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Abstract

This paper presents an approach to image filtering based on an optimal
stopping time problem for the evolution equation describing the filtering ker-
nel. Well–posedness of the problem and convergence of fully discrete approx-
imations are proved and numerical examples are presented and discussed.

1 Introduction

It is well–known (see [M]) that the filtering of a noisy image modelled by
a function x → y0(x) (x ∈ R, a rectangle in IR2) can be performed by the
convolution

y(t, x) = y0(x) ∗ h(t, x) (1.1)

where
h(t, x) =

1√
4πt

e−
|x|2
4t (1.2)

Here, t > 0 plays the role of the scale factor of the filter and 2t is the second
moment of h which is inversely related to the bandwidth.

From a pde’s point of view, y(t, x) given by (1.1) can be seen as the solution
of the heat equation

y
′
(t, x) = ∆y(t, x) , t > 0 , x ∈ R (1.3)
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y(0, x) = y0(x). (1.4)

The determination of the scale of the filter (i.e. for which value of t the
evolution (1.3),(1.4) should be stopped) is a crucial issue in this preliminary
step of image processing. It is known (see [M]) that the size of the details in
the filtered image y(t, x) is of the order

√
t but an optimal choice of t would

also require in general the knowledge of the noise level.
The aim of this paper is to formulate the problem of determining in an

adaptive way an ”optimal” scale interval [0, θ∗] depending of course on the
data y0(x) in the framework of optimal control theory. Some preliminary
results in this direction have already been given by the authors in [CF].
More precisely, we consider θ ∈ [0,+∞] as a control of stopping time nature
acting on the dynamical system governed by (1.3),(1.4) and, as optimality
criterion, we take the minimization with respect to θ ∈ [0,+∞] of the perfor-
mance index

J(y0, θ) =
∫ θ

0
f(s, y(s, x))ds + Φ(θ, y(θ, x)) (1.5)

for any initial condition y0(x). Of course, the choice of functions f and Φ in
(1.5) has to be suitably made in order to ensure the desired adaptive behavior
of the filter. A basic example is given by

f(s, y(s, x)) ≡ c (1.6)

Φ(θ, y(θ, x)) = −
(∫

R
|y(θ, x)− y0(x)|2dx

)α
2

(1.7)

for some positive constants c, α. With these choices, the integral term takes
into account the computing cost whereas the stopping cost Φ(θ, y(θ, x)) en-
courages filtering for small values of the scale factor. As we will show below, a
careful balancing of the two terms is necessary in order to achieve the desired
result.

We further observe that the approach proposed in the present paper is
of quite general nature and therefore applies to different models in image
smoothing. In the present paper, this approach will also be applied to the
selective filtering model of Perona–Malik type proposed by Alvarez, Lions
and Morel (see [ALM]), which is described by the evolution equation

y
′
(t, x) = div(g(|Gσ ∗ ∇xy(t, x)|)∇xy(t, x) (1.8)

where
Gσ(x) =

1√
2πσ2

e−
|x|2

2σ2 (1.9)
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and g : [0,+∞) → [0,+∞) is a smooth function such that

g(0) = 1, lim
s→+∞

g(s) = 0, (sg(s))′ ≤ 0 ∀s > 0 (1.10)

The above properties of function g imply that the evolution governed by (1.8)
behaves roughly as the heat equation, hence producing a strong filtering effect,
in those parts of R where |∇xy(t, x)| is small, whereas parts of R where
|∇xy(t, x)| is large (i.e. the edges of the image) are almost kept fixed during
the evolution, a pleasant feature as far as shape recognizing is concerned.

In the sequel ‖ · ‖ will denote the L2–norm, and the shorthand notation
y(t) will possibly be used to denote y(t, x).

The outline of the paper is as follows: section 2 is concerned with existence
and qualitative behaviour of the optimal stopping time, section 3 treats con-
vergence of fully discrete numerical approximations for the optimal stopping
time problem. Lastly, we present in section 4 numerical results on synthetic
and real images.

