ESERCIZI DI GEOMETRIA (Per FISICI) CORSO DEL PROF. RENZO MAZZOCCO A.A. 2009-2010

Foglio N. 2

- 1. Calcolare il rango della matrice A col metodo dei pivots, sapendo che le righe di A sono $A^{(1)}=(1,-1,0,k+1)$, $A^{(2)}=(0,1,1,-1)$, $A^{(3)}=(-1,2,1,2k-2)$ e $A^{(4)}=(1,1,2,k-1)$.
- 2. <u>Spazio vettoriale reale</u> V <u>di dimensione quattro. Base</u> $B=(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}_4)$. Determinare per quale valore del parametro reale k i vettori $\mathbf{w}_1(1,0,-1,2),\ \mathbf{w}_2(2,-1,1,2),\ \mathbf{w}_3(-1,2,k,k+7)$ risultano linearmente dipendenti. In tal caso, posto $W=\mathrm{Span}(\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3),$ determinare una base B_W di W e scrivere equazioni parametriche e cartesiane di W.
- 3. <u>Spazio vettoriale reale</u> V <u>di dimensione quattro. Base</u> $B=(v_1,v_2,v_3,v_4)$. Sia $U=Span(\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3)$, essendo $\boldsymbol{u}_1=\boldsymbol{v}_1+\boldsymbol{v}_2-\boldsymbol{v}_3-\boldsymbol{v}_4$, $\boldsymbol{u}_2=\boldsymbol{v}_1-\boldsymbol{v}_2+\boldsymbol{v}_3$, $\boldsymbol{u}_3=2\,\boldsymbol{v}_1-\boldsymbol{v}_4$. Determinare una base B_U di U e completarla in una base di V. Determinare un sottospazio vettoriale W tale che $V=U\oplus W$.
- 4. <u>Spazio vettoriale reale</u> V <u>di dimensione quattro. Base</u> $B=(v_1,v_2,v_3,v_4)$. Determinare una base e la dimensione del sottospazio vettoriale $U\cap W$, essendo U: $x_1+x_2-x_4=0$, W: $x_1-x_2+x_3=0$, $x_2-x_3-x_4=0$, $kx_1+x_2+x_3-x_4=0$
- e k un parametro reale.

 5. <u>Spazio vettoriale reale V di dimensione quattro. Base B=(v₁,v₂,v₃,v₄). Assegnati i</u>
- sottospazi vettoriali U: x_1 - x_2 + x_4 =0, x_1 + x_2 + x_3 - x_4 =0 e W=Span(\mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3), essendo \mathbf{w}_1 (1,1,-1,-1), \mathbf{w}_2 (-1,-1,1,-1), \mathbf{w}_3 (0,1,1,0), determinare una base e la dimensione di U+W. Dedurne che U+W=V.
- 6. Verificare che la matrice A avente come righe $A^{(1)}=(1,-1,0)$ $A^{(2)}=(0,1,1)$ e $A^{(3)}=(1,2,1)$ è invertibile e determinarne l'inversa A^{-1} .
- 7. Discutere la compatibilità del sistema lineare $3x_1-2x_2+kx_3=3$, $2kx_1+x_2-x_3=4$, $kx_1-4x_2+2kx_3=2$, essendo k un parametro reale, e determinare le soluzioni nei casi in cui esse esistano, usando il metodo dei determinanti.
- 8. Risolvere il sistema lineare omogeneo $x_1-x_2+x_3-kx_4=0$, $x_2+x_2-2x_3=0$, $kx_1-x_2+x_3-kx_4=0$, dove k è un parametro reale, usando il metodo dei determinanti.