On the Liouville property for sublaplacians

Italo Capuzzo Dolcetta

Dipartimento di Matematica, Universit`a di Roma, "La Sapienza" 00185 Roma, Italy

Alessandra Cutrì

Dipartimento di Matematica, Universit`a di Roma, "Tor Vergata" 00133 Roma, Italy

1 Introduction

The Liouville theorem for harmonic functions states that a solution u of

$$
u \ge 0, \ \Delta u = 0 \ \text{in } \mathbb{R}^N
$$

is a constant. This classical result has been extended to non-negative solutions of semilinear elliptic equations in \mathbb{R}^N or in half-spaces by B.Gidas and J.Spruck [?]. For the case of the whole space they proved that the unique solution of

$$
u \ge 0, \ \Delta u + Cu^{\alpha} = 0 \ \text{ in } \mathbb{R}^N
$$

is $u \equiv 0$, provided $1 < \alpha < \frac{N+2}{N-2}$ and C is a strictly positive constant.

The Liouville property is more delicate to establish for semilinear elliptic equations or inequalities of the form

$$
u \ge 0, \ \Delta u + h(x)u^{\alpha} \le 0 \ \text{ in } \Sigma,
$$

where Σ is a cone in \mathbb{R}^N and $h \geq 0$ is a function which may vanish on the boundary of Σ . Liouville type theorems in this case have been established recently by H.Berestycki, L.Nirenberg and the first author. In the paper [?] they obtained, by a simpler method than in [?], a general result in this direction

under some conditions relating the exponent α , the rate of growth of h at infinity, the opening of the cone Σ and the space dimension N. In the special case $\Sigma = \{x = (x_1, ..., x_N) \in \mathbb{R}^N : x_N > 0\}$ and $h(x) = x_N$, the above mentioned theorem states that the unique solution of

$$
u \ge 0, \ \Delta u + x_N u^{\alpha} \le 0 \ \text{ in } \Sigma
$$

is $u \equiv 0$, provided $1 < \alpha < \frac{N+2}{N-1}$.

In [?] and [?] these non-existence results have been applied to show via a blow-up analysis the validity, under restrictions on α dictated by the Liouville theorems, of a priori estimates in the sup norm for all solutions $(u, \tau) > 0$ of the problem

$$
u \ge 0, \ \Delta u + a(x)u^{\alpha} + \tau = 0 \ \text{ in } \Omega
$$

$$
u = 0 \ \text{ on } \partial\Omega,
$$

where Ω is a bounded open subset of \mathbb{R}^N and $\tau \in \mathbb{R}$. These estimates allow to prove, via the Leray-Schauder degree theory, the existence of non-trivial solutions of the Dirichlet problem

$$
u \ge 0, \ \Delta u + a(x)u^{\alpha} = 0 \ \text{ in } \Omega
$$

$$
u = 0 \ \text{ on } \partial\Omega,
$$

even when the weight a may change sign in Ω (see [2] for such indefinite type problems).

The approach of [?], which works for general second order uniformly elliptic operators in non divergence form, has been adapted by I. Birindelli and the present authors to deal with the semilinear operator $\Delta_{H^n} u + a(\xi)u^{\alpha}$. Here, Δ_{H^n} is the second order degenerate elliptic operator

$$
\Delta_{H^n} = \sum_{i=1}^{2n} \left(\frac{\partial^2}{\partial \xi_i^2} + 4\xi_i^2 \frac{\partial^2}{\partial \xi_{2n+1}^2} \right) + 4 \sum_{i=1}^n \left(\xi_{i+n} \frac{\partial^2}{\partial \xi_i \partial \xi_{2n+1}} - \xi_i \frac{\partial^2}{\partial \xi_{i+n} \partial \xi_{2n+1}} \right) \tag{1.1}
$$

acting on functions $u = u(\xi)$ where $\xi = (\xi_1, \dots, \xi_{2n}, \xi_{2n+1}) \in \mathbb{R}^{2n+1}$.

In [?] and [?], the results described above for the case of the Laplace operator have been indeed extended to the operator in (1.1) under some pseudo-convexity condition on $\partial\Omega$ which allows to manage the extra difficulties posed by the presence of characteristic points.

The basic idea in [?] and [?] is to look at the Kohn Laplacian Δ_{H^n} as a sublaplacian on \mathbb{R}^{2n+1} endowed with the Heisenberg group action

$$
\xi \circ \eta = (\xi_1 + \eta_1, \ldots, \xi_{2n} + \eta_{2n}, \xi_{2n+1} + \eta_{2n+1} + 2 \sum_{i=1}^n (\xi_{i+n} \eta_i - \xi_i \eta_{i+n}))
$$

By this we mean that Kohn Laplacian in (1.1) can be expressed as Δ_{H^n} = $\frac{2n}{\sqrt{2}}$ $\frac{i=1}{i}$ X_i^2 , with

$$
X_i = \frac{\partial}{\partial \xi_i} + 2\xi_{i+n} \frac{\partial}{\partial \xi_{2n+1}}, \quad X_{i+n} = \frac{\partial}{\partial \xi_{i+n}} - 2\xi_i \frac{\partial}{\partial \xi_{2n+1}} \tag{1.2}
$$

for $i = 1, \ldots, n$. This observation allows to exploit conveniently the scaling properties of the fields X_i and of the operator Δ_{H^n} with respect to the *anistropic* dilations

$$
\delta_{\lambda}(\xi) = (\lambda \xi_1, \dots, \lambda \xi_{2n}, \lambda^2 \xi_{2n+1}) \quad (\lambda > 0)
$$

and the action of Δ_{H^n} on functions depending only on the *homogeneous norm*

$$
\rho(\xi) = \left((\sum_{i=1}^{2n} \xi_i^2)^2 + \xi_{2n+1}^2 \right)^{\frac{1}{4}} . \tag{1.3}
$$

Liouville theorems, a priori estimates and the existence of non trivial solutions in Hölder-Stein spaces for the Dirichlet problem

$$
\Delta_{H^n} u + a(\xi)u^{\alpha} = 0 , \ u = 0 \text{ on } \partial\Omega
$$

are therefore obtained in the above mentioned papers under a restriction on the exponent α depending on the *homogeneous dimension* $Q = 2n + 2$ of the Heisenberg group rather than on its linear dimension $N = 2n + 1$.