2 Statement of the stopping criterion

In this section we assume that the evolution of y(t) is given either by (1.3)
or by (1.8), with initial condition (1.4), posed on a bounded rectangular set
R and with Neumann boundary conditions on ∂R (in the linear model this
preserves the average value of y). Here, Gσ is a regularizing kernel given by
(1.9) and we will make the standing assumptions (1.10) on g.

We recall that both (1.3) and (1.8) have a unique solution for any y0 ∈
L2(R). More precisely, in both models the following regularity result:

y ∈ C([0, T ];L2(R))

holds for the solution y. Moreover, a parabolic maximum principle implying
the boundedness of solutions for bounded initial data applies to both models.
These results are classical for the heat equation, whereas for (1.8) they are
proved in [CLMC], [ALM].

We will mainly focus on stopping criteria of the special form (1.6), (1.7).
Indeed, we can easily check that the optimal stopping time θ∗ for this form of
the cost has, at least qualitatively, the correct behaviour, that is, it increases
at the increase of the noise level. In fact, if the minimum θ∗ for (1.6), (1.7) is
positive and finite, it requires that

d

dθ
‖y(θ∗)− y0‖α = c; (2.11)

on the other hand, ‖y(θ)−y0‖α has a finite limit as θ →∞, and the left–hand
side of (2.11), at least for small times, increases at fixed time for increasing
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noise level on the initial image y0. Hence, at the increase of the noise on
the image, the optimal stopping time θ∗ becomes larger as adaptivity would
require. We will show in figure 1 a computed example comparing J(θ) at
different noise levels.

Let us now examine the dependence of the problem on the parameters c
and α.

Theorem 2.1 Assume that y(t) is given by (1.3) or (1.8), and that c > 0.
Then, (1.5) admits a finite optimal stopping time θ∗. Moreover,
i) If y0 is piecewise smooth with jumps, then θ∗ > 0 if α < 4, θ∗ ≥ 0 if α ≥ 4
and J has a local minimum in θ = 0 if α > 4;
ii) If y0 has bounded discontinuous gradient, then θ∗ > 0 if α < 2, θ∗ ≥ 0 if
α ≥ 2 and J has a local minimum in θ = 0 if α > 2.

Proof. The continuity of J with respect to θ is a consequence of the regularity
results for (1.3) and (1.8) mentioned before. The assumption c > 0, along
with the uniform boudedness of ‖y(t) − y0‖, implies that the minimum of J
is achieved at a finite time. Moreover, for the heat equation we have, in the
case of discontinuous but piecewise smooth initial data,

‖y(t)− y0‖2 ∼ C
√

t (t → 0+) (2.12)

We will check (2.12) in a simplified case, that is a step function in IR. This
seems a reasonably general indication at least if the set of discontinuities of
y0 is rectifiable.

Let us assume therefore that

y0(x) =
{

0 if x < 0
1 if x ≥ 0.

Taking into account the representation formula (1.1) for y(t, x), we have

y(t, x)− y0(x) =

=
∫

IR
(y0(x− ξ)− y0(x))

e−
ξ2

4t

√
4πt

dξ =






∫ x
−∞

e−
ξ2

4t√
4πt

if x < 0

−
∫∞
x

e−
ξ2

4t√
4πt

if x > 0

that is, after some computation,

(y(t, x)− y0(x))2 =
(

1− F
( |x|√

4t

))2

(2.13)

where
F (x) =

∫ x

−∞
e−u2

du.
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Integrating (2.13), we obtain

‖y(t, x)− y0(x)‖2 =
∫

IR

(
1− F

( |x|√
4t

))2

dx =

4
√

t
∫ ∞

0
(1− F (u))2du.

Therefore, (2.12) implies that J ′(y0, 0+) = −∞ if α < 4, J ′(y0, 0+) = c− C2

if α = 4 and J ′(y0, 0+) = c if α > 4. In the case of Lipschitz continuous initial
data, by similar arguments,

‖y(t)− y0‖2 ∼ Ct (t → 0+) (2.14)

and hence J ′(y0, 0+) = −∞ if α < 2, J ′(y0, 0+) = c − C if α = 2 and
J ′(y0, 0+) = c if α > 2.

