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Abstract

Some known models in phase separation theory (Hele-Shaw, nonlo-
cal mean curvature motion) and their approximated phase field mod-
els (Cahn–Hilliard, nonlocal Allen-Cahn) are used to generate planar
curve evolution without shrinkage, with application to shape recovery.
This turns out to be a level set approach to an area preserving geo-
metric flow, in the spirit of Sapiro and Tannenbaum [36]. We discuss
the theoretical validation of this method, together with the results of
some numerical experiments.
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1 Introduction

Mathematical models based on planar curve evolution have recently been
studied in Computer Vision with application to shape recovery and analysis
as well as to image segmentation [21, 22, 23, 35, 36]. The curves represent the
contours of objects in a grey level image and the idea is to use a geometric flow
to reduce a given initial set of curves to a form which is more manageable
for pattern recognition and interpretation. The curve evolution has to be
designed in order to yield both noise suppression in the initial data and
a representation of the object contours across different scales. The time
variable in the evolution corresponds to scale in the representation.

Let C(p, t) : S1 × [0, τ) → R2 denote a family of simple closed curves,
where the variable p parametrizes the curves and t is time or scale. A type
of evolution that has been thoroughly studied both in the mathematical
literature [16, 18, 19, 20] and in Computer Vision [22, 23, 35] is the Euclidean
curve shortening flow (also called the geometric heat flow) :

∂C

∂t
= κN , (1.1)

where κ and N are, respectively, the Euclidean curvature and the inward
unit normal of C. Equation (1.1) defines an Euclidean curve shortening flow
in the sense that the Euclidean perimeter shrinks as quickly as possible when
the curve evolves according to (1.1).
The geometric heat flow yields an Euclidean invariant multi–scale represen-
tation of closed curves which satisfies many useful properties (recursivity,
locality, grey-scale invariance, conservation of inclusions, ...) for shape re-
covery and analysis of images [23, 27, 3]. After a small time the evolving
curve still mantains fine details of the object contour. The multi–scale rep-
resentation is then obtained by means of the removal of small-scale features
from the contours as time increases. Furthermore, the curve shortening ef-
fect yields curve smoothing so that the noise present in the initial data is
suppressed.

A major drawback in the application of (1.1) to image processing is the
well-known fact [18, 20] that a planar embedded curve which evolves accord-
ing to the geometric heat flow (1.1) becomes more and more circular as t
increases and eventually shrinks to a point in finite time. Such a shrinking
effect is indeed an undesirable feature in image processing applications: since
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the geometric heat flow is the fastest way to shrink the length of a curve [17],
the evolving contour will diverge rapidly from the desired shape.

In [17] , Gage proposed two possible corrections to the geometric heat flow
in order to avoid the shrinking effect. The first flow is defined by subtracting
the component of the length gradient which lies parallel to the area gradient.
The evolution is defined then by :

∂C

∂t
=

(
κ− 2π

L

)
N . (1.2)

Alternatively, he proposed to magnify the plane by a homothety simultane-
ously with the evolution, that is :

∂C

∂t
=

(
κ− πρ

A

)
N + αT , (1.3)

where ρ is the support function of the curve (ρ = − < C,N >) and αT is a
tangential component which does not change the shape. The resulting flows
are curve shortening motions which preserve the area of the region enclosed
by the curve.

The area-preserving geometric flow (1.3) was applied by Sapiro and Tan-
nenbaum [36] to the problem of shape recovery in image processing in order to
overcome the above mentioned undesirable effects of the geometric heat flow.
In the study of these flows it is convenient, for theoretical as well as numerical
reasons, to adopt the so called level set approach , that is to embed the origi-
nal curve flows in the level set evolution of an evolving surface [24, 31, 11, 15].
If the surface is denoted by z = φ(x, t), x ∈ R2 then the evolving curve is
represented at all times by its zero level set Γt = {x ∈ R2 : φ(x, t) = 0}. In
the level set method, if the surface evolves according to the parabolic partial
differential equation

∂φ

∂t
= |∇φ|div

(
∇φ

|∇φ|

)

, (1.4)

( the mean curvature motion equation) it is well-known that the sets Γt evolve
according to (1.1) , no matter how we choose the surface φ(x, 0) detecting the
initial set Γ0. This formulation of (1.1) as a partial differential equation allows
for singularities to form in the evolution, and the generalized solution of (1.4)
can be found in the framework of viscosity solutions theory [11, 15]. An
important reason for which the level set representation of curve evolution was
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introduced in computer vision [24] is that it automatically handles changes in
the contour topology during the evolution. Several simultaneously evolving
curves can easily split and merge so that an unknown number of object
boundaries can be detected in the image. In this case, a suitable attraction
term is introduced in equation (1.4) in order to drive the curves towards the
boundaries of the objects of interest in the image [8, 24].