The ideas and methods outlined above for the case of Δ_{H_n} can be generalized to sublaplacians L of the form $L = \sum_{n=1}^{n_1}$ $\frac{i=1}{i}$ X_i^2 where the first order differential operators X_i in the preceding generate the whole Lie algebra of left-invariant vectorfields on a nilpotent, stratified Lie group (G, \circ) , see Section 2 for a quick review of the basic notions and terminology.

In Section 3 of the present paper, which originates from the graduate dissertation of the second author [?], we propose some abstract results of Liouville type for operators L as above, both in the linear and the semilinear case. The final Section 4 is devoted to the study of the semilinear Liouville property for some second order degenerate elliptic operator which do not fit in the abstract setting of Section 2 , the main example being the Grushin operator which is defined on $\mathbb{R}^N = \mathbb{R}^p \times \mathbb{R}^q$ by

$$
\sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} + |x|^{2k} \sum_{i=1}^{q} \frac{\partial^2}{\partial y_i^2}
$$

where $k \in \mathbb{N}$ and $\xi = (x_1, \ldots, x_p, y_1, \ldots, y_q)$ is the typical point of \mathbb{R}^N .

Let us mention finally that different aspects of semilinear subelliptic problems have been investigated in [?] and, more recently, in [?, ?, ?, ?, ?, ?, ?]. Liouville type theorems for linear Fuchsian or weighted elliptic operators have been established in [?, ?, ?].

2 Sublaplacians on stratified Lie groups

In this section we recall briefly a few notions which are relevant to the analysis on Lie groups and some fundamental properties of sublaplacians on stratified, nilpotent Lie groups. For more details, see. e.g. [?, ?].

2.1 Stratified nilpotent Lie groups

Let $\mathcal G$ be a real finite dimensional Lie algebra, i. e. a vector space on $\mathbb R$ with a Lie bracket $[\cdot, \cdot]$, that is a bilinear map from $\mathcal{G} \times \mathcal{G}$ into \mathcal{G} which is alternating

$$
[X,Y] = -[Y,X] \text{ for all } X,Y \in \mathcal{G}
$$
 (2.1)

and satisfies the Jacobi identity

$$
[X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0 \text{ for all } X, Y, Z \in \mathcal{G}.
$$
 (2.2)

 $\mathcal G$ is called m–nilpotent and stratified if it can be decomposed as a direct sum of subspaces satisfying

$$
\mathcal{G} = V_1 \oplus V_2 \dots \oplus V_m \text{ with } \dim V_j = n_j
$$

[V_1, V_j] $\subset V_{j+1}$ if $1 \le j < m$; [V_1, V_m] = {0}. (2.3)

Therefore, V_1 generates, by means of the Lie bracket $[\cdot, \cdot]$, $\mathcal G$ as a Lie algebra.

Let (G, \circ) be the simply connected Lie group associated to the Lie algebra $\mathcal{G} = (G, [\cdot, \cdot])$ as follows:

$$
G = \mathbb{R}^N \text{with } N = \sum_{j=1}^m n_j ,
$$

equipped with the group action ◦ defined by the Campbell-Hausdorff formula, namely

$$
\eta \circ \xi = \eta + \xi + \frac{1}{2} [\eta, \xi] + \frac{1}{12} [\eta, [\eta, \xi]] + \frac{1}{12} [\xi, [\xi, \eta]] + \dots \tag{2.4}
$$

(for the other terms see e.g.[?]). Note that, in view of the nilpotency of \mathcal{G} , in the right hand side there is only a finite sum of terms involving commutators of ξ and η of lenght less than m .

Observe that the group law (??) makes $G = \mathbb{R}^N$ a Lie group whose Lie algebra of left-invariant vectorfields $Lie(G)$ coincides with G. Recall that the Lie algebra $Lie(G)$ is the algebra of left-invariant vectorfields Y which satisfy

$$
Yf(\eta \circ \xi) = (Yf)(\eta \circ \xi) ,
$$

for every smooth function f, equipped with the bracket $[[X, Y]] = XY - YX$.

Let e_1, \ldots, e_{n_1} be the canonical basis of the subspace \mathbb{R}^{n_1} of G; then as a basis of the Lie algebra $\mathcal{G} = Lie(G)$ we can choose the vectorfields X_1, \ldots, X_{n_1} defined for smooth f by

$$
X_i(f)(\xi) = \lim_{t \to 0+} \frac{f(\xi \circ te_i) - f(\xi)}{t}, \ \xi \in G. \tag{2.5}
$$

Since V_1 generates $\mathcal G$ as a Lie algebra we can define recursively, for $j = 1, \ldots, m$, and $i = 1, \ldots, n_j$, a basis $\{X_{i,j}\}$ of V_j as

$$
X_{i,1} = X_i \quad (i = 1, \dots, n_1)
$$

\n
$$
X_{\alpha} = [X_{i_1}, [X_{i_2}, \dots, [X_{i_{j-1}}, X_{i_j}]] \dots],
$$

with $\alpha = (i_1, \ldots, i_j)$ multi-index of length j and $X_{i_k} \in \{X_1, \ldots, X_{n_1}\}.$

In terms of the decomposition $G = \mathbb{R}^{n_1} \oplus \mathbb{R}^{n_2} \oplus \ldots \oplus \mathbb{R}^{n_m}$ one defines then a one - parameter group of dilations δ_{λ} on G by setting for

$$
\xi = \xi_1 + \xi_2 + \ldots + \xi_m, \ (\xi_j \in \mathbb{R}^{n_j})
$$

$$
\delta_{\lambda}(\xi) = \sum_{j=1}^{m} \lambda^{j} \xi_{j}.
$$
\n(2.6)

Observe that, for any $\xi \in G$, the Jacobian of the map $\xi \longrightarrow \delta_{\lambda}(\xi)$ equals λ^{Q} , where

$$
Q = \sum_{j=1}^{m} j n_j . \tag{2.7}
$$

The integer Q is the homogeneous dimension of G. Observe that the linear dimension of G is $N = \sum_{j=1}^{m} n_j$; hence $Q \geq N$ and equality holds only in the trivial case $m = 1$ and $G = \mathbb{R}^{n_1}$.

