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Abstract

In this paper we prove some Hadamard and Liouville type properties for
nonnegative viscosity supersolutions of fully non linear uniformly elliptic par-
tial differential inequalities in the whole space.

1 Introduction

In this paper we consider the fully nonlinear partial differential inequality

F (x, u, Du, D2u) ≥ 0 , x ∈ IRN (1.1)

with the aim of identifying sufficient conditions on the uniformly elliptic func-
tion F which guarantee the validity of Liouville type results such as

(A) any nonnegative solution of (1.1) is a constant
or

(B) the only nonnegative solution of (1.1) is u ≡ 0.

This questions have been recently tackled in the framework of the theory of
viscosity solutions (see [6] as a general reference on the subject), the natural
one in view of the nonlinear dependence of F on second derivatives.
The first property has been established for the equation F (D2u) = 0 as a
consequence of the Krylov–Safonov–Harnack inequality for viscosity solutions
in [3].

∗This work was partially supported by the TMR Network ”Viscosity Solutions and
Applications”.
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In [7], the Liouville property for nonnegative viscosity solutions of the in-
equality F (x, u, D2u) ≥ 0 has been proved to hold true by a completely dif-
ferent method, relying in particular on a nonlinear extension of the classical
Hadamard Three Spheres Theorem.

The main feature of the present paper, which borrows several ideas from
[7], is that we allow F to depend on first order derivatives under the main
condition that

F (x, 0, p, 0) ≤ σ(|x|)|p|
where the radial function σ satisties some conditions which will be specified
later.
Even under this restriction, the dependence of F on Du generates some new
interesting phaenomena. Indeed, our version of the Hadamard Three Spheres
Theorem (see Theorem 3.1) states that if u is a viscosity solution of (1.1),
then the function

m(r) = min
r1≤|x|≤r

u(x)

is a concave function of

ψ(r) =

∫ r

r1

s
−Λ
λ (N−1) exp

(
− 1

λ

∫ s

r1

σ(τ)dτ

)
ds. (1.2)

The function ψ in the above is a special non decreasing solution of the linear
ordinary differential equation

λΦ′′ +

(
Λ(N − 1)

r
+ σ(r)

)
Φ′ = 0

which is connected with radial, convex, nondecreasing solutions of the Pucci
maximal operator. In the case considered in [7], σ ≡ 0 and the function ψ has
a finite limit as r tends to +∞ as soon as λ < Λ or N > 2. In the setting of
the present paper, the possibility for ψ to diverge can also arise, due to the
presence of the exponential term involving σ, namely when

∫ +∞
r1

|σ(τ)|dτ =
+∞.

Let us point out that our Theorem 3.1 applies in particular to non negative
solutions of linear inequalities such as

− tr(A(x)D2u) + b(x) ·Du ≥ 0

if A(x) is positive definite, |b(x)| ≤ σ(|x|) (see [14] for classical results in this
direction).

As an immediate consequence of the Hadamard theorem the function m
satisfies

m(r) ≥ m(r1)

(
1− ψ(r)

ψ(r2)

)
.

This implies that m(r) or m(r)
L−ψ(r) are nondecreasing functions respectively

when ψ is divergent or ψ has a finite limit.
The two different possible behaviors at infinity of ψ have then some con-

sequence from the point of view of the validity of the Liouville properties (A),
(B) which amount to prove that m is a constant or m ≡ 0. Theorems 4.1 and
4.2 in Section 4 cover the two possible cases.
Since we are dealing here with fully nonlinear inequalities, both Theorem 4.1
and Theorem 4.2 can be regarded as a twofold extension of several classical
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and more recent results for linear and semilinear equations (see [14], [9], [10],
[12] and [4]).

The proofs of Theorems 3.1, 4.1, 4.2 employ several basic facts as well as
important results (namely, comparison and strong minimum principle) from
the theory of viscosity solutions. For the convenience of the reader these are
collected in Section 2.

2 Preliminaries

In this short section we recall the definition and some relevant properties of
viscosity solutions of fully nonlinear uniformly elliptic inequalities as well as
a few basic facts about the Pucci maximal operator. For further information
we refer to [6], [3].

