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Abstract. We study approximation schemes for the cell problem arising in homogeniza-
tion of Hamilton-Jacobi equations. We prove several error estimates concerning the rate
of convergence of the approximation scheme to the effective Hamiltonian, both in the
optimal control setting and as well as in the calculus of variations setting.

1. Introduction

Starting from [23], where the basic approach to periodic homogenization via viscosity
solutions was outlined, the homogenization theory for Hamilton-Jacobi equations has re-
ceived a considerable interest both from theoretical, as well as from an applied viewpoint
(see, for example, [3], [7], [9], [15], [24], [25]).

An essential step in the homogenization procedure is the identification of the structure
of the Hamiltonian of the limit problem, the so-called effective Hamiltonian H(P ). The
function H(P ) is the unique value of the parameter λ for which the cell problem

H(x, Du + P ) = λ x ∈ TN

(TN is the N -dimensional torus) admits a (periodic) viscosity solution u, called the cor-
rector.

Since this equation, in general, cannot be explicitly solved except in special cases, see
[8], it is important to design numerical schemes to approximate the solution. From the
numerical point of view, this is a very difficult task since it requires the approximation
of a first order Hamilton-Jacobi equation in which the unknowns are both the viscosity
solution u and the constant H(P ). Moreover, while H(P ) is uniquely identified by the cell
problem, the corresponding solution u is, in general, not unique.

A numerical scheme for the computation of the effective Hamiltonian H(P ) was proposed
in [20], where a convergence theorem and some error estimates were proved. This scheme
relies on an inf-sup representation formula for H(P ) and therefore it does not require the
solution of the cell problem. On the other hand, since the computation of the approximate
value of H(P ), for any fixed P , requires the solution of a minimax optimization problem,
this scheme is computationally very expensive. Furthermore, the scheme in [20] does not
approximate the solution.
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A different approach, called small-δ method, has been proposed in [26]: it consists in
discretizing by a finite-difference method a regularized version of cell problem, namely

(1.1) δuδ + H(x, Duδ) = 0, x ∈ TN .

for δ > 0. It is well known in fact that ‖δuδ + H(p)‖∞ converges to 0 for δ going to 0 (see
[23]). There is a considerable work related to the approximation of (1.1) and the solution
of the discrete equation can be computed by one of the several numerical solvers available
in the literature, see [11].

To prove the convergence of the scheme, both δ and the discretization step h have to
be sent to 0. Since the limit problem does not have a unique viscosity solution, it is
not possible to apply the Barles-Souganidis theorem [1] and, to our knowledge, there is
no theoretical result providing a rigorous justification for the convergence of this class of
schemes.

The first objective of this paper is to prove the convergence of a scheme based on a
semi-lagrangian discretization of (1.1) (but the idea is general and applies to other class
of schemes), in particular, to provide an estimate for the rate of convergence to H(P ). We
address both the classical control setting and as well the calculus of variations case.

The idea to study convergence steams from a remark in [4] and consists in putting
together two estimates available in viscosity solution theory, the one for ‖δuδ +H(P )‖∞ in
[7] and the one for the semi-discrete approximation of (1.1) in [6]. The key point is that,
thanks to the coercivity assumption on the Hamiltonian needed to prove the existence of a
solution to the cell problem, the constant Cδ in the estimate Cδh1/2 provided in [6], which
in general blows up for δ going to 0 with an arbitrary rate, in this case is of the type C/δ.
Taking into account that the quantity which converges to H(P ) is δuδ, this fact is sufficient
to get an error estimate of order h1/2 which is optimal in viscosity solution theory.

We also provide a similar error estimate for the other method described in [26], the so
called large -T method, based on an evolutionary approximation of the cell problem.

We also present an interpretation of the semi-lagrangian discretization in terms of gen-
eralized Aubry-Mather measures. The use of Mather measures enabled us to compare, not
only the value of approximate effective Hamiltonian, but also the derivatives of the viscos-
ity solutions. These estimates build upon the ideas in [10] and use the recent construction
of generalized Mather measures that is presented in [17].

Finally, we describe a fully discrete scheme derived from the semi-discrete one which is
feasible to perform numerical computations. Also for this approximation step we provide
an error estimate.
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2. The Cell problem

We consider the following cell problem: for each P ∈ RN , find λ ∈ R such that there
exists a viscosity solution to

(2.1) H(x, Du + P ) = λ, x ∈ TN .

We assume that the Hamiltonian H is of the form

(2.2) H(x, p) = sup
a∈A

{−f(x, a) · p− L(x, a)},

where A is a compact subset of RM , f : TN × A → RN , L : TN × A → R are continuous
functions such that

|f(x, a)− f(y, a)| ≤ C|x− y|(2.3)

|L(x, a)− L(y, a)| ≤ C|x− y|, |L(x, a)| ≤ C(2.4)

B(0, ν) ⊂ cof(x, A)(2.5)

for some positive constant C, ν and for x, y ∈ TN , a ∈ A (co is the closure of the
convex hull). Note that the previous assumptions imply that the Hamiltonian is convex
and coercive in p. In this case, it is well known that the cell problem admits a solution
(see [23], [15]). Hamiltonians of this form are the typical ones arising in the Dynamic
Programming approach to deterministic optimal control problems, see [2].
An important different setting is that of the calculus of variations, where A = RN and
f(x, a) = a. To compensate the lack of compactness of A we require in this case L(x, a) to
be strictly convex, D2

aaL ≥ γ > 0, coercive, that is,

lim
|a|→∞

L(x, a)

|a| = +∞,

and

(2.6) L(x, a) ≤ C + C|a|2.

We may assume further, by adding to L a suitable constant, that L ≥ 0. Let us recall the
following fundamental result due to Lions, Papanicolaou and Varadhan, see [23] :

Theorem 2.1. Under the hypothesis (2.3)-(2.5) or in the calculus of variations setting,
for any P ∈ RN , there exists a unique number H(P ) and a function u which satisfy (2.1)
in viscosity sense. Furthermore, the following characterization holds

(2.7) H(P ) = inf{λ ∈ R : (2.1) admits a viscosity subsolution}

The identity (2.7) is sometimes called the minimax formula, see [22], as it is equivalent
to the following identity:

(2.8) H(P ) = inf
ϕ∈C1(TN )

sup
x∈TN

H(x, Dϕ + P ).
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The function H is called the effective Hamiltonian, while a solution u of (2.1) with
λ = H(P ) is called a corrector. Note the corrector is, in general, not unique.

