If T > t0 > 0, then one obtains (52) in a similar way.
In what follows, we shall choose

ε = h
3

8 , (55)

and the function β such that there exists a smooth function b : R+ → [0, 1], with

β(x, t) = b(|x|4K + t4),
b(z) = 1 − z, if z ≤ 1

2 ,
b(z) = 0, if z ≥ 1,
b(z) ≤ 1

2 , if z ≥ 1
2 .

(56)

The following formulas can be obtained by standard calculus: we take (x, t) such |x|4K + t4 < 1
2 :

DHβ(x, t) = −4

(

(x2
1 + x2

2)x1 + x2x3

(x2
1 + x2

2)x2 − x1x3

)

, and |DHβ(x, t)| = 4|x|2H
√

x2
1 + x2

2, (57)

and
∂3β(x, t) = −2x3, and ∂2

3β(x, t) = −2. (58)

Lemma 3 There exist two positive constants h̄ and C such that, for h ≤ h̄, calling i0, j0, k0 the
integers such that ξ0 = (i0h, j0h, (4k0 + 2i0j0)h2),

| 1h(∆1
+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0,j0,k0

+ (DHβε)1(−ξ0 ⊕ η0, t0 − s0)| ≤ Ch
1

2 ,

| 1h(∆1
+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0−1,j0,k0

+ (DHβε)1(−ξ0 ⊕ η0, t0 − s0)| ≤ Ch
1

2 ,

| 1h(∆2
+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0,j0,k0

+ (DHβε)2(−ξ0 ⊕ η0, t0 − s0)| ≤ Ch
1

2 ,

| 1h(∆2
+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0,j0−1,k0+i0 + (DHβε)2(−ξ0 ⊕ η0, t0 − s0)| ≤ Ch

1

2 .

(59)

Also, if t0 > 0, then
∣

∣

∣

∣

1

∆t
(βε(−ξ0 ⊕ η0, t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0 + ∆t)) + Dtβε(−ξ0 ⊕ η0, t0 − s0)

∣

∣

∣

∣

≤ Ch
1

2 .

(60)
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Proof. The second point of Lemma 1 and the choice of β yield that

| − ξ0 ⊕ η0|4K + |t0 − s0|4 ≤
2ε4

5
. (61)

Therefore, in a neighborhood of (η0, t0, ξ0, s0), the function (η, t, ξ, s) (→ βε(−ξ⊕η, t−s) coincides
with 1 − 1

ε4
(| − ξ ⊕ η|4 + |t − s|4). From this, we can compute (DHβε)(−ξ0 ⊕ η0, t0 − s0) from

(57), and see that

|(DHβε)(−ξ0 ⊕ η0, t0 − s0)|2 =
16

ε8
(

(ξ0,1 − η0,1)
2 + (ξ0,2 − η0,2)

2
)

|ξ0 − η0|2K ,

|∂3βε(−ξ0 ⊕ η0, t0 − s0)|2 =
4

ε8
|ξ0,3 − η0,3 + 2(η0,2ξ0,1 − η0,1ξ0,2)|2.

(62)

Then, (49) and (50) yield that

(ξ0,1 − η0,1)2 + (ξ0,2 − η0,2)2 ≤
(

L(T )ε4

20M+2σ

) 2

3

,

|ξ0,3 − η0,3 + 2(η0,2ξ0,1 − η0,1ξ0,2)| ≤ L2

10M+σ ε
4.

(63)

To summarize, as ε → 0, we have

(ξ0,1 − η0,1)
2 + (ξ0,2 − η0,2)

2 ! ε
8

3 ,

|ξ0,3 − η0,3 + 2(η0,2ξ0,1 − η0,1ξ0,2)| ! ε4.
(64)

Let us focus on the first inegality in (59), because the other three are obtained in the same
manner. The first thing is to notice that

−ξi0+1,j0,k0
⊕ η0 = −ξi0,j0,k0

⊕ η0 ⊕ (−he1) + 4h(η0,2 − ξ0,2)e3,

and that η0,2 − ξ0,2 = O(ε
4

3 ), because of (63). Thus

−ξi0+1,j0,k0
⊕ η0 = −ξi0,j0,k0

⊕ η0 ⊕ (−he1) + λe3, (65)

where λ = O(ε
4

3 )h. Thus,

1

h
(∆1

+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0,j0,k0
+ (DHβε)1(−ξ0 ⊕ η0, t0 − s0) = I + II,

