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1 Introduction

The Liouville theorem for harmonic functions states that a solution u of

u ≥ 0, ∆u = 0 in IRN

is a constant. This classical result has been extended to non-negative solutions
of semilinear elliptic equations in IRN or in half-spaces by B.Gidas and J.Spruck
[?]. For the case of the whole space they proved that the unique solution of

u ≥ 0, ∆u + Cuα = 0 in IRN

is u ≡ 0 , provided 1 < α < N+2
N−2 and C is a strictly positive constant.

The Liouville property is more delicate to establish for semilinear elliptic
equations or inequalities of the form

u ≥ 0, ∆u + h(x)uα ≤ 0 in Σ,

where Σ is a cone in IRN and h ≥ 0 is a function which may vanish on the
boundary of Σ. Liouville type theorems in this case have been established re-
cently by H.Berestycki, L.Nirenberg and the first author. In the paper [?] they
obtained, by a simpler method than in [?], a general result in this direction
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under some conditions relating the exponent α, the rate of growth of h at infin-
ity, the opening of the cone Σ and the space dimension N . In the special case
Σ = {x = (x1, ..., xN) ∈ IRN : xN > 0} and h(x) = xN , the above mentioned
theorem states that the unique solution of

u ≥ 0, ∆u + xNuα ≤ 0 in Σ

is u ≡ 0, provided 1 < α < N+2
N−1 .

In [?] and [?] these non-existence results have been applied to show via a
blow-up analysis the validity, under restrictions on α dictated by the Liouville
theorems, of a priori estimates in the sup norm for all solutions (u, τ) ≥ 0 of the
problem

u ≥ 0, ∆u + a(x)uα + τ = 0 in Ω
u = 0 on ∂Ω,

where Ω is a bounded open subset of IRN and τ ∈ IR. These estimates allow to
prove, via the Leray-Schauder degree theory, the existence of non-trivial solutions
of the Dirichlet problem

u ≥ 0, ∆u + a(x)uα = 0 in Ω
u = 0 on ∂Ω,

even when the weight a may change sign in Ω (see [2] for such indefinite type
problems).

The approach of [?], which works for general second order uniformly elliptic
operators in non divergence form, has been adapted by I. Birindelli and the
present authors to deal with the semilinear operator ∆Hnu + a(ξ)uα.
Here, ∆Hn is the second order degenerate elliptic operator

∆Hn =
2n∑

i=1

(
∂2

∂ξ2
i

+ 4ξ2
i

∂2

∂ξ2
2n+1

) + 4
n∑

i=1

(ξi+n
∂2

∂ξi∂ξ2n+1
− ξi

∂2

∂ξi+n∂ξ2n+1
) (1.1)

acting on functions u = u(ξ) where ξ = (ξ1, · · · , ξ2n, ξ2n+1) ∈ IR2n+1.
In [?] and [?], the results described above for the case of the Laplace operator have
been indeed extended to the operator in (1.1) under some pseudo-convexity con-
dition on ∂Ω which allows to manage the extra difficulties posed by the presence
of characteristic points.
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The basic idea in [?] and [?] is to look at the Kohn Laplacian ∆Hn as a
sublaplacian on IR2n+1 endowed with the Heisenberg group action

ξ ◦ η = (ξ1 + η1, . . . , ξ2n + η2n, ξ2n+1 + η2n+1 + 2
n∑

i=1

(ξi+nηi − ξiηi+n)) .

By this we mean that Kohn Laplacian in (1.1) can be expressed as ∆Hn =
2n∑

i=1

X2
i , with

Xi =
∂

∂ξi
+ 2ξi+n

∂

∂ξ2n+1
, Xi+n =

∂

∂ξi+n
− 2ξi

∂

∂ξ2n+1
(1.2)

for i = 1, . . . , n . This observation allows to exploit conveniently the scaling
properties of the fields Xi and of the operator ∆Hn with respect to the anistropic
dilations

δλ(ξ) = (λξ1, . . . ,λξ2n, λ
2ξ2n+1) (λ > 0 )

and the action of ∆Hn on functions depending only on the homogeneous norm

ρ(ξ) = ((
2n∑

i=1

ξ2
i )

2 + ξ2
2n+1)

1
4 . (1.3)

Liouville theorems, a priori estimates and the existence of non trivial solutions in
Hölder-Stein spaces for the Dirichlet problem

∆Hnu + a(ξ)uα = 0 , u = 0 on ∂Ω

are therefore obtained in the above mentioned papers under a restriction on the
exponent α depending on the homogeneous dimension Q = 2n + 2 of the Heisen-
berg group rather than on its linear dimension N = 2n + 1.