We consider two quite natural approximations of (2.1), namely the ergodic approxima-
tion

(2.9) δu + H(x, Du + P ) = 0 x ∈ TN

for a given δ > 0, and the evolutionary approximation

(2.10) ut + H(x, Du + P ) = 0 x ∈ TN × (0, +∞).

These approximations are motivated also by optimal control theory where they are known,
respectively, as the small discount and the long-run average approximations, see for exam-
ple [2]. Theoretical convergence results are known for both approximation procedures. For
the convenience of the reader we collect them in the next statement.

Theorem 2.2.
i) Let uδ be a solution of (2.9). Then −δuδ converges to H(P ) as δ goes to 0. Moreover,
for a fixed x0 ∈ TN , uδ − uδ(x0) converges, up to a subsequence, to a solution of (2.1).

ii) Let u(x, t) be a solution of (2.10). Then − 1
T u(·, T ) converges to H(P ) as T goes to

+∞. Moreover, for a fixed x0 ∈ TN , u(·, T )− u(x0, T ) converges, up to a subsequence, to
a solution of (2.1).

The result in i) is due to Lions, Papanicolaou and Varadhan [23], whereas the one in ii)
is due to Fathi [14].

We should also mention that other interesting approximations to (2.1) can be considered
and ideas similar to those in the present paper could also be developed in these different
settings. Examples of such approximations are the implicit discretization of (2.10),

un+1 − un

σ
+ H(x, P + Dun+1) = 0,

and the vanishing viscosity approximation [18]

−ε∆u + H(x, P + Du) = Hε.

3. The approximation scheme

In this section we study an approximation scheme for the cell problem (2.1) obtained
via discretization of the ergodic approximation. We discretize (2.9) by means of a (first
order) semi-Lagrangian scheme as described, for example, in [6], [11]. The approximating
equation is

(3.1) δU(x) + sup
a∈A

{
−(1− δh)

U(x + hf(x, a))− U(x)

h
− L(x, a)− P · f(x, a)

}
= 0,
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for x ∈ TN . The previous scheme is, in the terminology of [26], a small-δ approximation
of (2.1).

Equation (3.1) is the dynamic programming equation of a discrete-time infinite horizon
discounted control problem with dynamics

(3.2)

{
yn+1 = yn + hf(yn, an)
y0 = x

for some control sequence {an} ⊂ A, and cost functional

Jhδ(x, {an}) =
∞∑

n=0

h(1− hδ)n(L(yn, an) + f(yn, an) · P ).

It is well known, see for instance [6], that the value function of the control problem

Uhδ(x) = inf
{an}

Jhδ(x, {an}), x ∈ TN ,

is the unique solution to (3.1).
Equation (3.1) can be interpreted also as an ergodic regularization of the discrete cell

problem

(3.3) sup
a∈A

{
−U(x + hf(x, a))− U(x)

h
− L(x, a)− P · f(x, a)

}
= λ, x ∈ TN ,

which is a semi-lagrangian approximation of the cell problem (2.1). An equation similar
to (3.3) has been introduced in [19] in the study of the analogue of Aubry-Mather theory
for discrete multi-dimensional maps.

3.1. Existence of stationary solutions. As a first step, we prove the existence of a
solution to the discrete cell problem (3.3) and a representation formula for the discrete
effective Hamiltonian similar to (2.7).

Proposition 3.1. For any P ∈ RN there exists a unique number Hh(P ) and a function
Uh, in general not unique, which satisfy equation (3.3). The following characterization
holds

(3.4) Hh(P ) = inf{λ ∈ R : (3.3) admits a subsolution}.

Note that (3.4) can be rewritten as

Hh = inf
ϕ

sup
x,a

{
−ϕ(x + hf(x, a))− ϕ(x)

h
− L(x, a)− P · f(x, a)

}
,

which is the discrete version of (2.8).
We would like to point out that in this discrete setting we also have:

Hh = sup
ϕ

inf
x

sup
a

{
−ϕ(x + hf(x, a))− ϕ(x)

h
− L(x, a)− P · f(x, a)

}
,
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which is an useful formula to prove lower bounds on the effective Hamiltonian.
For the proof of Prop.3.1, we need two preliminary lemmas.

Lemma 3.2. Suppose there exists a subsolution U and a supersolution V of (3.3) with
λ = λ1, and λ = λ2, respectively, i.e.,

sup
a∈A

{
−U(x + hf(x, a))− U(x)

h
− L(x, a)− P · f(x, a)

}
≤ λ1, x ∈ TN ,

and

sup
a∈A

{
−V (x + hf(x, a))− V (x)

h
− L(x, a)− P · f(x, a)

}
≥ λ2, x ∈ TN .

then

(3.5) λ2 ≤ λ1.

Proof. Assume by contradiction that λ2 − λ1 = 2ε, for some positive ε. Set

M = sup
TN

{U − V },

and define W = V + M . Let xε be such that (U − V )(xε) ≥ M − hε. Then

(3.6) W (xε) = V (xε) + M ≤ V (xε) + U(xε)− V (xε) + hε ≤ U(xε) + hε,

and

(3.7) W (x) ≥ V (x) + U(x)− V (x) = U(x).

Moreover observe that W is still a supersolution of (3.3) with λ = λ2. This, together with
(3.6) and (3.7), implies that

U(xε) + hε ≥ W (xε) ≥ inf
a∈A

{W (xε + hf(xε, a)) + hL(xε, a) + hf(x, a) · P} + hλ2

≥ inf
a∈A

{U(xε + hf(xε, a)) + hL(xε, a) + hf(x, a) · P} + hλ1 + 2hε

≥ U(xε) + 2hε.

The contradiction yields claim (3.5). !