I =
1

h
(βε(−ξi0+1,j0,k0

⊕ η0, t0 − s0 + ∆t) − βε(−ξi0,j0,k0
⊕ η0 ⊕ (−he1), t0 − s0 + ∆t)) ,

II =

( 1

h
(βε(−ξ0 ⊕ η0 ⊕ (−he1), t0 − s0 + ∆t) − βε(−ξ0 ⊕ η0, t0 − s0 + ∆t))

+(DHβε)1(−ξ0 ⊕ η0, t0 − s0).

)

In order to estimate I, we first observe that if h and ∆t are small enough, then the straight line
segment [(−ξi0+1,j0,k0

⊕ η0, t0 − s0 + ∆t), (−ξi0,j0,k0
⊕ η0 ⊕ (−he1), t0 − s0 + ∆t)] is contained in

the region |x|4K + t4 ≤ 1
2ε

4. A first order Taylor expansion yields that I = λ
h∂3βε(θ, t0 − s0 + ∆t)

where θ lies in the above mentioned line segment. Therefore |I| = 2|λ||θ3|
h , which yields that

|I| ! (ε4+hε
4
3 )

ε4
ε

4

3 ! ε
4

3 = h
1

2 .
In order to estimate II, we first observe that if h and ∆t are small enough, then {(−ξ0 ⊕
η0 ⊕ λhe1, t0 − s0 + ∆t), λ ∈ [0, 1]} is contained in the region |x|4K + t4 ≤ 1

2 . Therefore II =
1
h (βε(−ξ0 ⊕ η0 ⊕ (−he1), t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0))+(DHβε)1(−ξ0⊕η0, t0−s0). A second
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order Taylor expansion yields that |II| is less that ch(ε
8
3 +hε

4
3 +h2)

ε4
! h

1

2 .
At this point, we have proved (59). In order to prove (60), we distinguish the case when
0 < t0 < T and the case when t0 = T .
If 0 < t0 < T , we obtain from (52), (61) and the definition of b, that

|t0 − s0| ! ε
4

3 . (66)

This implies that for h small enough, the line segment [−ξ0 ⊕ η0, t0 − s0,−ξ0 ⊕ η0, t0 − s0 + ∆t]

is contained in the region |x|4K + t4 ≤ 1
2ε

4. In that region D2
t βε(x, t) = −12t2

ε4
. A second order

Taylor expansion in t yields that
∣

∣

∣

∣

1

∆t
(βε(−ξ0 ⊕ η0, t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0 + ∆t)) + Dtβε(−ξ0 ⊕ η0, t0 − s0)

∣

∣

∣

∣

=
12(t0 − s0 + τ)2∆t

ε4
,

(67)

with 0 < τ < ∆t. Thus
∣

∣

∣

∣

1

∆t
(βε(−ξ0 ⊕ η0, t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0 + ∆t)) + Dtβε(−ξ0 ⊕ η0, t0 − s0)

∣

∣

∣

∣

!(ε
8

3 + hε
4

3 + h2)
h

ε4
! h

1

2 ,

(68)

and (60) is proved.
In the case t0 = T , we use (51), which can be written

(5M +
σ

2
)
(T − s0)3

ε4
≤ K −

σ

4T
, (69)

which shows that σ
4T ≤ K and that 0 ≤ T − s0 ! ε

4

3 . Then (60) is proved exactly as above.
There are now several cases to be considered, namely

• t0, s0 > 0;

• t0 ≥ 0, s0 = 0,

• t0 = 0, s0 > 0.

6.2 The case when t0 > 0, s0 > 0

The point (η0, t0) is a maximum of the function

(η, t) (→ u(η, t) + (5M +
σ

2
)βε(−ξ0 ⊕ η, t − s0) −

σ(t − s0)

4T
.