Let us recall that a *dilation - homogeneous norm* on G is, by definition, a mapping $\xi \to \rho(\xi)$ from G to \mathbb{R}^+ such that:

$$
i) \xi \to \rho(\xi) \text{ is continuous on } G \text{ and smooth on } G \setminus \{0\}
$$

\n
$$
ii) \rho(\xi) = 0 \text{ if and only if } \xi = 0
$$

\n
$$
iii) \rho(\xi) = \rho(-\xi)
$$

\n
$$
iv) \rho(\delta_{\lambda}(\xi)) = \lambda \rho(\xi) \text{ for each } \lambda > 0.
$$
\n(2.8)

All homogeneous norms on G are equivalent; moreover they satisfy the triangle inequality

$$
\rho(\xi \circ \eta) \le C_0(\rho(\xi) + \rho(\eta)) \quad \text{for all } \xi, \eta \in G
$$

for some constant $C_0 \geq 1$. For a given homogeneous norm and positive real R, the Koranyi ball centered at 0 is the set

$$
B(0, R) = \{ \xi \in G : \rho(\xi) < R \}.
$$

These balls form, for $R > 0$, a fundamental system of neighborhoods of the origin in (G, \circ) . Through the group law \circ one defines then the distance between $\xi, \eta \in G$ by the position

$$
d(\xi,\eta)=\rho(\eta^{-1}\circ\xi)\;,
$$

where η^{-1} is the inverse of η with respect to \circ , i.e. $\eta^{-1} = -\eta$. The Koranyi ball of radius R centered at η is defined accordingly.

It is important to point out that the Lebesgue measure is invariant for the group action and that the volumes scale as R^Q .

More precisely, if $|E|$ denotes the N - dimensional Lebesgue measure (recall that $N = \sum_{j=1}^{m} n_j$, we have

$$
|B(\eta, R)| = |B(0, R)| = |B(0, 1)| R^{Q}.
$$

as a consequence of (??) and (??).

2.2 Sublaplacians

Let us come back now to the vectorfields X_i $(i = 1, \ldots, n_1)$ defined in (??). The first remark is that X_i are 1 - homogeneous with respect to the dilations δ_{λ} , i.e.

$$
X_i f(\delta_\lambda(\xi)) = \lambda(X_i f)(\delta_\lambda \xi) \tag{2.9}
$$

Indeed, from the definition ?? of X_i we have

$$
X_i f(\delta_\lambda(\xi)) = \lim_{t \to 0+} \frac{f(\delta_\lambda \xi \circ \lambda t e_i) - f(\delta_\lambda \xi)}{t}
$$

Setting $\tau = t\lambda$, the righ-hand side of the preceding is

$$
\lambda \lim_{\tau \to 0+} \frac{f(\delta_{\lambda} \xi \circ \tau e_i) - f(\delta_{\lambda} \xi)}{\tau} = \lambda(X_i f)(\delta_{\lambda} (\xi))
$$

In a similar way one can check that the vectorfields of V_j are homogenous of degree j , that is

$$
X_{i,j}f(\delta_{\lambda}(\xi)) = \lambda^{j}(X_{i,j}f)(\delta_{\lambda}\xi) , \quad \forall i = 1,\ldots,n_{j}
$$
\n(2.10)

Let us make now some simple remarks on the representation of the vectorfields X_i as first order partial differential operators. If one chooses $(e_1, \ldots, e_{n_1}, \ldots, e_N)$ as the canonical basis of $G = \mathbb{R}^N$, then each X_i $(i = 1, ..., n_1)$ can be expressed in terms of the partial derivatives $\frac{\partial}{\partial x_j}$ as

$$
X_i = \sum_{j=1}^{N} \sigma_{ij}(x) \frac{\partial}{\partial x_j} \tag{2.11}
$$

Here, $\sigma(x) = (\sigma_{ij}(x))$ is a $n_1 \times N$ matrix of the form

$$
\sigma = (I_{\mathbb{R}^{n_1}}, Q_2(x), \ldots, Q_m(x)) \tag{2.12}
$$

where $I_{\mathbb{R}^{n_1}}$ denotes the identity on \mathbb{R}^{n_1} and $Q_j(x)$ are $n_1 \times n_j$ matrices $(j = 2, \ldots, m)$. As a consequence of (??) one has

$$
\frac{\partial}{\partial x_j} \sigma_{ij}(x) = 0 \quad \text{for } j = 1, \dots, N. \tag{2.13}
$$

The *sublaplacian* L on the group G is defined then on smooth functions u by

$$
Lu = \sum_{i=1}^{n_1} X_i^2 u \tag{2.14}
$$

Observe that L is 2−homogeneous with respect to the dilations δ_{λ} since the X_i 's are 1−homogeneous; moreover, L is left-invariant with respect to the group action \circ , since the X_i 's are such.

In view of the preceding discussion, L is a second order partial differential operator; as a consequence of (??) it can be expressed in divergence form as

$$
Lu = \sum_{i,j=1}^{N} \frac{\partial}{\partial x_i} (a_{ij}(x) \frac{\partial u}{\partial x_j}), \qquad (2.15)
$$

where $A(x) = (a_{ij}(x)) = \sigma^T(x)\sigma(x)$ is a positive semidefinite $N \times N$ matrix. When $m = 1$ the sublaplacian L coincides with the Laplace operator

$$
\Delta = \sum_{i,j=1}^{N} \frac{\partial^2}{\partial x_j^2}
$$

On the other hand, as soon as $m \geq 2$, the matrix σ has a non trivial kernel. The sublaplacian L is therefore no more uniformly elliptic but only degenerate elliptic and, more precisely, a second order operator with non-negative characteristic form according to [?]. Nevertheless, the stratification condition implies that the fields X_i $(i = 1, \ldots, n_1)$ satisfy the *Hörmander condition*

$$
Lie(G) = \mathcal{G} \t\t(2.16)
$$

As a consequence of $(??)$, L is *subelliptic* (see [?]). Let us just mention here that this implies the validity of Bony's Maximum Principle (see [?]). In the sequel we will use the notation $\nabla_L u = (X_1 u, \dots, X_{n_1} u)$.

Let us conclude this section by two basic examples.

2.3 Examples

Example 1. Take $\mathcal{G} = \mathbb{R}^N$ with the trivial Lie bracket $[X, Y] = 0$ for all X, Y and stratification $V_1 = \mathbb{R}^N$, $V_2 = \{0\}$. The dilation and the homogeneous norm in this case are, of course, isotropic. They are given, respectively, by

$$
\delta_{\lambda}(\xi) = (\lambda \xi_1, ..., \lambda \xi_N); \quad \rho(\xi) = (\sum_{i=1}^{N} \xi_i^2)^{\frac{1}{2}}
$$

The homogeneous dimension is N , the fields X_i are the partial derivatives and the sublaplacian is the standard Laplacian Δ .