Lemma 3.3. For any δ > 0,

‖δUhδ‖∞ ≤ C1(3.8)

|Uhδ(x)− Uhδ(y)| ≤ C2|x− y| x, y ∈ TN ,(3.9)

for suitable constants C1, C2 independent of δ.
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Proof. Estimate (3.8) immediately follows by

|Jhδ(x, {an})| ≤
‖L‖∞ + C|P |

δ
,

where the constant C is such that |f(x, a)| ≤ C for any a ∈ A.
Given x, y ∈ TN , we set N = [|x− y|/ hν] (here [·] stands for the integer part). By

(2.5), for any v ∈ RN and any z ∈ TN , we can find a control a ∈ A such that f(z, a) is
parallel to v. We take a1, a2,..., aN−1 in such a way that, if we define yn by (3.2), we have
y0 = x, yi+1 − yi parallel to y − x, and |yi+1 − yi| = hν for i = 0, 1, ...N − 2. Finally, we
take a ∈ A such that yN−1 + hf(yN−1, a) = y.

Let {ay
n} be an ε−optimal control for Uhδ(y), i.e. Uhδ(y) ≥ Jhδ(y, {ay

n})− ε and define a
control by

αn =






an n ≤ N − 2

a n = N − 1

ay
n−N n ≥ N.

If yn is the trajectory corresponding to the control {αn}, observing that yN = y, we have

Uhδ(x) ≤ Jhδ(x, {αn}) =
N−1∑

n=0

h(1− hδ)n(L(yn, αn) + f(yn, αn) · P ) +

+
+∞∑

n=N

h(1− hδ)n(L(yn, αn) + f(yn, αn) · P ) ≤

≤ (‖L‖∞ + C|P |)hN + (1− hδ)NUhδ(y) + ε ≤ C

ν
|x− y| + Uhδ(y) + ε,

using in the last inequality the fact that Uhδ ≥ 0 since L ≥ 0. Since ε is arbitrary, we get
Uhδ(x)− Uhδ(y) ≤ C|x− y|. Exchanging the role of x and y, we get estimate (3.9). !
Proof of Prop. 3.1. Fix a reference point x0. Estimates (3.8) and (3.9) imply that there
exists λ ∈ R such that, for some subsequence δn converging to 0, −δnUhδn(x0) converges
to λ. Moreover, there exists a Lipschitz-continuous function U such that the sequence
Un(x) = Uhδn(x)− Uhδn(x0) converges to U . The function Un satisfies

δnUn(x) + sup
a∈A

{
−(1− δnh)

Un(x + hf(x, a))− Un(x)

h
− L(x, a)− P · f(x, a)

}

= −δnUhδn(x0).

Letting n → ∞, we see that the couple (U,λ) satisfies the equation (2.1). Because of
Lemma 3.2, there is only one value of λ for which (3.3) has a solution.

To show formula (3.4), by Lemma 3.2 it cannot exist a subsolution to (3.3) for λ <
Hh(P ). On the other side, a solution of (3.3) at the critical level λ = Hh(P ) provides a
subsolution to (3.3) for any λ ≥ Hh(P ). !
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Proposition 3.4. For any h > 0, the function p *→ Hh(P ) is convex and satisfies

(3.10) ν|P |− C ≤ Hh(P ) ≤ ν|P | + C,

hence it is coercive.

Proof. Take P1, P2 and θ ∈ (0, 1). Let Ui, i = 1, 2, be a solution of

sup
a∈A

{
−U(x + hf(x, a))− U(x)

h
− L(x, a)− Pi · f(x, a)

}
= Hh(Pi).

Then θU1 + (1− θ)U2 is a subsolution of

sup
a∈A

{−U(x + hf(x, a))− U(x)

h
− L(x, a)− (θP1 + (1− θ)P2) · f(x, a)} =

θHh(P1) + (1− θ)Hh(P2)

which shows, by (3.4), that Hh is convex.
To prove the estimate

Hh(P ) ≤ ν|P | + C,

observe that

Hh(P ) ≤ max
TN

[sup
a∈A

{−f(x, a) · P − L(x, a)}]

otherwise the null function is a strict subsolution of (3.3) with λ = Hh(P ), which is
impossible by (3.4). By (2.4) and (2.5), we then get the estimate.

To prove the other estimate in (3.10), let U be a solution of (3.3) with λ = Hh(P ) and
x0 be a maximum point of U in TN . Then we get

Hh(P ) ≥ sup
a∈A

{−f(x0, a) · P − L(x0, a)}

and, by (2.4) and (2.5), the estimate.
!

3.2. Lipschitz estimate in the Calculus of Variations. Most of what was discussed
in the previous section carries through in the calculus of variations setting. However, the
Lipschitz estimate does not follow from Lemma 3.3 and requires a different proof, which
we will discuss next.

Proposition 3.5. Suppose U is continuous, periodic and satisfies

sup
a

[
U(x)− U(x + ha)

h
− L(x, a)

]
≤ C.

Then U is Lipschitz.

Note that, since we may assume L ≥ 0, we have δUhδ ≥ 0, and so the previous proposition
implies that for δ ≥ 0 the corresponding discrete solutions to the cell problem are Lipschitz.
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Proof. Let y be an arbitrary point. Then either

U(x)− U(y)−M |x− y| ≤ 0,

in which case U(x)− U(y) ≤ M |x− y|, or there exists a point of maximum x += y. In this
last case,

U(x)− U(y)−M |x− y| ≥ U(x + ha)− U(y)−M |x + ha− y|,

which implies

C ≥ sup
a

[
U(x)− U(x + ha)

h
− L(x, a)

]
≥ sup

a

[
M |x− y|−M |x + ha− y|

h
− L(x, a)

]
.

Since x += y, we have, by convexity, |x− y| ≥ |x− y + ha|− h x−y
|x−y|a. Thus, by (2.6),

C ≥ sup
a

[
−M

x− y

|x− y|a− L(x, a)

]
≥ −C + sup

a

[
−M

x− y

|x− y|a− C|a|2
]
≥ −C + C|M |2,

which is a contradiction is M is large enough. !

3.3. Convergence as δ → 0. We prove a rate of convergence of the ergodic approximation
to (3.3), which is analogous to the one proved in [7] for the continuous problem (see Prop.
4.1 in the next section).