By the definition of the viscosity solution of (1), we have

σ

4T
− (5M +

σ

2
)Dtβε(−ξ0 ⊕ η0, t0 − s0) + Φ

(

(5M +
σ

2
)|(DHβε)(−ξ0 ⊕ η0, t0 − s0)|

)

≤ 0. (70)

The analogous estimate on the discrete side is obtained as follows: (ξ0, s0) (ξ0 = ξi0,j0,k0
, s0 =

p0∆t) minimizes

(i, j, k, p) (→ Up
i,j,k + (5M +

σ

2
)βε(−ξi,j,k ⊕ η0, t0 − p∆t) +

σ(t0 − p∆t)

4T
.
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Thus

Up
i,j,k ≥ Up0

i0,j0,k0
+

σ(p0 − p)∆t

4T
− (5M +

σ

2
) (βε(−ξ0 ⊕ η0, t0 − s0) − βε(−ξi,j,k ⊕ η0, t0 − p∆t)) .

Let us consider the lattice function (i, j, k) (→ Bi,j,k, where

Bi,j,k = Up0

i0,j0,k0
+

σ∆t

4T
− (5M +

σ

2
) (βε(−ξ0 ⊕ η0, t0 − s0) − βε(−ξi,j,k ⊕ η0, t0 − s0 + ∆t)) .

Assuming h ≤ h̄, from (59), (49) and the fact that L(T ) < Λ, M > 1, we obtain that the lattice
function B belongs to CΛ for h small enough, say h ≤ H1. From this, the monotonicity of G,
and the fact that Up0−1

i,j,k ≥ Bi,j,k for all i, j, k ∈ Z, we deduce that

Up0

i0,j0,k0
≥ ( )G(B))i0,j0,k0

,

which is equivalent to

Up0

i0,j0,k0
≥ Up0

i0,j0,k0
+ σ∆t

4T − (5M + σ
2 ) (βε(−ξ0 ⊕ η0, t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0 + ∆t))

−∆tg













5M+ σ
2

h (∆1
+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0,j0,k0

,
5M+ σ

2

h (∆1
+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0−1,j0,k0

,
5M+ σ

2

h (∆2
+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0,j0,k0

,
5M+ σ

2

h (∆2
+(βε(− · ⊕η0, t0 − s0 + ∆t)))i0,j0−1,k0+i0













.

(71)
Going back to (71), we replace each finite difference in the arguments of g by the corresponding
coordinate of −(5M + σ

2 )(DHβε)(−ξ0⊕η0, t0−s0), thereby creating errors that can be estimated

in terms of h
1

2 , thanks to (59) and the locally Lipschitz character of g. We obtain

σ

4
≤(5M +

σ

2
)
βε(−ξ0 ⊕ η0, t0 − s0) − βε(−ξ0 ⊕ η0, t0 − s0 + ∆t)

∆t

+Φ
(
∣

∣

∣
(5M +

σ

2
)(DHβε)(−ξ0 ⊕ η0, t0 − s0)

∣

∣

∣

)

+ Ch
1

2 .
(72)

Making similar arguments on the t-difference above, we further deduce from (60) that
σ

4
≤ (5M +

σ

2
)Dtβε(−ξ0⊕η0, t0− s0)+Φ

(
∣

∣

∣
(5M +

σ

2
)(DHβε)(−ξ0 ⊕ η0, t0 − s0)

∣

∣

∣

)

+Ch
1

2 . (73)

with a new constant C. Taken together, (73) and (70) yield

σ ! h
1

2 . (74)

6.3 The case when t0 ≥ 0 and s0 = 0

In this case, (71) cannot be used. Yet, the proof of (74) is simpler. The estimates (64) and (66)
are true, because in the proof of Lemma 3, we did not use the fact that s0 > 0. Note that (66)

becomes t0 ! ε
4

3 .
We have that

sup
Q×Qd

ψ ≥ sup
i,j,k∈Z,n≥0

(

u(ξi,j,k, tn) − Un
i,j,k

)

+ 5M = σ + 5M.

From this, (20), (18) and the choice of β, we see that

5M + σ ≤ Ψ(η0, t0, ξ0, 0) ≤ |u(η0, t0) − u(ξ0, t0)| + |u(ξ0, t0) − u(ξ0, 0)| + (5M +
σ

2
)βε(−ξ0 ⊕ η0, t0)

≤ L(T )| − ξ0 ⊕ η0|K + Kt0 + 5M +
σ

2
.