Example 2. Take $\mathcal{G} = \mathbb{R}^{2n+1}$ $(n \geq 1)$ with the Lie bracket $[X, Y] = XY - YX$ and the stratification $G = \mathbb{R}^{2n} \oplus \mathbb{R}^{1}$. The homogeneous dimension in this case is then $Q = 2n + 2$. The dilation and the homogeneous norm on G are, respectively,

$$
\delta_{\lambda}(\xi) = (\lambda \xi_1, \dots, \lambda \xi_{2n}, \lambda^2 \xi_{2n+1}); \quad \rho(\xi) = ((\sum_{i=1}^{2n} \xi_i^2)^2 + \xi_{2n+1}^2)^{\frac{1}{4}}
$$

It is easy to check that the group action \circ defined in $(??)$ is

$$
\eta \circ \xi = (\xi_1 + \eta_1, \dots, \xi_{2n} + \eta_{2n}, \xi_{2n+1} + \eta_{2n+1} + 2\sum_{i=1}^n (\xi_i \eta_{i+n} - \xi_{i+n} \eta_i)).
$$
 (2.17)

From this it follows that the fields X_i are given in this case by (1.2) and the sublaplacian associated with the Heisenberg group $H^n = (\mathbb{R}^{2n+1}, \circ)$ is therefore given by (1.1) .

3 The Liouville property for sublaplacians on nilpotent stratified groups

3.1 The linear case

This section is devoted to the generalization to sublaplacians L of the well-known Liouville property valid for the Laplace operator. Indeed, we prove that bounded L−harmonic functions on stratified groups G are necessarily constant.

Let $L = \sum_{i=1}^{n_1} X_i^2$ be the sublaplacian on the stratified group (G, \circ) . A function u is L−harmonic on G if

$$
u \in \Gamma^2(G), \; Lu = 0 \text{ in } G
$$

where $\Gamma^2(G)$ is the space of functions $u : G \to \mathbb{R}$ such that

$$
u, X_i u \in L^{\infty}(G) \cap C(G)
$$

and

$$
\sup_{\xi,\eta} \frac{|X_i u(\eta \circ \xi) + X_i u(\eta \circ \xi^{-1}) - 2X_i u(\eta)|}{\rho(\xi)} < \infty
$$

for $i = 1, ..., n_1$.

The basic tool in our proof of the linear Liouville theorem is the following mean value property for L−harmonic functions:

$$
v(\xi) = \frac{C_Q}{R^Q} \int_{B_L(\xi, R)} v(\eta) |\nabla_L d_L(\xi, \eta)|^2 d\eta , \qquad (3.1)
$$

where $d_L(\xi, \eta) := \rho_L(\xi^{-1} \circ \eta)$, C_Q is a suitable constant and $B_L(\xi, R)$ denotes the Koranyi ball associated to an appropriate $C^{\infty}(G \setminus \{0\})$ homogeneous norm $\rho_L(\cdot)$. Note that

$$
\rho_L^2(\xi^{-1} \circ \eta) \approx \Gamma^Q(\xi, \eta)
$$

where Γ is the fundamental solution of L (see [?, ?, ?]).

Theorem 3.1 Let $L = \sum_{i=1}^{n_1} X_i^2$ be the sublaplacian on the nilpotent stratified group G . If u is $L-harmonic$ on G , then u is a constant.

Proof. As a consequence of (??) the vectorfields $X_{i,m}$ commute with X_i for $i = 1, \ldots, n_1$. Hence the sublaplacian L satisfies:

$$
X_{i,m}Lu = X_{i,m} \sum_{j=1}^{n_1} X_j^2 u = \sum_{j=1}^{n_1} X_j^2 X_{i,m}u.
$$

Consequently, if u is L−harmonic the same is true for $X_{i,m}u$ $(i = 1, \ldots n_m)$. Therefore, by the mean value formula (??) applied to $X_{i,m}u$ we get

$$
X_{i,m}u = \frac{C_Q}{R^Q} \int_{B_L(\xi,R)} X_{i,m}u(\eta) |\nabla_L d_L|^2 d\eta \tag{3.2}
$$

Integrating by parts the right-hand side of (??), we obtain:

$$
X_{i,m}u = -\frac{C_Q}{R^Q} \int_{B_L(\xi,R)} u(\eta) X_{i,m} \left(|\nabla_L d_L|^2 \right) d\eta
$$

$$
+ \frac{C_Q}{R^Q} \int_{\partial B_L(\xi,R)} u |\nabla_L d_L|^2 \frac{X_{i,m} d_L}{|\nabla d_L|} d\Sigma.
$$

Here ∇ denotes the usual gradient; observe also that $\nu = \frac{\nabla d_L}{|\nabla d_L|}$ is the normal vector to ∂B_L .

Since the X_i are 1−homogeneous with respect to the intrinsic dilation, see (??), and are left-invariant with respect to the group action \circ , it follows that $X_{i,m}$ is homogeneous of degree m with respect to δ_{λ} and left-invariant with respect to \circ . The previous remark, together with the fact that d_L is homogenous of degree 1 with respect to δ_{λ} , provide the following estimates:

$$
|X_{i,m}(d_L)| \le \frac{C}{d_L^{m-1}}, \quad |X_{i,m} \nabla_L d_L| \le \frac{C}{d_L^m}
$$
 (3.3)

Indeed, for the first estimate in (??) observe that

$$
X_{i,m}(d_L(\eta)) = \frac{X_{i,m}(d_L(\frac{\eta}{\rho_L(\eta)}))}{\rho_L^{m-1}(\eta)}
$$

and that $|X_{i,m}(d_L(\frac{\eta}{\rho_L(\eta)}))|$ is bounded since d_L is C^{∞} on $\partial B_L(0,1)$. The second estimate is achieved by using the same argument and the 1–homogeneity of ∇_L . Moreover, $X_{i,m}(|\nabla_L d_L|^2) = 2X_{i,m}\nabla_L d_L \cdot \nabla_L d_L$.

Hence,

$$
|X_{i,m}u(\xi)| \le \frac{C_Q}{R^{Q+m}}||u||_{L^{\infty}}R^Q + \frac{C_Q}{R^{Q+m-1}}||u||_{L^{\infty}}R^{Q-1} \le \frac{C_Q}{R^m}||u||_{L^{\infty}}
$$

for every $\xi \in G$.