Theorem 3.6. Let h > 0 be fixed. Then, for any δ,

(3.11) ‖δUhδ + Hh(P )‖∞ ≤ C(1 + |P |)δ.

Proof. For simplicity, we give the proof in the case P = 0 and we set Hh = Hh(0). We
claim that if V (resp. W ) is a bounded subsolution (resp., supersolution) of (3.1), i.e.

δV (x) + supa∈A

{
−(1− δh)

V (x + hf(x, a))− V (x)

h
− L(x, a)

}
≤ 0

(
resp. δW (x) + supa∈A

{
−(1− δh)

W (x + hf(x, a))−W (x)

h
− L(x, a)

}
≥ 0

)

then

(3.12)
V ≤ Uhδ

(resp. W ≥ Uhδ)

We prove the claim in the subsolution case. We rewrite the subsolution condition as

V (x) ≤ inf
a∈A

{(1− hδ)V (x + hf(x, a)) + hL(x, a)} x ∈ TN
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For any sequence {an} and the corresponding trajectory {yn}, we have

V (x) ≤ (1− hδ)V (y1) + hL(y0, a0) ≤ (1− hδ)[(1− hδ)V (y2) + hL(y1, a1)] + hL(y0, a0) =

≤ · · · ≤
n∑

i=0

h(1− hδ)iL(yi, ai) + (1− hδ)n+1V (yn+1).

Sending n → ∞, we get V (x) ≤
∑∞

n=0 h(1 − hδ)nL(yn, an) and therefore, recalling the
definition of Uhδ, claim (3.12) follows.

Let U be a solution of (3.3), see Prop. 3.1, and define Wδ = U −Hh/δ. Substituting in
(3.1), we get

δWδ(x) + sup
a∈A

{
−(1− δh)

Wδ(x + hf(x, a))−Wδ(x)

h
− L(x, a)− p · f(x, a)

}

= δ sup
a∈A

{U(x + hf(x, a))}

Hence, if M = ‖U‖∞, W δ −M and W δ + M are respectively a subsolution and a superso-
lution of (3.1), therefore by (3.12)

W δ −M ≤ Uhδ ≤ W δ + M.

Thus by the definition of W δ, we get the estimate (3.11). !

4. Error estimates for the effective Hamiltonian

The error estimates for the effective Hamiltonian we prove in this section are based on
two ingredients: an error estimate for the approximation of the effective Hamiltonian via
the ergodic regularization (2.9), and an error estimate for the discretization of (2.9). By the
juxtaposition of these two estimates we will obtain an error estimate for the approximation
of H.

The first result that we need was proved in [7, Theorem 1.2]:

Proposition 4.1. Let uδ be the unique viscosity solution of (2.9). Then

(4.1) ‖δuδ + H(P )‖∞ ≤ C(1 + |P |)δ

for some positive constant C independent of δ.

The second estimate we need is an error estimate for the approximation of (2.9), which
we are going to discuss in the next subsection.

4.1. Discretization error.

Proposition 4.2. Let uδ be the viscosity solution of (2.9) and Uhδ be the solution of (3.1).
Then

(4.2) ‖δUhδ − δuδ‖∞ ≤ C(1 + |P |)h1/2

for some positive constant C independent of h, δ.



ERROR ESTIMATES FOR THE APPROXIMATION OF THE EFFECTIVE HAMILTONIAN 11

Proof. The proof is essentially the same of the corresponding result in [6] (see also [2,
Ch.VI]). The key point is that in the estimate proved in [6], i.e.,

‖Uhδ − uδ‖∞ ≤ Cδh
1/2

the dependence of the constant Cδ on δ is of the type C/δ. This follows by the well-
known fact that, because of the coercivity assumption (2.5), the functions uδ are Lipschitz
continuous with a constant independent of δ. For reader’s convenience, we give a sketch of
the proof of (4.2) in the case P = 0.

Define a function Ψ : RN × RN → R by

Ψ(x, y) = Uhδ(x)− uδ(y)− |x− y|2

2ε
where ε is a positive constant. Let (x0, y0) be a maximum point for Ψ (which exists
since both Uhδ(x) and uδ(y) are periodic). Since y0 is a minimum point for the function
−Ψ(x0, y), by the definition of viscosity supersolution we get

(4.3) δuδ(y0) ≥ sup
a

{
f(y0, a)

x0 − y0

ε
+ L(y0, a)

}
.

Because Ψ(x0 + hf(x0, a), y0) ≤ Ψ(x0, y0), we get

(4.4) δUhδ(x0) ≤ sup
a

{(1− hδ)f(x0, a)
x0 − y0

ε
+ L(x0, a) + (1− hδ)

h

ε
|f(x0, a)|2}.

Let a be a control which realizes the maximum in (4.4). By (4.3) and (4.4) we get

(4.5) δUhδ(x0)− δuδ(y0) ≤ (f(x0, a)− f(y0, a))
x0 − y0

ε
+ C|x0 − y0| + C

h

ε
.

Since Ψ(x0, y0) ≥ Ψ(y0, y0), we have

(4.6) |x0 − y0| ≤ C0ε,

where the constant C0 depends only on the Lipschitz constants of uδ. Taking ε = h1/2 and,
using (4.6) in (4.5), it follows that

(4.7) δUhδ(x)− δuδ(x) ≤ δUhδ(x0)− δuδ(y0) ≤ Ch
1
2 .

Exchanging the role of Uhδ and uδ, we get the estimate (4.2). !
Under additional hypothesis, the previous estimate can be improved. For instance, we

quote the following result from [6]):

Proposition 4.3. Assume (2.3)–(2.5) and that, uniformly in a, for any x, y ∈ TN , a ∈ A,
f satisfies

|f(x + y, a) + f(x− y, a)− 2f(x, a)| ≤ C|y|2,
and L satisfies the semiconcavity estimate in x,

L(x + y, a) + L(x− y, a)− 2L(x, a) ≤ C|y|2.
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Then
‖δUhδ + H(P )‖∞ ≤ C(1 + |P |)(δ + h).

Proof. It is sufficient to observe that, because of the semiconcavity of f and L, the estimate
(4.1) can be improved to (see [6])

‖δUhδ − δuδ‖∞ ≤ C(1 + |P |)h.