The ideas and methods outlined above for the case of ∆Hn can be generalized

to sublaplacians L of the form L =
n1∑

i=1

X2
i where the first order differential

operators Xi in the preceding generate the whole Lie algebra of left-invariant
vectorfields on a nilpotent, stratified Lie group (G, ◦), see Section 2 for a quick
review of the basic notions and terminology.
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In Section 3 of the present paper, which originates from the graduate dissertation
of the second author [?], we propose some abstract results of Liouville type for
operators L as above, both in the linear and the semilinear case. The final Section
4 is devoted to the study of the semilinear Liouville property for some second order
degenerate elliptic operator which do not fit in the abstract setting of Section 2 ,
the main example being the Grushin operator which is defined on IRN = IRp×IRq

by
p∑

i=1

∂2

∂xi
2

+ |x|2k
q∑

i=1

∂2

∂y2
i

where k ∈ IN and ξ = (x1, . . . , xp, y1, . . . , yq) is the typical point of IRN .

Let us mention finally that different aspects of semilinear subelliptic prob-
lems have been investigated in [?] and, more recently, in [?, ?, ?, ?, ?, ?, ?].
Liouville type theorems for linear Fuchsian or weighted elliptic operators have
been established in [?, ?, ?].

2 Sublaplacians on stratified Lie groups

In this section we recall briefly a few notions which are relevant to the analysis
on Lie groups and some fundamental properties of sublaplacians on stratified,
nilpotent Lie groups. For more details, see. e.g. [?, ?].

2.1 Stratified nilpotent Lie groups

Let G be a real finite dimensional Lie algebra, i. e. a vector space on IR with a
Lie bracket [· , ·], that is a bilinear map from G × G into G which is alternating

[X, Y ] = −[Y,X] for all X, Y ∈ G (2.1)

and satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ G. (2.2)

G is called m−nilpotent and stratified if it can be decomposed as a direct sum of
subspaces satisfying

G = V1 ⊕ V2 . . .⊕ Vm with dimVj = nj

[V1, Vj] ⊂ Vj+1 if 1 ≤ j < m; [V1, Vm] = {0}.
(2.3)
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Therefore, V1 generates, by means of the Lie bracket [·, ·], G as a Lie algebra.
Let (G, ◦) be the simply connected Lie group associated to the Lie algebra

G = (G, [·, ·]) as follows:

G = IRNwith N =
m∑

j=1

nj ,

equipped with the group action ◦ defined by the Campbell-Hausdorff formula,
namely

η ◦ ξ = η + ξ +
1

2
[η, ξ] +

1

12
[η, [η, ξ]] +

1

12
[ξ, [ξ, η]] + . . . (2.4)

(for the other terms see e.g.[?]). Note that, in view of the nilpotency of G, in the
right hand side there is only a finite sum of terms involving commutators of ξ
and η of lenght less than m.
Observe that the group law (??) makes G = IRN a Lie group whose Lie algebra
of left-invariant vectorfields Lie(G) coincides with G. Recall that the Lie algebra
Lie(G) is the algebra of left-invariant vectorfields Y which satisfy

Y f(η ◦ ξ) = (Y f)(η ◦ ξ) ,

for every smooth function f , equipped with the bracket [[X, Y ]] = XY − Y X.
Let e1, . . . , en1 be the canonical basis of the subspace IRn1 of G; then as a

basis of the Lie algebra G = Lie(G) we can choose the vectorfields X1, . . . , Xn1

defined for smooth f by

Xi(f)(ξ) = lim
t→0+

f(ξ ◦ tei)− f(ξ)

t
, ξ ∈ G. (2.5)

Since V1 generates G as a Lie algebra we can define recursively, for j = 1, . . . ,m,
and i = 1, . . . , nj, a basis {Xi,j} of Vj as