The motion by mean curvature defined by (1.4) arises as an asymptotic
limit of phase field equations. More precisely, let us consider the Allen–Cahn
equation of the phase transition theory [2]

∂u

∂t
= ∆u− 1

ε2
ω′(u) , (1.5)

where ε > 0, u is an order parameter, and ω is a double-well potential, for
instance ω(u) = 1

2(1− u2)2, the minima of which correspond to two different
phases. It may be shown [5, 12, 14] that, as ε → 0, u tends to either one
of these minima, in two regions separated by a sharp interface which moves
by its mean curvature. Then, in two dimensions, as ε → 0, the interface
corresponds to the zero level set of the solution u and it consists of a set of
curves which evolves according to equation (1.1).
The numerical solution of the Allen–Cahn equation can also be considered
as a tool for the effective computation of the geometric heat flow which
handles changes of topology during the evolution [28]. This approach has
been applied to the problem of shape recovery by Nochetto and Verdi [29].

In this paper (see Section 2) we consider some models of phase separation
which generate an area–preserving evolution of the interfaces and we suggest
the application of such models to the problem of shape recovery in image
processing. First we consider the Hele–Shaw (or Mullins-Sekerka) model. In
the Hele–Shaw free boundary problem (see [9]) , a function µ is harmonic
on both sides of an interface while two boundary conditions are required on
the interface: the jump of ∇µ in the normal direction is proportional to the
normal velocity of the interface, and the boundary value of µ is proportional
to the mean curvature. If the interface is a planar closed curve the problem
then consists in finding the motion of such a curve.
It turns out that this motion is a curve shortening motion which does not
change the area of the region enclosed by the curve. Hence the resulting flow
can be used as an alternative approach in order to obtain a model of area-
preserving curve evolution without shrinkage for shape recovery purposes.
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Another model is given by the non–local mean curvature flow where the
interface Γ evolves with normal velocity given by

V = κ− 1

| Γ |

∫

Γ
κdS , (1.6)

| Γ | denoting the total area of the evolving front. In the case of a single
curve, the motion defined by (1.6) reduces to the first area–preserving flow
of Gage [17] mentioned before.

The direct numerical computation of the previous flows is not an easy task
for image processing applications where, in general, several object contours
have to be simultaneously detected and then the simultaneous tracking of an
unknown number of evolving curves is required.
A phase field approach seems to present, as we suggest in Section 3, some
interesting features in order to overcome these computational difficulties.
More precisely, we propose the use of the Cahn–Hilliard equation and the
nonlocal Allen–Cahn equation, respectively, as computational tools for the
recovery of shapes from images.

Let us consider for example the Cahn–Hilliard equation of phase transi-
tions theory:

∂u

∂t
=

1

ε
∆(ω′(u)− ε2∆u) in Ω, (1.7)

where ε > 0 is a small parameter and ω is a double–well potential as before.
It has been shown formally by Pego [32], and then rigorously by Alikakos,
Bates and Chen [1, 10] that, as ε → 0, the zero level sets of the solution of
equation (1.7) evolve according to the Hele–Shaw flow. Hence the solution of
the Cahn–Hilliard equation yields asymptotically the desired area preserving
curve shortening flow.

Similarly, for the nonlocal Allen–Cahn equation:

∂u

∂t
= ∆u− 1

ε2
ω′(u) +

1

ε2 | Ω |

∫

Ω
ω′(u)dx , (1.8)

it has been formally shown by Rubinstein and Sternberg [33], and rigorously
proved by Bronsard and Stoth [6] in the case of radially simmetric solutions
in a bounded spherically simmetric domain Ω that, as ε → 0, the interfaces
move according to the nonlocal mean curvature flow given by (1.6).