Let Ω be an open set in IRN , SN the set of N ×N symmetric matrices and
denote by trQ the trace of a matrix Q. A continuous function F : Ω × IR ×
IRN × SN → IR is uniformly elliptic if there exist constants 0 < λ ≤ Λ such
that

λ tr(Q) ≤ F (x, t, p, M)− F (x, t, p, M + Q) ≤ Λ tr(Q) (2.1)

for all M, Q ∈ SN with Q nonnegative definite and for every fixed t ∈ IR , p ∈
IRN and x ∈ Ω.
A fundamental example of uniformly elliptic operator is the Pucci maximal
operator

M+
λ,Λ(M) = sup

A∈Aλ,Λ

(−tr(AM)) M ∈ SN , (2.2)

where
Aλ,Λ = {A ∈ SN : λ|ξ|2 ≤ A ξ · ξ ≤ Λ|ξ|2, ∀ ξ ∈ IRN}

For λ = Λ = 1, the operator M+
λ,Λ coincides with the Laplace operator −∆.

The following representation of M+
λ,Λ(M) will be often used in the paper:

M+
λ,Λ(M) = −λ

∑

i∈I+

ei − Λ
∑

i∈I−

ei , (2.3)

where ei (i = 1, . . . , N) are the eigenvalues of M and I+, I− are, respectively,
the sets of indexes corresponding to positive and negative eigenvalues of M .
From the above it follows that the inequality

F (x, t, p, B) ≤ F (x, t, p, 0) +M+
λ,Λ(B) (2.4)

holds for any F satisfying (2.1) and for all x ∈ Ω, t ∈ IR, p ∈ IRN and B ∈ SN .

A viscosity solution of the inequality

F (x, u, Du, D2u) ≥ 0 , x ∈ Ω (2.5)

is a lower semicontinuous function u : Ω→ IR such that

F (x0, u(x0), Dζ(x0), D
2ζ(x0)) ≥ 0

for all ζ ∈ C2(Ω) and all x0 ∈ Ω such that u− ζ has a local minimum at x0.
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Viscosity solution of the inequality

F (x, u, Du, D2u) ≤ 0 , x ∈ Ω (2.6)

are similarly defined by replacing lower semicontinuity with upper semiconti-
nuity and local minima with local maxima. Finally, u is a viscosity solution
of the equation

F (x, u, Du, D2u) = 0 , x ∈ Ω (2.7)

if it is simultaneously a viscosity solution of (2.5) and (2.6).

We will consider in the paper functions F satisfying (2.1) for some fixed
λ, Λ and

F (x, 0, 0, 0) = 0 (2.8)

F (x, t, p, 0) ≤ σ(|x|)|p|+ h(x)tα ∀(x, t, p) ∈ Ω× IR+ × IRN (2.9)

where α ≥ 1 and σ and h are continuous real valued functions such that

|x|σ(|x|) ≥ −Λ(N − 1) (2.10)

h(x) ≤ 0 (2.11)

for all x ∈ Ω . Let us observe that if a function u ≥ 0 is a viscosity solution of
(2.5) with F as in (2.8), (2.9), then it is easy to deduce from (2.4) that

M+
λ,Λ(D2u) + σ(|x|)|Du|+ h(x)uα ≥ 0 , x ∈ Ω (2.12)

in the viscosity sense. If moreover (2.11) holds, then u is also a viscosity
solution of

M+
λ,Λ(D2u) + σ(|x|)|Du| ≥ 0 , x ∈ Ω. (2.13)

A large class of fully nonlinear operators satisfying this set of assumptions
is that of Bellman - Isaacs operators

inf
γ∈B

sup
β∈A

{− tr(Aβ,γ(x)D2u) + bβ,γ(x) ·Du + cβ,γ(x)u} (2.14)

arising in stochastic optimal control and differential games theory (see [8]).
Indeed, it is easy to check this, provided that Aβ,γ ∈ Aλ,Λ for some 0 < λ ≤ Λ,
the vectorfields bβ,γ and functions cβ,γ satisfy

|bβ,γ(x)| ≤ σ(|x|) , cβ,γ(x) ≤ h(x)

with h and σ as in (2.10), (2.11) for any (β, γ) in the give parameter sets A,B.
The Pucci maximal operator can be represented in this form by taking B as a
singleton, A = Aλ,Λ and bβ,γ = cβ,γ = 0. Our assumptions (2.1), (2.8),(2.9),
(2.10), (2.11) are satisfied, in particular, by linear operators in non divergence
form

− tr(A(x)D2u) + b(x) ·Du + c(x)u

if A(x) is positive definite, |b(x)| ≤ σ(|x|), c(x) ≤ 0.