Xi,1 = Xi (i = 1, . . . , n1)
Xα = [Xi1 , [Xi2 , . . . , [Xij−1 , Xij ]] . . .],

with α = (i1, . . . , ij) multi-index of length j and Xik ∈ {X1, . . . , Xn1}.
In terms of the decomposition G = IRn1 ⊕ IRn2 ⊕ . . .⊕ IRnm one defines then

a one - parameter group of dilations δλ on G by setting for

ξ = ξ1 + ξ2 + . . . + ξm, (ξj ∈ IRnj) ,
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δλ(ξ) =
m∑

j=1

λjξj. (2.6)

Observe that, for any ξ ∈ G, the Jacobian of the map ξ −→ δλ(ξ) equals λQ,
where

Q =
m∑

j=1

j nj . (2.7)

The integer Q is the homogeneous dimension of G. Observe that the linear di-
mension of G is N =

∑m
j=1 nj; hence Q ≥ N and equality holds only in the trivial

case m = 1 and G = IRn1 .

Let us recall that a dilation - homogeneous norm on G is, by definition, a
mapping ξ → ρ(ξ) from G to IR+ such that:

i) ξ → ρ(ξ) is continuous on G and smooth on G \ {0}
ii) ρ(ξ) = 0 if and only if ξ = 0
iii) ρ(ξ) = ρ(−ξ)
iv) ρ(δλ(ξ)) = λρ(ξ) for each λ > 0.

(2.8)

All homogeneous norms on G are equivalent; moreover they satisfy the triangle
inequality

ρ(ξ ◦ η) ≤ C0(ρ(ξ) + ρ(η)) for all ξ, η ∈ G

for some constant C0 ≥ 1. For a given homogeneous norm and positive real R,
the Koranyi ball centered at 0 is the set

B(0, R) = {ξ ∈ G : ρ(ξ) < R}.

These balls form, for R > 0, a fundamental system of neighborhoods of the origin
in (G, ◦). Through the group law ◦ one defines then the distance between ξ, η ∈ G
by the position

d(ξ, η) = ρ(η−1 ◦ ξ) ,

where η−1 is the inverse of η with respect to ◦, i.e. η−1 = −η. The Koranyi ball
of radius R centered at η is defined accordingly.

It is important to point out that the Lebesgue measure is invariant for the
group action and that the volumes scale as RQ.
More precisely, if |E| denotes the N - dimensional Lebesgue measure (recall that
N =

∑m
j=1 nj), we have

|B(η, R)| = |B(0, R)| = |B(0, 1)|RQ.
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as a consequence of (??) and (??).

2.2 Sublaplacians

Let us come back now to the vectorfields Xi (i = 1, . . . , n1) defined in (??). The
first remark is that Xi are 1 - homogeneous with respect to the dilations δλ, i.e.

Xif(δλ(ξ)) = λ(Xif)(δλξ) (2.9)

Indeed, from the definition ?? of Xi we have

Xif(δλ(ξ)) = lim
t→0+

f(δλξ ◦ λtei)− f(δλξ)

t

Setting τ = tλ , the righ-hand side of the preceding is

λ lim
τ→0+

f(δλξ ◦ τei)− f(δλξ)

τ
= λ(Xif)(δλ(ξ))

In a similar way one can check that the vectorfields of Vj are homogenous of
degree j, that is

Xi,jf(δλ(ξ)) = λj(Xi,jf)(δλξ) , ∀i = 1, . . . , nj (2.10)

Let us make now some simple remarks on the representation of the vector-
fields Xi as first order partial differential operators. If one chooses (e1, . . . , en1 , . . . , eN)
as the canonical basis of G = IRN , then each Xi (i = 1, . . . , n1) can be expressed
in terms of the partial derivatives ∂

∂xj
as

Xi =
N∑

j=1

σij(x)
∂

∂xj
(2.11)

Here, σ(x) = (σij(x)) is a n1 ×N matrix of the form

σ = (IIRn1 , Q2(x) , . . . , Qm(x)) (2.12)

where IIRn1 denotes the identity on IRn1 and Qj(x) are n1 × nj matrices
(j = 2, . . . ,m). As a consequence of (??) one has

∂

∂xj
σij(x) = 0 for j = 1, . . . , N. (2.13)
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The sublaplacian L on the group G is defined then on smooth functions u by

Lu =
n1∑

i=1

X2
i u (2.14)

Observe that L is 2−homogeneous with respect to the dilations δλ since the Xi’s
are 1−homogeneous; moreover, L is left-invariant with respect to the group action
◦, since the Xi’s are such.