Lastly, let us consider the case of the Perona–Malik model (1.8). Again
by the regularity results in [ALM], [CLMC], for fixed y0 and σ we have |Gσ ∗
∇xy(t, x)| < C(y0,σ) so that

0 < g(C(y0,σ)) < g(|Gσ ∗ ∇xy(t, x)|) ≤ 1

and from standard arguments for parabolic equations we obtain the small–
time behaviours (2.12), (2.14) for this model as well.

Remark. The previous theorem shows that, although the optimal stopping
time problem always admits a finite solution, this might be unsatisfactory
under some conditions. If the image to be filtered, for example, is piecewise
smooth but discontinuous, the criterion (1.5) would always perform filtering
if α < 4, even if the initial image y0 is not noisy. On the other hand, if α > 4,
a search for the first local minimum of J would always yeld the stopping time
θ∗ = 0. So if the image is discontinuous (this is the main situation of interest)
it should be chosen α = 4 and the constant c such as to obtain θ∗ = 0 for a
non–noisy image, that is

c = C2 =
d

dt
(‖y(t)− y0‖4)t=0. (2.15)

It could be noted that the result in (2.15) depends on the initial image y0.
In other terms, the value of the constant c should be computed performing
(2.15) on a typical image to be filtered, that is, an image with the expected
dimension of details and measure of the set of discontinuities. So a setup
of the filter is still required, but it depends only on the characteristics of the
image, not on the noise level (this would be the case, for example, in a Wiener
filter).
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3 Numerical approximation

In this section we will assume a state equation in the general form
{

y′(t) = A(y(t))
y(0) = y0

(3.16)

where y0 and y(t) belong to a Hilbert space H. For any initial state y0,
(3.16) is assumed to have a unique bounded continuous global solution y ∈
C([0,+∞[;H). Let now Hn ⊂ H be a sequence of vector spaces, and Pn :
H → Hn be a sequence of projections, and assume that dimHn = kn (with
kn →∞), and that for any ȳ ∈ H:

lim
n→∞

‖ȳ − Pnȳ‖ = 0. (3.17)

A fully discrete approximation of (3.16) is in the form
{

yk+1
n = An(yk

n)
y0

n = Pny0
(3.18)

(here, yk
n ∈ Hn is intended to be an approximation of y(k∆t)) and a corre-

sponding discretization for (1.5) is

Jn,∆t(Pny0, k) = ∆t
k∑

j=0

f(j∆t, yj
n) + Φ(k∆t, yk

n). (3.19)

We point out that (3.16) is a general form which includes both models into
consideration. In the usual implicit setting, the heat equation is discretized
by

yk+1
n − yk

n

∆t
= −Rnyk+1

n

where Rn is the stiffness matrix associated to the Laplace operator (see [RT]).
In this case, the function An(yk

n) in (3.18) is defined by

An(yk
n) = (I + ∆tRn)−1yk

n.

On the other hand, Perona–Malik model (1.8) might be discretized (see [ALM])
by

yk+1
n − yk

n

∆t
= −Bn(yk

n)yk+1
n

where Bn(yk
n) is a suitable, consistent approximation of the term

−div(g(|Gσ ∗ ∇y(k∆t)|)∇y(k∆t)),
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which results in setting

An(yk
n) = (I + ∆tBn(yk

n))−1yk
n.

General results for semi–discrete approximations of a large class of non–
quadratic control problems (including optimal stopping time problems) has
been studied in [F1]–[F2]. We will now extend this approach to fully discrete
approximations.

Approximation (3.18) is assumed to be convergent and uniformly stable,
in the sense that, for all k ∈ N , t ∈ [k∆t, (k + 1)∆t) and y0 ∈ H:

‖y(t)− yk
n‖H ≤ C(y0, n,∆t)(1 + t)−β (3.20)

with limn,∆t C(y0, n,∆t) = 0, and β > 1 (we note that this limit is intended
for n → ∞, ∆t → 0 on the couples (n, ∆t) which satisfy the convergence
conditions for the fully discrete scheme).