The following two fundamental results from the theory of viscosity so-
lutions hold for fully nonlinear operators satisfying our assumptions. Let us
record them in the following versions suited for our later purposes
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the Comparison Principle : let u and Φ be, respectively, a viscosity and a
classical solution of (2.5) in the annulus D = {x ∈ IRN : r1 < |x| < r2}. If
u ≥ Φ on ∂D then u ≥ Φ in D, (see [11])

the Strong Minimum Principle : let u ≥ 0 be a viscosity solution of

M+
λ,Λ(D2u) + σ(x)|Du| ≥ 0 , x ∈ Ω ⊂⊂ IRN .

If u attains its minimum on Ω at some x0 ∈ Ω then u is a constant, (see [1]).

3 A nonlinear Hadamard theorem

The object of this section is the following nonlinear version of the classical
Hadamard Three Spheres Theorem.

Theorem 3.1 Let u be a viscosity solution of

u ≥ 0 , F (x, u, Du, D2u) ≥ 0 , x ∈ D (3.1)

where D is the annulus {x ∈ IRN : r1 < |x| < r2 }.
If F satisfies conditions (2.1), (2.8), (2.9), (2.10) and (2.11) for all x ∈ D,
then the function

m(r) = min
r1≤|x|≤r

u(x) , r ∈ [r1, r2] (3.2)

satisfies

m(r) ≥ ψ(r)

ψ(r2)
m(r2) +

(
1− ψ(r)

ψ(r2)

)
m(r1) , ∀r ∈ [r1, r2] (3.3)

where ψ is given by

ψ(r) =

∫ r

r1

s
−Λ
λ (N−1) exp

(
− 1

λ

∫ s

r1

σ(τ)dτ

)
ds . (3.4)

Proof. The first step of the proof is to observe, see (2.13), that in our
assumptions any viscosity solution u of (3.1) is also a viscosity solution of

u ≥ 0 , M+
λ,Λ(D2u) + σ(|x|)|Du| ≥ 0 , x ∈ D .

We look next for a smooth solution Φ = Φ(|x|) of the Dirichlet problem

M+
λ,Λ(D2Φ) + σ(|x|)|DΦ| = 0 , x ∈ D

Φ(x) = m(r1) if |x| = r1, Φ(x) = m(r2) if |x| = r2
(3.5)

where m is as in (3.2). At this purpose, note that the eigenvalues of the Hessian
matrix

D2Φ(|x|) ≡ Φ′(|x|)
|x| IN +

[
Φ′′(|x|)
|x|2 − Φ′(|x|)

|x|3

]
x⊗ x

(here IN denotes the N ×N identity matrix) are Φ′′(|x|) which is simple and
Φ′(|x|)
|x| with multiplicity N − 1 (see [7], Lemma 3.1). Hence, taking (2.3) into

account, any radial, convex, non increasing solution of (3.5) must satisfy

λΦ′′ +
(

Λ(N−1)
r + σ(r)

)
Φ′ = 0, , r ∈ (r1, r2)

Φ(r1) = m(r1), Φ(r2) = m(r2) .
(3.6)
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A simple computation shows that the solution of (3.6) is

Φ(r) =
ψ(r)

ψ(r2)
m(r2) +

(
1− ψ(r)

ψ(r2)

)
m(r1) (3.7)

with ψ(r) given by (3.4). Hence, Φ(x) = Φ(|x|) is a smooth solution of (3.5).
Since, by construction, Φ(x) ≤ u(x) on ∂D, by the Comparison Principle we
get

u(x) ≥ Φ(x) in D. (3.8)

Observe now that the claim (3.3) is trivial if u (and, consequently, m) is
a constant. Assume then that u is not a constant. Therefore, by the Strong
Minimum Principle, u must attain its minimum value on the boundary of the
compact set {x ∈ IRN : r1 ≤ |x| ≤ r }, for each r ∈ (r1, r2), that is

m(r) = min{ min
|x|=r1

u(x); min
|x|=r

u(x)} for r ∈ (r1, r2).