Therefore, the nonlocal flows obtained as asymptotic limits of the phase
field equations (1.7), (1.8) should regularize the contours of an image without
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pushing the evolving curves far away from the desired object boundaries,
because the limit flows are both curve shortening and area preserving.
It is important to remark that the last property has to be understood in a
global sense, so that small “blobs” due to the presence of noise in the image
do not persist during the evolution because of the area conservation. On the
contrary, a coarsening process associated to the phase field equations forces,
in general, finer structures to disappear as time evolves [33]. Consequently,
the related models for shape recovery and analysis show an interesting noise
suppression property which consists in a shrinking effect on small blobs.

Since the area preserving flow (1.3) has some nice scale-space properties,
which are known to be important in shape recovery (see [3]), in the present
paper we shall also discuss the analogous properties shared by the flows
connected with the phase field equations.

Finally, in Section 4 we apply to the problem of shape recovery some
numerical methods developed for the phase field equations and we show the
results of numerical experiments on both synthetic and real images which
seem to validate this approach.

2 Shape recovery by phase separation models

In this section we review some known properties of area-preserving curve
shortening flows and of phase separation models which yield such flows for
the interface, and we point out their relevance for shape recovery. Let us
observe preminarily that the geometric heat flow (1.1) is the gradient flow of
the length functional on the space of smooth plane curves endowed with the
Euclidean metric. If C(p, t) is a one-parameter family of curves with length
L(t), then (see [17])

dL
dt

= −
∫

<
∂C

∂t
, κN > ds ,

where s denotes the arclength. So the geometric heat flow is the fastest way
to shrink the length of a curve. To keep the area enclosed by the curve
constant while decreasing the length, Gage [17] proposed to subtract the
component of the length gradient which lies parallel to the area gradient.
Since the first variation of the area is [17]

dA
dt

= −
∫

<
∂C

∂t
,N > ds ,
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and, for simple closed curves,
∫

< κN ,N > ds =
∫

κds = 2π ,

then Gage proposed the geometric evolution equation

∂C

∂t
=

(
κ− 2π

L

)
N , (2.1)

as the gradient flow of the length functional along curves which enclose a fixed
area. It is worth to point out that this non local flow lacks some important
properties like scale invariance and conservation of inclusions; observe in this
respect that if two curves are tangent at some point and the inner curve is
shorter than the outer one, then at some later time the regions bounded by
the evolved curves will certainly overlap.

An alternative method proposed by Gage in [17] is to use the geometric
heat flow (1.1) while simultaneously magnifying the plane by a homothety
which keeps constant the enclosed area. The corresponding evolution equa-
tion becomes

∂C

∂t
=

(
κ− πρ

A

)
N + αT , (2.2)

where ρ = − < C,N >) is the support function of the curve and αT is a
tangential component which does not affect the shape. The solution curves
to (1.2) or (1.3) have the same geometric properties. In [17] Gage proved
that a convex curve in the plane which evolves according to each one of these
flows remains convex and converges to a circle in the C∞ metric. Since the
flow defined by (1.3) and the geometric heat flow are related by dilations,
then (1.3) satifies all the requirements of a multi–scale shape analysis and
has been applied by Sapiro and Tannenbaum [36] to shape recovery in order
to overcome the undesirable shrinking effect of the geometric heat flow.

A conceptually completely different way to generate flows having similar
geometric properties is, not surprisingly, via the motion of interfaces in phase
separation modelswhere conservation of mass enters as a constitutive law.

Let us consider for example the Hele–Shaw model: let Ω be a bounded and
simply connected domain in R2 and let Γ00 be a finite set of non-intersecting
smooth closed curves in Ω and consider the free boundary problem of finding
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a function µ(x, t), x ∈ Ω, t ∈ [0, T ], and a free boundary Γ = ∪0≤t≤T (Γt×{t})
satisfying

∆µ(·, t) = 0 in Ω \ Γt, t ∈ [0, T ],
∂µ

∂n
= 0 on ∂Ω× [0, T ],

µ = λκ on Γt, t ∈ [0, T ], (2.3)

1

2

[
∂µ

∂n

]

Γt

= V on Γt, t ∈ [0, T ],

Γ0 = Γ00 on {t = 0},

where λ is a positive constant, n is the unit outward normal to ∂Ω or to Γt,
κ and V are, respectively, the curvature and the normal velocity of Γt (with
the sign convention that the curvature of a circle and the normal velocity of
an expanding curve are positive),

[
∂µ

∂n

]

Γt

=
∂

∂n
µ+ − ∂

∂n
µ− , (2.4)

and µ+ and µ− are the restrictions of µ on Ω+
t and Ω−t (respectively, the

exterior and interior of Γt in Ω). In the following we always assume that the
curves in Γt do not collide during the evolution.