(75)

This yields immediately (74).
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6.4 The case when t0 = 0 and s0 > 0

In this case, we can neither use (70), nor (51) and (52). As for (75), we obtain that

5M + σ ≤ Ψ(η0, 0, ξ0, s0) ≤ L(T )| − ξ0 ⊕ η0|K + Ks0 + 5M +
σ

2
,

which implies that
σ ≤ 2L(T )| − ξ0 ⊕ η0|K + 2Ks0. (76)

To estimate s0, we use the fact that Ψ(η0, 0, ξ0, s0) ≥ Ψ(η0, 0, ξ0, s0 − ∆t), so

−Up0

i0,j0,k0
−

σ

4T
s0 + (5M +

σ

2
)βε(−ξ0 ⊕ η0,−s0)

≥ −Up0−1
i0,j0,k0

−
σ

4T
(s0 − ∆t) + (5M +

σ

2
)βε(−ξ0 ⊕ η0,−s0 + ∆t).

From (61), we can see that for h small enough, we can replace βε(x, t) by 1 − |1εx|
4
K − t4

ε4
in the

identity above, which becomes

5M + σ
2

ε4
(

s4
0 − (s0 − ∆t)4

)

≤ Up0−1
i0,j0,k0

− Up0

i0,j0,k0
−

σ

4T
∆t ≤ K∆t.

This yields that
5M + σ

2

ε4
s2
0 (4s0 − 6θ∆t) ≤ K, for some 0 < θ < 1,

and finally

s0 ! ε
4

3 = h
1

2 .

From this, (76) and (63), we deduce the desired result.

7 Numerical implementation

7.1 The initial value problem

In what follow, we assume that the function Φ is a one to one increasing function from R+ onto
R+, and we present the two schemes that we have tested for approximating the solution to (1).
The first tested scheme is the first order one proposed in (29), (30) and (41). We have seen
above that under a stability condition, this scheme is convergent and that it produces an error
of O(h

1

2 ).
Alternatively, we shall test the second order scheme proposed in [27], see also [29]: the basic
trick is to build a switch that turns itself off if a singularity is detected; otherwise, it will use
a higher order approximation to the neighboring values on the grid by means of a higher order
polynomial using an ENO construction (see [21], [27]). The scheme is as follows:

Un+1
i,j,k = Un+1

i,j,k − ∆tΦ
(

(

max(A, 0)2 + min(B, 0)2 + max(C, 0)2 + min(D, 0)2
)

1

2

)

, (77)

with
A = 1

h

(

(∆1
−U)i,j,k + 1

2m((∆1
−,−U)i,j,k, (∆1

+,−U)i,j,k)
)

,
B = 1

h

(

(∆1
+U)i,j,k + 1

2m((∆1
−,+U)i,j,k, (∆1

+,+U)i,j,k)
)

,
C = 1

h

(

(∆2
−U)i,j,k + 1

2m((∆2
−,−U)i,j,k, (∆2

+,−U)i,j,k)
)

,
D = 1

h

(

(∆2
+U)i,j,k + 1

2m((∆2
−,+U)i,j,k, (∆2

+,+U)i,j,k)
)

,

(78)
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where the second order finite differences are given by

(∆1
++U)i,j,k = Ui+2,j,k − 2Ui+1,j,k + Ui,j,k,

(∆1
−−U)i,j,k = Ui−2,j,k − 2Ui−1,j,k + Ui,j,k,

(∆2
++U)i,j,k = Ui,j+2,k−2i − 2Ui,j+1,k−i + Ui,j,k,

(∆2
−−U)i,j,k = Ui,j−2,k+2i − 2Ui,j−1,k+i + Ui,j,k,

(79)

(∆1
+−U)i,j,k = (∆1

−+U)i,j,k = Ui+1,j,k − 2Ui,j,k + Ui−1,j,k,
(∆2

+−U)i,j,k = (∆1
−+U)i,j,k = Ui,j+1,k−i − 2Ui,j,k + Ui,j−1,k+i,

(80)

and where the switch function m is

m(a, b) =







{

a if |a| ≤ |b|,
b if |a| > |b|, , if ab ≥ 0,

0, if ab < 0.
(81)