If m(r) = min|x|=r1 u(x), then the definition of m, the boundary condition on
Φ and the fact that Φ is non increasing yield

m(r) = m(r1) = Φ(r1) ≥ Φ(r)

On the other hand, if m(r) = min|x|=r u(x) = u(xr) for some |xr| = r, then
from inequality (3.8) we get m(r) ≥ Φ(|xr|) = Φ(r) and the claim is proved
in this case as well.
Therefore, m(r) ≥ Φ(r) for all r ∈ [r1, r2] and the proof is complete. !

An analogous result, which can be proved by the same technique as the
previous one, holds for the reversed inequalities.

Theorem 3.2 Let u be a viscosity solution of

u ≤ 0 , F (x, u, Du, D2u) ≤ 0 , x ∈ D (3.9)

where D is the annulus {x ∈ IRN : r1 < |x| < r2 }.
If F satisfies conditions (2.1), (2.8) and

F (x, t, p, 0) ≥ σ(|x|)|p|+ h(x)tα , α ≥ 1

where σ and h are continuous, and satisfy, respectively,

|x|σ(|x|) ≤ λ(N − 1) , h(x) ≥ 0 , x ∈ D.

Then M(r) = maxr1≤|x|≤r u(x) , r ∈ [r1, r2] satisfies

M(r) ≤ ψ̃(r)

ψ̃(r2)
M(r2) +

(
1− ψ̃(r)

ψ̃(r2)

)
M(r1) , ∀r ∈ [r1, r2]

where

ψ̃(r) =

∫ r

r1

s
−λ
Λ (N−1) exp

(
1
Λ

∫ s

r1

σ(τ)dτ

)
ds
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4 The Liouville property

In this section we show how from Theorem 3.1 one can deduce some properties
of Liouville type for non negative viscosity solutions of fully nonlinear inequal-
ities in the whole space. The results depend on the behaviour as r tends to
+∞ of the function

ψ(r) =

∫ r

r1

s
−Λ
λ (N−1) exp

(
− 1

λ

∫ s

r1

σ(τ)dτ

)
ds

where r1 > 0 is arbitrarily fixed. Observe that ψ is non decreasing; moreover,

ψ′′(r) = − exp

(
− 1

λ

∫ s

r1

σ(τ)dτ

)(
Λ
λ

(N − 1)r−
Λ
λ (N−1)−1 +

σ(r)

λ
r−

Λ
λ (N−1)

)

and therefore, by assumption (2.10), ψ is concave.

The first result is for the case ψ(r)→ +∞ as r → +∞.

Theorem 4.1 Let u be a viscosity solution of

u ≥ 0 , F (x, u, Du, D2u) ≥ 0 in IRN (4.1)

with F satisfying (2.1),(2.8), (2.9), (2.10) and (2.11) for all x ∈ IRN . If

lim
r→+∞

ψ(r) = +∞ , (4.2)

then u is a constant. Moreover, if the strict inequality holds in (2.11) at some
point x0 ∈ IRN , then u ≡ 0.

Proof. Let u be a viscosity solution of (4.1). A fortiori, u is a solution of the
same inequality in any annulus D. So we can apply Theorem 3.1 to u in the
annulus

r1 ≤ |x| ≤ r2

for arbitrary 0 < r1 < r2. Since m(r2) ≥ 0, (3.3) reads

m(r) ≥ m(r1)

(
1− ψ(r)

ψ(r2)

)
for every r ∈ [r1, r2] . (4.3)

Keeping r fixed and letting r2 go to +∞ in the above, using assumption (4.2)
we obtain

m(r) ≥ m(r1) for r ≥ r1. (4.4)

Since m(r) is, by its very definition, a nonincreasing function, we conclude
that m(r) = m(r1) for every r ≥ r1 > 0. Hence,

m(r) ≡ m(0) = u(0)

that is u attains its minimum on the closed ball |x| ≤ r at the interior point
x = 0.
Since u is also a solution of

M+
λ,Λ(D2u) + σ(|x|)|Du| ≥ 0

in any annulus (see (2.13)), by the Strong Minimum Principle u is a constant
and the first claim is proved.
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Now, if C is a nonnegative constant solution of (4.1), then using (2.9),

0 ≤ F (x0, C, 0, 0) ≤ h(x0) Cα

which implies u ≡ 0 if the strict inequality holds in (2.11) at some point x0.
This completes the proof. !