In view of the preceding discussion, L is a second order partial differential
operator; as a consequence of (??) it can be expressed in divergence form as

Lu =
N∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
) , (2.15)

where A(x) = (aij(x)) = σT (x)σ(x) is a positive semidefinite N ×N matrix.
When m = 1 the sublaplacian L coincides with the Laplace operator

∆ =
N∑

i,j=1

∂2

∂xj
2

On the other hand, as soon as m ≥ 2, the matrix σ has a non trivial kernel.
The sublaplacian L is therefore no more uniformly elliptic but only degenerate
elliptic and, more precisely, a second order operator with non-negative character-
istic form according to [?]. Nevertheless, the stratification condition implies that
the fields Xi (i = 1, . . . , n1) satisfy the Hörmander condition

Lie(G) = G . (2.16)

As a consequence of (??), L is subelliptic (see [?]). Let us just mention here that
this implies the validity of Bony’s Maximum Principle (see [?]).
In the sequel we will use the notation ∇Lu = (X1u, . . . , Xn1u) .

Let us conclude this section by two basic examples.

2.3 Examples

Example 1. Take G = IRN with the trivial Lie bracket [X, Y ] = 0 for all X, Y
and stratification V1 = IRN , V2 = {0}. The dilation and the homogeneous norm

8



in this case are, of course, isotropic. They are given, respectively, by

δλ(ξ) = (λξ1, . . . ,λξN) ; ρ(ξ) = (
N∑

i=1

ξ2
i )

1
2

The homogeneous dimension is N , the fields Xi are the partial derivatives and
the sublaplacian is the standard Laplacian ∆.

Example 2. Take G = IR2n+1 (n ≥ 1) with the Lie bracket [X, Y ] = XY − Y X
and the stratification G = IR2n⊕ IR1. The homogeneous dimension in this case is
then Q = 2n+2. The dilation and the homogeneous norm on G are, respectively,

δλ(ξ) = (λξ1, . . . ,λξ2n, λ
2ξ2n+1) ; ρ(ξ) = ((

2n∑

i=1

ξ2
i )

2 + ξ2
2n+1)

1
4

It is easy to check that the group action ◦ defined in (??) is

η ◦ ξ = (ξ1 + η1, . . . , ξ2n + η2n, ξ2n+1 + η2n+1 + 2
n∑

i=1

(ξiηi+n − ξi+nηi)). (2.17)

From this it follows that the fields Xi are given in this case by (1.2) and the
sublaplacian associated with the Heisenberg group Hn = (IR2n+1, ◦) is therefore
given by (1.1).

3 The Liouville property for sublaplacians on
nilpotent stratified groups

3.1 The linear case

This section is devoted to the generalization to sublaplacians L of the well-known
Liouville property valid for the Laplace operator. Indeed, we prove that bounded
L−harmonic functions on stratified groups G are necessarily constant.

Let L =
∑n1

i=1 X2
i be the sublaplacian on the stratified group (G, ◦). A func-

tion u is L−harmonic on G if

u ∈ Γ2(G), Lu = 0 in G
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where Γ2(G) is the space of functions u : G → IR such that

u, Xiu ∈ L∞(G) ∩ C(G)

and

sup
ξ,η

|Xiu(η ◦ ξ) + Xiu(η ◦ ξ−1)− 2Xiu(η)|
ρ(ξ)

< ∞

for i = 1, . . . , n1.
The basic tool in our proof of the linear Liouville theorem is the following

mean value property for L−harmonic functions:

v(ξ) =
CQ

RQ

∫

BL(ξ,R)
v(η)|∇LdL(ξ, η)|2dη , (3.1)

where dL(ξ, η) := ρL(ξ−1 ◦ η) , CQ is a suitable constant and BL(ξ, R) denotes
the Koranyi ball associated to an appropriate C∞(G \ {0}) homogeneous norm
ρL(·). Note that

ρ2
L(ξ−1 ◦ η) ≈ ΓQ(ξ, η)

where Γ is the fundamental solution of L (see [?, ?, ?]).

Theorem 3.1 Let L =
∑n1

i=1 X2
i be the sublaplacian on the nilpotent stratified

group G. If u is L−harmonic on G , then u is a constant.