!
Another way to improve the error estimate (4.1) is to use high-order approximation

schemes (see [12]), which give better estimates for ‖Uhδ − uδ‖∞. But for these estimates,
some additional regularity properties for uδ, which are not true in general under assump-
tions (2.3)-(2.5), are required.

4.2. Discretization error in the calculus of variations setting. In the calculus of
variations setting it is possible to give an elementary proof of Proposition 4.3, assuming
that

(4.8) |DxL| ≤ CL + C.

This last condition is a standard one in order to prove the existence of C2 solutions to the
corresponding Euler-Lagrange equations which are minimizing (see [16], for instance).

Theorem 4.4. In the calculus of variations setting we have:

‖Uhδ − uδ‖∞ ≤ C
h

δ
(1 + |P |).

Proof. For simplicity, we consider in the proof in the case P = 0. Observe that there exists
a point x0 such that

|Uhδ(x0)− uδ(x0)| = ‖Uhδ − uδ‖∞.

Firstly, consider the case in which

Uhδ(x0)− uδ(x0) = ‖Uhδ − uδ‖∞,

and let x(·) be a C2 optimal trajectory for uδ. Define a sequence

an =
x((n + 1)h)− x(nh)

h
,

and let yn be the corresponding trajectory given by (3.2). Observe that |x(t) − yn| ≤ Ch
and |ẋ(t)− an| ≤ Ch, for nh ≤ t ≤ (n + 1)h and all n.

Set T = Nh. Then

Uhδ(x0)− uδ(x0) ≤
N−1∑

n=0

∫ (n+1)h

nh

∣∣(1− hδ)nL(yn, an)− e−δtL(x, ẋ)
∣∣ dt+

+ e−δT‖Uhδ − uδ‖∞.
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From the estimate
N−1∑

n=0

∫ (n+1)h

nh

∣∣(1− hδ)nL(yn, an)− e−δtL(x, ẋ)
∣∣ dt ≤ Ch

∫ T

0

e−δtdt ≤ Ch(1− e−δT )

δ
,

we have

‖Uhδ − uδ‖∞ ≤ C
h

δ
.

In alternative,

uδ(x0)− Uhδ(x0) = ‖Uhδ − uδ‖∞.

In this case, consider an optimal trajectory (yn, an) for Uhδ and construct a piecewise
linear trajectory x(·) interpolating linearly between yn at t = nh and yn+1 at t = (n + 1)h.
Observe that for nh ≤ t ≤ (n + 1)h we have |x(t)− yn| ≤ Ch and ẋ(t) = an. Then

uδ(x0)− Uhδ(x0) ≤
N∑

n=0

∫ (n+1)h

nh

∣∣(1− hδ)nL(yn, an)− e−δtL(x, ẋ)
∣∣ dt+

+ e−δT‖Uhδ − uδ‖∞,

and thus a similar estimate follows. !

4.3. Approximation error. Now, by combining the previous estimates, we prove the
error estimate for the approximation scheme.

Theorem 4.5. For any h, δ > 0

(4.9) ‖δUhδ + H(P )‖∞ ≤ C(1 + |P |)(h1/2 + δ).

Proof. By estimates (4.1) and (4.2),

‖δUhδ + H(P )‖ ≤ ‖δUhδ − δuδ‖∞ + ‖δuδ + H(P )‖∞ ≤ C(1 + |P |)h1/2 + C(1 + |P |)δ.

!

Remark 4.6. If f , L are only continuous, but (2.5) still holds, we have that in any case the
functions uδ are Lipschitz continuous, uniformly in δ. It is well known (see [23], [24]) that
this is sufficient to guarantee that ‖δuδ+H(p)‖∞ → 0 for δ going to 0+. The argument used
in Prop. 4.2 gives ‖δUhδ − δuδ‖∞ ≤ ω(h

1
2 ) where ω is the maximum between the modulus

of continuity of f and of L. Hence, assuming only the continuity of the coefficients, we get
that, for any P , ‖δUhδ + H(P )‖∞ converges to 0 for δ, h going to 0.

By estimates (3.11), (4.1) and (4.2), taking δ = h
1
2 , it also follows that:

Proposition 4.7. For any h,

‖Hh(P )−H(P )‖∞ ≤ C(1 + |P |)h1/2.
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This estimate, even if theoretically interesting, is less relevant from a numerical point
of view. The numerical solution of equation (3.3), in which the unknowns are Hh(P ) and
U , is very difficult and requires in any case some sort of approximation by a more regular
equation. The problem (3.1), for fixed δ, can be easily solved by rewriting the equation in
the equivalent form

(4.10) U(x) = inf
a∈A

{(1− hδ)U(x + hf(x, a)) + hL(x, a) + P · f(x, a)}

and observing that the right hand side of previous equation generates a contraction map
in the space of continuous functions (see Section 6 for more details).

We have presented the error estimate for the semi-lagrangian scheme (3.1). But error
estimates such as (4.2) can be obtained for other finite-difference schemes, see [27], and
therefore applied to approximation schemes for the effective Hamiltonian such as the one
described in [26]. The approach described in this section is in some sense a general pro-
cedure to obtain an error estimate for the effective Hamiltonian by a “good” estimate for
the numerical approximation of equation (2.9).

Remark 4.8. In [7] an error estimate analogous to (4.1), but with a convergence rate δ1/3,
is given for the ergodic approximation of the cell problem

(4.11) H(x, ξ, Du(x) + P ) = H(ξ, P ) x ∈ TN .

for (ξ, p) ∈ RN × RN fixed, where H(x, ξ, v) = supa∈A{−f(x, ξ, a) · v − L(x, ξ, a)}. In
this case f and L are assumed to be Lipschitz-continuous in ξ and x. The corresponding
approximation scheme is

δU(x) + sup
a∈A

{
−(1− δh)

U(x + hf(x, ξ, a))− U(x)

h
− L(x, ξ, a)− P · f(x, ξ, a)

}
= 0,

for x ∈ TN , (ξ, p) ∈ RN × RN fixed. An error estimate analogous to (4.9), with a rate
δ1/3 + h1/2, can be proved also in this case.

