ESAME DI GEOMETRIA Per FISICI (Lettere A-Ca)

(Corso del Prof. R. MAZZOCCO)

Testi e soluzioni della prova scritta del 26-6-2015

- 1. Spazio euclideo numerico E^4 . Riferimento cartesiano canonico RC(0;e₁,e₂,e₃,e₄).
- (a) Verificare che i punti $P_0=(1,0,1,0)$, $P_1=(1,0,0,1)$, $P_2=(0,1,0,1)$ sono indipendenti.
- (b) Determinare equazioni cartesiane del piano p generato dai punti P₀, P₁, P₂.
- (c) Determinare equazioni cartesiane e parametriche della retta r passante per il punto $P_3(0,0,0,1)$, parallela all'iperpiano $h:x_1-x_2-x_3+x_4+1=0$ e perpendicolare alle rette $r':x_1/1=(x_2+1)/1=(x_3-1)/0=(x_4-1)/(-1)$ ed $r'':x_1=1+t, x_2=-t, x_3=-1+t, x_4=t, t \in \mathbb{R}$.
- (d) Determinare la mutua posizione del piano p e della retta r.
- (e) Determinare il versore della retta r orientata secondo le x₂ decrescenti.

Soluzione

- (a) I punti P_0 , P_1 , P_2 risultano indipendenti perché i vettori $w_1 = P_1 P_0 = (0,0,-1,1)$ e $w_2 = P_2 P_0 = (-1,1,-1,1)$ sono linearmente indipendenti essendo non proporzionali.
- (b) Il piano p è il piano passante per il punto P_0 ed avente come giacitura il sottospazio vettoriale $W=Span(w_1,w_2)$. Allora equazioni cartesiane di p si ottengono imponendo che sia minore di 3 il rango della matrice rettangolare avente come prima colonna la colonna delle coordinate del vettore w_1 , come seconda colonna la colonna delle coordinate del vettore w_2 e come terza colonna la colonna delle coordinate del vettore $P-P_0$, essendo $P(x_1,x_2,x_3,x_4)$ il punto generico di E^4 . Un minore del secondo ordine a determinante non nullo di tale matrice è, per esempio, quello costituito dagli elementi d'incrocio della seconda e terza riga con le prime due colonne. Uguagliando a 0 i minori del terzo ordine che si ottengono orlando tale minore del secondo ordine, si ottengono le seguenti equazioni cartesiane $x_1-1+x_2=0$, $x_3-1+x_4=0$, ossia $x_1+x_2-1=0$, $x_3+x_4-1=0$, che rappresentano il piano p.
- (c) La retta r, dovendo passare per il punto P_3 , ha equazioni, in forma di rapporti uguali, $x_1/l_1=x_2/l_2=x_3/l_3=(x_4-1)$ / l_4 , dove (l_1,l_2,l_3,l_4) hanno il significato di parametri direttori della retta. Essendo (a_1,a_2,a_3,a_4)=(1,-1,-1,1) coefficienti di giacitura dell'iperpiano h, la condizione di parallelismo della retta r con l'iperpiano h dà $l_1-l_2-l_3+l_4=0$. Essendo (l_1',l_2',l_3',l_4')=(1,1,0,-1) e (l_1'',l_2'',l_3'',l_4'')=(1,-1,1,1) parametri direttori, rispettivamente, delle rette r' ed r'', le condizioni di perpendicolarità della retta r con le rette r' ed r'' danno $l_1+l_2-l_4=0$ e $l_1-l_2+l_3+l_4=0$. Risolvendo il sistema lineare omogeneo $l_1-l_2-l_3+l_4=0$, $l_1+l_2-l_4=0$, $l_1-l_2+l_3+l_4=0$, si ha che parametri direttori della retta r sono, per esempio, (l_1,l_2,l_3,l_4)=(0,1,0,1). Allora equazioni, in forma di rapporti uguali, della retta r sono, per esempio, $x_1/0=x_2/1=x_3/0=(x_4-1)$ /1 e quindi equazioni cartesiane e parametriche della r sono, rispettivamente, $x_1=0$, $x_3=0$, $x_2-x_4+1=0$ e $x_1=0$, $x_2=t$, $x_3=0$, $x_4=1+t$, $t\in \mathbb{R}$.
- (d) Omogeneizzando le equazioni cartesiane del piano p, si ha che equazioni cartesiane della giacitura W del piano p sono $x_1+x_2=0$, $x_3+x_4=0$. Tali equazioni non sono soddisfatte dai parametri direttori $(l_1,l_2,l_3,l_4)=(0,1,0,1)$ della retta r, quindi la retta r ed il piano p non sono paralleli. Dalle equazioni parametriche della retta r si trae poi che il punto generico P(t) di tale retta ha coordinate cartesiane (0,t,0,1+t), $t \in \mathbf{R}$. Andando a sostituire tali coordinate nelle equazioni cartesiane del piano p, si ha il sistema lineare t-1=0, 1+t-1=0, ovvero t-1=0, t=0. Tale sistema è manifestamente incompatibile e quindi nessun punto della retta r appartiene al piano p, ovvero la retta r ed il piano p sono disgiunti. Pertanto la retta r ed il piano p, essendo non paralleli e disgiunti, sono sghembi.
- (e) I versori della retta r sono $\pm (0,1,0,1)/2^{1/2}$. La condizione affinché la retta r sia orientata secondo le x_2 decrescenti implica che deve essere negativa la seconda coordinata del versore della retta così orientata e quindi il versore richiesto è $-(0,1,0,1)/2^{1/2}$.