Therefore, letting $R \to \infty$, one deduces that

$$
X_{i,m}u \equiv 0 \quad \text{in } G \quad \text{for every } i = 1, \dots, n_m. \tag{3.4}
$$

Now, from the stratification of G it follows that $X_{i,m-1}u$ is also L−harmonic. Indeed, for $k = 1, \ldots n_1$,

$$
[X_{i,m-1}u, X_ku] = X_\alpha u \text{ for some } \alpha \text{ with } |\alpha| = m \tag{3.5}
$$

Thus, being $X_{i,m}$ a basis of V_m , (??) yields $X_\alpha u \equiv 0$ in G. Repeating the same argument and using the fact that the vectorfields $X_{i,j}$ form a basis of V_j and are j−homogeneous with respect to δ_{λ} , see (??), one finally obtains that

$$
X_{i,j}u \equiv 0 \quad \text{for } j = 1, \dots, m, \ i = 1, \dots, n_j.
$$

Consequently, from the Hörmander condition span $(X_{i,j}) = Lie(X_i) = \mathcal{G}$, we deduce that $\nabla u = 0$ in G and the claim is proved. \Box

3.2 The semilinear case

In this section we prove a Liouville theorem for nonnegative solutions of semilinear equations associated to sublaplacians L on stratified groups G .

The proof, which is inspired from [?], relies in particular on the behaviour of the operator L defined in $(??)$ on functions which are radial with respect to the homogeneous norm $\rho_L(\cdot)$, see Section 3.1. From now we shall write, for simplicity, $\rho_L = \rho$.

One can easily check by a direct computation using (??) that the following holds for smooth $f : \mathbb{R} \to \mathbb{R}$ and $\rho \neq 0$

$$
Lf(\rho) = f''(\rho)|\nabla_L \rho|^2 + f'(\rho)L\rho
$$
\n(3.6)

As recalled in the previous section, $\rho^{2-Q} \approx \Gamma$, where Γ is the fundamental solution of L. Therefore, using (??) with $f(\rho) = \rho^{2-Q}$, one finds that

$$
0 = L\rho^{2-Q} = (2 - Q)(1 - Q)\rho^{-Q}|\nabla_L\rho|^2 + (2 - Q)\rho^{1-Q}L\rho
$$

for $\rho \neq 0$. Hence,

$$
L\rho = (Q-1)\rho^{-1}|\nabla_L\rho|^2
$$

yielding to the following radial expression of L :

$$
Lf(\rho) = |\nabla_L \rho|^2 [f''(\rho) + f'(\rho) \frac{Q-1}{\rho}].
$$

Let us observe that $\nabla_L \rho$ is homogeneous of degree zero and therefore is bounded in G; the same is true for $\rho L \rho$. In the sequel we will use the notation $\psi(\rho) = |\nabla_L \rho|^2$.

Theorem 3.2 Suppose that $u \in \Gamma^2_{loc}(G) \cap C(G)$ satisfies

$$
u \ge 0, \quad Lu(\xi) + k(\xi)u^{\alpha} \le 0 \quad in G \tag{3.7}
$$

where k is a continuous nonnegative function such that

$$
k(\xi) \ge K\rho^{\gamma}(\xi)
$$

for sufficiently large $\rho(\xi)$ and for some $K > 0$, $\gamma > -2$. Then $u \equiv 0$, provided $1 < \alpha \leq \frac{Q+\gamma}{Q-2}.$

Proof. For each $R > 0$ consider a cut-off function ϕ_R such that

$$
\begin{cases}\n\phi_R(\rho) := \phi(\frac{\rho}{R}) \text{ with } \phi \in C^{\infty}[0, +\infty) \\
0 \le \phi \le 1, \ \phi \equiv 1 \text{ in } [0, \frac{1}{2}], \ \phi \equiv 0 \text{ in } [1, +\infty), \\
-\frac{C}{R} \le \frac{\partial \phi_R}{\partial \rho} \le 0, |\frac{\partial^2 \phi_R}{\partial \rho^2}| \le \frac{C}{R^2} \quad \text{for some constant } C > 0.\n\end{cases}
$$
\n(3.8)

Set then

$$
I_R := \int_G k(\xi) u^{\alpha} \phi_R^{\beta} d\xi = \int_{B_L(0,R)} k(\xi) u^{\alpha} \phi_R^{\beta} d\xi \tag{3.9}
$$

where $\frac{1}{\beta} = 1 - \frac{1}{\alpha}$. Observe that $I_R \geq 0$ and that (??) implies

$$
I_R \le -\int_{B_L(0,R)} Lu \phi_R^{\beta} d\xi
$$

Therefore, an integration by parts yields:

$$
I_R \leq -\int_{B_L(0,R)} uL(\phi_R^{\beta})d\xi + \int_{\partial B_L(0,R)} u\nabla_L(\phi_R^{\beta}) \cdot \nu_L d\Sigma
$$

$$
- \int_{\partial B_L(0,R)} \phi_R^{\beta} \nabla_L u \cdot \nu_L d\Sigma \leq -\int_{B_L(0,R)} uL(\phi_R^{\beta})d\xi
$$

$$
+ \int_{\partial B_L(0,R)} u\beta \phi_R^{\beta-1} \phi_R' \nabla_L \rho \cdot \nu_L d\Sigma \leq - \int_{B_L(0,R)} uL(\phi_R^{\beta})d\xi,
$$
(3.10)

where $\nu_L(\xi) = \sigma(\xi)\nu(\xi)$, ν being the exterior normal to ∂B_L , see (??), and $d\Sigma$ denotes the $(N - 1)$ - dimensional Hausdorff measure.