Proof. As a consequence of (??) the vectorfields Xi,m commute with Xi for
i = 1, . . . , n1. Hence the sublaplacian L satisfies:

Xi,mLu = Xi,m

n1∑

j=1

X2
j u =

n1∑

j=1

X2
j Xi,mu.

Consequently, if u is L−harmonic the same is true for Xi,mu (i = 1, . . . nm).
Therefore, by the mean value formula (??) applied to Xi,mu we get

Xi,mu =
CQ

RQ

∫

BL(ξ,R)
Xi,mu(η)|∇LdL|2dη (3.2)

Integrating by parts the right-hand side of (??), we obtain:

Xi,mu = −CQ

RQ

∫
BL(ξ,R) u(η)Xi,m (|∇LdL|2) dη

+CQ

RQ

∫
∂BL(ξ,R) u|∇LdL|2 Xi,mdL

|∇dL| dΣ.
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Here ∇ denotes the usual gradient; observe also that ν = ∇dL
|∇dL| is the normal

vector to ∂BL.
Since the Xi are 1−homogeneous with respect to the intrinsic dilation, see

(??), and are left-invariant with respect to the group action ◦, it follows that Xi,m

is homogeneous of degree m with respect to δλ and left-invariant with respect to
◦. The previous remark, together with the fact that dL is homogenous of degree
1 with respect to δλ, provide the following estimates:

|Xi,m(dL)| ≤ C

dm−1
L

, |Xi,m∇LdL| ≤
C

dm
L

(3.3)

Indeed, for the first estimate in (??) observe that

Xi,m(dL(η)) =
Xi,m(dL( η

ρL(η)))

ρm−1
L (η)

and that |Xi,m(dL( η
ρL(η)))| is bounded since dL is C∞ on ∂BL(0, 1). The second

estimate is achieved by using the same argument and the 1−homogeneity of ∇L.
Moreover, Xi,m(|∇LdL|2) = 2Xi,m∇LdL ·∇LdL.

Hence,

|Xi,mu(ξ)| ≤ CQ

RQ+m
||u||L∞RQ +

CQ

RQ+m−1
||u||L∞RQ−1 ≤ CQ

Rm
||u||L∞

for every ξ ∈ G.
Therefore, letting R →∞, one deduces that

Xi,mu ≡ 0 in G for every i = 1, . . . , nm. (3.4)

Now, from the stratification of G it follows that Xi,m−1u is also L−harmonic.
Indeed, for k = 1, . . . n1,

[Xi,m−1u, Xku] = Xαu for some α with |α| = m (3.5)

Thus, being Xi,m a basis of Vm, (??) yields Xαu ≡ 0 in G. Repeating the same
argument and using the fact that the vectorfields Xi,j form a basis of Vj and are
j−homogeneous with respect to δλ, see (??), one finally obtains that

Xi,ju ≡ 0 for j = 1, . . . ,m, i = 1, . . . , nj.

Consequently, from the Hörmander condition span (Xi,j) = Lie(Xi) = G, we
deduce that ∇u = 0 in G and the claim is proved. !
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3.2 The semilinear case

In this section we prove a Liouville theorem for nonnegative solutions of semilinear
equations associated to sublaplacians L on stratified groups G.
The proof, which is inspired from [?], relies in particular on the behaviour of
the operator L defined in (??) on functions which are radial with respect to the
homogeneous norm ρL(·) , see Section 3.1. From now we shall write, for simplicity,
ρL = ρ .
One can easily check by a direct computation using (??) that the following holds
for smooth f : IR → IR and ρ 0= 0

Lf(ρ) = f ′′(ρ)|∇Lρ|2 + f ′(ρ)Lρ (3.6)

As recalled in the previous section, ρ2−Q ≈ Γ , where Γ is the fundamental solution
of L. Therefore, using (??) with f(ρ) = ρ2−Q, one finds that

0 = Lρ2−Q = (2−Q)(1−Q)ρ−Q|∇Lρ|2 + (2−Q)ρ1−QLρ

for ρ 0= 0 . Hence,
Lρ = (Q− 1)ρ−1|∇Lρ|2

yielding to the following radial expression of L :

Lf(ρ) = |∇Lρ|2[f ′′(ρ) + f ′(ρ)
Q− 1

ρ
] .

Let us observe that∇Lρ is homogeneous of degree zero and therefore is bounded in
G; the same is true for ρLρ. In the sequel we will use the notation ψ(ρ) = |∇Lρ|2.