- 2. <u>Spazi vettoriali euclidei numerici</u> $V=R^3$ <u>e</u> $W=R^2$. <u>Basi canoniche di V e</u> <u>W.</u> Siano assegnate le applicazioni lineari $F:V\to W$ e $G_h:W\to V$ tali $F(v)=(x_1+x_2,x_1-x_2+x_3)$ e $G_h(w)=(y_1-y_2,y_1+y_2,y_1+hy_2)$, essendo $v=(x_1,x_2,x_3)$, $w=(y_1,y_2)$ ed h un parametro reale.
- (a) Determinare equazioni cartesiane dell'endomorfismo $G_h{}^{\circ}F{:}V{\to}V$ rispetto alla base canonica di V.
- (b) Determinare il valore h_0 del parametro h in corrispondenza del quale il numero λ =0 sia un autovalore, con molteplicità algebrica a=2, dell'endomorfismo G_h^oF .
- (c) Indicato semplicemente con $G^{\circ}F$ l'endomorfismo corrispondente al valore h_0 del parametro h di cui al quesito precedente, dire se l'endomorfismo $G^{\circ}F$ è oppure non è diagonalizzabile, giustificando la risposta.
- (d) Determinare una base e la dimensione di Im(G°F).
- (e) Determinare equazioni cartesiane di Im(G°F).
- (f) Posto, per comodità, $U=Ker(G^{\circ}F)$, determinare una base del sottospazio vettoriale U^{\perp} ortogonale al sottospazio vettoriale U.

Soluzione

- (a) Si ha immediatamente che, rispetto alle basi canoniche di V e W, la matrice associata all'applicazione lineare F ha come righe $A^{(1)}$ =(1,1,0) e $A^{(2)}$ =(1,-1,1) e la matrice B_h associata all'applicazione lineare G_h ha come come righe $B_h^{(1)}$ =(1,-1), $B_h^{(2)}$ =(1,1) e $B_h^{(3)}$ =(1,h). Pertanto la matrice C_h associata all'endomorfismo G_h^{o} F, rispetto alla base canonica di V, dovendo essere uguale al prodotto B_h A della matrice B_h per la matrice A, ha come righe $C_h^{(1)}$ =(0,2,-1), $C_h^{(2)}$ =(2,0,1) e $C_h^{(3)}$ =(1+h,1-h,h). Allora equazioni cartesiane dell'endomorfismo G_h^{o} F sono z_1 =2 x_2 - x_3 , z_2 =2 x_1 + x_3 , z_3 =(1+h) x_1 +(1-h) x_2 +h x_3 .
- (b) L'equazione caratteristica dell'endomorfismo $G_h^{\circ}F$ è $\det(C_h^{-\lambda}I)=0$, ossia $(-\lambda)^2(h-\lambda)+2(1+h)-2(1-h)-(1+h)\lambda-4(h-\lambda)+(1-h)\lambda=0$, ovvero $(h-\lambda)\lambda^2+2(2-h)\lambda=0$. La condizione, affinché il numero $\lambda=0$ sia un autovalore, con molteplicità algebrica a=2, dell'endomorfismo $G_h^{\circ}F$, dà h=2. Pertanto il valore richiesto del parametro h è $h_0=2$.
- (c) L'endomorfismo G°F non è diagonalizzabile perché, per esempio, non è soddisfatta la condizione g=a, dove con g si indica la molteplicità geometrica dell'autovalore $\lambda=0$. Infatti, indicato con V_0 l'autospazio associato all'autovalore $\lambda=0$ e risultando $V_0:2x_2-x_3=0$, $2x_1+x_3=0$, $3x_1-x_2+2x_3=0$, si ha $V_0=\{t(-1,1,2)|t\in \mathbf{R}\}$ e quindi, in particolare, dim $(V_0)=1$, da cui si trae $g=\dim(V_0)=1\neq a=2$.
- (d) Osserviamo anzitutto che, risultando $Ker(G^\circ F)=V_0$, è $dim(Ker(G^\circ F))=1$ e quindi dalla formula $dim(Ker(G^\circ F))+dim(Im(G^\circ F))=dim(V)$ si trae $dim(Im(G^\circ F))=3-1=2$. Allora, tenuto presente che i vettori di V, che hanno come colonne delle coordinate le colonne della matrice $C=C_2$, costituiscono un sistema di generatori di $Im(G^\circ F)$ e che le prime due colonne di tale matrice non sono proporzionali, e quindi che sono linearmente indipendenti, si ha che una base di $Im(G^\circ F)$ è costituita dai vettori $v_1=(0,2,3)$ e $v_2=(2,0,-1)$.
- (e) Imponendo che sia minore di tre il rango della matrice che ha come prima colonna la colonna delle coordinate del vettore v_1 , come seconda colonna la colonna delle coordinate del vettore v_2 e come terza colonna la colonna delle coordinate del vettore generico $v=(x_1,x_2,x_3)$, ovvero imponendo che sia nullo il determinante di tale matrice, si ha che l'equazione cartesiana di $Im(G^\circ F)$ è $-2x_1+6x_2-4x_3=0$, ossia $x_1-3x_2+2x_3=0$.
- (f) Equazioni cartesiane di U=Ker(G°F)=V₀ sono $2x_2$ - x_3 =0, $2x_1$ + x_3 =0, $3x_1$ - x_2 + $2x_3$ =0. Allora, stante il significato dei coefficienti delle incognite di tali equazioni, si ha che un sistema di generatori di U^{\perp} è costituita dai vettori u₁'=(0,2,-1), u₂'=(2,0,1), u₃'=(3,-1,2) ed essendo dim(U $^{\perp}$)=dim(V)-dim(U)=3-1=2, una base di U $^{\perp}$ è costituita, per esempio, dai vettori non proporzionali, e quindi linearmente indipendenti, u₁' e u₂'.