On the other hand, (??) implies

$$
L\phi_R^{\beta} = \psi \frac{\partial^2}{\partial \rho^2} \phi_R^{\beta} + \rho L \rho \frac{\partial}{\partial \rho} \phi_R^{\beta} .
$$

Thus, by the assumptions made on ϕ_R and taking (??) into account, we find, for $\Sigma_R := B_L(0,R) \setminus B_L(0,\frac{R}{2}),$

$$
I_R \le -\int_{\Sigma_R} u[\beta \phi_R^{\beta - 1} \phi_R'' \psi + \beta \phi_R^{\beta - 1} \phi_R' L \rho] d\xi
$$

$$
\le \frac{C}{R^2} \int_{\Sigma_R} u \phi_R^{\beta - 1} d\xi
$$

since ψ and $\rho L \rho$ are bounded. Then, by Hölder inequality,

$$
I_R \leq \frac{C}{R^2} \left[\int_{\Sigma_R} u^{\alpha} \rho^{\gamma} \phi_R^{(\beta - 1)\alpha} d\xi \right]^{\frac{1}{\alpha}} \left[\int_{\Sigma_R} \rho^{\frac{-\gamma \beta}{\alpha}} d\xi \right]^{\frac{1}{\beta}}.
$$

Choosing $R > 0$ sufficiently large so that $k \geq K \rho^{\gamma}$ in Σ_R , we obtain

$$
I_R \le C \left[\int_{\Sigma_R} u^\alpha k \phi_R^\beta \, d\xi \right]^\frac{1}{\alpha} R^{\left(\frac{-\gamma}{\alpha} + \frac{Q}{\beta} - 2\right)} \tag{3.11}
$$

Therefore, for large R,

$$
??I_R^{1-\frac{1}{\alpha}} \le C R^{(\frac{-\gamma}{\alpha} + \frac{Q}{\beta} - 2)}
$$
\n(3.12)

Letting $R \to \infty$ in the above we conclude that, if $1 < \alpha < \frac{Q+\gamma}{Q-2}$, then

$$
I := \lim_{R \to \infty} I_R = \int_G ku^{\alpha} d\xi = 0 .
$$

This implies $u \equiv 0$ outside a large ball since k is strictly positive there. Choose now $\overline{R} > 0$ in such a way that $k > 0$ for $\rho \geq \overline{R}$. Then, as proved above, $u \equiv 0$ on $G \setminus B_L(0, \overline{R}).$

Hence u satisfies:

$$
\begin{cases}\n u \ge 0 \text{ in } B_L(0, \overline{R} + \delta) \\
 Lu \le 0 \text{ in } B_L(0, \overline{R} + \delta) \\
 u \equiv 0 \text{ for } \overline{R} \le \rho \le \overline{R} + \delta\n\end{cases}
$$
\n(3.13)

for some $\delta > 0$. Therefore, by the Bony's Maximum Principle, see [?], u has to be identically zero on G since u is not strictly positive in view of the last condition in (??).

Consider now the case $\alpha = \frac{Q+\gamma}{Q-2}$. In this case, from (??) we deduce that I_R is uniformly bounded with respect to R. Moreover, since $R \to I_R$ is increasing the integral on the right - hand side of $(??)$, which coincides with $I_R - I_{\frac{R}{2}}$, goes to zero as R tends to infinity. This implies $I = 0$ and we conclude as before. \Box

Remark 3.1 The claim of Theorem ?? holds under the less restrictive assumption that, for some $K > 0$ and $\gamma > -2$, $k(\xi) \geq K \psi \rho^{\gamma}(\xi)$ for sufficiently large $\rho(\xi)$. The proof is similar but one has to take into account that $\rho L \rho = (Q - 1)\psi$ and also that ψ vanishes, by its very definition, on the characteristics points of the Koranyi's ball which are, by the way, a set of N−dimensional measure equal to zero (see [?]).

Remark 3.2 The exponent $\frac{Q+\gamma}{Q-2}$ in Theorem ?? is optimal. To see this, observe first that in view of (??) the function $u(\rho) = (1 + \rho^2)^{-\frac{p}{2}}$ satisfies

$$
Lu + p(Q - p - 2)\psi(1 + \rho^2)^{-(\frac{p}{2}+1)} \le 0.
$$

Thus, were $\alpha > \frac{Q+\gamma}{Q-2}$, one could choose p such that

$$
Q-2 > p \quad , \quad \alpha \frac{p}{2} - \frac{\gamma}{2} \geq \frac{p}{2} + 1 \enspace .
$$

Therefore, setting $v = Cu$ with $C = (p(Q - p - 2))^{\frac{1}{\alpha - 1}}$, one obtains easily that

$$
-Lv \ge \psi (p(Q - p - 2))^{\frac{\alpha}{\alpha - 1}} (1 + \rho^2)^{-\alpha \frac{p}{2} + \frac{\gamma}{2}} \ge \psi \rho^{\gamma} v^{\alpha} .
$$

4 Other Liouville type results

Here we prove some semilinear Liouville type results like those of the previous section for some degenerate elliptic second order operators of the form

$$
L = \sum_{i=1}^{N} X_i^2
$$
\n(4.1)

which are 2−homogeneous with respect to a family of dilations but do not fit in the setting of Section 3 since they are not left-invariant with respect to any group action on \mathbb{R}^N .

The first example we consider is the Grushin operator L defined on \mathbb{R}^N = $\mathbb{R}^p \times \mathbb{R}^q$ by

$$
L = \sum_{i=1}^{p} \frac{\partial^2}{\partial x_i^2} + |x|^{2k} \sum_{i=1}^{q} \frac{\partial^2}{\partial y_i^2}
$$
(4.2)

where $k \in \mathbb{N}$ and $(x, y) = (x_1, \ldots, x_p, y_1, \ldots, y_q)$ denotes the typical point of \mathbb{R}^N . This operator may be written in the form (??) by choosing

$$
X_i = \frac{\partial}{\partial x_i} \text{ for } i = 1, \dots, p
$$

$$
X_{i+p} = |x|^k \frac{\partial}{\partial y_i} \text{ for } i = 1, \dots, q.
$$

It is easy to check that L satisfies the Hörmander condition $(??)$ since the X_i generate \mathbb{R}^N by commutators of lenght $\leq k$. It is also easy to realize that the Lie algebra generated by X_i for $k > 1$ has no constant dimension.

However, for the dilation

$$
\delta_{\lambda}\xi = (\lambda x, \lambda^{k+1}y) \tag{4.3}
$$

we have

$$
X_i u(\delta_\lambda \xi) = \lambda(X_i u)(\delta_\lambda \xi) \quad (i = 1, \dots, p)
$$

$$
X_{i+p} u(\delta_\lambda \xi) = |x|^k \lambda^{k+1} \frac{\partial u}{\partial y_i} = \lambda(X_{i+p} u)(\delta_\lambda \xi) \quad (i = 1, \dots, q)
$$

Hence, L is 2−homogeneous with respect to $(??)$. Moreover, the norm

$$
\rho(\xi) = |x| + |y|^{\frac{1}{k+1}}, \tag{4.4}
$$

where $\xi = (x, y)$ and $|\cdot|$ denotes the euclidean norm on \mathbb{R}^N , is 1–homogeneous with respect to the dilation in $(??)$.