As a consequence of the Theorem, any solution of

u ≥ 0, M+
λ,Λ(D2u) + σ(|x|)|Du| ≥ 0 in IRN (4.5)

with σ as in (2.10) and such that (4.2) holds, is necessarily a constant. Observe
that for inequality (4.5), condition (4.2) is also a necessary condition for the
validity of the Liouville property. Actually, were

lim
r→+∞

ψ(r) = L < +∞, (4.6)

then the nonnegative function

u =

{
L− ψ(|x|) if |x| ≥ r1

L if |x| < r1
(4.7)

with r1 > 0 arbitrarily fixed, would be a strictly positive nonconstant viscosity
solution of (4.5). Indeed, L− ψ is a classical solution of

M+
λ,Λ(D2u)+σ(|x|)|Du| ≡ λψ′′(|x|)+ψ′(|x|)[Λ(N − 1)

|x| +σ(|x|)] = 0 in IRN\{0}

as it is easy to check, whereas L is a solution of the same equation in the
whole space. Therefore, well known stability properties of viscosity solutions
imply (see [6]) that u ≡ min {L; L− ψ(|x|)} is a viscosity solution of (4.5).

Let us now discuss assumption (4.2) with respect to the behaviour of σ,
the structural constants λ, Λ and the space dimension N .
A first remark in this direction is that if

∫ +∞

r1

|σ(τ)|dτ = M < +∞ (4.8)

then condition (4.2) holds in dimension N = 1 for any λ, Λ while for N > 1 it
holds only if N ≤ 2 and λ = Λ = 1. Indeed, if (4.8) holds then

exp
(
−M

λ

)∫ r

r1

s−
Λ(N−1)

λ ds ≤ ψ(r) ≤ exp
(

M
λ

)∫ r

r1

s−
Λ(N−1)

λ ds (4.9)

For N = 1 we have then

exp
(
−M

λ

)
r ≤ ψ(r) ≤ exp

(
M
λ

)
r

and ψ is divergent for any 0 < λ ≤ Λ. For general N ,

ψ(r) , r1−Λ(N−1)
λ or ψ(r) , log r as r → +∞

according to whether Λ(N−1)
λ -= 1 or Λ(N−1)

λ = 1. Therefore, ψ is divergent if

and only if Λ(N−1)
λ ≤ 1, that is N = 2 and λ = Λ.
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For example, using Theorem 4.1 we can conclude that if γ < −1 any
viscosity solution of

u ≥ 0 , −∆u + |x|γ |Du| ≥ 0 in IR2

is a constant. Note that since |x|γ ≥ 0 this fact cannot be deduced as a trivial
consequence of the classical Liouville property for superharmonic function in
IR2.
A further remark in the same direction is that condition (4.2) does not hold
for any choice of λ, Λ, N when σ(x) ≡ σ0 > 0 (observe that σ0 < 0 does not
satisfy (2.10)) since

ψ(r) =

∫ r

r1

s−
Λ
λ (N−1) exp

(
−σ0

λ
(s− r1)

)
ds.

In view of the discussion preceding the proof of Theorem 4.1 one can conclude
then that nonconstant supersolutions of

u ≥ 0 , M+
λ,Λ(D2u) + σ0|Du| ≥ 0 in IRN ,

do exist for every N , λ , Λ.
The range of applicability of Theorem 4.1 is wider in case

∫ +∞

r1

|σ(τ)|dτ = +∞ .

A class of examples in this direction is provided by functions σ such that

−Λ(N − 1)

|x| ≤ σ(|x|) ≤ λ− Λ(N − 1)

|x| for large |x| (4.10)

Actually, in this case ψ satisfies

ψ(r) ≥ C log r , for large r,

for some constant C > 0, so that (2.10) and (4.2) hold.

In the last part of this section we present a Liouville type result for the
other possible case of behavior of function ψ, namely when ψ(r) has a finite
limit as r → +∞.
This situation arise, for example, when the function σ satisfies

|x|σ(|x|) ≥ λ− Λ(N − 1) + δ for some δ > 0,

a more stringent condition than (2.10). Actually, if the above holds, then

ψ(r) ≤
∫ r

r1

s−
Λ(N−1)

λ exp

(
Λ(N − 1)− λ− δ

λ

∫ s

r1

τ−1dτ

)
ds ≤

∫ r

r1

s−1− δ
λ ds ,

yielding limr→+∞ ψ(r) ≤ limr→+∞
∫ r

r1
s−1− δ

λ ds < +∞.