Chen [9] established the local existence of a solution of the Hele–Shaw
problem for an arbitrary (smooth) initial curve, and global existence of a
solution when the initial curve is close to a circle.

The following two features of the solution of (2.3) are relevant for the
application to the problem of shape recovery. Denote by A(t) and L(t) the
area of Ω−t and the length of Γt, respectively. By using the divergence theorem
it follows that (see [9, 32])

dA
dt

= −
∫

Γt

V ds = −1

2

∫

Γt

[
∂µ

∂n

]

ds =
1

2

∫

∂Ω

∂µ

∂n
ds− 1

2

∫

Ω\Γt

∆µ dx = 0 ,

dL
dt

= −
∫

Γt

κV ds = − 1

2λ

∫

Γt

µ

[
∂µ

∂n

]

ds = − 1

2λ

∫

Ω\Γt

| ∇µ |2 dx ≤ 0 ,

since λ > 0. Therefore the Hele–Shaw flow preserves the area of the region
enclosed by Γt while decreasing its length.
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A different flow with similar features in phase separation theory is the
nonlocal mean curvature flow (1.6). In fact, dA

dt = 0 by definition, while

dL
dt

= −
∫

Γt

κV ds = −
∫

Γt

κ2ds +
1

| Γt |

(∫

Γt

κds
)2

≤ 0 .

If the front reduces to a single closed curve in the plane, (1.6) gives back
the Gage flow (1.2). In the general case, which occurs in image processing,
different flows evolve at different speeds keeping the total area fixed. A
gradual coarsening process takes place since the only possible equilibrium
state should be that of one or more disks of the same size. The flow (1.6)
shares with the classical mean curvature flow the property that a convex
initial curve in the plane remains convex for all time, in this case converging
to a circle of the same area as t → ∞. A remarkable difference, however, is
that now a nonconvex curve evoloving through (1.6) can develop singularities
in finite time (see [33]).

An important issue in the application of these models to the shape recov-
ery of an image, given its intensity function g, is of course the choice of the
initial set of curves C(p, 0). A possible one, suggested by Shah [37], is

C(p, 0) = {x ∈ Ω : ∆((Gσ ∗ g)(x)) = 0} , (2.5)

where Gσ is the standard 2D Gaussian function with extent σ, and ∗ denotes
the convolution operator. The computation of the zero–crossings of the image
convolved with the Laplacian of a Gaussian function was originally proposed
by Marr and Hildreth [26] as a theory of edge detection. It may be shown
[38] that the set of zero–crossings consists of a collection of closed curves.

We then suggest to use the curve evolution generated by the Hele–Shaw
(or the nonlocal mean curvature) flow starting with an initial set of curves
obtained from equation (2.5) with a small value of σ. Indeed, for small σ
the initial set turns out to be close to the “true” contours of the image, even
if still noisy [26]. The Hele–Shaw flow should then regularize the contours
without pushing the evolving curves far away from the true contours because
the flow is both curve shortening and area preserving.

One could wonder if small “blobs” due to the presence of noise in the
image datum g could persist during the evolution because of area conserva-
tion. This event is not possible since a noise suppression property due to a
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shrinking effect on small blobs takes place. More precisely, suppose that the
initial set of curves Γ00 contains a small circle with radius r. Since µ(x, 0) is
harmonic in Ω \ Γ0, then µ(x, 0) is constant inside the circle. Hence on the
boundary of the circle we have :

µ(x, 0) =
λ

r
, V =

1

2

∂

∂n
µ+ at t = 0. (2.6)

By the maximum principle for harmonic functions, µ(x, 0) takes then its
maximum value on Γ0 ∪ ∂Ω. If we assume that µ(x, 0) takes the maximum
value λ/r on the boundary of the small circle, then from the maximum
principle it follows easily that on the boundary of the circle we have

∂

∂n
µ+ < 0 .

Hence (2.6) implies V < 0 so that the circle shrinks.
A similar property holds for the nonlocal curvature flow: this is a well

known phenomenon in phase transition theory related to coarsening processes
in which finer structures disappear as time evolves. There is however a
remarkable difference between the two flows: in the Hele–Shaw model even
very small spheres close to extinction have a great effect on the global solution
µ (see [33, 6]). This should be of some relevance in the processing of very
noisy images.