It follows that N-dimensional measure of the ball

$$
\Omega_R = B_p(0, R) \times B_q(0, R^{k+1})
$$

associated with (??) (here B_p denotes the euclidean ball of \mathbb{R}^p) is proportional to R^Q , with

$$
Q = p + (k+1)q = N + kq.
$$

Theorem 4.1 Let u be a solution of

$$
u \ge 0 \quad , \quad \sum_{i=1}^{p} \frac{\partial^2 u}{\partial x_i^2} + |x|^{2k} \sum_{i=1}^{q} \frac{\partial^2 u}{\partial y_i^2} + u^{\alpha} \le 0 \quad \text{in } \mathbb{R}^N \tag{4.5}
$$

Then $u \equiv 0$, provided that $k > 1$ and $1 < \alpha \leq \frac{Q}{Q-2}$.

Proof of Theorem ?? Set $\Omega_R := B_p(0, R) \times B_q(0, R^{k+1})$. Let φ_R and θ_R be the cut-off functions satisfying, for some constant $C > 0$,

$$
\begin{cases}\n\varphi_R(r) := \varphi(\frac{r}{R}); \ \theta_R(s) := \theta(\frac{s}{R^{k+1}}) \text{ with } \varphi, \theta \in C^{\infty}[0, +\infty), \\
0 \le \varphi \le 1, \ 0 \le \theta \le 1, \ \varphi = \theta \equiv 1 \text{ in } [0, \frac{1}{2}], \ \varphi \equiv \theta \equiv 0 \text{ in } [1, +\infty), \\
-\frac{C}{R} \le \frac{\partial \varphi_R}{\partial r} \le 0, \ -\frac{C}{R^{k+1}} \le \frac{\partial \theta_R}{\partial s} \le 0, \ |\frac{\partial^2 \varphi_R}{\partial r^2}| \le \frac{C}{R^2}, \ |\frac{\partial^2 \theta_R}{\partial s^2}| \le \frac{C}{R^{2(k+1)}},\n\end{cases}
$$
\n(4.6)

where $r = |x|$ and $s = |y|$. Let us set then, for $\frac{1}{\beta} = 1 - \frac{1}{\alpha}$,

$$
I_R := \int_{\mathbb{R}^N} u^{\alpha} (\theta_R \varphi_R)^{\beta} d\xi \tag{4.7}
$$

From (??) we obtain

$$
0 \le I_R = -\int_{\Omega_R} u L[(\theta_R \varphi_R)^\beta] dx dy + \int_{\partial \Omega_R} u \beta (\theta_R \varphi_R)^{\beta - 1} \nabla_L(\theta_R \varphi_R) \cdot \nu_L d\Sigma \quad , \tag{4.8}
$$

where $\nabla_L u = (X_1 u, \dots, X_N u)$ and $\nu_L = (\nu_1, \dots, \nu_p, |x|^k \nu_{p+1}, \dots, |x|^k \nu_N), \nu$ being the exterior normal to $\partial\Omega_R$.

On the other hand, simple computations show that

$$
L\varphi_R = \Delta_p \varphi_R, \quad L\theta_R = |x|^{2k} \Delta_q \theta_R ,
$$

\n
$$
\nabla_L \varphi_R = (\nabla_x \varphi_R, 0), \quad \nabla_L \theta_R = (0, |x|^k \nabla_y \theta_R)
$$

where Δ_p , Δ_q denote the Laplacians on \mathbb{R}^p and \mathbb{R}^q , respectively. The integral on the boundary in (??) vanishes since $\nabla_L \varphi_R \cdot \nabla_L \theta_R = \theta_R \varphi_R = 0$ on $\partial\Omega_R$ and $\beta > 1$. Therefore, by the properties of φ_R and θ_R and setting $\Sigma_R := \Omega_R \setminus (B_p(0, \frac{R}{2}) \times B_q(0, \frac{R^{k+1}}{2}))$, we obtain

$$
I_R \leq -\int_{\Sigma_R} u \beta [\varphi_R^{\beta} \theta_R^{\beta-1} |x|^{2k} (\theta_R'' + \frac{q-1}{s} \theta_R') + \varphi_R^{\beta-1} \theta_R^{\beta} (\varphi_R'' + \frac{p-1}{r} \varphi_R')] d\xi
$$

$$
\leq \frac{C}{R^2} \int_{\Sigma_R} u \beta \varphi_R^{\beta} \theta_R^{\beta-1} d\xi.
$$

By the Hölder inequality then

$$
I_R \leq \frac{C}{R^2} \left[\int_{\Sigma_R} u^{\alpha} (\varphi_R \theta_R)^{\beta} dx dy \right]^{\frac{1}{\alpha}} \left[\int_{\Sigma_R} dx dy \right]^{\frac{1}{\beta}} \tag{4.9}
$$

yielding

$$
I_R^{\frac{1}{\beta}} \leq C R^{Q-2-\frac{Q}{\alpha}}.
$$

At this point the claim follows by the same arguments as in the proof of Theorem $3.2. \square$

The next result concerns the k -dimensional $(1 < k < N)$ Laplace operator on \mathbb{R}^N , that is

$$
\Delta_k = \sum_{i=1}^k \frac{\partial^2}{\partial x_i^2}
$$

This example shows that subellipticity is not necessary to obtain semilinear Liouville type results. The main ingredients in the proof are again the 2−homogeneity of the operator with respect to a suitable family of dilations and that the balls associated with an appropriately defined distance invade the whole space as the radius diverges.

The result is as follows:

Theorem 4.2 Let $u \in C^2$ be a solution of

$$
u \ge 0, \ \ \Delta_k u + u^{\alpha} \le 0 \quad in \ \mathbb{R}^N \tag{4.10}
$$

If $k > 2$ and $1 < \alpha < \frac{k}{k-2}$, then $u \equiv 0$. The same conclusion holds if $k = 2$ and $\alpha > 1$.

Proof of Theorem ??

The proof is similar to that of Theorem ??. The first observation is that, for every $\epsilon > 0$, the operator Δ_k is 2-homogeneous with respect to the following dilations:

$$
\delta_{\lambda}(\xi) = \delta_{\lambda}(x_1, \dots, x_N) = (\lambda x_1, \dots, \lambda x_k, \lambda^{\epsilon} x_{k+1}, \dots, \lambda^{\epsilon} x_N)
$$
(4.11)

since Δ_k does not act on the variables x_j for $j = k + 1, \ldots, N$. As in the proof of Theorem ?? one considers then the sets

$$
B_k(0,R) \times B_{N-k}(0,R^{\epsilon})
$$

where B_j denotes the j−dimensional euclidean ball. Set $\xi = (x, y)$ with $x =$ (x_1, \ldots, x_k) and $y = (x_{k+1}, \ldots, x_N)$ and consider the same cut-off functions φ_R , θ_R defined in (??) with $k+1$ replaced by ϵ .