7.2 The static Hamilton-Jacobi equation

Here, we discuss the numerical methods for solving the static Hamilton-Jacobi equation

Φ(|DHu|) = f, in R3\ω,
u(x) = u0(x), in ω,

(82)

where ω is a given subset of R3. For solving (82), the analogue of the scheme proposed in § 4.1,
(due to Osher and Sethian, [27]) is

Φ

(

(

min( 1
h(∆1

+U)i,j,k, 0)2 + max( 1
h(∆1

+U)i−1,j,k, 0)2

+ min( 1
h(∆2

+U)i,j,k, 0)2 + max( 1
h(∆2

+U)i,j−1,k+i, 0)2

)
1

2

)

= fi,j,k, ξi,j,k '∈ ω,

Ui,j,k = 0 ξi,j,k ∈ ω.
(83)

As explained in [29], a slightly different upwind scheme will turn out to be more convenient:

Φ

(

(

max(− 1
h(∆1

+U)i,j,k,
1
h(∆1

+U)i−1,j,k, 0)2

+ max(− 1
h(∆2

+U)i,j,k,
1
h(∆2

+U)i,j−1,k+i, 0)2

)
1

2

)

= fi,j,k, ξi,j,k '∈ ω,

Ui,j,k = 0 ξi,j,k ∈ ω.

(84)

Assuming Φ is a one to one mapping from R+ onto R+, Φ−1(fi,j,k) can be computed by a Newton
method and the equation in (84) is equivalent to the quadratic equation

max(−(∆1
+U)i,j,k, (∆

1
+U)i−1,j,k, 0)

2 + max(−(∆2
+U)i,j,k, (∆

2
+U)i,j−1,k+i, 0)

2 =
(

hΦ−1 (fi,j,k)
)2

.
(85)

For solving (84), we use the fast marching method advocated by Sethian [29]. The central
idea behind it is to systematically construct U using upwind values only. Indeed, the upwind
difference structure of (84) allows us to propagate information one way, i.e. from the smaller
values of U to larger values. Therefore, the fast marching method consists of building the
solution to (84) always stepping downwind: there are two zones, the zone where the solution
is already computed or known and the zone where the solution remains to be computed. After
the initialization step, the first zone only contains the boundary nodes where the solution is
known, whereas the values of U in the zone where the solution is not known are set to some
large and positive real number. Following Sethian, we consider a thin zone of trial nodes around
the existing front between the two previously mentioned zones: by and large, the fast marching
method consists of the loop:
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• while loop: as long as the set of trial nodes is not empty,

1. let ξ#,m,n be the trial node corresponding to the smallest value of U : U#,m,n =
min (Ui,j,k : ξi,j,k is a trial node).

2. Add ξ#,m,n to the set of nodes for which the corresponding value of U is known.
Remove ξ#,m,n from the set of trial nodes.

3. All the neighbors of ξ#,m,n, (i.e. the nodes ξ#±1,m,n, ξ#,m±1,n∓#), for which the corresponding
value of U is not known yet, become trial nodes.

4. Recompute the values of U at the trial nodes ξi,j,k by solving the quadratic equation
(85). It is important to realize that these new values Ui,j,k only depend on the known
values of U .

The details of the implementation are well explained in [29], in particular the initialization of U
and of the trial zone, as well as the use the min-heap data structure with backpointers to store
the values of U .
It is possible to obtain a more accurate fast marching method by using a higher order scheme
where it is possible to use already computed values: The idea is to define the boolean variables
switch±,#

i,j,k, ( = 1, 2, by

switch±,1
i,j,k =

{

1 if Ui±2,j,k and Ui±1,j,k are known and Ui±2,j,k ≤ Ui±1,j,k,
0 otherwise,

switch±,2
i,j,k =

{

1 if Ui,j±2,k∓2i and Ui,j±1,k∓i are known and Ui,j±2,k∓2i ≤ Ui,j±1,k∓i,
0 otherwise.