Summing up, the propagation law for free boundaries that arises in the
two phase separation models considered here exhibits the following properties
which are useful for shape recovery:

• curve smoothing and multi-scale representation by means of curve short-
ening: suppression of noise and removal of small-scale features as time
(i.e. scale) increases;

• preservation of area: the evolving contour does not shrink, then it
diverges less rapidly from the desired shape than the geometric heat
flow (1.1);

• simultaneous evolution of all the contours in the image with suppression
of small contours due to the presence of noise.
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In the implementation we start the evolution by using an initial set of
curves obtained from equation (2.5) with a small value of σ. The set Γ00

contains a noisy version of the contours in the image plus a large number of
small blobs caused by noise.
Because of the curve shortening effect after a small time the curvature of Γt

is largest at the boundaries of the blobs. Then the coarsening process starts
and the small blobs due to the presence of noise disappear. The surviving
curves can be considered as the boundaries of the objects of interest. The
curve shortening effect removes noise from those remaining boundaries and
the further evolution yields a simultaneous multi–scale representation for all
the shapes present in the image. As usual in shape recovery by means of
curve evolution, the process has to be stopped after a suitable time in order
to avoid losing information as t becomes larger and larger.

3 Shape recovery by phase field equations

In this section we shortly review the approximation of the Hele–Shaw model
(2.3) by means of the Cahn–Hilliard equation ([32, 1, 10]) and that of the
nonlocal curvature model by means of the nonlocal Allen–Cahn equation
([33, 6]). We discuss also how, basing on these results, equations (1.7) and
(1.8) can be used as effective tools for the computation of shapes.

In [32] Pego showed by using formal matched asymptotic expansions that
level sets of solutions to the Cahn–Hilliard equation tend to solutions of the
Hele–Shaw problem as ε → 0. Alikakos, Bates and Chen [1] then rigor-
ously proved Pego’s result under the assumption that classical solutions of
the Hele–Shaw problem exist and, more recently, Chen [10] removed such a
regularity hypothesis.

We rewrite the Cahn–Hilliard equation (1.7) as the system

∂uε

∂t
=

1

ε
∆vε in Ω× (0, T ],

vε = ω′(uε)− ε2∆uε in Ω× (0, T ], (3.1)

where ω is a double equal-well potential taking its global minimum value 0
at u = ±1. Equations in (3.1) are supplemented with initial and boundary
conditions

uε(x, 0) = uε
0(x) on Ω× {0},
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∂

∂n
vε(x, t) =

∂

∂n
uε(x, t) = 0 on ∂Ω× (0, T ]. (3.2)

The property of mass conservation holds as a direct consequence of (3.1) and
(3.2): ∫

Ω
uε(x, t)dx =

∫

Ω
uε

0(x)dx ∀t ∈ (0, T ]. (3.3)

Assume now that (uε, vε) is a solution to (3.1), (3.2), and consider the zero
level set

Γε := {(x, t) ∈ Ω× (0, T ] : uε(x, t) = 0} =
⋃

0≤t≤T

(Γε
t × {t}) .

Let Γ00 be a smooth closed curve in Ω and assume that the Hele–Shaw
problem (2.3) starting from Γ00 has a smooth solution

(µ, Γ := ∪0≤t≤T (Γt × {t}))

in a time interval [0, T ] with Γt ⊂ Ω for all t ∈ [0, T ]. By the results of [1]
there exists a family of smooth initial data {uε

0(x)}0<ε≤1 which are uniformly
bounded in ε ∈ (0, 1] such that if uε are the corresponding solutions of
(3.1),(3.2) then

lim
ε→0

uε(x, t) =

{
−1 if (x, t) ∈ Q−

0 ,
+1 if (x, t) ∈ Q+

0 ,
uniformly on compact subsets,

(3.4)

lim
ε→0

(ε∆uε − 1

ε
ω′(uε))(x, t) = µ(x, t) uniformly on Ω× (0, T ],

where Q+
0 and Q−

0 denote respectively the exterior and interior of Γ0 in Ω.
The above mentioned result shows that the zero level set of the solution

to the Cahn–Hilliard equation approximates as ε → 0 a free boundary that
solves the Hele–Shaw problem. In particular the mass conservation law (3.3),
taking (see [1]) into account (3.4), corresponds to the approximate conserva-
tion of the area of the region enclosed by the zero level set Γε, which becomes
exact as ε → 0.