4.4. The large-T approximation. Another approximation scheme for the cell problem
can be obtained by discretization of equation (2.10). This corresponds, in the terminology
of [26], to a large-T approximation of the cell problem. Coupling a forward Euler scheme
for ut with a semi-lagrangian one for the Hamiltonian, we end up with the explicit scheme

Un+1(x)− Un(x)

h
+ sup

a∈A

{
−Un(x + hf(x, a))− Un(x)

h
− L(x, a)− P · f(x, a)

}
= 0,

for x ∈ TN , where U0(x) = g(x) for a given g ∈ C0(TN).

Theorem 4.9. For any N ∈ N

(4.12)

∥∥∥∥
1

Nh
UN(·) + H(P )

∥∥∥∥
∞
≤ C(1 + |P |)(h1/2 +

1

Nh
)
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Proof. An argument similar to the one used for the estimate (4.1) gives

(4.13)

∥∥∥∥
1

T
u(·, T ) + H(P )

∥∥∥∥
∞
≤ C(1 + |P |) 1

T

where u is the solution of (2.10). In the calculus of variations case this estimate can be
improved to ∥∥∥∥

1

T
u(·, T ) + H(P )

∥∥∥∥
∞
≤ C

T
,

where C does not depend on P .
Moreover, as in the proof of Prop. 4.2 (see [13] for more details), it is possible to estimate

for T = Nh

(4.14)
∥∥u(·, T )− UN

∥∥
∞ ≤ CT (1 + |P |)h1/2

with a constant C independent of h and T . !

5. Discounted Mather measures and L2 estimates

In this section we consider the calculus of variations setting and, for P = 0, we describe
a variational interpretation of the corresponding ergodic problem in terms of generalized
Mather measures and give some applications.

Note that in this case, equation (2.1) reads as

(5.1) δu + sup
a∈RN

{a Du− L(x, a)} = 0, x ∈ TN .

In order to simplify the calculations, we consider a slight modification of the approximating
equation (3.1), i.e.

(5.2) δU(x) + sup
a∈A

{
−U(x + ha)− U(x)

h
− L(x, a)

}
= 0.

but the estimates of Section 4 still hold for this scheme. Moreover we denote by H and
Hh the value of the continuous and the discrete effective Hamiltonians for P = 0.

For a given probability measure ν, consider the problem of minimizing the action

(5.3)

∫

TN×A

L(x, a)dµ,

over all probability measures µ in TN×A, that satisfy, in the continuous case, the constraint
∫

TN×A

[aDϕ− δϕ] dµ = −δ

∫

TN

ϕdν,

for all ϕ ∈ C1(Tn), while, in the discrete one,
∫

TN×A

[
ϕ(x + ha)− ϕ(x)

h
− δϕ

]
dµ = −δ

∫

TN

ϕdν,
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for all ϕ ∈ C(Tn). The measure ν is called the trace of µ.
As described in [17], this problem admits a dual problem which, in the continuous case

is

inf
ϕ

sup
x

[
δ

(
ϕ−

∫
ϕdν

)
+ H(x, Dϕ)

]
,

whereas the discrete case it is

inf
ϕ

sup
x,a

[
δ

(
ϕ−

∫
ϕdν

)
− ϕ(x + ha)− ϕ(x)

h
− L(x, a)

]
.

Furthermore, the value of this infimum, −H
δ

in the continuous case, and −H
δ
h in the

discrete one, is given by

−δ

∫
wdν,

with w equal to the unique viscosity solution of (5.1) in the continuous case, and, in the
discrete setting, to the unique solution to (5.2). By the estimates of the previous section

it is clear that, as δ → 0, H
δ → H and H

δ
h → Hh.

5.1. Minimizing measures for calculus of variations problems. Using the same
approach as in [10], for the continuous case, or [19], for the discrete problem, we have:

Theorem 5.1. Both in the continuous and discrete settings, for every probability measure
ν there exist corresponding discounted Mather measures µδ and µhδ.

If a0 and ah are controls which realizes the maximum in (5.1) and, respectively, in (5.2),
then

(5.4) a0 = −DpH(x, Duδ), µδ a.e.,

and, respectively,

(5.5) DxUhδ(x) = −hDxL(x, ah)−DaL(x, ah), µhδ a.e..

Furthermore, for h sufficiently small,

(5.6) ah = −DpH(x, DUhδ) + O(h), µhδ a.e..

The equations (5.4) and (5.6) assert, not only that the optimal controls are characterized
by the derivative of the corresponding viscosity solution but also that µδ and µhδ are
supported in the graphs (x, a0) or (x, ah), respectively.

Corollary 5.2. For all ϕ ∈ C1(Tn), we have, in the continuous case:
∫

δϕ + DpH(x, Duδ)Dϕdµδ =

∫
δϕdν,

and, in the discrete case:
∫

δϕ− ϕ(x + ha)− ϕ(x)

h
dµhδ =

∫
δϕdν,
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where a = −DpH(x, DUhδ) + O(h).

5.2. Invariant measures. A discounted Mather measure µhδ is called invariant provided
that its trace agrees with the projection in the x variable of µhδ, that is, in the discrete
case,

(5.7)

∫
ϕ(x + hah)− ϕ(x)

h
dµhδ = 0,

for all ϕ ∈ C(TN), whereas in the continuous case invariance reads

(5.8)

∫
aDϕ(x)dµδ = 0.

for all ϕ ∈ C1(TN).

Proposition 5.3. Both in the continuous and discrete cases, there exists a (possibly non
unique) invariant discounted Mather measure.

Proof. To prove that a measure µ that satisfies the conditions (5.7) or (5.8) is a discounted
Mather measure it suffices to check that its action has is minimal, that is

∫
Ldµ = −δ

∫
wdµ,

with w = uδ, µ = µδ in the continuous case or w = Uhδ, µ = µhδ in the discrete case.
First we deal with the discrete case. To construct such measures, consider a trajectory

xn such that
xn+1 = xn + han,

where an is such that

δUhδ(xn) +
Uhδ(xn)− Uhδ(xn + han)

h
+ L(xn, an) = 0.