(86)
With (∆1

++U)i,j,k, (∆1
−−U)i,j,k, (∆2

++U)i,j,k, (∆2
−−U)i,j,k the second order finite differences in

(79), and I1
i,j,k, I2

i,j,k the two numbers

I1
i,j,k = max

(

−
(

(∆1
+U)i,j,k − 1

2switch+,1
i,j,k(∆

1
++U)i,j,k

)

, (∆1
+U)i−1,j,k + 1

2switch−,1
i,j,k(∆

1
−−U)i,j,k, 0

)2
,

I2
i,j,k = max

(

−
(

(∆2
+U)i,j,k − 1

2switch+,2
i,j,k(∆

2
++U)i,j,k

)

, (∆2
+U)i,j−1,k+i + 1

2switch−,2
i,j,k(∆

2
−−U)i,j,k, 0

)2
,

(87)
the new scheme is

Φ





√

I1
i,j,k + I2

i,j,k

h



 = fi,j,k. (88)

This scheme attempts to use a second order stencil when the nodes are available and reverts to
a first order one in the other cases. It is compatible with a fast marching method.

8 Numerical results

8.1 The eikonal equation

To test the methods against semi-analytical results, we first consider the eikonal equation (10)
for which a complete theory is available. We first aim at computing numerically the Carnot-
Caratheodory distance to the origin, that is the solution u of problem (82) with Φ(s) = s,
f = 1, ω = {(0, 0, 0)} and u0 = 0. As shown in Beals, Gaveau and Greiner [7], the geodesics
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or Hamiltonian paths relative to the origin and a point x = (x1, x2, x3) such that x2
1 + x2

2 > 0,
(which satisfy x(0) = 0, x(t) = x, for some t > 0), are given by

(

x1(s)
x2(s)

)

=
sin(2sθ)

sin(2tθ)
e(s−t)θΞ

(

x1

x2

)

, with Ξ =

(

0 2
−2 0

)

,

x3 − x3(s) =
4(t − s)θ − sin(2tθ) + sin(2sθ)

2 sin2(2tθ)
(x2

1 + x2
2),

(89)

where θ is a solution to
µ(2tθ) =

x3

x2
1 + x2

2

, (90)

and where we have set

µ(φ) =
φ

sin2 φ
− cot φ. (91)

It is proved that (90) has a unique solution 2tθ in the interval [0, π), and that the square of the
Carnot-Caratheodory distance d2(x; 0) is the action integral corresponding to the Hamiltonian
curve:

d2(x; 0) =
4t2θ2

2tθ + sin2(2tθ) − sin(2tθ) cos(2tθ)

(

|x3| + x2
1 + x2

2

)

if θ '= 0,

d2(x; 0) =
(

x2
1 + x2

2

)

if θ = 0.
(92)

Thus if x2
1 + x2

2 > 0, computing d(x; 0) requires solving the one dimensional nonlinear equation
(90) in [0, π), which can be done numerically with Newton’s method for example. If, on the
contrary x2

1 + x2
2 = 0, the Carnot-Carathéodory distance is given by

d(x; 0) =
√

π|x3|. (93)

Let u be the solution to the eikonal equation |DHu(x)| = 1 for x '= 0 and u(0) = 0, then the
geodesic curve joining x to the origin is computed as follows:

• set t = u(x).

• Compute x(s), s ∈ [0, t], by solving the Cauchy problem:

dx

dt
(s) = −

1

|DHu(x(s))|2
(σ(x(s)))T DHu(x(s)) 0 < s < t,

x(0) = x.
(94)

We have tested the fast marching method with the schemes (84) and (88). Table 1 contains the
error maxξi,j,k∈[− 1

2
, 1
2
]3 |Ui,j,k − d(ξi,j,k; 0)| where U has been computed with the fast marching

method and either the first order scheme (84) or the first/second order scheme (88). The first
line of the table contains the number of unknowns, i.e. 1

4h4 . On Figure 1, we have plotted the
error versus h in logarithmic scale. We see that the error produced by scheme (84) behaves like
O(

√
h), in agreement with the theory above. The error produced by scheme (88) is smaller, and

the slope (in logarithmic scale) of the curve lies between 1
2 and 1.