Theorem 3.2 Suppose that u ∈ Γ2
loc(G) ∩ C(G) satisfies

u ≥ 0, Lu(ξ) + k(ξ)uα ≤ 0 in G (3.7)

where k is a continuous nonnegative function such that

k(ξ) ≥ Kργ(ξ)

for sufficiently large ρ(ξ) and for some K > 0, γ > −2. Then u ≡ 0, provided
1 < α ≤ Q+γ

Q−2 .
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Proof. For each R > 0 consider a cut-off function φR such that






φR(ρ) := φ(
ρ

R
) with φ ∈ C∞[0, +∞)

0 ≤ φ ≤ 1, φ ≡ 1 in [0, 1
2 ], φ ≡ 0 in [1, +∞),

−C

R
≤ ∂φR

∂ρ
≤ 0, |∂

2φR

∂ρ2
| ≤ C

R2
for some constant C > 0.

(3.8)

Set then
IR :=

∫

G
k(ξ)uαφR

βdξ =
∫

BL(0,R)
k(ξ)uαφβ

Rdξ (3.9)

where 1
β = 1− 1

α . Observe that IR ≥ 0 and that (??) implies

IR ≤ −
∫

BL(0,R)
Luφβ

R dξ

Therefore, an integration by parts yields:

IR ≤ −
∫

BL(0,R)
uL(φβ

R)dξ +
∫

∂BL(0,R)
u∇L(φβ

R) · νLdΣ

−
∫

∂BL(0,R)
φβ

R∇Lu · νLdΣ ≤ −
∫

BL(0,R)
uL(φβ

R)dξ

+
∫

∂BL(0,R)
uβφβ−1

R φ′R∇Lρ · νLdΣ ≤ −
∫

BL(0,R)
uL(φβ

R)dξ,

(3.10)

where νL(ξ) = σ(ξ)ν(ξ), ν being the exterior normal to ∂BL , see (??), and dΣ
denotes the (N − 1) - dimensional Hausdorff measure.

On the other hand, (??) implies

Lφβ
R = ψ

∂2

∂ρ2
φβ

R + ρLρ
∂

∂ρ
φβ

R .

Thus, by the assumptions made on φR and taking (??) into account, we find, for
ΣR : = BL(0, R) \ BL(0, R

2 ),

IR ≤ −
∫

ΣR

u[βφβ−1
R φ′′Rψ + βφβ−1

R φ′RLρ]dξ

≤ C

R2

∫

ΣR

uφβ−1
R dξ
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since ψ and ρLρ are bounded. Then, by Hölder inequality,

IR ≤
C

R2
[
∫

ΣR

uαργφ(β−1)α
R dξ]

1
α [

∫

ΣR

ρ
−γβ

α dξ]
1
β .

Choosing R > 0 sufficiently large so that k ≥ Kργ in ΣR, we obtain

IR ≤ C[
∫

ΣR

uαkφβ
R dξ]

1
α R(−γ

α +Q
β −2) (3.11)

Therefore, for large R,

??I
1− 1

α
R ≤ C R(−γ

α +Q
β −2) (3.12)

Letting R →∞ in the above we conclude that, if 1 < α < Q+γ
Q−2 , then

I := lim
R→∞

IR =
∫

G
kuαdξ = 0 .

This implies u ≡ 0 outside a large ball since k is strictly positive there. Choose
now R > 0 in such a way that k > 0 for ρ ≥ R. Then, as proved above, u ≡ 0 on
G \ BL(0, R).

Hence u satisfies:





u ≥ 0 in BL(0, R + δ)
Lu ≤ 0 in BL(0, R + δ)
u ≡ 0 for R ≤ ρ ≤ R + δ

(3.13)

for some δ > 0. Therefore, by the Bony’s Maximum Principle, see [?], u has to be
identically zero on G since u is not strictly positive in view of the last condition
in (??).
Consider now the case α = Q+γ

Q−2 . In this case, from (??) we deduce that IR is
uniformly bounded with respect to R. Moreover, since R → IR is increasing the
integral on the right - hand side of (??), which coincides with IR − IR

2
, goes to

zero as R tends to infinity. This implies I = 0 and we conclude as before. !