Proceeding as in the proof of Theorem ?? one shows then that the integral

$$
I_R := \int_{\mathbb{R}^N} u^{\alpha} \theta_R \varphi_R{}^{\beta} d\xi \ , \ (\frac{1}{\alpha} + \frac{1}{\beta} = 1) ,
$$

satisfies

$$
I_R^{\frac{1}{\beta}} \leq CR^{\epsilon(N-k)+k-2-\frac{k}{\alpha}} \tag{4.12}
$$

Let $k > 2$. By assumption, $\alpha < \frac{k}{k-2}$; hence one can choose $\epsilon > 0$ so small that $\alpha < \frac{k}{k-2+\epsilon(N-k)}$. Thus (??) implies that I_R goes to zero as $R \to \infty$.

In the case $k = 2$, for every $\alpha > 1$ there exists $\epsilon > 0$ such that $\alpha < \frac{2}{\epsilon(N-2)}$ and we conclude again from (??) that $I_R \to 0$ as $R \to \infty$.

On the other hand, $B_{N-k}(0, R^{\epsilon}) \times B_k(0, R)$ invade \mathbb{R}^N as R goes to infinity. Hence

$$
I_R \to \int_{\mathbb{R}^N} u^{\alpha} d\xi
$$

as $R \to \infty$ and this implies $u \equiv 0$. \Box

References

- [1] H.BERESTYCKI, I.CAPUZZO DOLCETTA, L.NIRENBERG, Problèmes elliptiques indéfinis et théorèmes de Liouville non-linéaires, C. R. Acad. Sci. Paris, Série I **317** 945 - 950 (1993).
- [2] H.BERESTYCKI, I.CAPUZZO DOLCETTA, L.NIRENBERG, Superlinear indefinite elliptic problems and nonlinear Liouville theorems. Topological Methods in Nonlinear Analysis 4,1 59 - 78 (1995).
- [3] S.BIAGINI, Positive solutions for a semilinear equation on the Heisenberg group, Bull. UMI, 9, B 883 - 900 (1995).
- [4] I.BIRINDELLI, Nonlinear Liouville Theorems, to appear in Reaction Diffusion Systems, Caristi and Mitidieri eds.
- [5] I.BIRINDELLI, I.CAPUZZO DOLCETTA, A.CUTRI, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, $14,3$ 295 - 308 (1997).
- [6] I.BIRINDELLI, I.CAPUZZO DOLCETTA, A.CUTRI, Indefinite semilinear equations on the Heisenberg group: a priori bounds and existence, to appear inComm. Partial Diff. Eq.
- [7] J.M. BONY, Principe du Maximum, Inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptiques dégénérés, Ann. Inst. Fourier Grenobles 19,1 277-304 (1969).
- [8] G. CITTI, Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian, pre-print.
- [9] R.R. COIFMAN, G. WEISS, Analyse harmonique sur certaines espaces homogènes, Lectures Notes in Math. 242 Springer Verlag, Berlin-Heidelberg-New York (1971).
- [10] A. CUTRI, Problemi semilineari ed integro-differenziali per sublaplaciani, PhD Thesis, Universitá di Roma Tor Vergata (1997).
- [11] V. DE CICCO, M.A. VIVALDI, Liouville tipe theorems for weighted elliptic equations, pre-print MeMoMat, Universitá Roma - La Sapienza (1997).
- [12] G.B. FOLLAND, Fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. **79** 373 - 376 (1973).
- [13] B. FRANCHI, R.L. WHEEDEN, Compensation couples and isoperimetric estimates for vector fields, pre-print.
- [14] L. GALLARDO, Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents, Proc. VII Oberwolfach Conference on Probability Measures on Groups, Lectures Notes in Math. (1981).
- [15] N. GAROFALO, book to appear.
- [16] N. GAROFALO, E. LANCONELLI, Existence and non existence results for semilinear equations on the Heisenberg Group, Indiana Univ. Math. Journ.41 71 - 97 (1992).
- [17] D.S. JERISON, J.M. LEE, The Yamabe problem on CR manifolds, J. Differential Geometry 25 167 - 197 (1987).
- [18] B. GAVEAU, Principe de moindre action, propagation de la chaleur et estimeés sous elliptiques sur certain groupes nilpotents, Acta Math. 139 95 - 153 (1977).
- [19] B. GIDAS, J. SPRUCK, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math 35 525 - 598 (1981).
- [20] B.GIDAS, J.SPRUCK, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Eq. 6,8 883-901 (1981).
- [21] R.W. GOODMAN, Nilpotent Lie groups: structures and applications to analysis, Lecture Notes in Math. 562 Berlin-Heidelberg-New York (1976).
- [22] G. HOCHSCHILD, The structure of Lie groups, Holden-Day Inc. San Francisco, (1965).
- [23] L. HORMANDER, Hypoelliptic second order differential equations, Acta Math., Uppsala, 119 147 - 171 (1967).
- [24] M.R. LANCIA, M.V. MARCHI, Teoremi di Liouville per operatori di tipo fuchsiano sul gruppo di Heisenberg, pre-print, Dipartimento di Matematica, Universitá di Roma La Sapienza (1997).
- [25] E.LANCONELLI, F.UGUZZONI, Asymptotic behaviour and non existence theorems for semilinear Dirichlet problems involving critical exponent on unbounded domains of the Heisenberg group, *pre-print*.
- [26] D. NEUENSCHWANDER, Probabilities on the Heisenberg Group, Lecture Notes in Math. 1630 Springer, (1996).
- [27] O.A. OLEINIK, E.V. RADKEVIC, Second order equations with nonnegative characteristic form, A.M.S. Providence, Plenum Press, (1973).
- [28] Y. PINCHOVER, On positive Liouville's theorems and asymptotic behaviour of solutions of Fuchsian elliptic operators, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 11 313 - 341 (1994).
- [29] L.P. ROTHSCHILD, E.M. STEIN, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 247 - 320 (1976).
- [30] C.J.XU, Semilinear subelliptic equations and Sobolev inequality for vector fields satisfying Hörmander condition, Chinese Journal of Contemporary Mathematics 15,2 183-192 (1994).