We also need to impose, in addition to (2.10) and (2.11), a specific condition
on the behaviour at infinity of σ and on the zero order term in the operator,
precisely

sup
IRN

|x|σ(|x|) = C < +∞ , (4.11)
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and

h(x) ≤ −g(|x|) , for r large, and lim
r→+∞

r2g(r)(L− ψ(r))(α−1) = +∞

(4.12)
where α ≥ 1 is as in (2.9). Note that (4.12) implies h < 0 for large r, excluding
therefore the case h ≡ 0.
Observe also that if

∫∞
r1

|σ(τ)|dτ < +∞, then limr→+∞ ψ(r) = L < +∞ if

and only if λ < Λ(N − 1) and in this case ψ(r) , −r1−Λ(N−1)
λ (recall the

estimate (4.9)).
Hence, the asymptotic condition in (4.12) becomes

lim
r→+∞

g(r)r
2+(α−1)

(
1−Λ(N−1)

λ

)
= +∞ (4.13)

Furthermore, let us remark that (4.11) yields the estimate

L− ψ(r) ≥ r1−Λ(N−1)+C
λ ,

with C defined in (4.11). Thus (4.12) holds true, in particular, if g and α ≥ 1
satisfy

lim
r→+∞

g(r)r2+(α−1)(1−Λ(N−1)+C
λ ) = +∞ .

For example, if we take g(|x|) = |x|γ , for |x| large, with γ > −2 and

σ(|x|) =

{
C if |x| < 1
C
|x| if |x| ≥ 1 ,

with C > λ − Λ(N − 1) in such a way that ψ(r) , −r1−Λ(N−1)+C
λ → 0, as

r → +∞, then (4.12) holds true if 1 ≤ α < β+γ
β−2 with β = 1 + Λ(N−1)+C

λ .

Theorem 4.2 Let u be a viscosity solution of

u ≥ 0 , F (x, u, Du, D2u) ≥ 0 in IRN (4.14)

with F satisfying (2.1), (2.8), (2.9), (2.10), (4.11), (2.11) and (4.12).
If limr→+∞ ψ(r) = L < +∞ , then u ≡ 0.

Proof. Let u be be a viscosity solution of (4.14). As in the proof of Theorem
4.1 it follows that

u ≥ 0 , M+
λ,Λ(D2u) + σ(|x|)|Du|+ h(x)uα ≥ 0 in IRN (4.15)

and, a fortiori,

u ≥ 0 , M+
λ,Λ(D2u) + σ(|x|)|Du| ≥ 0 in IRN (4.16)

in the viscosity sense. By the Strong Minimum Principle applied to (4.16) in
a ball of arbitrary radius r, we deduce that either u ≡ 0 or u > 0 in IRN .

Let us assume then by contradiction that u > 0 in IRN . Applying Theorem
3.1 with arbitrarily fixed r2 > r1 > 0 , we get

m(r) ≥ m(r1)

(
1− ψ(r)

ψ(r2)

)
for every r ∈ [r1, r2] . (4.17)
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Since ψ(r) → L < +∞, as r → +∞, we obtain, after letting r2 go to infinity
and keeping r fixed in (4.17)

m(r) ≥
(

1− ψ(r)

L

)
m(r1).

Since ψ(r1) = 0, the above inequality implies that

r .→ m(r)

L− ψ(r)
is non decreasing on [r1, +∞) . (4.18)

Since
min
|x|≤r

u(x) = min
|x|=r

u(x) > 0, for all r > 0, (4.19)

then
m(r) = min

|x|≤r
u(x). (4.20)

By assumption (4.12) there exists R0 such that h(x) < 0 for |x| ≥ R0.
Thus, there are no constant, positive solutions of (4.15) and the Strong Min-
imum Principle implies that m(r) is strictly decreasing. Let us consider then
the radial function

ζ(|x|) = m(r)

[
1− [(|x|− r)+]3

(R− r)3

]
,

where r, R are parameters such that R ≥ r ≥ R0.
Observe that ζ(|x|) ≤ 0 < u(x) for |x| ≥ R and that ζ(|x|) ≡ m(r) < u(x)
for |x| < r, since m is strictly decreasing, and, moreover, ζ(|x̂|) = u(x̂) for at
some x̂ with |x̂| = r.
Therefore, u− ζ attains a nonpositive global minimum at some point xr

