ESERCIZI DI GEOMETRIA (Per FISICI) CORSO DEL PROF. RENZO MAZZOCCO

A.A. 2009-2010 Foglio N. 5

- essendo $v=(x_1,x_2,x_3,x_4)$ e $w=(y_1,y_2,y_3,y_4)$, è un prodotto scalare. Dotato V di tale prodotto scalare che, per comodità, denoteremo con <, >, si chiede di:
- i) calcolare gli angoli convessi tra i vettori della base canonica;
- ii) determinare una base ortonormale di V applicando il procedimento di ortogonalizzazione di Gram-Schmidt alla base canonica;
- iii) posto W=Span(e_1 , e_2), determinare $P_w(e_1$ - e_2 + e_3 - e_4) essendo $P_w: V \rightarrow W$ la proiezione ortogonale di V su W.
- 2. Spazio vettoriale reale V di dimensione 3, Base $B_v = (v_1, v_2, v_3)$ Sia assegnata la forma bilineare $b: V \circ V \rightarrow \mathbf{R}$, definita da $b(v,w) = 2x_1y_1 + x_1y_3 + 2x_2y_2 + x_3y_1 + x_3y_3$, essendo $v = x_1v_1 + x_2v_2 + x_3v_3$, $w = y_1v_1 + y_2v_2 + y_3v_3$.
- i) Verificare che b è un prodotto scalare.
- ii) Posto b(v,w)=<,>, determinare $|v|^2$.
- iii) Determinare gli angoli convessi tra i vettori della base B_v.
- iv) Assegnato W=Span (w_1, w_2) , essendo $w_1 = v_1$, $w_2 = v_2 + v_3$, verificare che $B_w = (w_1, w_2)$ è una base d'i w
- v) Determinare la base B_{w} di W, ortonormale rispetto al prodotto scalare < , > indotto da < , >
- su W, ottenuta applicando il procedimento di ortogonalizzazione di Gram-Schmidt alla base Bw.
- vi) Determinare $P_w(v_3)$, essendo $P_w:V \rightarrow W$ la proiezione ortogonale di V su W.
- 3. Spazio vettoriale euclideo numerico $V=R^4$, dotato del prodotto scalare standard. Base canonica $C=(e_1,e_2,e_3,e_4)$. Siano assegnati i vettori $v_1=e_1-e_2$, $v_2=e_2-e_3$, $v_3=e_1+e_3$, $v_4=e_4$.
- i) Verificare che i vettori v₁, v₂, v₃, v₄ costituiscono una base B di V.
- ii) Determinare gli angoli convessi tra i vettori della base B.
- iii) Determinare una base ortonormale B' di V ottenuta applicando il procedimento di ortogonalizzazione di Gram-Schmidt alla base B.
- iv) Determinare la matrice del cambiamento di base nel passaggio dalla base C alla base B', precisandone il tipo.
- 4. <u>Spazio vettoriale euclideo V di dimensione quattro</u>, <u>Base</u> ortonormale $B_v=(v_1,v_2,v_3,v_4)$. Sia assegnato il sottospazio vettoriale W di equazioni cartesiane $x_1+x_3=0$, $x_4=0$.
- i) Determinare una base ortonormale B_w di W.
- ii) Decomporre il vettore $v=3v_1-v_2-v_3+v_4$ nella somma di due vettori w e w' appartenenti rispettivamente a W ed al complemento ortogonale di W.
- 5. <u>Piano vettoriale euclideo (V, <, >)</u>. <u>Base ortonormale</u> B=(i,j). Sia assegnata la retta vettoriale W:x+y=0.
- i) Determinare le equazioni della simmetria ortogonale $S_w: V \rightarrow W$ rispetto a W.
- ii) Determinare il vettore $S_w(u)$, essendo u=i+j.
- iii) Assegnata la retta vettoriale U:x-y=0, scrivere l'equazione cartesiana della retta vettoriale $S_w(U)$, simmetrica di U rispetto a W.
- 6. <u>Spazio vettoriale euclideo (V, <, >) di dimensione</u> 3. <u>Base ortonormale B=(v₁, v₂, v₃). Assegnato il piano vettoriale W:x₁-x₂+x₃=0, si richiede di:</u>
- i) determinare un versore ortogonale a W;
- ii) determinare le equazioni della simmetria ortogonale $S_w:V \rightarrow W$ di V rispetto a W;
- iii) determinare il vettore $S_w(v')$, essendo $v'=-v_1+v_2-v_3$.