On Figure 2, we have plotted some Carnot-Carathéodory spheres centered at 0, intersected with
the planar region {0} × [−0.5, 0.5]2 : these spheres are obtained as the level sets of U computed
by scheme (88) with h = 1/100. We very well see that the spheres have a conical singularity
near the axis x1 = x2 = 0, with an angle that gets sharper as |x3| grows. Note that, for obvious
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reasons, the grid used for representing the Carnot Carathéodory spheres is coarser than the one
used for computation, and corresponds to h = 1/60.
On Figure 3, we have plotted the Carnot-Carathéodory geodesic curve between the point
(0.15, 0.15, 0.3) and the origin, computed by the semi-analytic formula (89) or by a discrete
solution to (94):

• the parameter h is 1/120.

• in (94) DHu is first approximated at the grid nodes by a second order difference formula
applied to U , where U has been computed with scheme (88).

• for a point x not on the grid, DHu(x) is computed by a bilinear interpolation of the values
previously computed at the grid nodes.

• A second order midpoint scheme is used for integrating (94).

On Figure 3, we see that the geodesic curve is well approximated by the discrete method.
On Figure 4, we have computed the Carnot-Carathéodory distance to some compact sets ω, by
solving the boundary value problem (82) with scheme (88) and h = 1/120. On the left of figure,
we choose ω̄ as the convex set {x; |x1| + |x2| + |x3| ≤ 0.2}. On the right of the figure, ω̄ is
nonconvex, and has the shape of a three-dimensional cross.

1/h 20 40 60 80 100 120

size 4.104 6.4 105 3.24 106 1.024 107 2.5 107 5.184 107

scheme (84) 0.121287 0.0769367 0.060584 0.0497205 0.0446911 0.0405027

scheme (88) 0.0996706 0.0499173 0.0361482 0.0286559 0.0244234 0.0218842

Table 1: L∞ Error between the theoretical and computed values of d(x; 0) for x ∈ [−1
2 , 1

2 ]3 vs.
h

8.2 A case with nonuniform speed

We still solve (82) with Φ(d) = d, but we choose

f(x) =
1

min(d(x; 0), d(x;A) + 0.001)
,

u0(x) = d(x; 0),
(95)

with ω is the Korànyi ball centered at the origin with radius r = 0.05, and A = (0, 0, 1/4). The
contours of the solution in the plane x1 = 0 is plotted on Figure 5.

8.3 The initial value problem

We consider the following boundary value problem (1), with Φ(d) = d and

u0(x) = −0.5 if |x|K ≤ 0.1,

u0(x) = 0.5 − exp(−103|x|4K + 0.1) if |x|K > 0.1.
(96)

We have discretized this equation for x ∈ (−1, 1)2 × (−1
2 , 1

2), t ∈ (0, 1), with the scheme
(29) (30), (40). We have taken h = 1/100; the lattice in the x variable has 2002 × 1002/4 = 108
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"error_order1"
"error_order2"

1/N
1/sqrt(N)

Figure 1: L∞ Error between the theoretical and computed values of d(x; 0) for x ∈ [−1
2 , 1

2 ]3 vs.
N = 1

h

Figure 2: Left: Carnot-Carathéodory spheres ∂BC intersected with the plane x1 = 0, found
as the level sets of U computed with (88) and h = 1/100. Right: some Carnot-Carathéodory
spheres with radius close to 0.5.
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Figure 3: Comparison between the Carnot-Carathéodory geodesic joining (0.15, 0.15, 0.3) and
the origin, computed either by (89) (90) or by (94), with u computed by scheme (88) on a grid

with 120 × 120 × (1202)
4 nodes.

Figure 4: Level sets (intersected with the plane x1 = 0) of the Carnot-Caratheodory distance to
a convex set (the set |x1| + |x2| + |x3| ≤ 0.2) and to a nonconvex set

24



Figure 5: Contours of the solution to the static Hamilton-Jacobi equation (82) with (95), in the
plane x1 = 0

nodes. We have chosen ∆t = 1/200, so the first order scheme in (29), (30), (40) is monotone.
Alternatively, we have used the second-order scheme (77) (78) in the space variable. On Figure
6, we have plotted five level sets of u at time t = 0.25, around the front u = 0, corresponding to
u = −0.2, −0.1, 0, 0.1, 0.2, computed by using the second order scheme described above. We
see clearly the singular behavior of u around the axis x1 = x2 = 0.
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