Construct a measure µ by taking a weak limit through some subsequence:
∫

φ(x, a)dµ = lim
N→∞

1

N

N∑

n=1

φ(xn, an).

Then, immediately, one has (5.7), and also
∫

Ldµ = −δ

∫
Uhδdµ.

To handle the continuous case we use a similar procedure, that is, we consider solutions
to the equation

ẋ = −DpH(x, Duδ(x)),

and define the measures by taking a limit of an average
∫

φ(x, a)dµ = lim
T→∞

1

T

∫ T

0

φ(x(t), ẋ(t))dt.
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!

Furthermore we have the following invariance property:

Proposition 5.4. In the continuous case any invariant discounted Mather measure is
invariant under the dynamics

ẋ = −DpH(x, p), ṗ = δp + DxH(x, p),

with p = Duδ(x).
In the discrete case, any invariant discounted Mather measure is invariant under the

dynamics

xn+1 − xn

h
= −DpH(xn, pn+1),

pn+1 − pn

h
= δpn + DxH(xn, pn+1),

with pn = DUhδ(xn).

5.3. Semiconcavity and (local) semiconvexity. In this section we prove that the so-
lution to the discrete cell problem is uniformly semiconcave and locally semiconvex on the
support of the discounted Mather measure. We make the following semiconcavity assump-
tion: for all compact set K, there exist positive constants C1 and C2, such that for all
x, y, z ∈ Rn, and v ∈ K we have

(5.9) L(x + y, a + z)− 2L(x, a) + L(x− y, a− z) ≤ C1|y|2 + C2|z|2.

Note that since L is Zn periodic in x, it suffices to check the previous inequality for y
bounded.

Proposition 5.5. Let Uhδ be a solution to

(5.10) δU + sup
a

[
−U(x + ha)− U(x)

h
− L(x, a)

]
= λδ,

where λδ = 0 if δ > 0 and λδ = Hh if δ = 0. Then Uhδ is semiconcave, that is

Uhδ(x + y)− 2Uhδ(x) + Uhδ(x− y) ≤ C|y|2,

in which the constant, for small h and δ, is independent of h and δ.

Proof. Consider the case δ = 0, as the other is similar. To simplify notation we will denote
the solution by U . First observe that by Proposition 3.5, U is Lipschitz, and therefore the
optimal control a given by (5.5) is uniformly bounded.

Let 0 ≤ θ ≤ 1. We have

U(x + y)− 2U(x) + U(x− y) ≤h
[
L(x + y, a− θ

y

h
)− 2L(x, a) + L(x− y, a + θ

y

h
)
]

+ U(x + a + (1− θ)y)− 2U(x + a) + U(x + a− (1− θy).
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Suppose an estimate Λn for the semiconcavity modulus of U is known, that is

U(x + y)− 2U(x) + U(x− y) ≤ Λn|y|2

Then, using (5.9), we have

U(x + y)− 2U(x) + U(x− y) ≤ hC1|y|2 + C2θ
2 |y|2

h
+ Λn(1− θ)2|y|2.

Therefore, by optimizing over θ we obtain:

Λn+1 ≤ hC1 +
C2Λn

C2 + Λnh
.

In the limit, this yields a universal bound

Λ =
C1h +

√
C2

1h
2 + 4C1C2

2
.

!

Proposition 5.6. Let Uhδ be a solution to (5.10). Suppose x is such that there exists an
optimal trajectory xn for n ≤ 0 ending at x, that is x0 = x. Then Uhδ is locally semiconvex
at x, that is

Uhδ(x + y)− 2Uhδ(x) + Uhδ(x− y) ≥ −C|y|2,

in which the constant, for small h and δ, is independent of h and δ.

Remark 5.7. For any point x one can construct forward optimal trajectories. But only
special points are endpoints of optimal trajectories. Another way to rephrase the assump-
tion of this theorem is to assume that for any N there is a point x0 and an optimal
trajectory for the discrete problem such that xN = x. However, it is easier to allow for
negative indices, with the obvious meaning.

Proof. The proof uses a similar iterative argument using the following estimate: let 0 ≤
θ ≤ 1.

U(xn−1+(1− θ)y)− 2U(xn−1) + U(xn−1 − (1− θ)y)

≤h
[
L(xn−1 + (1− θ)y, a + θ

y

h
)− 2L(xn−1, a) + L(xn−1 − (1− θ)y, a− θ

y

h
)
]

+ U(xn + y)− 2U(xn) + U(xn − y).

This inequality yields an estimate for Λn, the (local) semiconvexity modulus at xn in terms
of Λn−1 the local semiconvexity modulus at xn−1. !

Finally, we quote a result from [10]:
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Proposition 5.8. Suppose U is a semiconcave function, and let x be a point at which U
locally semiconvex. Then there exists a constant C such that

|u(x)− u(y)−Du(x)(y − x)| ≤ C|x− y|2,

furthermore

|Du(x)−Du(y)| ≤ C|x− y|,

for almost every y.

5.4. L2 estimates.

Proposition 5.9. Suppose uδ is a solution of (5.1) and u is a solution of

(5.11) H(x, Du) = H.

Let µδ be a discounted Mather measure, ηε a standard mollifier, and uε = u ∗ ηε. Then
∫

TN

|Duδ −Duε|2dµδ ≤ Cδ‖u‖∞ + C‖H + δuδ‖∞ + O(ε).

Proof. We have, µδ almost everywhere,

H(x, Duε)−H(x, Duδ) ≤ H + δuδ + O(ε).

Using convexity,

H(x, Duε)−H(x, Duδ) ≥ DpH(x, Duδ)D(uε − uδ) + C|Duδ −Duε|2.

Then, since
∫

δ(uε − uδ) + DpH(x, Duδ)D(uε − uδ)dµδ = δ

∫
(uε − uδ)dν,

we have ∫
|Duδ −Duε|2 ≤ δ

∫
(uε − uδ)d(µd − ν) +

∫
H + δuδdµδ,

which implies
∫

TN

|Duδ −Duε|2dµd ≤ Cδ‖u‖∞ + C‖H + δuδ‖∞ + O(ε).

!