Remark 3.1 The claim of Theorem ?? holds under the less restrictive assump-
tion that, for some K > 0 and γ > −2, k(ξ) ≥ Kψργ(ξ) for sufficiently large
ρ(ξ). The proof is similar but one has to take into account that ρLρ = (Q− 1)ψ
and also that ψ vanishes, by its very definition, on the characteristics points of
the Koranyi’s ball which are, by the way, a set of N−dimensional measure equal
to zero (see [?]).
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Remark 3.2 The exponent Q+γ
Q−2 in Theorem ?? is optimal. To see this, observe

first that in view of (??) the function u(ρ) = (1 + ρ2)−
p
2 satisfies

Lu + p(Q− p− 2)ψ(1 + ρ2)−( p
2+1) ≤ 0 .

Thus, were α > Q+γ
Q−2 , one could choose p such that

Q− 2 > p , α
p

2
− γ

2
≥ p

2
+ 1 .

Therefore, setting v = Cu with C = (p(Q− p− 2))
1

α−1 , one obtains easily that

−Lv ≥ ψ (p(Q− p− 2))
α

α−1 (1 + ρ2)−α p
2+ γ

2 ≥ ψργvα .

4 Other Liouville type results

Here we prove some semilinear Liouville type results like those of the previous
section for some degenerate elliptic second order operators of the form

L =
N∑

i=1

X2
i (4.1)

which are 2−homogeneous with respect to a family of dilations but do not fit in
the setting of Section 3 since they are not left-invariant with respect to any group
action on IRN .

The first example we consider is the Grushin operator L defined on IRN =
IRp × IRq by

L =
p∑

i=1

∂2

∂xi
2

+ |x|2k
q∑

i=1

∂2

∂y2
i

(4.2)

where k ∈ IN and (x, y) = (x1, . . . , xp, y1, . . . , yq) denotes the typical point of IRN .
This operator may be written in the form (??) by choosing

Xi =
∂

∂xi
for i = 1, . . . , p

Xi+p = |x|k ∂

∂yi
for i = 1, . . . , q.
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It is easy to check that L satisfies the Hörmander condition (??) since the Xi

generate IRN by commutators of lenght ≤ k. It is also easy to realize that the Lie
algebra generated by Xi for k > 1 has no constant dimension.
However, for the dilation

δλξ = (λx,λk+1y) (4.3)

we have

Xiu(δλξ) = λ(Xiu)(δλξ) (i = 1, . . . , p )

Xi+pu(δλξ) = |x|kλk+1 ∂u

∂yi
= λ(Xi+pu)(δλξ) (i = 1, . . . , q)

Hence, L is 2−homogeneous with respect to (??). Moreover, the norm

ρ(ξ) = |x| + |y|
1

k+1 , (4.4)

where ξ = (x, y) and | · | denotes the euclidean norm on IRN , is 1−homogeneous
with respect to the dilation in (??).
It follows that N -dimensional measure of the ball

ΩR = Bp(0, R)×Bq(0, R
k+1)

associated with (??) (here Bp denotes the euclidean ball of IRp) is proportional
to RQ, with

Q = p + (k + 1)q = N + kq .

Theorem 4.1 Let u be a solution of

u ≥ 0 ,
p∑

i=1

∂2u

∂xi
2

+ |x|2k
q∑

i=1

∂2u

∂y2
i

+ uα ≤ 0 in IRN (4.5)

Then u ≡ 0 , provided that k > 1 and 1 < α ≤ Q
Q−2 .

Proof of Theorem ?? Set ΩR := Bp(0, R)×Bq(0, Rk+1). Let ϕR and θR be the
cut-off functions satisfying, for some constant C > 0,





ϕR(r) := ϕ(
r

R
); θR(s) := θ(

s

Rk+1
) with ϕ, θ ∈ C∞[0, +∞),

0 ≤ ϕ ≤ 1, 0 ≤ θ ≤ 1, ϕ = θ ≡ 1 in [0, 1
2 ], ϕ ≡ θ ≡ 0 in [1, +∞),

−C

R
≤ ∂ϕR

∂r
≤ 0, − C

Rk+1
≤ ∂θR

∂s
≤ 0, |∂

2ϕR

∂r2
| ≤ C

R2
, |∂

2θR

∂s2
| ≤ C

R2(k+1)
,

(4.6)
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where r = |x| and s = |y|. Let us set then, for 1
β = 1− 1

α ,

IR :=
∫

IRN
uα(θRϕR)βdξ (4.7)