In a similar way, let us consider now the nonlocal Allen–Cahn equation

∂u
∂t = ∆u− 1

ε2 ω′(u) + 1
ε2|Ω|

∫
Ω ω′(u)dx on ∂Ω× (0, T ],

uε(x, 0) = uε
0(x) on Ω, (3.5)

∂
∂nuε(x, t) = 0 on ∂Ω× (0, T ],
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where the nonlocal term in the equation plays the role of a Lagrangian mul-
tiplier in order to preserve mass.
In [33] the method of matched asymptotic expansions has been used to show
that as ε → 0 the motion of the zero level sets of the solutions of (3.5)
describes a coarsening process, with velocity given by equation (1.6), which
preserves the total area inside the fronts . A rigorous proof of this convergence
has been given, at least for the case of radially simmetric solutions of (3.5)
in a bounded spherically simmetric domain Ω by Bronsard and Stoth [6].

It should be remarked (see [33]) that both the previous models can be
interpreted as particular cases of the generalized viscous Cahn–Hilliard equa-
tion

αut = ∆[ω′(u)− β∆u + νut],

introduced by Novick-Cohen [30] to take care of viscous effects in phase
separation models: ν → 0 yields the Cahn–Hilliard equation, while α → 0
gives the nonlocal Allen–Cahn equation.

The convergence results reviewed in this section, together with the prop-
erties of the limit models already discussed in Section 2, suggested to us the
use of the equations (3.1) or (3.5) to build a numerical algorithm for shape
recovery in image segmentation applications: the zero level set of their solu-
tions after a short time can be used to recover the boundaries of the objects
of interest in an image.

An approach to shape recovery based on one of the two previous equations
has actually several interesting properties. Indeed, many efficient numerical
methods developed for both models in the context of phase transitions theory
can be adapted to the problem of shape recovery. For instance, the second
order splitting method for the Cahn–Hilliard equation proposed in [13] yields
a more straightforward numerical scheme than the solution of the geometric
equation (1.3), used by Sapiro and Tannenbaum, by means of the level set
method. Moreover, the double well potential ω can be replaced for practical
reasons by a double obstacle potential such as

ψ(s) :=

{
1− s2 if s ∈ [−1, 1],
+∞ if s /∈ [−1, 1].

(3.6)

With such a choice (see for example [4] for the Cahn–Hilliard model and [28]
for the Allen–Cahn model), the essential properties of the flows are preserved
while the solutions (which are now solutions of a double obstacle variational
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inequality) are forced to remain in the interval [−1, 1] for all times; more than
that, they differ from the extrema ±1 only on a narrow transition region of
size proportional to ε, so that the use of a dynamic mesh algorithm becomes
possible [28].

We remark that this approach can be still considered as a level set method,
since an arbitrary and apriori unknown number of contours corresponding to
several objects can be simultaneously tracked and recovered from an image,
even though of course we are not interested in changes of topology during
the evolution of the curves that are object boundaries. Furthermore, the
coarsening effect, which takes place in these models, makes the small contours
due to the presence of noise vanish during the evolution.

Then an algorithm for shape recovery based on the previous phase field
models should contain the following steps:

• choose an initial set of contours by means of a pre–segmentation of
the image using, for instance, the zero–crossings method or suitable
thresholds;

• compute an initial data for the phase field equation from the initial set
of curves;

• compute a solution of the phase field equation by using a numerical
method commonly used for these models in phase transitions theory;

• stop the computation at a suitable time t in order to save the informa-
tion contained in the evolving contour (see the comment below);

• plot the zero level set of the solution at different times obtaining a
multi–resolution representation of the shapes contained in the original
image.

One way to implement the stopping criterion is to modify the evolution
equation by introducing an interaction with the image intensity function g
in order to moderate the geometric diffusion effect when the evolving curve
drifts far away from the original shape. This interaction can be for instance
introduced in the Cahn–Hilliard equation as in [8]:

∂u

∂t
= − ∆v

1 + ν|∇Gσ ∗ g|2 ,
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where ν is a positive parameter. If ν is large enough the evolution is stopped
near to the edges (large values of the gradient) of g. Of course such an
interaction violates the area conservation law.

A different approach based on optimal control ideas has been proposed
in [7].

A final remark is that most of the results discussed in the present paper
generalize to any space dimension, so that the models of shape recovery based
on the analogy with phase transitions can also be applied to recover surfaces
which are the boundaries of objects in three–dimensional images.

4 Numerical experiments

5 Conclusion
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