Given the evolution equation (3.16) and the initial state y0, the optimal
control problem into consideration is to find a stopping time θ∗ ∈ [0,+∞]
minimizing the cost (1.5), assuming the boundedness of f and the (uniform
in t) local Lipschitz continuity of both f and Φ:

|f(t, y1)| ≤ Mf , |f(t, y1)− f(t, y2)| ≤ Lf‖y1 − y2‖ (3.21)

|Φ(t1, y1)− Φ(t2, y2)| ≤ LΦ(|t1 − t2| + ‖y1 − y2‖) (3.22)

for any y1, y2 ∈ H and t, t1, t2 ∈ R+, with Lf = Lf (‖y1‖, ‖y2‖), LΦ =
LΦ(‖y1‖, ‖y2‖).

In the approximate version of this problem, given the fully discrete ap-
proximation (3.18) with initial state Pny0, one looks for a stopping time k∗∆t
minimizing the cost (3.19) (for simplicity, we drop the dependence of k∗ on n
and ∆t).

The value functions for both the original and the approximate problem
are defined as:

v(x) := inf
θ≥0

J(x, θ) , vn,∆t(xn) := inf
k≥0

Jn,∆t(xn, k). (3.23)

Such value functions will be used in the proof of the following main conver-
gence result.

Theorem 3.1 Assume (3.20)–(3.23). Assume moreover that an optimal stop-
ping time k∗∆t exists for problem (3.18), (3.19). Then, for any y0 ∈ H,
|J(y0, k∗∆t)− v(y0)|→ 0 as n →∞, ∆t → 0.
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Proof. By the definition of v, vn,∆t, for y0 ∈ H and any given ε > 0, it is
possible to find two finite stopping times θε, kε∆t (depending on ε) such that:

v(y0) ≤ J(y0, θ
ε) ≤ v(y0) + ε (3.24)

vn,∆t(Pny0) ≤ Jn,∆t(Pny0, k
ε) ≤ vn,∆t(Pny0) + ε. (3.25)

We split the proof into three steps.
Step 1: lim supn,∆t vn,∆t(Pny0) ≤ v(y0). To prove this step, note that by the
definition of vn,∆t one has:

vn,∆t(Pny0) ≤ ∆t
hε∑

j=0

f(j∆t, yj
n) + Φ(hε∆t, yhε

n ) (3.26)

with hε = [θε/∆t]. Adding the terms ±J(y0, θε), and using (3.20), (3.21),
(3.22) and (3.24), one obtains:

vn,∆t(Pny0) ≤ ∆t
hε∑

j=0

f(j∆t, yj
n)−

∫ θε

0
f(t, y(t))dt + Φ(hε∆t, yhε

n )−

−Φ(θε, y(θε)) + v(y0) + ε (3.27)

which gives the bound

vn,∆t(Pny0)− v(y0) ≤ ∆t
hε∑

j=0

f(j∆t, yj
n)−

∫ hε∆t

0
f(t, y(t))dt−

−
∫ θε

hε∆t
f(t, y(t))dt + LΦ[∆t + C(y0, n,∆t)(1 + t)−β] + ε ≤

≤ C(y0, n,∆t)
[

Lf

∫ hε∆t

0
(1 + t)−βdt + LΦ(1 + θε)−β

]

+

+∆t(Mf + LΦ) + ε (3.28)

thus proving the step.
Step 2: lim infn,∆t vn,∆t(Pny0) ≥ v(y0). By the definition of v,

v(y0) ≤
∫ kε∆t

0
f(t, y(t))dt + Φ(kε∆t, y(kε∆t)). (3.29)

Adding ±Jn,∆t(Pny0, kε) and operating as before, one has:

v(y0)− vn,∆t(Pny0) ≤
∫ kε∆t

0
f(t, y(t))dt−∆t

kε∑

j=0

f(j∆t, yj
n)+
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+LΦ‖y(kε∆t)− ykε

n ‖+ ε ≤

≤ C(y0, n,∆t)
[
Lf

∫ ∞

0
(1 + t)−βdt + LΦ

]
+ ε. (3.30)

This completes the step and ensures that limn,∆t vn,∆t(Pny0) = v(y0).
Step 3: limn,∆t |J(y0, k∗∆t)− v(y0)| = 0. It suffices to note that

|J(y0, k
∗∆t)− v(y0)| ≤

≤ |J(y0, k
∗∆t)− Jn(Pny0, k

∗)| + |vn,∆t(Pny0)− v(y0)|

and to apply the same arguments of step 2, noting that vn,∆t(Pny0) → v(y0).