R such
that r ≤ |xr

R| < R. By definition of viscosity solution, from (4.15) it follows
that

M+
λ,Λ

(
D2ζ(xr

R)
)

+ σ(|xr
R|)|Dζ(xr

R)| ≥ −h(xr
R)uα(xr

R). (4.21)

Since ζ is radial, the same computation as performed in the proof of Theorem
3.1 based on the representation formula (2.3), shows that the left - hand side
of the above is

3Λm(r)

(R− r)3

[
2 +

(
(N − 1)

|xr
R|

+
σ(|xr

R|)
Λ

)
(|xr

R|− r)+
]

(|xr
R|− r)+. (4.22)

If |xr
R| = r ≥ R0, using the fact that h < 0 for |x| ≥ R0 we immediately

deduce from (4.21) and (4.22) that

h(xr
R)uα(xr

R) ≥ 0 ,

contradicting the assumption u > 0 in IRN .
Assume then r < |xr

R| < R ; from assumption (4.12) and inequalities (4.21)
and (4.22) we get

g(|xr
R|)uα(xr

R) ≤ 3m(r)

[
Λ(N + 1)

(R− r)2
+

σ(|xr
R|)

R− r

]
(4.23)

11



yielding

g(|xr
R|)mα(R) ≤ 3m(r)

[
Λ(N + 1)

(R− r)2
+

σ(|xr
R|)

R− r

]
. (4.24)

Thanks to the monotonicity of r → m(r)
L−ψ(r) (recall (4.18)) we obtain

g(|xr
R|)mα(R) ≤ 3m(R)

L− ψ(r)

L− ψ(R)

[
Λ(N + 1) + (R− r)σ(|xr

R|)
(R− r)2

]
. (4.25)

Choose now r = R
2 in (4.25) and denote by xR the corresponding minimum

point x
R
2

R of u− ζ. Observe that (4.11) guarantees that

∫ R

R
2

σ(τ)dτ ≤ C log 2 ;

therefore,

ψ′(R
2 )

ψ′(R)
= 2

Λ
λ (N−1) exp

(
1
λ

∫ R

R
2

σ(τ)dτ

)
≤ K, for some K > 0. (4.26)

Then, by the De l’Hôpital rule,

L− ψ(R
2 )

L− ψ(R)
≤ K

2
. (4.27)

Consider now the case α = 1 in (4.25). Taking (4.27) into account we get
the estimate

R2g(|xR|) ≤ 3K[2Λ(N + 1) + Rσ(|xR|)]. (4.28)

for large enough R. Since R
2 ≤ |xR| ≤ R, by (4.11) we deduce that the right-

hand side of the previous inequality is bounded. Hence, assumption (4.12)
yields the contradiction

+∞ = lim
R→+∞

R2g(R) ≤ lim sup
R→+∞

R2g(|xR|) ≤ M for some M > 0.

The statement is then proved in the case α = 1.
Assume now α > 1. From (4.25) with r = R

2 we get

R2g(|xR|)mα−1(R) ≤ 3K[2Λ(N + 1) + Rσ(|xR|)]

( xR denotes as above the point x
R
2

R ) and dividing by L− ψ(R), we obtain

m(R)

L− ψ(R)
≤

(
3K [2Λ(N + 1) + Rσ(|xR|)]
R2g(|xR|)(L− ψ(R))α−1

) 1
α−1

. (4.29)

Now, the left - hand side is, by (4.18), a positive non decreasing function.
Thus, we get the contradiction if we show that the right - hand side of (4.29)
tends to zero as R →∞.

At this purpose, observe that (4.11) yields as above the boundedness of
Rσ(|xR|); moreover, from (4.27),

L− ψ(R) ≥ 2
K

(
L− ψ

(
R
2

))
≥ 2

K
(L− ψ(|xR|)) ,

as L− ψ(r) is non increasing. Then applying (4.12), taking into account that
|xR|→ +∞, as R → +∞, we get

R2 g(|xR|) (L− ψ(R))α−1 ≥ 1
4
|xR|2 g(|xR|) (L− ψ(|xR|))α−1 → +∞

12



as R → +∞. Therefore, the right-hand side of (4.29) tends to zero as R
diverges and we get the desired contradiction. !
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