From (??) we obtain

0 ≤ IR = −
∫

ΩR

uL[(θRϕR)β]dxdy +
∫

∂ΩR

uβ(θRϕR)β−1∇L(θRϕR) · νLdΣ , (4.8)

where ∇Lu = (X1u, . . . , XNu) and νL = (ν1, . . . , νp, |x|kνp+1, . . . , |x|kνN), ν being
the exterior normal to ∂ΩR.
On the other hand, simple computations show that

LϕR = ∆pϕR) , LθR = |x|2k∆qθR ,
∇LϕR = (∇xϕR, 0) , ∇LθR = (0, |x|k∇yθR)

where ∆p, ∆q denote the Laplacians on IRp and IRq, respectively.
The integral on the boundary in (??) vanishes since ∇LϕR · ∇LθR = θRϕR = 0
on ∂ΩR and β > 1. Therefore, by the properties of ϕR and θR and setting
ΣR := ΩR \ (Bp(0,

R
2 )×Bq(0,

Rk+1

2 )), we obtain

IR ≤ −
∫

ΣR

uβ[ϕβ
Rθβ−1

R |x|2k(θ′′R +
q − 1

s
θ′R) + ϕβ−1

R θβ
R(ϕ′′R +

p− 1

r
ϕ′R)]dξ

≤ C

R2

∫

ΣR

uβϕβ
Rθβ−1

R dξ.

By the Hölder inequality then

IR ≤
C

R2
[
∫

ΣR

uα(ϕRθR)βdxdy]
1
α [

∫

ΣR

dxdy]
1
β (4.9)

yielding

I
1
β

R ≤ CRQ−2−Q
α .

At this point the claim follows by the same arguments as in the proof of Theorem
3.2. !

The next result concerns the k−dimensional (1 < k < N) Laplace operator
on IRN , that is

∆k =
k∑

i=1

∂2

∂x2
i

17



This example shows that subellipticity is not necessary to obtain semilinear Liou-
ville type results. The main ingredients in the proof are again the 2−homogeneity
of the operator with respect to a suitable family of dilations and that the balls
associated with an appropriately defined distance invade the whole space as the
radius diverges.

The result is as follows:

Theorem 4.2 Let u ∈ C2 be a solution of

u ≥ 0, ∆ku + uα ≤ 0 in IRN (4.10)

If k > 2 and 1 < α < k
k−2 , then u ≡ 0. The same conclusion holds if k = 2 and

α > 1.

Proof of Theorem ??
The proof is similar to that of Theorem ??. The first observation is that, for

every ε > 0, the operator ∆k is 2−homogeneous with respect to the following
dilations:

δλ(ξ) = δλ(x1, . . . , xN) = (λx1, . . . ,λxk, λ
εxk+1, . . . ,λ

εxN) (4.11)

since ∆k does not act on the variables xj for j = k + 1, . . . , N .
As in the proof of Theorem ?? one considers then the sets

Bk(0, R)×BN−k(0, R
ε)

where Bj denotes the j−dimensional euclidean ball. Set ξ = (x, y) with x =
(x1, . . . , xk) and y = (xk+1, . . . xN) and consider the same cut-off functions ϕR ,
θR defined in (??) with k + 1 replaced by ε.
Proceeding as in the proof of Theorem ?? one shows then that the integral

IR :=
∫

IRN
uαθRϕR

βdξ , (
1

α
+

1

β
= 1) ,

satisfies

I
1
β

R ≤ CRε(N−k)+k−2− k
α (4.12)

Let k > 2. By assumption, α < k
k−2 ; hence one can choose ε > 0 so small

that α < k
k−2+ε(N−k) . Thus (??) implies that IR goes to zero as R →∞.
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In the case k = 2, for every α > 1 there exists ε > 0 such that α < 2
ε(N−2) and we

conclude again from (??) that IR → 0 as R →∞.
On the other hand, BN−k(0, Rε)×Bk(0, R) invade IRN as R goes to infinity. Hence

IR →
∫

IRN
uαdξ

as R →∞ and this implies u ≡ 0. !
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PhD Thesis, Universitá di Roma Tor Vergata (1997).

[11] V. DE CICCO, M.A. VIVALDI, Liouville tipe theorems for weighted
elliptic equations, pre-print MeMoMat, Universitá Roma - La Sapienza
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