With a similar proof one would obtain that
∫

TN

|Duε
δ −Du|2dµ ≤ Cδ‖u‖∞ + C‖H + δuδ‖∞ + O(ε),

where µ is the Mather measure corresponding to δ = 0, and uε
δ = uδ ∗ ηε.
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Proposition 5.10. Suppose uδ is a solution of (5.1) and µδ a corresponding discounted
Mather measure. Suppose Uhδ is a solution of (5.2). Let DUhδ(x) denote a measurable
selection of the superdifferential of Uhδ in the support of µδ. Then

∫

TN

|Duδ −DUhδ|2dµδ ≤ Ch.

Proof. By semiconcavity we have

Uhδ(x + ha) ≤ Uhδ(x) + hDUhδa + O(h2).

Therefore

sup
a

{
−Uhδ(x + ha)− Uhδ(x)

h
− L(x, a)

}
≥ H(x, DUhδ) + O(h).

Thus we have

δ(Uhδ − uδ) + sup
a

{
−Uhδ(x + ha)− Uhδ(x)

h
− L(x, a)

}
−H(x, Duδ)

≥ δ(Uhδ − uδ) + H(x, DUhδ)−H(x, Duδ) + O(h)

≥ δ(Uhδ − uδ) + DpH(x, Duδ)(DUhδ −Duδ) + C|DUhδ −Duδ|2 + O(h)

Therefore, taking into account that δ(Uhδ − uδ) = O(h), by theorem 4.4, we have
∫

|DUhδ −Duδ|2dµδ ≤ Ch.

!
Therefore, to summarize these estimates, in what concerns the approximation of the

graph of the derivative of u by the discrete discounted approximation we have:

Corollary 5.11. We have
∫

|Duε −DUhδ|2dµδ ≤ O(δ) + O(h) + O(ε).

Finally, we prove an estimate with respect to the discrete discounted Mather measure:

Proposition 5.12. Suppose uδ is a solution of (5.1), Uhδ is a solution of (5.2) and µhδ

is the corresponding discounted Mather measure. Then
∫

TN

|Duε
δ −DUhδ|2dµhδ ≤ Ch + O(ε).

Proof. In this proof we will omit the mollification step and set ε = 0, as it is similar as
before. By Proposition 5.8 we have µhδ almost everywhere

sup
a

{
−U(x + ha)− U(x)

h
− L(x, a)

}
= H(x, DUhδ(x + ha∗)) + O(h),
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where

DaL(x, a∗) = DUhδ(x + ha∗).

Then

0 =δ(uδ − Uhδ) + H(x, Duδ)− sup
a

{
−U(x + ha)− U(x)

h
− L(x, a)

}

=δ(uδ − Uhδ) + H(x, Duδ)−H(x, DUhδ(x + ha∗)) + O(h).

Now, note that

H(x, Duδ)−H(x, DUhδ(x + ha∗))

≥ DpH(x, DUhδ)D(uhδ − Uhδ) + C|D(Uhδ − uδ)|2.

Thus, µδ almost everywhere,

C|D(Uhδ − uδ)|2 ≤ −DpH(x, DUhδ)D(uδ − Uhδ)− δ(uδ − Uhδ) + O(h).

Recall that u is semiconcave, and so

u(x + w) ≤ u(x) + wDu(x) + C|w|2.

Thus

−DpH(x, DUhδ)Duδ ≤
u(x)− u(x + hDpH(x, DUhδ))

h
+ O(h).

µhδ almost everywhere, by Proposition 5.8 we have

DpH(x, DUhδ)DUhδ ≤
Uhδ(x)− Uhδ(x− hDpH(x, DUhδ))

h
+ O(h).

By Theorem 4.4, we have

δ(uδ − Uhδ) = O(h).

Therefore

C

∫
|D(Uhδ − uδ)|2dµδ ≤

∫
u(x)− u(x + hDpH(x, DUhδ))

h
dµδ

+

∫
Uhδ(x)− Uhδ(x− hDpH(x, DUhδ))

h
dµδ + O(h).

Note that ∫
Uhδ(x)− Uhδ(x− hDpH(x, DUhδ))

h
= 0,

and, using the invariance property,
∫

u(x)− u(x + hDpH(x, DUhδ))

h
dµδ =

∫
u(x− hDpH(x, DUhδ))− u(x + O(h2))

h
dµδ

=

∫
u(x− hDpH(x, DUhδ))− u(x)

h
dµδ + O(h) = O(h).

!
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6. A fully discrete scheme

Note that the approximating equation (3.1) is still continuous in the space variable x.
In this section we give a outline of the construction of a fully discrete scheme, feasible for
numerical computations, from the semi-discrete one.

We introduce a space discretization which transforms (3.1) into a finite dimensional
problem. For this purpose we choose a grid Γ covering TN consisting of simplexes Sj,
j = 1, . . . ,M with nodes xi, i = 1, . . . , N . The discretization parameter k is the maximal
diameter of the splices Sj. We look for an approximate solution of (3.1) in the space

P1 := {w ∈ C(TN) |∇w ≡ const on Sj}

of continuous linear finite elements on Γ. Rewriting (3.1) in the equivalent form (4.10), we
end up with the fully discrete scheme

(6.1) U(xi) = inf
a∈A

{(1− hδ)U(xi + hf(xi, a)) + h(L(xi, a) + P · f(xi, a))} ,

for all nodes xi ∈ Γ and linear interpolation in the simples of the triangulation. Existence
and uniqueness of a solution Ukδ ∈ P1 to (6.1) for any δ is proved in [11]. A solution can
be computed using the iterative methods proposed in [11], [21].

Proposition 6.1. For any h, k, δ > 0

(6.2) ‖H(P ) + δUkδ‖∞ ≤ C(1 + |P |)(δ + h1/2 +
k

h
),

for some positive constant C independent of δ, h, k.

Proof. Recalling (4.9), it is sufficient to prove that

(6.3) ‖δUhδ − δUkδ‖∞ ≤ C(1 + |P |)k
h
.

The estimate (6.3) can be proved as in [11], observing that Uhδ is Lipschitz continuous
uniformly in δ, see Prop 3.3, and the constant Cδ in the estimate

‖Uhδ − Uk‖∞ ≤ Cδ
k

h

is of the type C/δ. !
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