Remark. It is clear that in practice the space discretization step cannot van-
ish in image processing, since it naturally comes from a previous discretization
of fixed resolution. Nevertheless, theorem 3.1 shows conditions under which
results obtained by different discretization steps can give comparable results
(since they converge to the same limit problem).

4 Numerical tests

This section provides some numerical examples. We present in figure 2 the
original and noisy images for all tests. We also present for each test the results
of processing with optimal stopping time θ∗, and (for comparison) with θ∗/2
and 2θ∗ with both heat and Perona–Malik equations. The parameters of the
stopping criterion are α = 4, c = 600 for the linear filter and c = 25 for the
nonlinear filter. They have been determined for both models as shown in the
remark to theorem 2.1, and have been kept constant in all numerical tests
with the same model. The resolution is 150× 150 pixels.

To give an idea about the behaviour of the filter, we plot in figure 1 J(y0, θ)
vs θ at different noise levels for an initial image as in test 2. The uppermost
curve (whose minimum is at θ = 0) refers to a zero noise level, and the noise
increases going downwards. It is apparent that at the increase of the term
‖y(t)− y0‖4 the minimum of the curve is shifted away from the origin.
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Figure 1. Plot of J(y0, θ) vs θ for y0 as in test 2 at different noise levels.

Test 1. The first test image is a dark square in lighter background. In figures 3
and 4 processed images with respectively the heat equation and the Perona–
Malik equation are presented. In the first case, they present a remarkable
diffusion of the edges which is caused by the use of the heat kernel. This
effect is considerably reduced by the Perona–Malik model. However, in both
cases the optimal stopping time actually seems to give a good compromise.
Noise still has a high level at the stopping time θ∗/2 for both models. Edges
are completely diffused at time 2θ∗ in the case of the heat equation, whereas
in the nonlinear case they are still kept (although the improvement in terms of
noise with respect to the stopping time θ∗, is not worth doubling the processing
time).

Test 2. This test presents a dark disk with a slight lightening towards its
edge, on a uniform lighter background. The difficult point is to recover both
the sharp edge of the disk and the more regular variation in its interior (note
that this variation is almost unrecognizable in the noisy image). As in the
previous example, linear filter produces (see figure 5) a high diffusion as soon
as the smoothing of noise improves. The effect of nonlinear filter (figure 6) is
remarkably good, and although the longer stopping time 2θ∗ gives a somewhat
better result in terms of noise, the optimal time θ∗ is a good compromise
between quality of image and processing time.

10



Test 3. In this test a real photographic image has been used after the addition
of artificial white noise as shown in figure 2. The result, obtained by nonlinear
filtering, is good although it is clear that the stopping time θ∗ is slightly too
large. However, it must be noted that the parameters of the stopping criterion
have been determined on a much simpler image (the disk of test 2). This
results in a lower value for the constant c which in turn causes the stopping
time to increase. On the other hand, determining the value of c on the same
image, the optimal stopping gives a much better result which is shown in
figure 8 compared to the previous one. The second value of c is about one
order of magnitude larger than the first and this shows that it is important
to ”calibrate” the filter on an image of proper complexity; however this also
shows that a different choice of this parameter has no dramatic effect, provided
its order of magnitude is correct.
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Figure 2. Initial (left) and noisy (right) images for tests 1–3.
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Figure 3. Filtered image (at t = θ∗, t = θ∗/2, t = 2θ∗) for test 1, linear filter.
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Figure 4. Filtered image (at t = θ∗, t = θ∗/2, t = 2θ∗) for test 1, nonlinear filter.
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Figure 5. Filtered image (at t = θ∗, t = θ∗/2, t = 2θ∗) for test 2, linear filter.

15



Figure 6. Filtered image (at t = θ∗, t = θ∗/2, t = 2θ∗) for test 2, nonlinear filter.
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Figure 7. Filtered image (at t = θ∗, t = θ∗/2, t = 2θ∗) for test 3, nonlinear filter.

17



Figure 8. Filtered image (at t = θ∗, c = 25 and c = 210) for test 3, nonlinear filter.
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